
HAL Id: hal-00821285
https://hal.science/hal-00821285v1

Submitted on 8 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Green Power Control in Cognitive Wireless Networks
Maël Le Treust, Samson Lasaulce, Yezekael Hayel, He Gaoning

To cite this version:
Maël Le Treust, Samson Lasaulce, Yezekael Hayel, He Gaoning. Green Power Control in Cogni-
tive Wireless Networks. IEEE Transactions on Vehicular Technology, 2013, 62 (4), pp.1741 - 1754.
�10.1109/TVT.2012.2227858�. �hal-00821285�

https://hal.science/hal-00821285v1
https://hal.archives-ouvertes.fr


1

Green Power Control in Cognitive Wireless
Networks

Mael Le Treust∗ and Samson Lasaulce† and Yezekael Hayel ‡ and Gaoning He§
∗ Université INRS, Centre Energie, Matériaux et Télécom, 800 rue de la Gauchetière, Montréal, Canada

† Laboratoire des Signaux et Systèmes, Supélec, 3 rue Joliot Curie, 91191 Gif-sur-Yvette, France
‡ LIA/CERI, University of Avignon, Agroparc BP 1228, 84911 Avignon Cedex 9, France

§ HUAWEI, Central Research Institute, 2222 Xinjinqiao Rd, Pudong, 201206, Shanghai, China

Abstract—A decentralized network of cognitive and non-
cognitive transmitters where each transmitter aims at maximizing
his energy-efficiency is considered. The cognitive transmitters are
assumed to be able to sense the transmit power of their non-
cognitive counterparts and the former have a cost for sensing.
The Stackelberg equilibrium analysis of this 2−level hierarchical
game is conducted, which allows us to better understand the
effects of cognition on energy-efficiency. In particular, it is proven
that the network energy-efficiency is maximized when only a
given fraction of terminals are cognitive. Then, we study a sensing
game where all the transmitters are assumed to take the decision
whether to sense (namely to be cognitive) or not. This game is
shown to be a weighted potential game and its set of equilibria
is studied. Playing the sensing game in a first phase (e.g., of a
time-slot) and then playing the power control game is shown to
be more efficient individually for all transmitters than playing a
game where a transmitter would jointly optimize whether to sense
and his power level, showing the existence of a kind of Braess
paradox. The derived results are illustrated by numerical results
and provide some insights on how to deploy cognitive radios in
heterogeneous networks in terms of sensing capabilities.

Index Terms—Power Control, Stackelberg Equilibrium,
Energy-Efficiency.

I. INTRODUCTION

In fixed communication networks, the paradigm of peer-to-
peer communications has known a powerful surge of interest
during the past two decades with applications such as the
Internet. Remarkably, this paradigm has also been found to
be very useful for wireless networks. Wireless ad hoc and
cognitive networks are two illustrative examples of this. One
important typical feature of these networks is that the terminals
have to take some decisions in an autonomous or quasi-
autonomous manner. Typically, they can choose their power
control and resource allocation policy. The corresponding
framework, which is the one of this paper, is the one of
decentralized or distributed power control (PC) or resource
allocation. More specifically, the scenario of interest is the
case of power control over quasi-static channels in cognitive
networks [14]. In such a context, which is broader than the
one of ad hoc and cognitive wireless networks, we assume
that some (possibly all) transmitters are able to sense the power
levels of non-cognitive transmitters and adapt their power level
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accordingly. The considered model of multiuser networks is
a multiple access channel (MAC) with time-selective non-
frequency selective links but the methodology can be applied
to other types of interference networks. Technical issues re-
lated to spectrum usage is not considered in this paper, leaving
this aspect as a relevant extension of this paper. Rather, we
want to study the effect of cognition in terms of energy usage,
the potential benefits in terms of spectral efficiency having
been well investigated. The selected performance metric for
a transmitter is derived from the energy-efficiency definition
of [16]. The authors of [16] define energy-efficiency as the
number of bits successfully decoded by the receiver per joule
consumed at the transmitter (in [16] the radiated power is
concerned). More specifically, the authors analyze the problem
of decentralized power control in flat fading multiple access
channels. The problem is formulated as a non-cooperative one-
shot game where the players are the transmitters, the action of
a given player is her/his/its transmit power (”his” is chosen
in this paper), and his payoff/reward/utility function is the
energy-efficiency of his communication with the receiver; we
will not provide here the motivations for using game theory
to study distributed power control problems but some of them
can be found e.g., in [23]. The results reported in [16] have
been extended to the case of multi-carrier systems in [11].

The framework of the present work is close in spirit to
[16], [11] but differs from them in several aspects. The
most important one is that there can be a hierarchy among
the transmitters in terms of observation capabilities, some
transmitters can be cognitive and observe the others whereas
the latter cannot observe the actions played by the former.
Technically, this leads to a Stackelberg-type formulation of the
problem [34]. The closest work to the one reported here is [22]
where a Stackelberg model of energy-efficient power control
problems is introduced for the first time. The present work
reports a significant extension of the framework introduced in
[22]. Two games are studied in detail. The power control game
corresponds to a generalization of the game addressed in [22] :
the sensing costs are taken into account (observing/sensing the
others has a cost) and more importantly, our analysis is not
limited to one non-cognitive transmitter (i.e., a single game
leader). Then, we introduce a new game where the transmitters
decide whether to sense or not. A third game, which is is an
hybrid control game and include the two mentioned games as
special cases, is shown to be not worth being studied because
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of the existence of a Braess paradox [8].
The paper is organized as follows. In Sec. II, the assumed

signal model to describe the distributed power control problem
over time-selective non-frequency selective multiple access
channels is provided. Known results concerning the case where
the transmitters tune their power levels from block to block in
a distributed way and without observing the other transmitters
(i.e., they cannot sense the powers chosen by the others) are
provided. In Sec. III, we assume that some transmitters have
sensing capabilities, which creates a hierarchy in terms of
observation capabilities between the transmitters. The effect of
this is that choosing rational power control policies in this set-
ting leads to a more efficient network outcome (a Stackelberg
equilibrium), provided that the sensing cost for a cognitive
transmitter is not too high. While in Sec. III, a transmitter
was imposed to sense or not, it is assumed in Sec. IV that this
choice is left to the transmitter itself. It is shown that there
exists an optimal number of cognitive transmitters in terms
of network utility and therefore having too many advanced
terminals can be detrimental to the global performance. It is
shown that leaving the choice to a transmitter to choose in
a joint manner its power level and whether to sense is in
fact less energy-efficient than imposing that the transmitters
choose these two quantities separately. This shows the interest
in studying the power control game (as in Sec. III) and the
sensing game separately. The sensing game is a new game
we introduce and is shown to possess attractive properties for
distributed optimization and learning algorithms. Finally, in
Sec. V numerical illustrations are provided and the paper is
concluded in Sec. VI.

II. PROBLEM STATEMENT

A. System model

We consider a decentralized multiple access channel with
a finite number of transmitters, which is denoted by K. The
network is said to be decentralized in the sense that the receiver
(e.g., a base/mobile station) does not dictate to the transmitters
(e.g., mobile/base stations) their power control policy. Rather,
all the transmitters choose their policy by themselves and want
to selfishly maximize their energy-efficiency. In particular,
they can ignore some specified centralized policies. We assume
that the users transmit their data over time-selective non-
frequency selective channels, at the same time and on the
same frequency band; channels are considered to be constant
over each block of data. Note that a block is defined as a se-
quence of M consecutive symbols which comprises a training
sequence that is, a certain number of consecutive symbols used
to estimate the channel (or other related quantities) associated
with a given block. A block has therefore a duration less than
the channel coherence time. The equivalent baseband signal at
the receiver can be written as

y(t) =

K∑
k=1

hkxk(t) + z(t) (1)

where k ∈ K, K = {1, ...,K}, xk(t) represents the symbol
transmitted by transmitter k at time t ∈ N, E|xk|2 = pi,
the noise z is assumed to be decentralized according to a

zero-mean Gaussian random variable with variance σ2 and
each channel gain hk varies over time but is assumed to be
constant over each block ; the symbol index t will be omitted
in this paper. In terms of channel state information (CSI),
the receiver is assumed to know all the channel gains (global
CSI) while each transmitter only knows his own channel (local
CSI). For each block, the expression of the receive signal-to-
interference-plus-noise ratio (SINR) of user k is given by :

γk =
gkpk

σ2 +

K∑
j 6=k

θjgjpj

(2)

where for all j ∈ K, gj = |hj |2 and θj represents a parameter
depending on the interference scenario. For example, in a
random code division multiple access (RCDMA) system with
single-user decoding, we would have θj = 1

N where N is
the spreading factor [11]. This is the choice we will do.
Nonetheless, note that the present work is not restricted to
code division multiple access (CDMA) systems. Indeed, by
choosing θj = 1 (i.e., N = 1) the above signal model cor-
responds to the information-theoretic channel model used for
studying multiple access channels [35], [9]; in this setup, good
channel codes are assumed (see e.g., [6] for more comments on
the multiple access technique involved). Indeed, what matters
the most in the model is that it captures the different aspects
of the problem (especially the SINR structure). At last, the
case where successive interference cancelation is used at the
receiver (θj ∈ {0, 1}, depending on the decoding order) is left
as an extension of the present work.

B. Performance metric

Assuming the above signal model, we assume that each
transmitter wants to selfishly maximize the energy-efficiency
of his communication with the receiver. The used performance
metric is the one originally proposed in [16]. For a given block,
transmitter k wants to maximize the following quantity :

vk(pk,p−k) =
Rkf(γk)

pk
[bit/J] (3)

where Rk is the transmission rate (in bit/s), f is an effi-
ciency function (representing the block success rate), and the
subscript −k on vector p stands for “all the transmitters except
transmitter k”, i.e., p−k = (p1, . . . , pk−1, pk+1, . . . , pK).
Note that, as a standard assumption, Rk is assumed to be
independent of γk or pk which may correspond in practice to
a given choice of modulation coding scheme. As motivated in
[31], [4], the efficiency function is assumed to be an increasing
and sigmoidal (or S-shaped) function verifying 0 ≤ f(.) ≤ 1
with f(0) = 0 and lim

x→+∞
f(x) = 1. The fact that f is sigmoidal

has at least two important consequences : the utility function
vk is quasi-concave w.r.t. pk and the derivative of vk vanishes
at only one point which is different from 0. We see that
Rk might be chosen to be SINR-dependent without affecting
the problem analysis provided that the product Rkf be a
sigmoidal function. For the sake of clarity, we assume that the
players have the same efficiency function f. In [16] and related
works, pk represents the power radiated by the transmitter.
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Interestingly, the above utility can also model situations where
the power consumed by the whole transmitting device has to
be accounted for. Indeed, by replacing the denominator of uk
by apk + b, (a, b) being a pair of non-negative constants, one
obtains a first-order model of the device power consumption
which includes both the consumption part which does not
depend on the radiated power and the one due to the transmit
power [13]. This does not change significantly the mathemat-
ical analysis of the power control problem. In order to focus
our attention on the most important points of our analysis and
make the exposition as clear as possible, the original model
of [16] has been selected (i.e., (a, b) = (1, 0)).

C. Game-theoretic modeling : review of the non-cooperative
game of [16]

An appropriate model for the power control problem de-
scribed above is given by a strategic form game [16]. A
strategic form game consists of an ordered triplet comprising
the set of players, their action or strategy sets, and their
preference orders (or their utilities when they exist, which is
the case here). The set of players is the set of transmitters
K, the action set is Pk = [0, Pmax

k ], k ∈ K, and the
utility functions are defined by (3). This describes the model
introduced by Goodman et al in [16]. As [16] and related
references such as [11], the power levels are chosen to be
continuous. This allows us to conduct a complete comparison
analysis in terms of performance. However, this assumption
is not always suited and the case of discrete power levels
is therefore left as a complementary way of tackling the
problems under investigation. An important solution concept
for this game is the Nash equilibrium1 (NE) [28], which is a
power profile/vector that is robust against unilateral deviations
(no player has interest in deviating if the others keep the
equilibrium strategy). The unique NE of this power control
game is :

pNEk =
σ2

gk

β?

1− K−1
N β?

, k ∈ K (4)

where β? denotes the best SINR choice for user k at the
NE ; as explained in [16][11], a necessary condition for this
equilibrium to be defined is that the system load is not too high
(K−1N β? < 1). Note that the equilibrium SINR is common to
all users. It is easy to verify that β? is the positive solution of
the differential equation xf′(x)− f(x) = 0, which is obtained
by solving max

x 6=0

f(x)
x , i.e., an equivalent problem of max

pk
vk

(following from the assumption that Rk is independent of γk
and pk).

The equilibrium solution holds if the power constraint pk ≤
Pmax
k is satisfied, which is what we will assume throughout

this paper (see e.g., [16] for further details about the case
where the constraint is active). This game model, although
leading to a decentralized solution in terms of decisions and
CSI (see [16]), has one main drawback : the equilibrium
solution can be inefficient. Interestingly, introducing some
hierarchy between the players in terms of observation can

1App. A reviews several game-theoretic notions. Note that the unconditional
existence of a pure NE is, in part, a consequence of quasi-concavity for the
utility functions.

improve the game outcome, as shown in [22]. It turns out
that hierarchy is naturally present in networks where some
transmitters are equipped with a cognitive radio while the
others are not. This is one of our motivations for formulating
the problem in decentralized cognitive networks as a two-
level Stackelberg game, with arbitrary numbers of cognitive
radios, generalizing the 1-leader K−1-follower game of [16].
Compared to the latter reference [16], a second interesting
feature of the game described below is that the cost induced by
sensing is accounted for in the utility function of the cognitive
transmitters. The proposed approach may be relevant in most
applications where cognitive radio is useful. Indeed, one of the
messages of this work is that if the fraction of transmitters who
can observe their environment is too high, this may degrade
the global performance. To mention an existing scenario where
this type of approaches might be applied in the future, the
case of WiFi systems can be mentioned. In France, operators
provides more and more advanced access points. Typically,
they want to optimize channel selection (which is a special
case of power allocation) in a more and more efficient manner.
Assuming that some access points (AP) are optimized accord-
ing to a Nash strategies while others implement Stackelberg
strategies allows one to provide a simplified model to account
for the fact that advanced APs coexist with less advanced APs.
Interestingly, as shown in this paper, as far as power control
is concerned, having too many advanced APs might not be as
good as the common sense would indicate.

III. THE TWO-LEVEL POWER CONTROL GAME WITH
SENSING COSTS

The set of transmitters K = {1, 2, ...,K} comprises F
terminals equipped with a cognitive radio while the L = K−F
other terminals have no sensing capabilities. The pair (F,L)
is assumed to be fixed throughout the whole section; it will
be optimized in a centralized (resp. decentralized) manner
in Sec. IV-A (resp. Sec. IV-B). Without loss of generality,
the set of non-cognitive (resp. cognitive) terminals will be
L = {1, 2, ..., L} (resp. F = {L+1, L+2, ...,K}). This two-
level hierarchical game is played as follows. For each block,
the non-cognitive transmitters (called the leaders) choose their
power level rationally knowing that their decisions are going
to be observed by the cognitive transmitters. The cognitive
transmitters (called the followers) react to these decisions
rationally. A choice is said to be rational in the sense that
the transmitter maximizes his utility. To this end, we denote
by pL , (p1, . . . , pL) and pF , (pL+1, . . . , pK) the vectors
of actions (transmit powers) of the leaders and followers,
respectively. Also denote by U?(pL) the set of NE for the
group of followers when the leaders play pL. The resulting
outcome of this interaction is a Stackelberg equilibrium (SE),
which is defined as follows.

Definition 3.1 (Stackelberg equilibrium): A vector of ac-
tions pSE = (pSE

L ,p
SE
F ) is called a Stackelberg equilibrium,

if pSE
F ∈ U?(pSE

L ) and the actions pSE
L is a Nash equilibrium
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for the leaders2.
By looking at the mathematical expression of the Stack-

elberg equilibrium defined above, we can see that if the NE
exists, then SE also exists. But the SE is not included in the
set of NE of a non-cooperative game. There exists several
examples like the Cournot game in which the action chosen
by the leader at the SE is different compared to the action
chosen at the SE [15]. As the best-response of each player
is a scalar-valued function (see [22]), the determination of
the Stackelberg equilibria of the game amounts to solving the
following bi-level optimization problem:

pSE` ∈ arg max
p`

u`
(
p`,p

SE
−`, p

SE
L+1(p`,p

SE
−`), . . . , p

SE
K(p`,p

SE
−`)
)
, ∀` ∈ L

(5)
where for all pL,

pSEf (pL) = arg max
pf

uf(pL, p
SE
L+1(pL), . . . , pSEf−1(pL), pf , ...,

pSEf+1(pL), . . . , pSEK(pL)), ∀f ∈ F (6)

where the utility functions are given by :

uk(p) =

∣∣∣∣ vk(p) if k ∈ L,
(1− αk)vk(p) if k ∈ F . (7)

The parameter αk ∈ [0, 1], k ∈ F is a constant w.r.t.
the power levels which accounts for the sensing cost (to be
illustrative, we will choose αk = α in some places). This
constant has no effect on the equilibrium strategies. However,
when it will come to knowing whether being a follower or
not, this constant will play a role. To elaborate further on
this constant, it can be interpreted as the fraction of time a
cognitive user k ∈ F spends for sensing. In order to have
a good sensing capabilities3, we assume that there exists a
certain energy threshold ξmin (see e.g., [18]) expressed in
joule :

αkT min
`∈L

(gk`p`) ≥ ξmin

where T is the block duration in second and p` in Watt whereas
αk and f(.) are unitless ; gk` is the channel gain between any
leader ` ∈ L and the considered follower k ∈ F . If the above
inequality holds, it means that the cognitive user k ∈ F is
able to sense the presence of the primary ones. Apparently,
we assume that the sensing constraint is feasible in the sense
that there exists a minimum fraction αk ≤ 1, k ∈ F above
which the minimum energy threshold for sensing is attained.
A necessary condition for this is that T min

`∈L
(gk`p`) ≥ ξmin.

For the sake of clarity, we suppose that the sensing cost is
the same for every player αk = α, k ∈ F . At this point,
the two-level hierarchical power control game is completely
defined : the players are the L non-cognitive transmitters and
the F cognitive transmitters, their action sets are [0, Pmax

k ],
and their utilities are defined by (7).

2We assume, w.l.o.g. two players in a non-cooperative game with one leader
and one follower. If the leader plays the NE action, then, as the follower
observes this action and plays the best-response against it, the follower will
play the NE strategy. Then, the NE strategy profile, if it exists, can be a SE.
The behavior is the same when there are several leaders and followers. If the
NE between the leaders corresponds to the NE of the game between leaders
and followers, then the followers respond by playing the NE.

3Under the assumption of single-user decoding (each useful signal is
detected by considering the other signals as noise), a good sensing capability
means that a follower can detect the existence of all the leaders. In particular,
the leader whose link with the follower is the worst is detected.

Following the standard methodology of equilibrium analysis
(see e.g., [21][23]), three important issues to be dealt with are
the existence, uniqueness, and efficiency issues for the Stack-
elberg equilibrium. The next theorem provides an element of
response to the first two issues.

Proposition 3.1 ([22]): There always exists a Stackelberg
equilibrium pSE in the two-level hierarchical game with L ≥ 1
leaders and F ≥ 1 followers. The power profile defined by

∀` ∈ L, pSE` =
σ2

g`

Nγ?L(N + β?)

N2 −N(F − 1)β? − [(N + β?)(L− 1) + Fβ?] γ?L

∀f ∈ F , pSEf =
σ2

gf

Nβ?(N + γ?L)

N2 −N(F − 1)β? − [(N + β?)(L− 1) + Fβ?] γ?L

is an SE and β? is the positive root of xf ′(x) = f(x), and γ?L
is the positive root of x(1− εLx)f ′(x) = f(x), with

εL =
Fβ?

N2 −N(F − 1)β?
. (8)

Moreover, the equilibrium pSE is unique if the following two
conditions hold: (1) lim

x→0+

f ′′(x)
f ′(x) > 2εL, and (2) equation x(1−

εLx)f ′(x)− f(x) = 0 has a single root in (0, β?).
Note that the existence of such an equilibrium is ensured

from the properties of the Stackelberg game, especially the
sigmoidness of f [22]. In [22], it also explained that the best-
response of the players are scalar-valued functions, which fa-
cilitates the Stackelberg equilibrium analysis. Interestingly, the
provided sufficient conditions for uniqueness can be checked
to be satisfied for two typical efficiency functions used in the
related literature namely, f(x) = (1 − ex)M and f(x) = e−

c
x ,

c ≥ 0 used in [16] and [4] respectively.
At last but not least, we address the issue of efficiency for

the derived Stackelberg equilibrium. The key point at stake
is whether cognition helps to obtain a better decentralized
network in terms of global energy-efficiency. For this purpose,
we first compare the utility a player would get in a system
where no cognitive transmitters exist with the one he would
obtain in a system with cognitive transmitters (i.e., at the
Nash equilibrium corresponding to [16]). Our main results are
summarized by the following proposition.

Proposition 3.2 (SE versus NE): The utility at the SE of the
two-level hierarchical game with sensing cost of any leader is
always greater or equal to the one obtained at the NE.

If the cost for sensing is negligible, the next corollary
follows.

Corollary 3.3 (SE versus NE with no sensing cost): The
power profile at the SE Pareto dominates the power profile at
the NE.

The proof of Proposition 3.2 and corollary 3.3 are given in
[22]. Another relevant question, initially raised in a context
with a single leader and no sensing cost [22] is whether
it is better to follow or lead the power control game. Said
otherwise, is it beneficial for a transmitter to be equipped with
a cognitive radio when sensing costs are accounted for ? The
answer is provided below.

Proposition 3.4 (Following versus leading): At the Stackel-
berg equilibrium of the two-level power control game with
sensing cost, a transmitter prefers to be a follower (that is
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to say, to sense) if the minimum energy threshold for sensing
verifies :

ξmin ≤

1− f(γ?
L)
γ?
L

f(β?)
β?

(N+γ?L)

(N+β?)

 T min
`∈L

gfp
SE
` . (9)

The proof of this result is given in App. B. Interestingly, it
is possible to provide an explicit lower bound on the energy
threshold for a cognitive radio for being energy-efficient. For a
transmitter, this bound mathematically translates the tradeoff
between the benefit (in terms of energy-efficiency) of being
informed about the actions played by the others and the cost
induced by acquiring this knowledge. If the sensing cost is
negligible, then following becomes always better than leading,
giving an incentive to equip a transmitter with a cognitive
radio. However, if all the transmitters of the network are
cognitive, the network energy-efficiency is not maximized,
which is what is proved in the next section.

IV. THE SENSING GAME

In the preceding section, the pair (F,L) and the identities
of cognitive and non-cognitive transmitters were fixed. A quite
natural question is to ask whether the transmitters would
effectively sense or not in a fully decentralized network where
the decision to sense is left to them. Providing answers to this
question is the purpose of this section. As a first step, we show
the existence of an optimal number of cognitive transmitters in
terms of social welfare (sum utility). The corresponding upper
bound can be used to assess the price of anarchy of the network
[19] and therefore measuring the cost of having this decision
decentralized. As a second step, we consider a sensing game
in which each transmitter has two actions (sense/not sense).
It is shown that each transmitter can learn his best decision
provided that the number of blocks is sufficiently large.
A. On the optimal number of cognitive transmitters

The global energy-efficiency of the network is measured in
terms of social welfare [1] or sum utility at the equilibrium
which is defined by :

weL =

K∑
k=1

uk =

L∑
k=1

uk +

K∑
k=L+1

uk, (10)

where e ∈ {SE,NE}. Note that a Nash equilibrium is obtained
when L = K, indeed in this context, there is no followers
and the game is no more hierarchical. The subscript L has
been added to the equilibrium profiles to clearly indicate that
it is related to the number of leaders whenever L 6= K (see
equation (10). As the parameter L, which is the number of
leaders or non-cognitive transmitters, belongs to a discrete set
K, the function wL : K → R+ has necessarily a maximum4.
Is this maximum reached at the non-trivial points L = 1 or
L = K? >From Proposition 3.2, we know that it is not the
case. Indeed, if the sensing cost is small enough, then the
power profile at any SE Pareto-dominates the one of the NE
obtained with L = 1 or L = K. Thus, the latter points are
not the maximizer candidates for the sum utility. However,

4Note that, however, we do not try to optimize the identity of the followers
or leaders with respect to their channel quality. This type of issues, which is
of relevant in centralized scenarios, is addressed in [22] in a special case.

when the sensing cost is arbitrary, answering the question
analytically does not seem to be trivial. This is why we solve
this maximization problem numerically in Sec. V. To still get
some insights into the problem, we study a very special case
of it. The interest in doing so is that it clearly shows that the
sum utility maximizer is non-trivial and a little more about the
connection with the network load can be learned.

We now consider the special case defined by the following
four assumptions :
• Assumption 1 : gk = g,Rk = R for all k ∈ K.
• Assumption 2 : N >> (K − 1)β?.
• Assumption 3 : f(x) = e−

c
x , c ≥ 0.

• Assumption 4 : 1 ≤ L ≤ K − 1.
The social welfare at the SE is given by :

wSE
L =

∑
`∈L

R`
f(γ?L)

pSE`
+
∑
f∈F

Rf
f(β?)
pSEf

= R
gaL
σ2

[
Lf(γ?L)

γ?L(N + β?)
+

(K − L)f(β?)
β?(N + γ?L)

]
, (11)

where

aL , N − (F − 1)β?− [(N + β?)(L− 1) + Fβ?] γ?L
N

. (12)

Note that in [5], c = 2r−1, where r is the spectral efficiency of
the used channel coding scheme (in bit/s per Hz). A possible
choice is r = R

B where R is the data transmission rate and B
the required bandwidth to transmit. While Assumptions 2 and
3 are reasonable (they respectively correspond to a small sys-
tem load and the case where the efficiency function is derived
from the outage probability on the mutual information [5]),
the first assumption is very strong and may happen in practice
in specific scenarios e.g., in virtual multiple input multiple
output (MIMO) networks with clusters of transmitters [17]
with similar flow types (a voice service typically). Indeed, if
fast power control is considered namely, gk represents the fast
fading, this symmetry assumption will almost never be verified
in practice. Now, if slow power control is considered, gk may
represent shadowing and path loss effects, and the g′ks will
be almost equal for all users being in a given neighborhood
(as explained in [17] where the notion of clusters of users is
shown to be relevant). In any case, note that the symmetry
assumption is very local and is only exploited to reinforce the
existence of a non-trivial optimal number of followers/leaders
and provide insights on this number. Again, the goal is not to
claim a general expression for the optimal number of leaders.
Rather, we just want to derive it in a special case to better
understand the general optimization problem. Assumption 4
is not restrictive since the cases K = 0 and K = L are ready.
Under Assumption 2, we have that aL ≈ N . From (8) we
have εL ≈ 0, which implies that γ?L ≈ β?, f(γ?L) ≈ f(β?), and

f(γ?L)

N + β?
≈ f(β?)
N + γ?L

. (13)

This allows one to approximate the social welfare at the
equilibrium (11) as :

w̃SE
L ≈ R

gf(β?)N
(N + β?)σ2

(
L

γ?L
+
K − L
β?

)
. (14)
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Note that the term gf(β?)N
(N+β?)σ2 is independent of L, and the

optimal solution L? can be approximated by :

L̃? = arg max
L

(
L

γ?L
+
K − L
β?

)
. (15)

The main point in the above equation is that L̃? is related to
γ?L which is the positive root of the equation x(1−εLx)f′(x)−
f(x) = 0. It turns out that, under Assumption 3, a very simple
expression for γ?L can be obtained. One can easily check that :

γ?L =
c

1 + εLc
. (16)

Using the above, the optimization problem given by equation
(15) boils down to :

L̃? = arg max
L

(
L
c

1+εLc

+
K − L
c

)
= arg max

L
(εLL) .

Replacing the discrete variable L with a non-negative real λ,
the optimal solution of the corresponding concave function
can be checked to be :

λ̃? =

∣∣∣∣∣
(
1 + N

c

) (
1−

√
1− K

N
c

c
N +1

)
if K−1

N ≤ 1
c

K − κ if K−1
N > 1

c
(17)

where κ > 0 is arbitrary small (this constraint is added to
meet the constraint L ≤ K − 1). Therefore, the optimal
number of non-cognitive transmitters can be approximated by
L̃? =

⌊
λ̃?
⌋

or L̃? =
⌈
λ̃?
⌉

depending on which number gives

the maximal social welfare. From this expression of L̃?, some
interesting insights can be easily extracted. First of all, note
that if the load is sufficiently small compared to 1

β? but at the
same time greater than 1

c , the social welfare is maximized for
L̃? = K − 1. Indeed, when the load is small, the interaction
between players is not strong and the impact of a hierarchy
on the overall system is small (at least for a reasonably large
system). Thus, the social welfare is maximized at the NE
point, which corresponds to the case where all users are leader
and play at the same time. A second type of insights can be
obtained by considering the spectral efficiency related to the
channel coding namely c = 2r − 1. As already mentioned,
note that it is assumed that the spectral efficiency involved by
the multiple access technique is sufficiently small (Assumption
2). If we go further by assuming that both the multiple access
technique spectral efficiency (KN → 0) and channel coding
spectral efficiency (c→ 0) are small, we obtain that :

λ̃? ≈
(
1 + N

c

)
1
2
K
N

c
c
N +1 ≈

K
2 (18)

which means that in the low spectral efficiency regime, the
global energy-efficiency of the network is maximized when
half of the transmitters are cognitive. If c is large but the
load is still small (meeting the constraint K−1

N ≤ 1
c ) the

same conclusion is obtained. Conducting a deep analysis
to discuss the connections between spectral efficiency and
energy-efficiency in decentralized cognitive networks in the
general case (arbitrary load, with cost of sensing) seems to be
a relevant and non-trivial extension of the simplified analysis
provided here.

B. Sensing game : description and key property

In the two-level hierarchical power control described in
Sec. III, the transmitter is, by construction, either a cogni-
tive transmitter or a non-cognitive one and the action of a
player consists in choosing his transmit power level. In fully
decentralized networks, it is legitimate to ask about what a
transmitter would decide between sensing (being cognitive or
not) or not sensing. To analyze such a problem, we assume that
two games occur sequentially for each block (this separation
assumption will be fully justified in Sec. IV-C). First, the
transmitters decide to sense (S) or not to sense (NS). Then,
their choose their power level based on their status (follower
or leader) and therefore play the two-level power control game
described in Sec. III. The sensing game can therefore be
described by a static game whose representation is given by
the following triplet :

G = (K, (Ak)k∈K, (Uk)k∈K) (19)

where the actions sets are Ak = A = {S,NS} and the utility
functions are those obtained at the Stackelberg equilibrium
of the power control game played in the second phase. If
transmitter k is a follower (i.e., he senses) and that there were
F followers during the sensing phase of the block then his
utility is :

Uk(S, s(F,L)
−k ) =

(1− αk)gkRk
σ2

f(β∗)
Nβ?(N + γ?L+1)

×{
N2−Nβ? − [(N+β?)L+ (F + 1)β?] γ?L+1

}
where the notation s(F,L)−k means that there are F −1 followers
and L leaders in the set of players K \ k. On the other hand,
if transmitter k chooses the action NS he obtains :

Uk(NS, s(F,L)
−k ) =

gkRk
σ2

f(γ∗L)

Nγ?L+1(N + β?)
×{

N2−Nβ? − [(N+β?)L+ (F + 1)β?] γ?L+1

}
in terms of utility. The considered sensing game is a con-
gestion game [30] (and therefore a potential game) under
strong conditions but is always a weighted potential game.
The latter property is known to be very useful for studying
existence of pure NE and convergence of learning algorithms
or distributed iterative algorithms towards NE. For instance, in
[25], [26], Monderer and Shapley proved that every weighted
potential game has the Fictitious Play5 Property (FPP). This
guarantee that every learning algorithm that is Fictitious Play
process converges in belief to equilibrium. All of this is the
purpose of the remaining of this section. For making this paper
sufficiently self-containing we review several useful definitions
concerning potential games [25].

Definition 4.1 (Monderer and Shapley 1996 [25]): The
strategic form game G is a potential game if there is a
potential function V : A −→ R such that

Uk(sk, s−k)− Uk(s′k, s−k) = V (sk, s−k)− V (s′k, s−k),

∀k ∈ K, sk, s′k ∈ Ak.

5The FP learning algorithm can be found in the quoted references or [36]
but essentially it consists in assuming that each player observes the actions of
the others and maximizes his average utility based on the empirical frequencies
of use of actions of the others.
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Theorem 4.2: The sensing game G =
(K, (A)k∈K, (Uk)k∈K) is an exact potential game if and only
if one of the two following conditions is satisfied :

∀i, j ∈ K Rigi = Rjgj , (20)
UL(F + 1, L+ 1)− UL(F,L+ 2) = (1− α)(UF (F + 2, L)−

UF (F + 1, L+ 1)), (21)

where UL(F + 1, L + 1) is defined by σ2Ui(F+1,L+1)
Rigi

when
player i ∈ K is one of the F+1 followers and UF (F+1, L+1)

is defined by σ2Ui(F+1,L+1)
Rigi

when player i ∈ K one of the
L+ 1 leaders.

Condition (20) is a (strong) symmetry condition and is
obtained under Assumption 1 (Sec. IV-A), which would be
reasonable for a cluster of transmitters in a virtual MIMO
network with a common service (e.g., voice). In fact, it is
more realistic not to make these assumptions and claim for a
potential property which is sufficient for key issues such as
convergence of some important learning dynamics.

Definition 4.3 (Monderer and Shapley 1996 [25]): The
strategic form game G is a weighted potential game if there
is a vector (µi)i∈K and a potential function V : A −→ R
such that :

∀i ∈ K, (si, s
′
i) ∈ A2

i ,

Ui(si, s−i)− Ui(s′i, s−i) = µi(V (si, s−i)− V (s′i, s−i)).

It turns out that such a vector can be found.
Theorem 4.4: The sensing game G =

(K, (Ai)i∈K, (Ui)i∈K) is a weighted potential game with the
weight vector :

∀i ∈ K, µi =
Rigi
σ2

. (22)

The proof is given in App. F.
C. Equilibrium analysis

1) Existence: First of all, note that since the sensing game
is finite (i.e., both the number of players and the sets of
actions are finite), the existence of at least one mixed NE is
guaranteed [29]. Now, since the game is a weighted potential
game, the existence of at least one pure NE is guaranteed
[25]. We might restrict our attention to pure and mixed Nash
equilibria. However, as it will be clearly seen in the 2-player
case study (Sec. IV-C3), this may pose a problem of fairness
and efficiency. This is the main reason why we also study
the set of correlated equilibria (App. A-A) of the sensing
game. The concept of correlated equilibrium [2] allows one
to enlarge the set of equilibrium utilities. Every utility vector
inside the convex hull of the Nash equilibrium utilities is
a correlated equilibrium, which guarantees the existence of
correlated equilibria in general.

2) Uniqueness: Here, we provide a brief analysis of unique-
ness for the pure NE. This matters since pure NE are attractors
of important dynamics such as the replicator dynamics (which
corresponds to the limit of important learning schemes) [7].
One obvious advantage of having uniqueness of the game
outcome is to make the game predictable, which may be useful
from a designer standpoint. As mentioned above, by contrast,
the number of correlated equilibria is generally greater than
one and more typically infinite. The following proposition

provides sufficient condition under which the sensing game
(always with costs) has a unique pure NE.

Proposition 4.5: Assume the following two conditions are
satisfied :

α > 1−
(N + γ?K−1) (N − (K − 1)β?)

N2−Nβ? − [(N+β?)(K − 1)+ 2β?] γ?K−1

(23)

α > 1−
γ?K−1(N + β?)f(β?)
β?(N + γ?K−1)f(γ?K−1)

. (24)

Then the unique Nash equilibrium of the game is
(s∗1, s

∗
2, ..., s

∗
K) = (NS,NS, ...,NS).

Condition (23) insures that the non-sensing strategy NS
dominates the sensing strategy S when none of the other
player sense. Condition (24) insures that the non-sensing
strategy NS dominates the sensing strategy S when some of
the other player sense. Both conditions together imply that
the sensing strategy S is always a dominated strategy for
each player. The unique Nash equilibrium of the game is
(s∗1, s

∗
2, ..., s

∗
K) = (NS,NS, ...,NS).

3) Efficiency: In a decentralized network, since no or little
coordination between terminals is available, an important issue
is the efficiency of the network at the equilibrium state. Are
the mixed or pure NE of the sensing game efficient in terms of
utility? To be illustrative and to understand in a deep manner
the problem under investigation, our choice, in this section,
is to mainly focus on the 2−transmitter case but most of the
provided results can be extended to the general case K ≥ 2.

Theorem 4.6: [Number of NE] The matrix game has the
following NE :
• a unique NE if and only if (C1) : α > β∗−γ∗

1−β∗γ∗ ;

• three NE if and only if (C2) : α < β∗−γ∗
1−β∗γ∗ ;

• an infinite number of NE if (C3) : α = β∗−γ∗
1−β∗γ∗ .

The proof of this result is provided in App. C. There is
also a strictly mixed equilibrium which can be found using
the indifference principle. Let (x, 1 − x) the mixed strategy
for player 1 and (y, 1−y) the mixed strategy for player 2. As
proven in App. D, there is a unique pair (x∗, y∗) satisfying the
indifference principle. The corresponding distribution is given
by :

x∗ = y∗ =
(1− α) f(β∗)

β∗ (1− β∗)− f(γ∗)
γ∗

1−γ∗β∗
1+β∗

X
, (25)

with X = (1 − α) f(β∗)
β∗ (1 − β∗) − f(γ∗)

γ∗
1−γ∗β∗
1+β∗ + f(β∗)

β∗ (1 −
β∗)− (1− α) f(β∗)

β∗
1−γ∗β∗
1+γ∗ and the corresponding equilibrium

utilities are :

U1(x∗, y∗) =
R1g1
σ2

υ

U2(x∗, y∗) =
R2g2
σ2

υ

with

υ =
(1− α) f(β∗)

β∗ (1− β∗) f(β∗)
β∗ (1− β∗)

X
−

f(γ∗)
γ∗

1−γ∗β∗
1+β∗ (1− α) f(β∗)

β∗
1−γ∗β∗
1+γ∗

X
.

Fig. 1 represents the three equilibrium utility points for
a typical scenario. The shaded area represents the region of
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feasible utilities for a given scenario (described under Fig. 1).
Operating at one of the pure NE can be unfair for one of
the transmitters and therefore inefficient for a certain fairness
criterion [12]. Operating at the mixed NE is clearly suboptimal
since it is Pareto-dominated by some feasible pairs of utilities.
A way of dealing with fairness or/and Pareto-inefficiencies is
to induce correlated equilibria (CE) in the game.

In practice, having a correlated equilibrium means that the
players have no interest in ignoring (public or private) signals
which would recommend them to play according to certain
joint distribution over the action profiles of the game. In
wireless networks, a correlated equilibrium can be induced by
a common signalling from a source which is exogenous to the
game. It may be a signal generated by the receiver itself but
also an FM (frequency modulation) signal, or a GPS (global
positioning system) signal, meaning that the additional cost for
adding this signal may be zero if the terminals are already able
to decode such a signal. At last, note that such a coordination
mechanism is scalable in the sense that it can accommodate a
high number of transmitters; in practice, physical limitations
may arise e.g., if the signal is sampled into a finite number of
bits. If α > β∗−γ∗

1−β∗γ∗ , as there is only one NE, the convex hull
of NE boils down to a point and there does not exist any other
correlated equilibrium other than this NE. Rather, we assume
that the sensing cost verifies condition (C1) which is the case
of interest since several NE exist (see Theorem 4.6). In this
case the following result holds.

Theorem 4.7: Any convex combination of NE is a CE. In
particular, if there exists a utility vector ν = (ν1, ν2) and a
parameter λ ∈ [0, 1] such that :

ν1 = λU1(S1,NS2) + (1− λ)U1(NS1,S2) (26)
ν2 = λU2(S1,NS2) + (1− λ)U2(NS1,S2), (27)

then ν is a correlated equilibrium.
Clearly, a signal recommending the transmitters to play the
action profile (S1,NS2) (resp. (NS1,S2)) for a fraction of
the time equals to λ (resp. to 1 − λ) induces a correlated
equilibrium. This specific signalling structure leads to the set
of equilibria represented by the bold segment in Fig. 1. The
figure illustrates the potential gains which can be obtained by
implementing a simple coordination mechanism in the sensing
game with costs.

We would like to end this section dedicated to the efficiency
of the equilibria of the game by mentioning the potential sub-
optimality induced by playing the sensing game and power
control game separately (in two consecutive phases). Indeed,
it would be legitimate to ask about what would happen if a
transmitter were deciding jointly whether to sense or not and
his power level. In such a case the action set of a transmitter
would be :

Ãk = {Sk,NSk} × [0, Pmax
k ]. (28)

An action ak = (sk, pk) has therefore two components. The
first component is discrete whereas the second component is
continuous. This framework is referred to an hybrid control in
control theory [10], [27]. While the control theory literature
is rich concerning hybrid control, this is not the case for

hybrid control games. In particular, general existence theorems
for Nash equilibria seem to be unavailable. This is one of
the reasons we will only consider the special case of two
transmitters. In the 2−player hybrid control game it can be
easily seen that the two pure NE of the sensing game are
no longer equilibria in this new game. Instead, we have the
following result.

Proposition 4.8: The unique Nash equilibrium of the
2−player hybrid control game is given by :

(a∗1, a
∗
2) = (NS1, p

NE
1 ,NS2, p

NE
1 ) (29)

where pNE
k is given by (4).

This result immediately follows from the fact that action
every action under the form (S, pk) is dominated by the
action (NS, pk). Although the proof of this result is trivial, the
interpretation is nonetheless interesting. It shows the existence
of a Braess paradox in the hybrid control game : although the
players have more options in the hybrid game, the equilibrium
utilities are less than those obtained in the separated case
where they first decide to sense or not and then adapt their
power level. In additional to implementation considerations,
this gives us another reason to perform the decision process
in two consecutive phases.

V. NUMERICAL RESULTS

In this section, numerical results are provided to validate
our theoretical claims. Note that, although simple scenarios
considered, the authors believe that most of messages and
insights conveyed by the present numerical analysis hold
in more advanced simulation setups e.g., considering stan-
dardized channel modulation and coding schemes (MCS),
real frequency selective channel impulse responses, imperfect
channel state information, and sensing techniques accounting
for estimation noise. Indeed, as explained in [16], the choice
of a specific MCS will generally lead to a packet success
rate having the assumed properties. As shown in [11], the
case of frequency selective channels is treatable once the
frequency flat case has been treated. Therefore, only the impact
of channel estimation noise seems to be more uncertain and
would call for a more challenging extension of the results
provided here. We consider a random CDMA scenario with
a spreading factor equal to N and the efficiency function is
chosen to be f(x) = e−

2r−1
x with different parameters r [4].

We consider two scenarios. The first scenario is provided in
Fig. 1. This scenario provides a clear understanding of the
variety of equilibria in the sensing game. The pure, mixed,
and correlated equilibria are represented on the utility region.
The utility region of the sensing game with two players K = 2,
no spreading N = 1, the sensing cost α = 20%, the sigmoidal
function f(x) = e−

2r−1
x with r = 0.9 and the following

parameters : R1 g1 = 2, R2 g2 = 2.5, σ2 = 1. The pure
actions lead to the utilities marked by circles, the dark green
region corresponds to the pair of utilities that is achievable
with mixed actions whereas the light green region corresponds
to the utilities that are achievable only with correlated actions.
The two pure equilibrium utilities, denoted by +, correspond
to both upper left extremal pure utilities, the completely mixed
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equilibrium utility, denoted by ×, is located in the interior
of the dark green region. The blue line between the two
pure equilibria represents a sub-set of correlated equilibrium
utilities that corresponds to the Pareto-optimal frontier. The
Nash bargaining solution, denoted by ∗, corresponds to the
intersection of the hyperbolic curve with the set of correlated
equilibrium utilities. It provides a fair and optimal equilibrium
solution for the sensing game.
The second scenario considers a sensing game with 17 players,
N = 128 sub-carriers, the sensing cost α = 5%, the sigmoidal
function f(x) = e−

2r−1
x . For simplicity, we assume an homo-

geneous scenario in terms of transmission rate Rk = R and
r = R

B 3 bit/s per Hz for different numbers of leaders. Note that
the value for R will not matter since only normalized/relative
performance gains will be considered. The seemingly non-
typical choice for K results from typical choices on the
other parameters. Indeed, when fixing the spreading factor
to N = 128 (typical e.g., in cellular systems), the spectral
efficiency to r = 3 bit/s per Hz (typical in cellular systems
as well), one finds that the maximum number of admissible
users for the Nash equilibrium to be implemented is 18 (see the
denominator of (4)) : r = 3 ⇒ c = 7 ⇒ β∗ = 7 ⇒ K−1

N <
1
7 ⇒ K < 18 where f(x) = e−

c
x , c = 2r−1, β∗ is the unique

solution of xf ′(x) − f(x) = 0. Fig. 2 and 3 allows one to
evaluate the improvement brought by the Stackelberg approach
compared to the Nash equilibrium approach for the utility of
one leader, one follower and the social utility. The sensing
cost influences the results in two ways. First, the sensing cost
affects the gain obtained by the follower compared to the
leader. Indeed, in this figure, the improvement of a leader is
always larger than the improvement of one follower, which
is not true in general. Second, the improvement of the utility
of one follower compared to the Nash equilibrium utility is
negative when the number of leader is strictly more than
14. In that case, the sensing cost is compensated by the
improvement due to the Stackelberg approach compared to the
Nash equilibrium approach. The optimal number of leaders is
5 when considering both the improvement of the utility of one
leader or the improvement of the utility of one follower. The
improvement of the sum utility of the Stackelberg equilibrium
compared to the social utility at the Nash equilibrium for the
sensing game is given in figure 3. The sensing cost decreases
the improvement of the social utility. This is especially the case
when the number of follower is large and the number of leader
is small. The Stackelberg approach provides up to 16.5% of
improvement compared to the Nash equilibrium approach.
Fig. 4 illustrates how much the total power consumption can be
reduced for the sensing game with K = 17 players, N = 128

sub-carriers, the sigmoidal function f(x) = e−
2r−1

x with
r = 3 for different numbers of leaders : note that at the same
time, the energy-efficiency is optimized. The best reduction of
the power consumption is achieved with the number of leaders
is 5, the reduction of the power consumption is more than 16%.
We observe that the total power reduction is maximum with the
number of cognitive users maximizes the social welfare of the
system. Finally, the figure 5 represents the improvement of the
maximal social welfare (depending on the number of cognitive

users) of the sensing game compared to the social welfare at
the Nash equilibrium solution, depending on the load (K/N)
of the system. The four curves correspond to different sensing
cost α ∈ {0%, 5%, 10%, 15%}. When the load approaches its
maximal value 1/β? + 1/N , the improvement of the social
utility is greater than 100%. Then, we can conclude that
our hierarchical framework with optimal number of cognitive
equipments becomes more efficient in terms of social utility
when a cognitive wireless network is high loaded.

VI. CONCLUSION

In this paper, we have introduced a new power control
game where the action of a player is hybrid, one component
of the action is discrete while the other is continuous. The
first component is discrete since it corresponds to deciding
whether to sense the radio environment or not ; the second
component is continuous because it corresponds to choosing
the transmit power level in an interval. Whereas the general
study of hybrid games is of independent and game-theoretic
interest and remains to be done, it turns out that in our case
we can prove the existence of a kind of Braess paradox which
allows us to restrict our attention to two separate games played
consecutively : choosing the discrete and continuous actions
jointly is less efficient than choosing them separately over
time. The power control game is studied in detail and it
is shown that there exists an optimal number of cognitive
transmitters which maximizes the network utility, meaning
that introducing too much cognition is not globally energy-
efficient. This holds whether the cost of sensing is set to
zero or not. From an individual point of view, the intuition
which consists in saying that sensing is beneficial only if
the sensing cost is acceptable, can be proved. As distributed
networks are considered, global efficiency of the network is
generally not guaranteed. Equilibria are indeed less energy-
efficient (say in terms of sum utility) than the centralized
solution. The (hierarchical) approach we propose can therefore
be seen as a tradeoff in terms of global performance and
required signaling. Conducting a refined analysis in terms of
signaling for the power control problem would be relevant.
On the other hand, the sensing game can be shown to have
desirable properties like being weighted potential. This is a
key property since many learning algorithms are known to
converge in such games, proving that this decision can be
learned over time with partial information only. Additionally,
this game is shown to have a non-trivial set of correlated
equilibria. These equilibria are very useful since they allow
one to introduce some fairness among the transmitters and
can be stimulated by a public signal incurring no cost in
terms of extra signalling from the receiver ; in this respect
the famous Nash bargaining solution (used in the wireless
literature for having both a fair and cooperative solution, see
e.g., [20][24]) can be reached. This work therefore provides
several new results of practical interest for cognitive wireless
networks but, of course, the proposed concepts would need to
be developed further to make them more appealing in terms
of implementability. In particular, technical issues related to
spectrum usage might be considered by introducing frequency
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selective channels and the corresponding power allocation
problem. Considering a more general structure of interference
networks, the relevance of successive interference cancelation
in terms of energy-efficiency might be assessed. Of course,
classical issues such as the impact of channel estimation is
also of practical interest, especially regarding to the fact that
some learning algorithms are known to be robust against this
type of errors.

APPENDIX A
REVIEW OF SOME GAME-THEORETIC CONCEPTS

A. Correlated Equilibria
In this section, we provide the definition of correlated

equilibrium (CE). This equilibrium concept was introduced by
Aumann in [3] and extends the concept of Nash equilibrium.
Correlated equilibria are used in section IV-C3 in order to
provide more fair equilibrium solutions.

Definition A.1: A probability distribution Q ∈ ∆(A) is a
canonical correlated equilibrium if for each player i, for each
action ai ∈ Ai that satisfies Q(ai) > 0 we have :∑

a−i∈A−i

Q(a−i | ai)ui(ai, a−i) ≥∑
a−i∈A−i

Q(a−i | ai)ui(bi, a−i), ∀bi ∈ Ai. (30)

The result of Aumann 1987 [3] states that for any correlated
equilibrium, it corresponds to a canonical correlated equilib-
rium.

Theorem A.2 (Aumann 1987, prop. 2.3 [3]): The utility
vector u is a correlated equilibrium utility if and only if there
exists a distribution Q ∈ ∆(A) satisfying the linear inequality
contraint (30) with u = EQU .
B. Potential of the Sensing Game

In this section, we provide the potential function of the
sensing game presented in section IV.

Theorem A.3: The equilibria of the above potential game
are the maximizers of the Rosenthal potential function [32].

{S = (A1, . . . ,AK)|S ∈ NE} = arg max
(F,L)

Φ(F,L)

= arg max
(F,L)

[
(1− α)

F∑
i=1

U(S, i,K − i)

+

L∑
j=1

U(NS,K − j, j)


The proof follows directly from the one of Rosenthal’s the-
orem [32]. Let us simplify the expression of the potential
function, which gives:

Φ(F,L) =

[
(1− α)

F∑
i=1

U(S, i,K − i) +
L∑
j=1

U(NS,K − j, j)

]

= (1− α)

F∑
i=1

giRi
σ2

f(β?)
Nβ?(N + γ?(K−i))

(
N2−Nβ?−

[(N+β?)(K − i)+ (i+ 1)β?] γ?(K−i)
)

+

L∑
j=1

giRi
σ2

f(γ?j )

Nγ?j (N + β?)

(
N2−Nβ?−

[(N+β?)j+ (K − j + 1)β?] γ?j
)
.

APPENDIX B
PROOF OF PROPOSITION 3.4

In this section, we prove the proposition 3.4. In order to
have good sensing capabilities, there exists a certain energy
threshold ξmin such that:

α T min
`∈L

(gf`p`) ≥ ξmin ⇐⇒ α ≥ ξmin

T min`∈L (gf`p`)

where T is the block duration, gf` is the channel gain between
any leader ` ∈ L and the considered follower f ∈ F , p` is the
power level of the leader ` ∈ L and α is the sensing cost. The
utility of the follower is maximized when the sensing cost α
is minimal, that is α? = ξmin

T min`∈L(gf`p`)
.

maxα∈[0,1] U
SE
f (α)

USE
l

≥ 1

⇐⇒
(1− α?)Rkf(β?)

pSEf

Rkf(β?)
pSEl

≥ 1

⇐⇒
(

1− ξmin

T min`∈L (gf`p`)

) f(β?)
β? (N + β?)

f(γ?
L)

γ?
L

(N + γ?L)
≥ 1

⇐⇒
f(β?)
β? (N + β?)

f(γ?
L)

γ?
L

(N + γ?L)
− 1 ≥ ξmin

T min`∈L (gf`p`)

f(β?)
β? (N + β?)

f(γ?
L)

γ?
L

(N + γ?L)

⇐⇒
(

1−
f(γ?

L)
γ?
L

(N + γ?L)

f(β?)
β? (N + β?)

)
≥ ξmin

T min`∈L (gf`p`)

⇐⇒ T min
`∈L

(gf`p`)

(
1−

f(γ?
L)
γ?
L

(N + γ?L)

f(β?)
β? (N + β?)

)
≥ ξmin

This concludes the proof of Proposition 3.4.

APPENDIX C
PROOF OF THEOREM 4.6

In this section, we characterize the equilibria of the
2−player sensing game. The first important remark is that the
Nash equilibrium utilities are always dominated by the Stack-
elberg equilibrium utilities. This implies that the following
equation holds for any parameters α ≥ 0.

U1(NS1,S2) ≤ U1(S1,S2)

U2(S1,NS2) ≤ U2(S1,S2)

Thus the action (S1,S2) is not an equilibrium of the game.
To compute the equilibria of this game, it remains to compute
the following differences:

U1(NS1,NS2)− U1(S1,NS2)

U2(NS1,NS2)− U2(NS1,S2)

The above differences are equal and does not depend on
a particular player. We provide the proof of Theorem 4.6.
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Suppose first that condition (C2) is met.

α <
β? − γ?

1− β?γ?

⇐⇒ 1− γ?β? − β? − γ?

(1− γ?β?)
< 1− α

⇐⇒ f(β?)
β?

(1− β?) < (1− α)
f(β?)
β?

1− β?γ?

1 + γ?

⇐⇒ Rigif(β?)(1− β?)
σ2β?

< (1− α)
Rigif(β?)(1− γ?β?)

σ2β?(1 + γ?)

The last inequality implies that the games has two pures equi-
libria (NS1,S2), (S1,NS2) and one strictly mixed equilibrium
(x∗, y∗) defined by the equations (25). If condition (C1) is
satisfied, then the strategies (S1) and (S2) are dominated and
then the game has one pure equilibrium (NS1,NS2) and if
condition (C3) is met, the game has an infinite number of NE.

APPENDIX D
MIXED NASH EQUILIBRIA

If condition (C2) is met, the sensing game has a strictly
mixed equilibrium. In this section, we provide a characteri-
zation of the mixed equilibrium strategies (x∗, y∗) using the
indifference principle.

R1g1f(β?)(1− β?)
σ2β?

· y2 +
R1g1f(γ?)(1− γ?β?)

σ2γ?(1 + β?)
· (1− y2)

= (1− α)
R1g1f(β?)(1− γ?β?)

σ2β?(1 + γ?)
· y2 +

(1− α)
R1g1f(β?)(1− β?)

σ2β?
· (1− y2),

which is equivalent to:

y2 · [
R1g1f(β?)(1− β?)

σ2β?
− (1− α)

R1g1f(β?)(1− γ?β?)
σ2β?(1 + γ?)

+(1− α)
R1g1f(β?)(1− β?)

σ2β?
− R1g1f(γ?)(1− γ?β?)

σ2γ?(1 + β?)
]

= (1− α)
R1g1f(β?)(1− β?)

σ2β?
− R1g1f(γ?)(1− γ?β?)

σ2γ?(1 + β?)
.

Then we obtain:

y2 =
(1− α) f(β?)

β? (1− β?)− f(γ?)
γ?

1−γ?β?

1+β?

X
,

with X = (1 − α) f(β?)
β? (1 − β?) − f(γ?)

γ?
1−γ?β?

1+β? + f(β?)
β? (1 −

β?) − (1 − α) f(β?)
β?

1−γ?β?

1+γ? . Replacing the above y2 into the
indifference equation, we obtain the utility of player 1 at the
mixed equilibrium.

U1(x2, y2) =
R1g1
σ2

(
(1− α) f(β?)

β? (1− β?) f(β?)
β? (1− β?)

X

−
f(γ?)
γ?

1−γ?β?

1+β? (1− α) f(β?)
β?

1−γ?β?

1+γ?

X

)
,

with X = (1 − α) f(β?)
β? (1 − β?) − f(γ?)

γ?
1−γ?β?

1+β? + f(β?)
β? (1 −

β?)− (1− α) f(β?)
β?

1−γ∗β?

1+γ? . The same argument applies:

U2(x2, y2) =
R2g2
σ2

(
(1− α) f(β?)

β? (1− β?) f(β?)
β? (1− β?)

X

−
f(γ?)
γ?

1−γ?β?

1+β2 (1− α) f(β?)
β?

1−γ?β?

1+γ?

X

)
.

APPENDIX E
PROOF OF THEOREM 4.2

The proof of Theorem 4.2 uses the corollary 2.9 of the
article [25] (see also the theorem 3.1 in [33]).

Theorem E.1: The game G is a potential game if and only
if for every player i, j ∈ K, every pair of actions si, ti ∈ Ai
and sj , tj ∈ Aj and every joint action sk ∈ AK\{i,j}, we
have that

Ui(ti, sj , sk)− Ui(si, sj , sk) + Ui(si, tj , sk)− Ui(ti, tj , sk) +

Uj(ti, tj , sk)− Uj(ti, sj , sk) + Uj(si, sj , sk)− Uj(si, tj , sk) = 0

Let us prove that the two conditions provided by our theorem
are equivalent to the one of corollary 2.9 in [25]. We introduce
the following notation defined for each player i ∈ K and each
action T ∈ A.

µi =
Rigi
σ2

and UT (ti, tj , sk) =
UTi (ti, tj , sk)

µi
.

For every player i, j ∈ K, every pair of actions si, ti ∈ Ai
and sj , tj ∈ Aj and every joint action sk ∈ SK\{i,j}, we have
the following equivalences:

Ui(NSi,Sj ,Sk)− Ui(Si,Sj ,Sk) + Ui(Si,NSj ,Sk)− Ui(NSi,NSj ,Sk) =

Uj(NSi,Sj ,Sk)− Uj(NSi,NSj ,Sk) + Uj(Si,NSj ,Sk)− Uj(Si,Sj ,Sk)

⇐⇒


µi = µj

UL(F + 1, L+ 1)− UL(F,L+ 2)

+(1− α)(UF (F + 1, L+ 1)− UF (F + 2, L)) = 0

Thus the sensing game is a potential game if and only if one
of the two following conditions is satisfied :

∀(i, j) ∈ K, Rigi = Rjgj ,

UL(F + 1, L+ 1)− UL(F,L+ 2) =

(1− α)[UF (F + 2, L) − UF (F + 1, L+ 1)].

APPENDIX F
PROOF OF THEOREM 4.4

The proof of this theorem 4.4 follows the same line of the
proof in App. E. It suffices to show that the auxiliary game
defined as follows is a potential game.

G̃ = (K, (A)i∈K, (Ũi)i∈K) (31)

Where the utility are defined by the following equations with
µi = Rigi

σ2 .

Ũi(si, s−i) =
Ui(si, s−i)

µi
(32)

From the above demonstration, it is easy to show that, for
every player i, j ∈ K, every pair of actions si, ti ∈ Ai and
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Fig. 1. The figure depicts, for a 2-transmitter scenario, the region of achiev-
able utilities of the sensing game where each transmitter decides whether to
sense of not to sense. The figure also shows the different equilibrium points
of the game. One of the messages of this figure is the interest in terms of
fairness in stimulating a correlated equilibrium instead of a Nash equilibrium.
In particular a Nash bargaining solution can be obtained.
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Fig. 2. This figure represents the relative gain (in %) in terms of individual
energy-efficiency obtained by equipping F = K − L transmitters with a
cognitive radio. For typical scenarios, we see that maximizing the number of
cognitive transmitters is not optimal. On the other hand, if there is only one
cognitive radio (F = 1 or L = 16, as assumed in [22]) one can degrade the
individual performance for a typical value for the sensing cost (5% of the
time-slot is spent for sensing).

sj , tj ∈ Aj and every joint action sk ∈ AK\{i,j}, we have the
following equality:

Ũi(ti, sj , sk)− Ũi(si, sj , sk) + Ũi(si, tj , sk)− Ũi(ti, tj , sk) =

Ũj(ti, sj , sk)− Ũj(ti, tj , sk) + Ũj(si, tj , sk)− Ũj(si, sj , sk).

Using Corollary 2.9 in [25], we conclude that the sensing game
is a weighted potential game.
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Fig. 3. This figure represents the improvement in terms of utility sum or
network energy-efficiency at the Stackelberg equilibrium compared to the
case of Nash equilibrium (i.e., no transmitter is equipped cognitive radio)
with K = 17 players, N = 128, the efficiency function is f(x) =

e−
2r−1

x with r = 3 bit/s per Hz and for different numbers of leaders.
The different curves corresponds to different values for the sensing cost :
α ∈ {0%, 5%, 10%, 15%}. When 5% of the time has to be spent for sensing,
the network energy-efficiency can be improved by 13% whereas it is 17%
when this cost is close to zero.
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Fig. 4. From previous figures, we know that equipping the network with an
adequate number of cognitive radios can significantly improve the network
energy-efficiency. It turns out that not only efficiency is maximized by doing
so but that the total consumed power is also reduced. Scenario illustrated :

K = 17 players, N = 128, the efficiency function is f(x) = e−
2r−1

x with
r = 3 for different numbers of leaders.
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Fig. 5. The objective of this figure is to show the relationship between
the maximum gain obtained in terms of network energy-efficiency and the
spectral efficiency in terms of user load (K/N) (the spectral efficiency in
terms of channel coding is always fixed and set to r = 3 bit/s per Hz). From
this figure, it is seen that there is a strong interest in operating at a load level
close to the maximum limit tolerated by the system (ensuring the existence
of an equilibrium, see Sec. II-C).
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59(1):329Ű–340, 2011.

[5] E. V. Belmega and S. Lasaulce. Energy-efficient precoding for
multiple-antenna terminals. IEEE Trans. Signal Process., 59(1):329–
340, January 2011.

[6] E. V. Belmega, S. Lasaulce, and M. Debbah. Power allocation games
for mimo multiple access channels with coordination. IEEE Trans.
on Wireless Communications, 8(6):3182–3192, 2009.

[7] V. S. Borkar. Stochastic approximation: a dynamical systems view-
point. 2008.

[8] D. Braess. Über ein paradoxon aus der verkehrsplanung. Un-
ternehmensforschung, 24(5):258 – 268, May 1969.

[9] T. M. Cover. Advances in Comm. Systems, chapter Some advances in
broadcast channels. 1975.

[10] R.J. Evans and A.V. Savkin. Special issue on hybrid control systems,
volume 38. 1999.

[11] H. V. Poor F. Meshkati, M. Chiang and S. C. Schwartz. A game-
theoretic approach to energy-efficient power control in multi-carrier
cdma systems. IEEE Journal on Selected Areas in Communications,
24(6):1115–1129, 2006.

[12] A.K. Maulloo F. P. Kelly and D.K.H. Tan. Rate control in commu-
nication networks: shadow prices, proportional fairness and stability.
Journal of the Operational Research Society 49, 49:237–252, 1998.

[13] G. Fettweis F. Richter, A. J. Fehske. Energy efficiency aspects of base
station deployment strategies for cellular networks. In inproceedings
of VTC, 2009.

[14] B. Fette. Cognitive Radio Technology. Newnes, 2006.
[15] D. Fudenger, J. Tirole Game Theory. The MIT Press, 1991.
[16] D. J. Goodman and N. B. Mandayam. Power control for wireless

data. IEEE Person. Comm., 7:48–54, 2000.
[17] H. C. Papadopoulos H. Huh, G. Caire and S. A. Ramprashad. Achiev-

ing massive mimo spectral efficiency with a not-so-large number of
antennas. IEEE Transactions on Information Theory, 2011.

[18] Z. Han and K. J. Ray Liu. Joint link quality and power management
over wireless networks with fairness constraint and space-time diver-
sity. IEEE Transactions on Vehicular Technology, 53(4):1138–1148,
July 2004.

[19] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. 16th
Annual Symposium on Theoretical Aspects of Computer Science,
1999.

[20] E. G. Larsson and E. A. Jorswieck. Competition versus cooperation
on the miso interference channel. IEEE Journal on Selected Areas in
Communications, 26:1059–1069, Sep. 2008.

[21] S. Lasaulce, M. Debbah, and E. Altman. Methodologies for analyzing
equilibria in wireless games. IEEE Signal Processing Magazine,
Special issue on Game Theory for Signal Processing, 26(5):41–52,
Sep. 2009.

[22] S. Lasaulce, Y. Hayel, R. El Azouzi, and M. Debbah. Introducing hi-
erarchy in energy games. IEEE Trans. on Wireless Comm., 8(7):3833–
3843, 2009.

[23] S. Lasaulce and H. Tembine. Game Theory and Learning for Wireless
Networks : Fundamentals and Applications. Academic Press, August
2011.

[24] K. Ma, X. Guan, B. Zhao, and J. Wang. A cooperation strategy based
on bargaining solution in wireless sensor networks. Journal of Control
Theory and Applications, 9(1):121–126, 2011.

[25] D. Monderer. Potential games. Games and Economic Behavior,
14:124–143, 1996.

[26] D. Monderer and L. S. Shapley. Fictitious play property for games
with identical interests. Int. J. Economic Theory, 68:258–265, 1996.

[27] D. Liberzon A.S Morse. Basic problems of stability and design of
switched systems. IEEE Control Systems, 19(5):59–70, Oct 1999.

[28] J. Nash. Non-cooperative games. Annals of Mathematics, 54:286–295,
1951.

[29] J. F. Nash. Equilibrium points in n-points games. Proc. of the Nat.
Academy of Science, 36(1):48–49, Jan. 1950.

[30] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic
game theory. 2007.

[31] V. Rodriguez. An analytical foundation for resource management in
wireless communication. IEEE Proc. of Globecom, 2003.

[32] R. W. Rosenthal. A class of games possessing pure-strategy nash
equilibria. International Journal of Game Theory,, 2:65–67, 1973.

[33] W.H. Sandholm. Decompositions and potentials for normal form
games. Games and Economic Behavior, 70(2):446–456, 2010.

[34] H. von Stackelberg. The theory of the market economy. Oxford
University Press, Oxford, England, 1952.

[35] A. D. Wyner. Recent results in Shannon theory. IEEE Trans. on
Inform. Theory, 20(1):2–10, January 1974.

[36] H. P. Young. Strategic Learning and Its Limits. Oxford University
Press, USA, Jan. 2004.

Mael Le Treust Mael Le Treust earned his Diplôme
dÕEtude Approfondies (M.Sc.) degree in Optimiza-
tion, Game Theory and Economics (OJME) from the
Université de Paris VI (UPMC), France in 2008 and
his Ph.D. degree from the Université de Paris Sud XI
in 2011, at the Laboratoire des signaux et systŔmes
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Researcher. Since 2004, he is also Professor at Čcole
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