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Abstract

We are interested in the construction of a reduced-order computational model
for nonlinear complex dynamical structures which are characterized by the
presence of numerous local elastic modes in the low-frequency band. This
high modal density makes the use of the classical modal analysis method not
suitable. Therefore the reduced-order computational model is constructed
using a basis of a space of global displacements, which is constructed a priori
and which allows the nonlinear dynamical response of the structure observed
on the stiff part to be predicted with a good accuracy. The methodology
is applied to a complex industrial structure which is made up of a row of
seven fuel assemblies with possibility of collisions between grids and which is
submitted to a seismic loading.

Keywords: reduced-order model, nonlinear structural dynamics, global
elastic modes, local elastic modes, fuel assemblies

1. Introduction

This paper is devoted to the construction of a reduced-order computa-
tional model for low-frequency nonlinear structural dynamics in presence of
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numerous local elastic modes. We are interested in structures which are made
up of a rigid frame (the stiff part) coupled with several flexible substructures.
The dynamical behavior of these kind of structures is characterized by a high
modal density in the low-frequency range. More precisely, these structures
exhibit some global elastic modes and numerous local elastic modes in the
same low-frequency range. Moreover, the structure we consider is modeled
with a large finite element model and has several localized nonlinearities
(such as elastic stops). As a consequence, the direct construction of the
transient response is a very challenging issue since the presence of the local-
ized nonlinearities requires a small time step for the integration scheme in
order to correctly capture the nonlinear effects. We then have to construct
a reduced-order computational model for a large computational model. For
such a structure, the reduction of the nonlinear dynamical computational
model can be carried out using the elastic modes of the underlying linear
part of the nonlinear dynamical system.

The objective of this paper is to construct a reduced-order computational
model with a very small dimension and which has the capability to predict
the nonlinear dynamical responses of the structure observed on the stiff part
with a good accuracy. Since the contributions of the local displacements are
negligible in the displacements of the stiff part, we have to construct the
reduced-order computational model using a basis adapted to the prediction
of the global displacements and therefore, we have to filter the local dis-
placements in the construction of the basis. To achieve this objective, most
of previous researches have been based on a spatial filtering of the short wave-
lengths. Concerning the experimental methods, such a filtering is carried out
using regularization techniques [5], image-based finite element methods [11]
or an extraction of eigenvectors of the frequency mobility matrix [10]. Con-
cerning numerical methods, most of the techniques are based on the lumped
mass methods. In the Guyan method [8], the masses are lumped at a few
nodes and the inertia forces of the other nodes are neglected. It should be
noted that the choice of points in which the masses are concentrated is not
obvious to do for complex structures [4, 22, 18]. The convergence properties
of the solution obtained using the lumped mass method have been studied
[6, 13, 3]. In [17], the authors propose to construct a basis of the global
displacements space using a rough finite element model. For slender dynam-
ical structures, another method consists in the construction of an equivalent
beam or plate model [21, 23]. In [9], the author circumvent the problem of
the high modal density by extrapolating the dynamical response using a few
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elastic modes. This method is interesting when one has an analytical expres-
sion for the modal shape, that is not the case for the structures considered
in this paper. In [14], the authors use a free-interface substructuring method
in order to extract long wavelength free modes of a master structure. The
Proper Orthogonal Decomposition (POD) method (see [15, 19, 12]) allows
in some cases to extract an accurate small size basis in order to construct
a reduced-order computational model of a nonlinear dynamical system (see
for instance [1, 16, 20, 24]), but this basis has to be constructed a posteriori,
which means that a sufficiently rich nonlinear response has to be constructed.
Moreover, the POD basis is only optimal for a given external load (or im-
posed displacement). In [25], a similar method to POD is used for linear
dynamical systems but the basis which is constructed is independent of any
given external load.

Recently, a new method has been proposed to construct a reduced-order
computational model in linear structural dynamics for structures having nu-
merous local elastic modes in the low-frequency band [26]. In this method,
a basis of the space of global displacements and a basis of the space of local
displacements are calculated by solving two separated eigenvalues problems.
The elements of these two bases are not constituted of the usual elastic modes.
The eigenvalue problem, allowing a basis of the space of global displacements
to be defined, is constructed by introducing a kinematic reduction for cal-
culating the kinetic energy while the elastic energy is kept exact. In this
paper, this method will be used to construct a basis of the space of global
displacements and then to deduce the reduced-order computational model of
the nonlinear dynamical system under consideration. Therefore, the contri-
butions of the local displacements of the structure observed on the stiff part
will be neglected.

In Section 2, the method developed in [26] is summarized and the con-
struction of the reduced-order computational model is presented. In Section
3, the methodology is developed for an industrial structure for which the
nonlinear transient response of a row of fuel assemblies is analyzed.

2. Construction of the reduced-order computational model

In this Section, we first summarize the method introduced in [26] which
allows a reduced-order computational model to be constructed for structures
having a high modal density in the low-frequency range. This method has
been developed for the continuous case and for the discrete case. Below, we
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just summarize the discrete case. Moreover, although this method allows
both a basis of the space of global displacements and a basis of the space of
local displacements to be constructed (by solving two separated eigenvalue
problems), we will use only the basis of the space of global displacements to
construct the reduced-order model.

2.1. Reference nonlinear computational model

We are interested in predicting the transient responses of a three-dimensional
nonlinear damped structure, with localized nonlinearities, and occupying a
bounded domain Ω. The real-valued vector U(t) of the m degrees of freedom
(DOFs) of the computational model is constructed with the finite element
method and is the solution of the following matrix equation,

[M] Ü(t) + [D] U̇(t) + [K]U(t) + F
NL(U(t), U̇(t)) = F(t) , t ∈]0 , T ] , (1)

with the initial conditions

U(0) = U̇(0) = 0 , (2)

in which [M], [D] and [K] are respectively the (m × m) positive-definite
symmetric real mass, damping and stiffness matrices, where F

NL(U(t), U̇(t))
is the vector of the nonlinear forces induced by the localized nonlinearities and
where F(t) is relative to the discretization of the external forces. Usually, the
nonlinear matrix equation (1) is reduced using the elastic modes of the linear
part of Eq. (1). These modes are therefore the solutions of the generalized
eigenvalue problem, ([K] − λ[M])ϕ = 0. As it is assumed that there are
numerous local elastic modes and as there are nonlinear forces, one would
need to calculate a high number of elastic modes in order to obtain a good
convergence for the nonlinear dynamical response in the low-frequency range.
The use of a basis of the space of global displacements circumvents this
difficulty.

2.2. Kinematic reduction of the kinetic energy

The methodology proposed in [26] consists in introducing a kinematic
reduction of the structural kinetic energy. In a first step, the domain Ω is
partitioned into nJ disjoint subdomains Ωj . In a second step, this decompo-
sition is used to construct the projection linear operator, u �→ hr(u), such
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that hr(hr(u)) = hr(u) and defined by

{hr(u)}(x) =

nJ∑

j=1

1lΩj
(x)

1

mj

∫

Ωj

ρ(x′)u(x′) dx′ , (3)

in which x �→ 1lΩj
(x) = 1 if x is in Ωj and = 0 otherwise, where mj is

the total mass of subdomain Ωj and where ρ(x) is the mass density. This
operator carries out an average of the displacements with respect to the mass
density in each subdomain (kinematic reduction). Then, the complementary
projection linear operator, u �→ hc(u), is defined by

hc(u) = u− hr(u) . (4)

Function hr(u) will also be denoted by ur and function hc(u) by uc. We

then have u = hr(u) + hc(u) that is to say, u = ur + uc with ur = hr(u)
and uc = hc(u). Let [Hr] be the (m × m) matrix corresponding to the
finite element discretization of the projection operator hr defined by Eq. (3).
Therefore, the vector U can be written as U = U

r + U
c, in which

U
r = [Hr]U , (5)

and
U

c = [Hc]U = U− U
r , (6)

which shows that [Hc] = [Im] − [Hr], where [Im] is the (m × m) identity
matrix. Then, the (m×m) mass matrix [Mr] is such that

[Mr] = [Hr]T [M][Hr] , (7)

and the complementary (m×m) mass matrix [Mc] is such that

[Mc] = [Hc]T [M][Hc] . (8)

Using the properties of the projection operator defined by Eq. (3), it can be
shown [26] that

[Mc] = [M]− [Mr] , (9)

[Mr] = [M][Hr] = [Hr]T [M] . (10)
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The rank of the matrix [Mr] is 3nJ and the rank of the matrix [Mc] is
m − 3nJ . Some details concerning the construction of matrices [Hr], [Hc],
[Mr] and [Mc] are given in Appendix A.

2.3. Basis of the space of global displacements

The basis of the space of global displacements is made up of the solutions
ϕg in R

m of the generalized eigenvalue problem

[K]ϕg = λg[Mr]ϕg , (11)

in which the stiffness matrix is kept exact while the mass matrix is projected.
This generalized eigenvalue problem admits an increasing sequence of 3nJ

positive global eigenvalues 0 < λg
1 ≤ . . . ≤ λg

3nJ
, associated with the finite

family of algebraically independent eigenvectors {ϕg
1, . . . ,ϕ

g
3nJ

}. The family
{ϕg

1, . . . ,ϕ
g
3nJ

} spans a subspace of dimension 3nJ , which is defined as the
space of global displacements. In general, this family is not made up of
the elastic modes. The computation of the eigenvectors is carried out using
an adapted subspace iteration algorithm which is detailed in Appendix B.
This algorithm avoid the assembly of matrix [Mr] which is a full matrix. If
needed, a basis of the space of local displacements can also be constructed
and complements the basis of global displacements (see [26]). In this case,
the basis of the space of local displacements is made up of the solutions φℓ

in R
m of the generalized eigenvalue problem

[K]ϕℓ = λℓ[Mc]ϕℓ . (12)

This generalized eigenvalue problem admits an increasing sequence of positive
eigenvalues 0 < λℓ

1 ≤ . . . ≤ λℓ
m−3nJ

, associated with the algebraically inde-
pendent eigenvectors {ϕℓ

1, . . . ,ϕ
ℓ
m−3nJ

}. The family {ϕℓ
1, . . . ,ϕ

ℓ
m−3nJ

} spans
a subspace of dimension m−3nJ defined as the space of local displacements.
In general, this family is not made up of the elastic modes.

2.4. Reduced-order computational model

In [26], it is proven that the family {ϕg
1, . . . ,ϕ

g
3nJ

,ϕℓ
1, . . . ,ϕ

ℓ
m−3nJ

} is a
basis of Rm. Therefore, we can construct a reduced-order model of dimension
(ng, nℓ) which is defined as the projection Ung,nℓ

(t) of U(t) on the subspace
of Rm spanned by the family {ϕg

1, . . . ,ϕ
g
ng
,ϕℓ

1, . . . ,ϕ
ℓ
nℓ
} of real vectors as-

sociated with the first ng global eigenvectors such that ng ≤ 3nJ ≤ m and
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with the first nℓ local eigenvectors such that nℓ ≤ m − 3nJ . Then, the
approximation Ung,nℓ

(t) of U(t) at order (ng, nℓ) is written as

Ung,nℓ
(t) =

ng∑

α=1

qgα(t)ϕ
g
α +

nℓ∑

β=1

qℓβ(t)ϕ
ℓ
β , (13)

where qg1(t), . . . , q
g
ng
(t) are the global generalized coordinates and where qℓ1(t),

. . . , qℓnℓ
(t) are the local generalized coordinates. In this paper, we are only

interested in the prediction of the global behavior of a nonlinear dynamical
structure, that is to say in the nonlinear dynamical responses of the stiff
part of the structure and consequently, the local contributions are neglected
which means that nℓ = 0. Let [Φg] = [ϕg

1 . . .ϕ
g
ng
] be the (m×ng) real matrix

whose columns are the vectors ϕg
1, . . . ,ϕ

g
ng
. Then, the ng-order approxima-

tion Ung
(t) of U(t) is written as

Ung
(t) =

ng∑

α=1

qgα(t)ϕ
g
α = [Φg] qg(t) , (14)

in which the vector qg(t) = (qg1(t), . . . , q
g
ng
(t)) is the solution of the following

nonlinear reduced matrix equation

[M ]q̈g(t) + [D]q̇g(t) + [K]qg(t) + fNL(qg(t), q̇g(t)) = f (t) , t ∈]0 , T ] , (15)

with the initial conditions

qg(0) = q̇g(0) = 0 . (16)

In Eq. (15), the generalized mass, damping and stiffness (ng × ng) matrices
are defined by

[M ] = [Φg]T [M][Φ]g , [D] = [Φg]T [D][Φ]g , [K] = [Φg]T [K][Φ]g , (17)

the vector of the generalized forces is defined by f (t) = [Φg]TF(t) and
fNL(qg(t), q̇g(t)) = [Φg]TFNL([Φ]gqg(t), [Φ]gq̇g(t)) is the vector of the gen-
eralized nonlinear forces. In this paper, we are interested in a nonlinear
dynamical system for which the size of the nonlinear reduced-order compu-
tational model, defined by Eqs. (14) to (16), is very small. It should be
noted that, as the local contributions are neglected, an irreducible error is
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introduced. As explained above, as we are only interested in the dynamical
behavior of the stiff part of the structure for which the responses are mainly
due to the global displacements, this error stays very small for the quantities
of interest. It should also be noted that the global eigenvectors (the eigen-
vectors in the space of global displacements) have been constructed using
the linear part of Eq. (1). Therefore, a convergence analysis of the nonlinear
response must be carried out in order to verify that enough global eigenvec-
tors have been taken into account in the construction of the reduced-order
model, even if the energy of the imposed forces or imposed displacements is
concentrated in a very low-frequency range.

3. Application

This section is devoted to an industrial application which consists in the
dynamical analysis of a row of seven fuel assemblies with possible collisions
between the grids. The mechanical system is submitted to a seismic load-
ing. For reasons of confidentiality, some technical information have been
intentionally omitted.

3.1. Reference computational model

(i)-Fuel assembly
A fuel assembly is a slender structure which is made up of 264 flexible fuel

rods, 25 stiff guide tubes and 10 stiff grids which hold the tubes in position
(see the finite element mesh in Fig. 1). The stiff guide tubes are welded to
the grids while the flexible fuel rods are fixed to the grids by springs. The
longitudinal (vertical) direction is denoted by z. The transverse directions
are denoted by x and y. The flexible fuel rods and the stiff guide tubes are
modeled by Timoshenko beams and the grids are modeled by solid elements.
The end of the stiff guide tubes are fixed to the containment building. All the
displacements following y-direction are set to zero. For a single fuel assembly,
the finite element model has 44, 844 elements and 449, 580 DOFs. There
are 7, 364 elastic modes in the frequency band [0 , 400] Hz. The first eight
elastic modes are elastic ensemble modes (all the structure moves in phase),
the corresponding eigenfrequencies are 3.09 Hz, 6.31 Hz, 9.78 Hz, 13.5 Hz,
17.6 Hz, 22.2 Hz, 27.3 Hz and 32.7 Hz. Beyond these elastic ensemble modes,
there are numerous local elastic modes (only a part of the structure moves)
and a few global elastic modes (all the structure moves but not in phase).
The cumulative modal distribution of elastic modes is plotted in Fig. 2. The
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Figure 1: Finite element mesh of a fuel assembly: Grids (black), fuel rods (blue) and
guide tubes (red). Left figure: Complete fuel assembly. Right figure: Grids and guide
tubes only.

2nd elastic mode (global) and the 20th elastic mode (local) are plotted in
Fig. 3.
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Figure 2: Cumulative modal distribution of elastic modes.
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Figure 3: Left: 2nd elastic mode (global). Right: 20th elastic mode (local).

(ii)-Row of assemblies
Concerning the linear part, the row of assemblies is made up of seven

fuel assemblies. The fuel assemblies are linked each to the others by the
rigid containment building on which an homogeneous seismic displacement
is imposed. The gap between two assemblies is 2.09 × 10−3 m. The gap
between the leftmost assembly and the containment building is 1.9×10−3 m.
The gap between the rightmost assembly and the containment building is
1.9× 10−3 m. The mesh of the finite element model is plotted in Fig. 4. The
finite element model has 313, 908 elements and 3, 147, 060 DOFs. There are
51, 548 elastic modes in the frequency band [0 , 400] Hz (each elastic mode
of a single fuel assembly is reproduced seven times). The possible contact
grid/grid and grid/containment are taken into account by introducing 160
elastic stops. Each grid has a left elastic stop and a right elastic stop, the
containment building has 10 elastic stops face to rightmost assembly grids
and 10 elastic stops face to leftmost assembly grids.
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Figure 4: Finite element mesh of a row of seven fuel assemblies: Grids (blue) and stiff
guide tubes (red). The flexible fuel rods are not plotted.

3.2. Construction and validation of the reduced-order computational model

In this section, a single fuel assembly is considered. The first step con-
sists in the construction of the nJ disjoint subdomains Ωj introduced in
Section 2.2. Since we want to filter the local transverse displacements, the
subdomains are chosen as 100 slices of equal thickness. The eigenvectors
ϕg

α are then computed following the method introduced in Section 2.3. In
the frequency band [0 , 400] Hz, there are 35 global eigenvectors. The 9th

global eigenvector is plotted in Fig. 5. In the frequency band [0, 400] Hz, the
number of global eigenvectors (35) is much lower than the number of elas-
tic modes (7, 364). In this paper, the local contributions for the nonlinear
responses of the structure are neglected. The nonlinearities are localized at
the grids which follow the global displacements of the fuel assemblies. There-
fore, we have to verify that the global eigenvectors correctly span the space
of global displacements. This accuracy of the reduced-order computational
model could be analyzed by comparison with the reference computational
model. However, the computation of the nonlinear transient responses with
the reference computational model is very difficult (the presence of localized
nonlinearities requires the use of a very small time step for the time integra-
tion scheme). Nevertheless, since the nonlinear global displacements space is
approximated using global eigenvectors, we have only to verify the accuracy
by comparing (1) the linear frequency response functions of the reduced-order

11



Figure 5: 9th global eigenvector.

computational model without localized nonlinearities, with (2) the frequency
response functions of the reference computational model without localized
nonlinearities. The convergence analysis is then carried out for the calcula-
tion of the nonlinear transient responses in order to verify that enough global
eigenvectors have been taken into account in the synthesis of the nonlinear
transient responses. A Rayleigh damping model is used and is constructed
for the frequencies 3 Hz and 400 Hz with a damping ratio of 0.04. A point
load is applied to the node, denoted as Pexc, which is located at the middle
of the 9th grid (from bottom to top). This load is equal to 1 N in the fre-
quency band [0 , 400] Hz following the x-direction. The containment building
is fixed. The measurement node, denoted as Pobs, is located at the middle
of the 4th grid. The frequency response functions at points Pobs and Pexc are
plotted in Figs. 6 to 9. These figures show a very good accuracy of the
reduced-order computational model in the frequency band [0 , 100] Hz. In the
frequency band [100 , 300] Hz, the accuracy of the reduced-order computa-
tional model is less. These small deviations are due to the local contributions
in the neighborhood of the observation points, which are not taken into ac-
count when the basis of the space of global displacements is used to construct
the reduced-order computational model.
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Figure 6: Modulus of the frequency response function of the acceleration in the x-direction
at point Pobs: reduced-order computational model (solid line) and reference computational
model (dashed line).
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Figure 7: Modulus of the frequency response function of the acceleration in the x-direction
at point Pobs (zoom [0 , 100] Hz): reduced-order computational model (solid line) and
reference computational model (dashed line).

3.3. Nonlinear transient response of a row of seven fuel assemblies

Each fuel assembly of the row is decomposed into 100 slices yielding 700
subdomains. For the frequency band [0 , 400] Hz, the reduced-order com-
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Figure 8: Modulus of the frequency response function of the acceleration in the x-direction
at point Pexc: reduced-order computational model (solid line) and reference computational
model (dashed line).
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Figure 9: Modulus of the frequency response function of the acceleration in the x-direction
at point Pexc (zoom [0 , 100] Hz): reduced-order computational model (solid line) and
reference computational model (dashed line).

putational model is constructed with 245 global eigenvectors (for which the
convergence is reached, see the convergence analysis below), instead of 51, 548
elastic modes which would be required with a classical modal analysis. The
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cumulative distribution of the global eigenvalues is plotted in Fig. 10. The
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Figure 10: Cumulative distribution for the global eigenvalues for a row of seven fuel
assemblies.

displacement of the containment building following the x-direction is im-
posed and is denoted by xs(t). We are interested in the nonlinear transient
relative displacement of the row of the seven fuel assemblies. The damping
ratio is over 0.3 for the first seven global eigenmodes and the damping ratio is
around 0.1 for the other global eigenmodes. The relative displacement vector
is solution of Eqs. (14) to (16) with f (t) = −[Φg ]T [M]wẍs(t) in which w is
a vector whose components are equal to 1 for all the DOFs corresponding
to the displacements following the x-direction and are equal to zero for the
other DOFs. The function t �→ ẍs(t) and its Fourier transform are plotted
in Figs. 11 and 12. In Fig. 12, it can be seen that the energy of the im-
posed displacement is concentrated in the frequency band [0 , 40] Hz. The
nonlinear relative response is calculated in the time interval [0 , 19.5] s using
an explicit Euler integration scheme with an integration time step of 10−5 s.
The observation point P1 belongs to the 1st assembly (from left to right), the
observation point P2 belongs to the 5th assembly and the observation point
P3 belongs to the 7th assembly. These three observation points are located
at the middle of 6th grid (from bottom to top). For points P1, P2 and P3,
the relative transient displacements are plotted in Figs. 13 to 15. The con-
vergence of the contact forces between grids (nonlinear forces) with respect
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Figure 11: Function t �→ ẍs(t).
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Figure 12: Modulus of the Fourier transform of function t �→ ẍs(t).

to the size of the global basis are analyzed for each elastic stop through the
function ng �→

∫ T

0
FN (t;ng)

2dt in which FN(t, ng) is the transient normal
force calculated using ng global eigenvectors. The convergence function for
points P1, P2 and P3 are plotted on Figs. 16 to 18. From these figures
and from Fig. 10, it can be seen that, although the energy of the imposed
displacement is concentrated in the frequency band [0 , 40] Hz, one need to
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Figure 13: Relative transient displacement following the x-direction for observation point
P1.
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Figure 14: Relative transient displacement following the x-direction for observation point
P2.

take into account higher global eigenfrequencies in order to obtain a good
convergence of the nonlinear response (this would not be the case for a linear
system).
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Figure 15: Relative transient displacement following the x-direction for observation point
P3.
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Figure 16: Convergence of the contact force for observation point P1.

4. Conclusions

A method has been presented for constructing a reduced-order compu-
tational model for nonlinear dynamical structures for which there are many
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Figure 17: Convergence of the contact force for observation point P2.
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Figure 18: Convergence of the contact force for observation point P3.

local elastic modes in the low-frequency range. This method is based on the
use of a basis of the space of global displacements. The constructed reduced-
order computational model has a small size and allows the displacement of
the rigid part of the structure to be predicted with a good accuracy. The
methodology has successfully been applied to a complex industrial dynamical
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system for which the computational model has several millions of degrees of
freedom and numerous localized nonlinearities. The results show that the
nonlinear dynamical response can be calculated with a good accuracy and a
good convergence using only 245 global eigenvectors instead of 51, 548 elastic
modes if a classical modal analysis had been used.

Appendix A. Construction of matrices [Hr], [Hc], [Mr] and [Mc]

In this appendix, the explicit construction of matrices [Hr], [Hc], [Mr]
and [Mc] are given. For such a construction, it is assumed that the sparse
mass matrix [M] is diagonal. If it is not the case, then mass matrix [M] is
lumped using any lumping method. The discretization of projection operator
hr defined by Eq. (3) yields Ur = [Hr]U.

For the translation DOFs, the entries of the (m×m) real matrix [Hr] are
such that,

[Hr]ij =
1

mind(i)

[M]jj δind(i),ind(j) δdir(i),dir(j) , (A.1)

in which δα,β is the Kronecker symbol. For all k in {1, . . . , nJ}, if the node
relative to the DOF Ui belongs to subdomain Ωk, then ind(i) = k and,
ind(i) = 0 otherwise. In Eq. (A.1), dir(i) is the translation direction of
the DOF Ui (dir(i) is equal to 1, 2 or 3) and mk is the mass of subdomain
Ωk such that mk =

∑m

i=1 [M]ii δind(i),k δdir(i),1 (the mass is identical for the
three directions). For instance, let us consider the following simple case.
There are two subdomains Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2 and there is
only one translation direction. The nodes of the DOFs U1 and U2 belong to
subdomain Ω1 and the nodes of the DOFsU3 and U4 belong to subdomain Ω2.
The diagonal mass matrix is written as [M] = diag{(ma1, ma2, ma3, ma4)}.
Therefore, matrix [Hr] is written as

[Hr] =

⎡
⎢⎢⎣

ma1/m1 ma2/m1 0 0
ma1/m1 ma2/m1 0 0

0 0 ma3/m2 ma4/m2

0 0 ma3/m2 ma4/m2

⎤
⎥⎥⎦ , (A.2)

in which m1 = ma1 +ma2 and m2 = ma3 +ma4.

For the rotation DOFs, the entries of [Hr] are defined as follows. If Ui or
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Uj is a rotation DOF, then [Hr]ij = 0.

The complementary matrix [Hc] relative to the discretization of the pro-
jection operator hc is then defined by [Hc] = [Im]− [Hr] in which [Im] is the
(m×m) identity matrix. By analyzing the lines of matrix [Hr], it can easily
be shown that the rank of this matrix is 3nJ . Therefore the rank of matrix
[Hc] is m−3nJ . Consequently, matrices [Mr] and [Mc] are constructed using
Eqs. (7) and (8). Since mass matrix [M] is positive definite, it can be deduced
that the rank of matrix [Mr] is 3nJ and the rank of matrix [Mc] is m− 3nJ .

Appendix B. Subspace iteration algorithm for the construction of
the basis of the space of global displacements

In this appendix, the subspace iteration algorithm [2], which is used to
solve the generalized eigenvalue problem defined by Eq. (11), is summarized.
The matrix [Mr] is full and therefore, cannot be assembled and stored during
the calculus of the basis of the space of global displacements. The proposed
method is based on the classical subspace iteration algorithm. In this ap-
pendix, the exponent g is omitted in order to simplify notation.

Initialization: A random (m× p) matrix [Φ0] is generated with p ≥ 2ng + 8,
in which ng is the number of the global eigenvectors we want to extract.

Loop i:

(1) Normalization of the column of [Φi] → [Φ̂i].

(2) Calculation of [Φi
a] = [K]−1[Mr][Φ̂i].

Using Eq. (10), we then have [Φi
a] = [K]−1[M][Hr][Φ̂i] = [K]−1[M][Φ̂i,r].

(3) Calculation of [K̃i] = [Φi
a]

T [K][Φi
a] and [M̃ r,i] = [Φi

a]
T [Mr][Φi

a].
We then have [M̃ r,i] = [Φi

a]
T [Hr]T [M][Hr][Φi

a] = [Φr,i
a ]T [M][Φr,i

a ].

(4) Resolution of the generalized eigenvalue problem defined by ([K̃i] −
λ[M̃ r,i])ϕb = 0 → [Φi

b]

(5) Calculation of [Φi+1] = [Φi
a][Φ

i
b]

The convergence of eigenvectors is generally fast and needs a few itera-
tions of the algorithm. It should be noted that [Hr] is a full (m×m) matrix
and therefore cannot be stored. Consequently, matrices [Φ̂i,r] and [Φr,i

a ] are
directly calculated from [Φ̂i] and [Φi

a] by using the mass matrix [M].
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