
HAL Id: hal-00821218
https://hal.science/hal-00821218v1

Submitted on 7 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visibly Pushdown Automata: Universality and Inclusion
via Antichains

Véronique Bruyère, Marc Ducobu, Olivier Gauwin

To cite this version:
Véronique Bruyère, Marc Ducobu, Olivier Gauwin. Visibly Pushdown Automata: Universality and
Inclusion via Antichains. 7th International Conference on Language and Automata Theory and Ap-
plications, 2013, Bilbao, Spain. pp.190-201, �10.1007/978-3-642-37064-9_18�. �hal-00821218�

https://hal.science/hal-00821218v1
https://hal.archives-ouvertes.fr

Visibly Pushdown Automata:

Universality and Inclusion via Antichains

Véronique Bruyère1, Marc Ducobu1⋆, and Olivier Gauwin2

1 University of Mons, UMONS, Belgium
2 University of Bordeaux, LaBRI, France

Abstract. Visibly pushdown automata (VPAs), introduced by Alur and
Madhusudan in 2004, are a useful formalism in various contexts, such as
expressing and checking properties on control flows of programs, or on
XML documents. In this context, we propose efficient antichain-based al-
gorithms to check universality and inclusion of VPAs. Whereas the com-
putation complexity is known to be ExpTime-complete for both prob-
lems, we show how antichains can avoid explicit determinization and
save computations. The approach is extended to hedge automata. We
implement the proposed algorithms in a prototype tool and conduct ex-
periments on randomly generated VPAs. We show that, on numerous
instances, our algorithms outperform other VPA tools.

1 Introduction

The model-checking framework provided many successful tools for decades, star-
ting from the seminal work of Büchi. A lot of them rely on the links between
logics used to express properties on words, and automata allowing to check them.
Some of these results have been adapted to trees, and more recently to words
with a nesting structure.

Visibly pushdown automata (VPAs) have been introduced to process such
words with nesting [2]. VPAs are similar to pushdown automata, but operate
on a partitioned alphabet: a given letter is associated with one action (push
or pop), and thus cannot push when firing a transition, and pop when firing
another. Such automata were introduced to express and check properties on
control flows of programs, where procedure calls push on the stack, and returns
pop [16]. They are also suitable to express properties on XML documents [15].
These documents are usually represented as trees, and serialized as a sequence
of opening and closing tags, also called the linearization of this document, or its
corresponding XML stream.

The model-checking framework with VPAs is confronted to the computa-
tional hardness of testing universality and inclusion. These two problems are
ExpTime-complete on non-deterministic VPAs, due to the expensive determiniza-
tion step [2]. Non-determinism naturally arises when automata are obtained from
logic formulas, as for instance XPath expressions with descendant axis [12].

⋆ The second author is supported by a grant from FRIA.

In this paper we propose antichain-based algorithms for deciding universality
and inclusion of VPAs. We use antichains to get smaller objects to manipulate
and to avoid an explicit determinization step. Recently, antichains have been
successfully applied to decision problems related to non-deterministic automata:
universality and inclusion for finite word automata [7], and for non-deterministic
bottom-up tree automata [4]. This latter work also provides a way to check
universality and inclusion over regular unranked tree languages, by encoding
unranked trees into binary trees. We plan to investigate this procedure in the
near future. Some simulation relations are also known on unranked trees [20, 1,
8] but it is unclear whether they can help for our problems.

Nguyen [17] proposed an algorithm for testing the universality of VPAs. This
algorithm simultaneously performs an on-the-fly determinization and reachabil-
ity checking by P-automaton. The notion of P-automaton proposed in [11] pro-
vides a symbolic technique to compute the sets of all reachable configurations
of a VPA. This algorithm has been later improved by Nguyen and Ohsaki [18]
by introducing antichains over transitions of P-automata, in a way to generate
the smallest amount of reachable configurations. Our algorithms for universality
are alternative to this one since we do not use the regularity property of the
set of reachable configurations. When observed on trees, their approach follows
forward steps on the linearization of trees, while our approach is bottom-up on
the structure of trees.

In [13], the authors provide solutions for checking universality and inclusion
of VPAs over finite and infinite words. They avoid the determinization and com-
plementation steps, and use instead Ramsey-based universality- and inclusion-
checking algorithms. Their algorithms do not seem to use antichains.

The paper is structured as follows. In Section 2 we define unranked trees
and visibly pushdown automata seen as trees acceptors. In Section 3, we detail
our antichain-based algorithm for checking universality of VPAs, together with
several optimizations. Section 4 contains extensions of this algorithm to general
VPAs and hedge automata. It also proposes an antichain-based algorithm for
testing the inclusion of VPAs. Section 5 is devoted to the experiments and com-
parisons with other prototype tools. The long version of this paper is available
on the third author’s website.

2 Preliminaries

2.1 Unranked Trees

We here recall the standard definition of unranked trees, as provided for instance
in [6]. Let Σ be a finite alphabet, and Σ∗ (resp. Σ+) be the set of all words (resp.
non empty words) over Σ. The empty word is denoted by ǫ.

An unranked tree t over Σ is a partial function t : (N \ {0})∗ → Σ such
that the domain is non-empty, finite and prefix-closed. The domain is denoted
by nodes(t) and contains the nodes of the tree t, with the root being the empty
word ǫ. The function t labels each node p with a letter t(p) of Σ. The set of all

2

unranked trees over Σ is denoted by TΣ. A hedge h over Σ is a finite sequence
(empty or not) of unranked trees over Σ. The empty hedge is denoted by ǫ, and
the set of all hedges over Σ is denoted by HΣ .

Given a tree t, the subtree of t rooted at node p of t is the tree denoted by
t|p, which domain is the set of nodes p′ such that pp′ ∈ nodes(t) and verifying
t|p(p

′) = t(pp′). For a given node p ∈ nodes(t), we call children of p the nodes
pi ∈ nodes(t) for i ∈ N \ {0}, and use the usual definitions for parents, ancestors
and descendants. The height of a tree, and more generally of a hedge, is the
length of its longest branch (with the length being the number of nodes).

Trees can be described by well-balanced words which correspond to a depth-
first traversal of the tree. An opening tag is used to notice the arrival on a node
and a closing tag to notice the departure from a node. For each a ∈ Σ, let a itself
represent the opening tag and a the related closing tag. The linearization [t] of
t ∈ TΣ is the well-balanced word over Σ ∪Σ, with Σ = {a | a ∈ Σ}, inductively
defined by: [t] = a [t|1] · · · [t|n] a, with a = t(ǫ) and the root has n children.

2.2 Visibly Pushdown Automata

Visibly pushdown automata (VPAs, [2, 3]) are pushdown automata operating on
a partitioned alphabet where only call symbols can push, return symbols can
pop, and internal symbols can do transitions without considering the stack. For
clarity we only consider languages of unranked trees, so we use VPAs as unranked
tree acceptors, operating on their linearization [14].1

Definition 1. A visibly pushdown automaton A over a finite alphabet Σ is a

tuple A = (Q,Σ, Γ,Qi, Qf , ∆) where Q is a finite set of states containing initial

states Qi ⊆ Q and final states Qf ⊆ Q, a finite set Γ of stack symbols, and a

finite set ∆ of rules. Each rule in ∆ is of the form q
a:γ
−−→ q′ with a ∈ Σ ∪ Σ,

q, q′ ∈ Q, and γ ∈ Γ .

A configuration of a VPA A is a pair (q, σ) where q ∈ Q is a state and σ ∈ Γ ∗

a stack content. A configuration is initial (resp. final) if q ∈ Qi (resp. q ∈ Qf)

and σ = ǫ. For a ∈ Σ ∪ Σ, we write (q, σ)
a
−→ (q′, σ′) if there is a transition

q
a:γ
−−→ q′ in ∆ verifying σ′ = γ · σ if a ∈ Σ, and σ = γ · σ′ if a ∈ Σ.
A run of a VPA A on a word a1 · · · an ∈ (Σ ∪Σ)∗ is a sequence of configura-

tions (qi, σi), 0 ≤ i ≤ n, such that (qi−1, σi−1)
ai−→ (qi, σi) for all i. It is denoted

by (q0, σ0)
a1···an−−−−→ (qn, σn). It is accepting if a1 · · · an is the linearization of a

tree t ∈ TΣ, (q0, σ0) is initial, and (qn, σn) is final. A tree t ∈ TΣ is accepted by
A if there is an accepting run on its linearization [t]. The set of accepted trees
is called the language of A and is written L(A).

A VPA A is said universal if it accepts all trees, i.e. L(A) = TΣ.
2 Our objec-

tive in the next section, is to propose efficient algorithms for testing universality

1 These VPAs used as tree acceptors do not use internal symbols. The algorithms we
design for them can easily be adapted to usual VPAs, as explained in Section 4.2.

2 This notion of universality is different from the one proposed for usual VPAs, where
a VPA is universal if it accepts all words of (Σ ∪Σ)∗.

3

of VPAs. A standard method to check universality of a VPA is to determinize
it, complement it, and check for emptiness. As determinization is in exponential
time for VPAs, the universality problem is ExpTime-complete. Our algorithms
aim at avoiding this exponential blow-up on numerous instances.

3 Checking Universality

In our approach for checking universality of VPAs, the main idea is to find as
fast as possible a tree which linearization is rejected by the automaton (if it
exists), without computing an explicit determinization of the VPA. Antichains
will limit the computations. Proofs are given in Appendix A.

3.1 Accessibility Relation

Let A = (Q,Σ, Γ,Qi, Qf , ∆) be a VPA, and t be a tree over Σ. We define the
accessibility relation Acc(t) ⊆ Q×Q as the set

Acc(t) = {(q, q′) ∈ Q×Q | (q, ǫ)
[t]
−→ (q′, ǫ)}.

Note that in this paper, accessibility means accessibility through the linearization

of a tree, as opposed to the accessibility between configurations of the VPA. With
this notation, a tree t is accepted by A iff Acc(t) ∩Qi×Qf 6= ∅.

Let us show how the accessibility relation Acc(t) can be computed for all
t ∈ TΣ. In this aim, we need to introduce the Post operator. For a set R of
relations r ⊆ Q×Q, let R∗ denote the set of all relations obtained by composing
elements of R: R∗ = {r1 ◦ r2 ◦ · · · ◦ rn | n ≥ 0 and ri ∈ R for all 1 ≤ i ≤ n}. In
particular R∗ contains the identity relation idQ over Q, obtained when n = 0.

Definition 2. Given r ∈ R and a ∈ Σ, let

Posta(r) = {(p, p′) ∈ Q ×Q | ∃(q, q ′) ∈ r , p
a:γ
−−→ q ∈ ∆, q ′

a:γ
−−→ p′ ∈ ∆}.

For R a set of relations over Q, let

Post(R) = {Posta(r) | a ∈ Σ , r ∈ R
∗} ∪ R

and Post∗(R) = ∪i≥0Post
i(R) such that Post0 (R) = R, and for all i > 0,

Post i(R) = Post(Post i−1 (R)).

We illustrate the definition of Post in Figure 1. The following lemmas relate
these operators with the accessibility relation.

Lemma 3. Let t ∈ TΣ be such that its root is a node with n children that is

labeled by a. Let ri = Acc(t|i) for 1 ≤ i ≤ n. Then Acc(t) = Posta(r1 ◦ · · · ◦ rn).

Lemma 4. Post i(∅) = {Acc(t) | t is a tree with height ≤ i}.

The next proposition is an immediate consequence of Lemmas 3 and 4.

Proposition 5. Let A = (Q,Σ, Γ,Qi, Qf , ∆) be a VPA. Then A is universal

iff ∀r ∈ Post∗(∅), r ∩Qi×Qf 6= ∅.

4

a

r1q r2 r3 · · · rn q′

p p′ p
a:γ
−−→ q ∈ ∆,

q′
a:γ
−−→ p′ ∈ ∆,

(q, q′) ∈ r1 ◦ r2 ◦ · · · ◦ rn

Fig. 1: (p, p′) ∈ Posta(r1 ◦ · · · ◦ rn).

Function Universality(A)

R ← ∅;
R

∗ ← {idQ};
repeat

Rnew ← {Posta (r) | a ∈ Σ , r ∈ R
∗} \R;

if ∃r ∈ Rnew : r ∩Qi×Qf = ∅ then
return False ; /* Not universal */

end

R ← R ∪Rnew;
R

′ ← Rnew \R
∗;

if R
′ 6= ∅ then

R
∗ ← CompositionClosure(R∗,R ′);

end

until R
′ = ∅;

return True ; /* Universal */

3.2 Algorithm

We are now able to propose an algorithm to check the universality of VPAs.
With Function Universality, the set Post∗(∅) is computed incrementally and the
universality test is performed thanks to Proposition 5. At step i, the variable R

is used for Post i(∅), and the variable R
∗ contains its closure by composition.

We compute R∗ with Function CompositionClosure, and then potential new
relations with {Posta(r) | a ∈ Σ , r ∈ R∗}. The algorithm always stops, either
because a relation proving non-universality is found, or no new relation can be
produced.

Let us detail Function CompositionClosure(R∗,R′) which computes the set
(R∗ ∪R′)∗. In Function CompositionClosure, we show how to compute this set
without recomputing R∗ from R. Initially, Relations is equal to R∗ and will
be equal to (R∗ ∪ R

′)∗ at the end of the computation. ToProcess contains the
relations that can produce new relations by composition with an element of
Relations.

Proposition 6. Given R∗ and R′, Function CompositionClosure computes (R∗∪
R′)∗.

5

Function CompositionClosure(R∗,R′)

Relations ← R
∗;

ToProcess ← R
′;

while ToProcess 6= ∅ do
rel ← Pop(ToProcess);
R

∗ ← R
∗ ∪ {rel};

NewRelations ← ∅;
for r ∈ Relations do

NewRelations ← NewRelations ∪ {r ◦ rel , rel ◦ r};
end

ToProcess ← ToProcess ∪ (NewRelations \ Relations);
Relations ← Relations ∪NewRelations ;

end

return Relations

3.3 Antichain-Based Optimization

In this section we explain how to use the concept of antichain for saving compu-
tations. We show that it is sufficient to only compute the ⊆-minimal elements
of Post∗(∅) for checking universality.

Consider the set 2Q×Q of all binary relations over Q. This set is equipped
with the ⊆ operator such that r ⊆ r′ iff (q, q′) ∈ r ⇒ (q, q′) ∈ r′. An antichain

R of relations over Q is a set of pairwise incomparable relations with respect to
⊆. Given a set R of relations, we denote by ⌊R⌋ the ⊆-minimal elements of R.

Definition 7. Let A = (Q,Σ, Γ,Qi, Qf , ∆) be a VPA, and R be a set of rela-

tions over Q. Let Post∗min(R) = ∪i≥0Post
i
min(R) such that Post0min(R) = ⌊R⌋,

and for all i > 0, Post imin(R) =
⌊

Post(Post i−1
min (R))

⌋

.

Lemma 8. Given R a set of relations over Q, for all r ∈ Post∗(R), there exists
r′ ∈ Post∗min(R) such that r′ ⊆ r.

We have the next counterpart of Proposition 5.

Proposition 9. Let A = (Q,Σ, Γ,Qi, Qf , ∆) be a VPA. Then A is universal

iff ∀r ∈ Post∗min(∅), r ∩Qi×Qf 6= ∅.

Function UniversalityATC checks whether a VPA is universal by computing
incrementally Post∗min(∅). It is an adaptation of Function Universality. Notice
that we can compute ⌊Post(R)⌋ as ⌊{Posta(r) | a ∈ Σ , r ∈ ⌊R∗⌋} ∪ R⌋ (we limit
the computation to r ∈ ⌊R∗⌋). The set ⌊R∗⌋ is denoted by R

∗
min in the algo-

rithm.

3.4 Other Optimizations

Functions CompositionClosure and UniversalityATC can be optimized in several
directions. The optimized algorithm is given in Appendix C.

6

Function UniversalityATC(A)

R ← ∅;
R

∗

min ← {idQ};
repeat

Rnew ← ⌊{Posta (r) | a ∈ Σ , r ∈ R
∗

min}⌋ \R;
if ∃r ∈ Rnew : r ∩Qi×Qf = ∅ then

return False ; /* Not universal */

end

R ← ⌊R ∪Rnew⌋;
R

′ ← Rnew \R
∗

min;
if R

′ 6= ∅ then
R

∗

min ← ⌊CompositionClosure(R∗

min,R
′)⌋;

end

until R
′ = ∅;

return True ; /* Universal */

Witness of Non Universality - As soon as a new relation r is yielded (via the Post
operator or the composition of two relations), the emptiness of its intersection
with Qi×Qf is immediately tested, to check whether it is a witness of non
universality.

In Function CompositionClosure, the relation rel is composed by all relations
r ∈ R. We consider several implementations of ToProcess, with the aim that Pop
(ToProcess) returns a relation rel that is the most promising to yield a witness
of non universality of small size. We try to take the sizes of the domain and
codomain of the relations into account. Indeed, the compositions r ◦ rel , rel ◦ r
should be more incline to not intersect Qi×Qf when domains and codomains of
rel are small. We also try to implement ToProcess as a queue. We note that no
method appears to be better. We keep the best results in the experiments.

Data Structures - Efficient data structures are used both for the relations and
the antichains. A relation is stored as an array of bit-vectors. In this way the
composition is computed efficiently using bit-operations, as well as its domain
and codomain.

A hash table is used to store an antichain, such that relations with different
domain or codomain are stored in different lists. In this way, comparing a new
relation r with the elements of the antichain is made more efficient, by limiting
the comparison of r with elements of the same domain and codomain.

To compute ⌊R∗⌋ in Function UniversalityATC, we first make a call to Fun-
ction CompositionClosure, and then keep the ⊆-minimal elements of the result.
One optimization is, at each step of the CompositionClosure computation, to
only consider the minimal elements.

7

4 Extensions

In this section, we propose several extensions. We first show how to adapt our
antichain-based algorithm for testing the inclusion of two VPAs. Then we extend
our algorithm for testing universality of the original VPA model [2], accepting
words with internal actions and pending calls or returns. Finally, a third exten-
sion is proposed for checking universality of hedge automata.

4.1 Checking Inclusion

An antichain-based algorithm for testing the inclusion of two VPAs can be de-
signed, following the same ideas as for testing universality. We here give the
main ideas for VPAs accepting linearizations of trees. For two VPAs A =
(QA, Σ, ΓA, Qi,A, Qf,A, ∆A) and B = (QB, Σ, ΓB, Qi,B, Qf,B, ∆B) over the same
alphabet Σ, we have L(A) * L(B) iff there exists in A an accepting run
on some word w such that all runs on w in B are not accepting. For a tree
t over Σ, instead of considering the accessibility relation Acc(t) as defined
in Section 3.1, we consider pairs ((q, q′), r) ∈ (QA×QA)×2QB×QB such that
(q, q′) ∈ AccA(t) and r = AccB(t) for the same tree t. In this way, t ∈ L(A)\L(B)
iff (q, q′) ∈ Qi,A×Qf,A for some (q, q′) ∈ AccA(t), and AccB(t)∩Qi,B×Qf,B = ∅.

Given a set S ⊆ (QA×QA)×2QB×QB , we define S ∗ as the set {((p, p′), s) |
there exist n ≥ 0, ((qi, q

′
i), ri) ∈ S with q′i = qi+1 for all 1 ≤ i < n, p = q1, p

′ =
qn, and s = r1 ◦ · · · ◦ rn}. In particular S

∗ contains the pairs ((q, q), idQB) for
all q ∈ QA, obtained when n = 0.

The Post operator is adapted to Post⊆ as follows. In this definition, we use
notation PostB to denote the Post operator used in automaton B.

Definition 10. For S ⊆ (QA×QA)×2QB×QB , we define Post⊆(S) = S ′∪S ,

where S ′ is the set of pairs ((p, p′), s) such that

p
a:γ
−−→ q ∈ ∆A, q′

a:γ
−−→ p′ ∈ ∆A and s = PostBa (r)

for some a ∈ Σ and ((q, q′), r) ∈ S ∗. Let Post∗⊆(S) = ∪i≥0Post
i
⊆(S) such that

Post0⊆(S) = S , and for all i > 0, Post i⊆(S) = Post⊆(Post
i−1
⊆ (S)).

Proposition 5 is adapted into the next proposition.

Proposition 11. Let A and B be two VPAs. Then L(A) ⊆ L(B) iff ∀((q, q′), r)
∈ Post∗⊆(∅), (q, q

′) ∈ Qi,A ×Qf,A ⇒ r ∩Qi,B×Qf,B 6= ∅.

An algorithm for testing the inclusion can be designed as done for uni-
versality. Again we can save computations by using antichains. In this con-
text, the set (QA×QA)×2QB×QB is equipped with the ⊆ operator such that
((q, q′), r) ⊆ ((p, p′), s) iff (q, q′) = (p, p′), r ⊆ s. As done in Section 3.3, we can
define Post∗⊆,min(∅) and get the counterpart of Proposition 11 using antichains.

8

4.2 Universality of General VPAs

We considered VPAs as unranked tree acceptors, i.e. VPAs that only operate on
linearizations of trees. We show here how our algorithms can be easily adapted
to the original VPA model [2].

Three Types of Symbols - The original VPA model operates on an alphabet
partitioned into three disjoint sets: a set Σc of call symbols, a set Σr of return
symbols3, and a set Σi of internal symbols that have no effect on the stack.
Such a VPA is called universal if it accepts all words of (Σc ∪ Σr ∪ Σi)

∗. Fun-
ction Universality (resp. Function UniversalityATC) can be adapted to VPAs
with these three types of symbols as follows. We initialize R∗ (resp. R∗

min) to

{idQ}∪
⋃

a∈Σi
{(q, q′) | q

a
−→ q′ ∈ ∆} instead of {idQ}. Indeed, internal symbols

can appear at any place in a word, so the relation {(q, q′) | q
a
−→ q′ ∈ ∆} has to

be combined with any other yielded relation. We also adapt the Post operator

by defining Posta,b(r) = {(p, p′) ∈ Q ×Q | ∃(q, q ′) ∈ r , p
a:γ
−−→ q ∈ ∆, q ′

b:γ
−−→

p′ ∈ ∆} for all a ∈ Σc and b ∈ Σr.

Pending Calls and Returns - So far we considered linearizations of trees, but all
definitions and results proposed above also hold for linearizations of hedges, for-
mally defined by: [t1 · · · tn] = [t1] · · · [tn]. A word w over Σ ∪Σ is not necessarily
the linearization of a hedge. The general shape of such a word w is:

w = [h0]b0[h1]b1 · · · [hm]bm[h]a1[h
′
1]a2[h

′
2] · · · an[h

′
n]

where all hi, h
′
j , and h are hedges of HΣ , and bi ∈ Σ, aj ∈ Σ for all i, j. In

other words, w is a sequence of words [hi]bi, followed by the linearization of
a hedge [h], followed by a sequence of words aj [h

′
j]. The idea here is to adapt

Function Universality so that it computes :

– as before, the set R = {Acc(t) | t ∈ TΣ} of all accessibility relations through
linearizations of trees, and its closure by composition R∗. This latter set
corresponds to the accessibility relation through linearizations of hedges.

– C ∗, the closure by composition of C , which is the set of all accessibility
relations through the linearization of a hedge, followed by a symbol in Σ:
C = {Acc([h]b) | h ∈ HΣ , b ∈ Σ}.

– O∗, the closure by composition of O = {Acc(a[h]) | a ∈ Σ, h ∈ HΣ}.

Each time a new relation r is added to R, we update R∗ as previously, using
Function CompositionClosure. We also update C ∗ by first adding all relations

r ◦ rb (instead of r) where rb = {(q, q′) | q
b:⊥
−−→ q′ ∈ ∆}, and then compute the

closure by composition of C ∗ as done for R∗. The same method is used for O∗,
with relations ra ◦ r. Each time a new relation is added into one of these three
sets (R∗, C ∗ and O∗), we check whether it is a witness of non-universality. Once
these three sets are fully computed, we check whether all relations rc ◦ rh ◦ ro
with rc ∈ C ∗, rh ∈ R∗ and ro ∈ O∗ intersect Qi ×Qf .

3 Σc and Σr are no longer related by the relation Σc = Σ and Σr = Σ.

9

4.3 Universality of Hedge Automata

The algorithms presented in this paper are easily adapted from VPAs to hedge
automata [5, 6]. For clarity, we consider hedge automata as unranked tree accep-
tors, but the results presented here also hold when considered as hedge acceptors.
We recall in Appendix B the definition of hedge automata, and provide a transla-
tion of hedge automata to VPAs. Hence we can derive universality and inclusion
algorithms for hedge automata, from the ones we propose for VPAs.

Let us briefly sketch how our algorithm operate on hedge automata. A hedge
automatonA can be considered as a set of statesQ and finite state automataAa,q

over Q: the state q can be assigned to a node labeled by a if states (q1, . . . , qn)
can be respectively assigned to its n children, and q1 · · · qn ∈ L(Aa,q). We name
horizontal languages the languages of automata Aa,q, and write t →֒

A
q if q can

be assigned to the root of t. The VPA resulting from the translation basically
simulates all current horizontal languages, using the stack to store the current
state of each level. Hence control states of the VPA are exactly control states of
automata Aa,q. Function Universality, when applied to (translations of) hedge
automata, builds binary relations r over states η, η′ of automata Aa,q: (η, η

′) ∈ r

iff there exists t1 · · · tn ∈ HΣ for which there is a run ti →֒
A

qi for all 1 ≤ i ≤ n

with η
q1···qn
−−−−→ η′ ∈ Aa,q. From this, Function Universality checks whether for

every symbol a ∈ Σ, when performing a Posta operator on these relations, we
obtain a relation intersecting Qi ×Qf .

5 Experiments

We have implemented the algorithms of Sections 3 and 4 with the described
optimizations in a prototype tool named ATC4VPA (AnTiChains for Visibly
Pushdown Automata). The code is written mainly in Python, a small part be-
ing written in C for the low level operations on arrays of bit-vectors (used to
represent relations). The experiments were run on a PC equipped with an Intel
i7 2.8GHz processor, 6 GB of RAM and running Linux Ubuntu 3.2.

The experimental tests are performed on randomly generated automata4,
and compared with the results obtained with known prototype tools:

– VPAchecker, a package for deciding universality and inclusion of VPAs, by
using either the classical algorithms based on the determinization of VPAs,
or optimized on-the-fly algorithms [18],

– FADecider, a package for deciding universality and inclusion of VPAs (over
finite and infinite words) using Ramsey-based methods [13],

– OpenNWA, a nested-word automaton library that provides the standard
boolean operations [10]. Nested-word automata are another formalism which
can be seen as an alternative encoding of VPAs [3].

4 We did not use the same benchmark as [13] as it relies on only few instances, and
these VPAs have ǫ-transitions.

10

2 4 8 16 32 64 1280
5
10
15
20
25
30
35
40
45

av
er
ag
e
tim
e
(s
ec
.)

Universality

2 4 8 16 32 64 128
automata size (log scale)

0

20

40

60

80

100

nu
m
be
r o
f i
ns
ta
nc
es

Sample size: 100
Transition density: 12
Timeout: 60 sec.

False inst. - ATC4VPA
True inst. - ATC4VPA
False inst. - FADecider
True inst. - FADecider

Fig. 2: Universality test for ATC4VPA and FADecider.

During the random generation of VPAs, some parameters are fixed: there is one
initial state (|Qi| = 1), all states are final (Qf = Q), the alphabets have size 3
(|Σc| = |Σr| = |Σi| = 3)5. Other parameters vary, like the size |Q|, the transition
density, i.e. the number of outgoing transitions per state and per alphabet6, and
the number of generated VPAs for a fixed size (sample size).

In Figures 2, 4-6, we compare ATC4VPA with OpenNWA, VPAchecker and
FADecider for increasing automata sizes, with a fixed transition density, and
samples of 100 random automata for each size. In each figure, the first graph
indicates the average time for false (resp. true) instances (without taking into
account the timeouts), whereas the second graph indicates the number of false
(resp. true) instances that did not reach a timeout fixed to 60 seconds (the
number of timeouts is thus the sample size minus these two numbers). By true
instances, we mean universal VPAs, and VPAs for which inclusion holds.

Classical automata techniques (typically complementation) do not scale for
universality and inclusion tests. This is the case with OpenNWA, which quickly
faces timeouts when automata sizes increase (see Appendix D, Figure 4). We
now focus on optimized tools.

On all instances, we observe that the memory footprint of our tool is much
lower than for FADecider (as reported in Table 1 of Appendix D). Indeed, an-
tichains reduce the number of relations that have to be computed (and thus
stored and processed). This is also highlighted in Table 2 of Appendix D that
compares the size of R∗ and R∗

min in Functions Universality and UniversalityATC
respectively.

5 |Σi| = 0 when the tested tool offers this possibility.
6 For instance, a density transition of 5 means 5 outgoing transitions labeled by sym-
bols of Σc (Σr, Σi resp.) for each state.

11

On true instances, antichains show their full power, as the state space to be
explored is usually huge. For these instances, ATC4VPA is indeed faster than
both FADecider and VPAchecker. It also answers to more instances than the
other tools (less timeouts), the only exception being the universality test in
VPAchecker, where VPAchecker encounters slightly less timeouts (Appendix D,
Figure 6). Note however that it is difficult to make a fair comparison since
VPAchecker outputs a wrong answer for a few true instances.

On false instances, our prototype ATC4VPA is a bit slower and faces a bit
more timeouts, but with the same asymptotical behavior. This is due to the fact
that the data structure for antichains is more involved and our prototype did
not optimize all its details.

6 Perspectives

This work suggests future research in several directions. We first plan to inves-
tigate another approach, based on the encoding of unranked trees into binary
ones, and the algorithm in [4]. Second, we would like to extend our benchmark
with realistic (instead of randomly generated) instances coming from the trans-
lation of XML schemas or queries to VPAs. Another step is to decide, when a
prefix u of a word w has been read, whether w will be accepted by a given VPA
(this paper addresses the special case u = ǫ).

Acknowledgements - We thank Thomas Brihaye for useful discussions, and the
authors of VPAchecker, FADecider and OpenNWA for helping us using their tools.

References

1. Abdulla, P.A., Chen, Y.F., Hoĺık, L., Mayr, R., Vojnar, T.: When simulation meets
antichains. In: TACAS. LNCS, vol. 6015, pp. 158–174. Springer (2010)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC. pp. 202–211.
ACM-Press (2004)

3. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journal of the ACM
56(3), 1–43 (2009)

4. Bouajjani, A., Habermehl, P., Hoĺık, L., Touili, T., Vojnar, T.: Antichain-based
universality and inclusion testing over nondeterministic finite tree automata. In:
CIAA. LNCS, vol. 5148, pp. 57–67. Springer (2008)

5. Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge
languages over unranked alphabets: Version 1. Tech. Rep. HKTUST-TCSC-2001-
05, HKUST Theoretical Computer Science Center Research (2001)

6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. Release Oc-
tober, 12th 2007

7. De Wulf, M., Doyen, L., Henzinger, T., Raskin, J.: Antichains: A new algorithm
for checking universality of finite automata. In: CAV, LNCS, vol. 4144, pp. 17–30.
Springer (2006)

8. Doyen, L., Raskin, J.F.: Antichain algorithms for finite automata. In: TACAS.
LNCS, vol. 6015, pp. 2–22. Springer (2010)

12

9. Driscoll, E., Burton, A., Reps, T.W.: Checking conformance of a producer and a
consumer. In: SIGSOFT FSE. pp. 113–123. ACM (2011)

10. Driscoll, E., Thakur, A.V., Reps, T.W.: OpenNWA: A nested-word automaton
library. In: CAV. LNCS, vol. 7358, pp. 665–671. Springer (2012)

11. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: CAV. LNCS, vol. 1855, pp. 232–247. Springer
(2000)

12. Francis, N., David, C., Libkin, L.: A Direct Translation from XPath to Nondeter-
ministic Automata. In: AMW (2011)

13. Friedmann, O., Klaedtke, F., Lange, M.: Ramsey goes visibly pushdown. Tech. rep.
(2012)

14. Gauwin, O., Niehren, J., Roos, Y.: Streaming tree automata. Information Process-
ing Letters 109(1), 13–17 (Dec 2008)

15. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for
streaming XML. In: WWW. pp. 1053–1062. ACM-Press (2007)

16. L C.: Propositional dynamic logic with recursive programs. The Journal of Logic
and Algebraic Programming 73(1-2), 51–69 (2007)

17. Nguyen, T.V.: A tighter bound for the determinization of visibly pushdown au-
tomata. In: INFINITY. EPTCS, vol. 10, pp. 62–76 (2009)

18. Nguyen, T.V., Ohsaki, H.: On model checking for visibly pushdown automata. In:
LATA, LNCS, vol. 7183, pp. 408–419. Springer (2012)

19. Segoufin, L., Vianu, V.: Validating streaming XML documents. In: PODS. pp.
53–64. ACM (2002)

20. Srba, J.: Visibly pushdown automata: From language equivalence to simulation
and bisimulation. In: CSL. LNCS, vol. 4207, pp. 89–103. Springer (2006)

13

A Additional Proofs

A.1 Proof of Lemma 3

Let (q, q′) ∈ Acc(t). Then there exists a run (q, ǫ)
a:γ
−−→ (p0, γ)

[t|1]
−−→ (p1, γ)

[t|2]
−−→

· · ·
[t|n−1]
−−−−→ (pn−1, γ)

[t|n]
−−−→ (pn, γ)

a:γ
−−→ (q′, ǫ). It follows that (pi−1, pi) ∈ Acc(t|i)

for 1 ≤ i ≤ n, and thus (p0, pn) ∈ r1 ◦ · · · ◦ rn. Therefore (q, q′) ∈ Posta(r1 ◦ · · · ◦
rn). The converse is proved similarly.

A.2 Proof of Lemma 4

We proceed by induction on i.
The basic case, i = 1, directly follows from Posta (idQ) = Acc(t) with t being

a leaf labelled by a.
Let i > 1 and suppose that the property holds for all j, 1 ≤ j < i.

(⇒) Let r ∈ Post i(∅). If r ∈ Post i−1 (∅), then the property holds by induction
hypothesis. Otherwise there exist n ≥ 0, r1, . . . , rn ∈ Post i−1 (∅), and a ∈ Σ,
such that r = Posta (r1 ◦ · · · ◦ rn). By induction hypothesis, ∀k, 1 ≤ k ≤ n,
∃tk ∈ TΣ such that height(tk) < i and rk = Acc(tk). Let t be the tree with a root
labelled by a and the n subtrees t1, . . . , tn. Then height (t) ≤ i and r = Acc(t)
by Lemma 3.
(⇐) Let t ∈ TΣ with height(t) ≤ i and r = Acc(t). If height(t) < i, then by
induction hypothesis r ∈ Post i−1 (∅) ⊆ Post i(∅). Otherwise let a be the label
of the root of t and t|1, . . . , t|n its n subtrees. Let rk = Acc(t|k), 1 ≤ k ≤ n.
As height (t|k) < i, we have by induction hypothesis that rk ∈ Post i−1 (∅). By
Lemma 3, r = Posta (r1 ◦ · · · ◦ rn), and thus r ∈ Post i(∅).

A.3 Proof of Proposition 6

Let Relations be the set computed by Function CompositionClosure. Clearly,
Relations ⊆ (R∗ ∪R′)∗. Assume by contradiction there exists r that belongs to
(R∗∪R′)∗\Relations . Then r 6∈ R∗∪R′ and we can suppose wlog that r = r′2◦r

′
1

with r′1, r
′
2 ∈ Relations . Notice that at least one element among r′1, r

′
2 has been

added to ToProcess during the execution of Function CompositionClosure, since
otherwise r′1, r

′
2 ∈ R∗ and then r ∈ R∗. If r′1 is the last one (among r′1, r

′
2) to

be popped from ToProcess, then the relation r′2 ◦ r
′
1 is added to NewRelations,

which leads to a contradiction. The conclusion is similar if r′2 is is the last one
to be popped.

Notice that Function CompositionClosure always terminates because each
relation put in ToProcess is put only once.

A.4 Proof of Lemma 8

The proof is done by induction on i such that Post∗(R) = ∪i≥0Post
i(R), and

on the next two observations:

14

– Given a ∈ Σ, and r, r′ two relations over Q, if r ⊆ r′ then Posta(r) ⊆
Posta (r

′).
– Let r1, · · · , rn, r′1, · · · , r

′
n be relations over Q, if ri ⊆ r′i, ∀1 ≤ i ≤ n, then

r1 ◦ · · · ◦ rn ⊆ r′1 ◦ · · · ◦ r
′
n.

A.5 Proof of Proposition 9

The proof is based on Proposition 5.
(⇒) As Post∗min(∅) ⊆ Post∗(∅), the proof is immediate.
(⇐) Suppose that ∀r ∈ Post∗min(∅), r ∩ Qi×Qf 6= ∅. Let r′ ∈ Post∗(∅). By
Lemma 8, ∃r ∈ Post∗min(∅) : r ⊆ r ′. It follows that r′ ∩Qi×Qf 6= ∅.

A.6 Proof of Proposition 11

The proof follows the same schema as for Proposition 5. Similarly to Lemma 4,
we have Post i⊆(∅) = {((q, q ′), r) | (q, q ′) ∈ AccA(t), r = AccB(t) for some tree t

with height ≤ i}.
(⇒) Suppose that L(A) ⊆ L(B). Let ((q, q′), r) ∈ Post∗⊆(∅). Then there exists
t such that (q, q′) ∈ AccA(t) and r = AccB(t). If (q, q

′) ∈ Qi,A × Qf,A, then
t ∈ L(A), and thus t ∈ L(B). Therefore r ∩Qi,B×Qf,B 6= ∅.
(⇐) Suppose now that ∀((q, q′), r) ∈ Post∗⊆(∅), (q, q

′) ∈ Qi,A × Qf,A ⇒ r ∩
Qi,B×Qf,B 6= ∅. Let t ∈ L(A). Then there exists (q, q′) ∈ AccA(t) such that
(q, q′) ∈ Qi,A ×Qf,A. With r = AccB(t), it follows that r ∩Qi,B×Qf,B 6= ∅, and
thus t ∈ L(B).

B From Hedge Automata to VPAs

We present here a translation from hedge automata to VPAs recognizing lin-
earizations of trees. A translation from specialized DTDs is presented in [19].
It is quite similar to our translation, except that our translation is in polyno-
mial time (we avoid determinization) and our presentation avoids specialization,
which is already included in hedge automata.

A hedge automaton over Σ is a tuple A = (Q,Σ,Qf , ∆) where Q is a finite
set of states, Qf ⊆ Q is the set of final states, and ∆ is a finite set of transition
rules of the following type: (a, L, q) where a ∈ Σ, q ∈ Q, and L ⊆ Q∗ is a regular
language over Q, called a horizontal language. We assume wlog that, given a

and q, there is a unique L such that (a, L, q) ∈ ∆, and name Aa,q a finite state
automaton recognizing L.

A run of A on a tree t ∈ TΣ is a tree r ∈ TQ with the same domain as t

such that for each node p ∈ nodes(r) and its n children p1, p2, . . . , pn, if a = t(p)
and q = r(p), then there is a rule (a, L, q) ∈ ∆ with r(p1)r(p2) . . . r(pn) ∈ L. In
particular, applying the rule (a, L, q) at a leaf requires that the empty word ǫ

belongs to L. Intuitively, a hedge automaton A operates in a bottom-up manner
on a tree t: with a run r, it assigns a state to each leaf, and then to each internal
node, according to the states assigned to its children. We use notation t →֒

A
q to

15

indicate the existence of a run r on t that labels the root of t by the state q. The
language L(A) of A is the set of trees t on which t →֒

A
q for some q ∈ Qf .

Let A = (Q,Σ,Qf , ∆) be a hedge automaton. We assume, wlog, that all au-
tomata Aa,q have disjoint sets of states, and only one initial state per automaton,
that we write ia,q. Given a state η, we write m(η) for the pair (a, q) ∈ Σ × Q

such that η ∈ Qa,q.

Let B = (QB, Σ, ΓB, {i}, {f}, ∆B) be the VPA where:

– QB = {i, f} ∪
⋃

a∈Σ,q∈Q Qa,q with i, f being new states,

– ΓB = {f} ∪
⋃

a∈Σ,q∈Q Qa,q,

– ∆B = {i
a:f
−−→ ia,q | a ∈ Σ, q ∈ Qf}

∪ {η
a:η′

−−→ ia,q | a ∈ Σ, η
q
−→ η′ ∈ ∆m(η)}

∪ {η
a:η′

−−→ η′ | a ∈ Σ, η′ ∈ ΓB, and η ∈ Fm(η)}

The idea here is that the VPA runs one automaton Aa,q at each depth be-

tween siblings. The choice of the transition η
q
−→ η′ of Aa,q to apply is done when

opening a node (only η is known). The target state η′ is put on the stack. When
closing a node, we just pop the state η′ from the stack and take it as new control
state.

Proposition 12. L(A) = L(B).

Proof. Let us prove the following property by induction on the structure of trees:

(

η
q
−→ η′ ∈ ∆m(η) and t →֒

A
q
)

iff (η, ǫ)
[t]
−→ (η′, ǫ) is a run of B

(Basic case) If t is a leaf, then t = a for some a ∈ Σ, and we have:

η
q
−→ η′ ∈ ∆m(η) and t →֒

A
q iff η

q
−→ η′ ∈ ∆m(η) and ǫ ∈ L(Aa,q)

iff η
q
−→ η′ ∈ ∆m(η) and ia,q ∈ Fa,q

iff η
a:η′

−−→ ia,q ∈ ∆B and ia,q
a:η′

−−→ η′ ∈ ∆B

iff (η, ǫ)
[t]
−→ (η′, ǫ) is a run of B

(Induction step) Assume t is not a leaf, has a root labeled by a, has n children,
and thus n subtrees t|1, . . . , t|n, for which the property holds. We have:

t →֒
A

q iff ∃q1, . . . , qn ∈ Q, t|i →֒
A

qi for all 1 ≤ i ≤ n, and q1 · · · qn ∈ L(Aa,q)

iff ∃q1, . . . , qn ∈ Q, ∃η0, . . . , ηn ∈ Qa,q with η0 = ia,q, ηn ∈ Fa,q,

and ηi−1
qi
−→ ηi ∈ ∆a,q and t|i →֒

A
qi for all 1 ≤ i ≤ n

iff ∃η0, . . . , ηn ∈ Qa,q with η0 = ia,q, ηn ∈ Fa,q,

and (ηi−1, ǫ)
[t|i]
−−→ (ηi, ǫ) is a run of B for all 1 ≤ i ≤ n

(by induction hypothesis)

iff ∃ηf ∈ Fa,q, and (ia,q, ǫ)
[t|1]···[t|n]
−−−−−−→ (ηf , ǫ) is a run of B

16

so we get:

η
q
−→ η′ ∈ ∆m(η) and t →֒

A
q

iff η
q
−→ η′ ∈ ∆m(η) and ∃ηf ∈ Fa,q, and (ia,q, ǫ)

[t|1]···[t|n]
−−−−−−→ (ηf , ǫ) is a run of B

iff η
a:η′

−−→ ia,q ∈ ∆B and ∃ηf ∈ Fa,q, ηf
a:η′

−−→ η′ ∈ ∆B

and (ia,q, η
′)

[t|1]···[t|n]
−−−−−−→ (ηf , η

′) is a run of B

iff (η, ǫ)
[t]
−→ (η′, ǫ) is a run of B

Now that we have proved the property, let us show that L(A) = L(B).
Consider t ∈ TΣ with a root labeled by a, and n children (with n ≥ 0). We
have: t ∈ L(A) iff ∃q ∈ Qf , t →֒

A
q. Using the same sequence of equivalences as

above, replacing the induction hypothesis by the property we proved, we get:

t ∈ L(A) iff ∃q ∈ Qf , ∃ηf ∈ Fa,q, (ia,q, ǫ)
[t|1]···[t|n]
−−−−−−→ (ηf , ǫ) is a run of B. This is

equivalent to t ∈ L(B) because rules i
a:f
−−→ ia,q and ηf

a:f
−−→ f are both in ∆B,

and (ia,q, f)
[t|1]···[t|n]
−−−−−−→ (ηf , f) is a run of B.

C Optimized Algorithm

Function UniversalityOpt uses antichains and includes the optimizations de-
scribed in Section 3.4. ToProcess collects the newly constructed relations that
still have to be processed. It is ordered such that the most promising relation is
first popped. For each popped relation r, we apply the Post operator, and we
compute the composition with all the relations of R∗. During these computa-
tions, we directly test whether any new relation is a witness of non universality
(see Functions Post and Composition).

Variables R∗, ToProcess and Rnew, are antichains. The antichain R∗ is the
largest one. It is implemented with a hash table such that all relations with the
same domain and codomain are in the same list. Function Union computes the
⊆-minimal elements of the union of two antichains.

Function UniversalityOpt(A)

on exception NotUniversal return False ; /* Not universal */

R
∗ ← {idQ};

ToProcess ← {idQ};
while ToProcess 6= ∅ do

r ← Pop(ToProcess);
Rnew ← Post(r,R∗);
ToProcess ← Union(ToProcess ,Rnew);
Rnew ← Composition(r,R∗);
ToProcess ← Union(ToProcess ,Rnew);

end

return True ; /* Universal */

17

Function TestWitness(r,R,Rnew)

if r 6∈ R then

if r ∩Qi×Qf = ∅ then
raise exception NotUniversal;

else

Rnew ← Union(Rnew, {r});
end

end

return Rnew;

Function Post(r,R)

Rnew ← ∅;
for a ∈ Σ do

rnew ← Posta (r);
TestWitness (rnew,R,Rnew);

end

return Rnew;

D Further Experiments

D.1 Instances

Parameters - The random generation of VPAs and the tests depend on some
parameters (some of which being fixed):

– size |Q|
– size |Qi| (always fixed to 1)

– density of final states
|Qf |
|Q|

– size of the alphabets Σc, Σr, Σi (all always fixed to 3)7

– transition density, i.e. the number of outgoing transitions per state and per
alphabet

– number of generated VPAs for a fixed size (sample size)
– timeout

In Figure 3, we consider the universality test with our prototype ATC4VPA,
for VPAs used as tree acceptors (Σi = ∅). The transition density and final
state density are variable, whereas the size of Q is fixed to 10, the sample size
equals 50, and the timeout is fixed to 60 seconds. The transition density varies

7 |Σi| = 0 when the tested tool offers this possibility.

18

Function Composition(r,R)

R ← R ∪ {r};
Rnew ← ∅;
for r′ ∈ R do

rnew ← r ◦ r′;
TestWitness (rnew,R,Rnew);
rnew ← r′ ◦ r;
TestWitness (rnew,R,Rnew);

end

return Rnew;

from 1 to 20 in the following sense: a density transition of d means d outgoing
transitions labeled by symbols ofΣc (Σr resp.) for each state. The figure indicates
the number of true and false instances that did not reach the timeout, it also
indicates the number of instances that reach the timeout before being completely
checked. When the two densities are high (resp. low), true (resp. false) instances
are more probable.

Automata Families - We have compared ATC4VPA with OpenNWA, VPAchecker
and FADecider. The kind of tested automata changes a little depending on the
compared tool. For VPAchecker, the automata are general VPAs and they are
tested with our algorithm extended to pending calls and returns, as discussed in
Section 4.2. As OpenNWA works with weak nested-word automata, the tests are
performed with this family of automata for OpenNWA and with their translation
to VPAs for ATC4VPA.8 As FADecider allows to use VPAs as hedge acceptors,
we limit the tests to this family and perform them with the optimized Func-
tion UniversalityOpt.

D.2 Comparison with Other Tools

The experimental tests are performed with ATC4VPA for the universality and in-
clusion tests, and compared with the results obtained with OpenNWA, VPAchecker
and FADecider. In Figures 2, 4-6, the automata size varies whereas the follow-
ing parameters are fixed : |Qf | = |Q|, transition density, sample size (100), and
timeout (60 sec.). In each figure, the first graph indicates the average time for
false (resp. true) instances (without taking into account the timeouts), whereas
the second graph indicates, inside each sample, the number of false (resp. true)
instances that did not reach the timeout (the number of timeouts is thus the
sample size minus these two numbers).

D.3 Antichains and Memory

In our approach, antichains are used to reduce as much as possible the state
space to be explored (the set of accessibility relations). On true instances, they

8 This translation needs to store the state used when opening the node in the stack.

19

final state density

0.2
0.4

0.6
0.8

1.0 tra
nsi

tio
n d

ens
ity

5

10

15

nu
m
be

r o
f i
ns

ta
nc

es

0

10

20

30

40

50

True inst.
False inst.
Timeout inst.

Fig. 3: Universality test for ATC4VPA with variable density of final states and
transitions.

show their full power, as this state space is usually huge (see Figures 2 and 5).
The benefit of antichains is further highlighted by data of Tables 1 and 2.

The first table shows that the memory footprint of ATC4VPA is much lower
than for FADecider: it stays arround 16 MB for ATC4VPA, but varies between
67 to 122 MB for FADecider.

The second table presents a comparison between the size of R∗ and R∗
min

in Functions Universality and UniversalityATC respectively. While |R∗| raises
up to almost 6200 (the bound reached at timeout), |R∗

min| is at most 210. The
small size of R∗

min follows from the use of antichains.

20

2 3 4 50
5

10
15
20
25
30
35
40
45

av
er

ag
e

tim
e

(s
ec

.)
Universality

2 3 4 5
automata size

0
10
20
30
40
50
60
70
80

nu
m

be
r o

f i
ns

ta
nc

es

Sample size: 100
Transition density: Σc :2.7/Σr :5/Σi :2
Timeout: 60 sec.

False inst. - ATC4VPA
True inst. - ATC4VPA
False inst. - OpenNWA
True inst. - OpenNWA

Fig. 4: Universality test for ATC4VPA and OpenNWA.

2 4 8 16 32 64 1280

10

20

30

40

50

av
er
ag
e
tim
e
(s
ec
.)

Inclusion

2 4 8 16 32 64 128
automata size (log scale)

0

20

40

60

80

100

nu
m
be
r o
f i
ns
ta
nc
es

Sample size: 100
Transition density: 4
Timeout: 60 sec.

False inst. - ATC4VPA
True inst. - ATC4VPA
False inst. - FADecider
True inst. - FADecider

Fig. 5: Inclusion test for ATC4VPA and FADecider.

21

2 4 8 16 32
0

10

20

30

40

50

60

70

a
v
e
ra
g
e
 t
im

e
 (
se
c.
)

Universality

2 4 8 16 32
automata size (log scale)

0

20

40

60

80

100

n
u
m
b
e
r
o
f
in
st
a
n
ce

s

Sample size: 100
Transition density: 13
Timeout: 60 sec.

False inst. - ATC4VPA
True inst. - ATC4VPA
False inst. - VPAchecker
True inst. - VPAchecker

Fig. 6: Universality test for ATC4VPA and VPAchecker.

Table 1: Maximal memory consumption comparison between FADecider and
ATC4VPA for 10 universal VPAs with 10 states and a transition density of 12.
The timeout is fixed at 180 seconds.

♯ ATC4VPA: time (s) ATC4VPA: space (kB) FADecider: time (s) FADecider: space (kB)

1 76.91 17444 Timeout 67112
2 71.25 16652 Timeout 94456
3 78.77 16916 Timeout 119384
4 74.41 16388 Timeout 72128
5 58.94 16124 Timeout 122440
6 69.97 17448 Timeout 86592
7 60.03 15860 Timeout 92460
8 68.52 16388 Timeout 76092
9 58.13 15864 Timeout 82424
10 65.34 16388 Timeout 75036

22

Table 2: Adding antichains: comparison between |R∗| and |R∗
min|, on VPAs with

10 states and a transition density of 12. The timeout is fixed at 6 hours.

♯ Instance time with antichains (s) |R∗

min| time without antichains (s) |R∗|
1 False 5.66 92 Timeout 5932
2 False 8.85 104 20.27 145
3 False 11.38 41 139.35 496
4 True 11.37 122 Timeout 5593
5 True 12.90 131 Timeout 5708
6 True 29.88 210 Timeout 6149

23

