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Abstract

We present a new family of estimators of the Weibull tail-coefficient. The Weibull
tail-coefficient is defined as the regular variation coefficient of the inverse failure rate
function. Our estimators are based on a linear combination of log-spacings of the upper
order statistics. Their asymptotic normality is established and illustrated for two par-
ticular cases of estimators in this family. Their finite sample performances are presented

on a simulation study.
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1 Introduction

Weibull tail-distributions encompass a variety of light tailed distributions, i.e. distributions
in the Gumbel maximum domain of attraction, see [13] for further details. Weibull tail-
distributions include for instance Weibulls, Gaussians, gammas and logistic. The purpose of
this paper is to study the estimation of a tail parameter associated with these distributions.
More precisely, a cumulative distribution function F' has a Weibull tail if its logarithmic tail
satisfies the following property: There exists 6 > 0 such that for all A > 0,

Jim w =\, (1)
The parameter of interest 6 is called the Weibull tail-coefficient. Such distributions are
of great use to model large claims in non-life insurance [5]. In the particular case where
log(1 — F(\t))/log(1 — F(t)) = A% for all t > 0 and A > 0, estimating 6§ reduces to esti-
mating the shape parameter of a Weibull distribution. In this context, simple and efficient
methods exist, see for instance [2], Chapter 4 for a review on this topic. Otherwise, dedi-
cated estimation methods have been proposed since the relevant information on the Weibull
tail-coefficient is only contained in the extreme upper part of the sample. A first direction
was investigated in [7] where an estimator based on the record values is proposed. Another

family of approaches [4, 6, 9, 11, 15, 16, 18] consists of using the k,, upper order statistics

where (k) is an intermediate sequence of integers i.e. such that

lim k, =occ and lim k,/n =0. (2)

oo n—oo
Note that, since 6 is defined only by an asymptotic behavior of the tail, the estimator should
use the only extreme-values of the sample and thus the second part of (2) is required. The
estimators considered here belong to this approach. Let (X;)1<;<n be a sequence of indepen-
dent and identically distributed random variables with cumulative distribution function F'.

Denoting by X; , <... < X, , the corresponding order statistics, our family of estimators is

kn—1 kn—1
O, () = Z o n(log(Xn—it1,n) — log(Xn—k,+1,n)) / Z a; n(loglog (n/i) —loglog (n/ky))
i=1 i=1 @)
with weights o, = W(i/ky,)+e;,, defined from W a smooth score function and (g ,)1<i<k, —1
a non-random sequence. We refer to [10, 25] for similar works in the context of the estimation
of the extreme-value index.

In Section 2 we state the asymptotic normality of these estimators. In Section 3, we
provide two examples of weights. The first one leads to the estimator of 6 proposed by
Beirlant et al. [6]. The second one gives rise to a new estimator for Weibull tail-distributions.
The behavior of these two estimators is investigated on finite sample situations. Finally,

proofs are given in Section 4.



2 Asymptotic normality

Consider the failure rate H = —log(1 — F'). Writing H its generalized inverse H (t) =

inf{x, H(x) > t}, assumption (1) is equivalent to:
(A1) H(t) =t%%(1),

where £ is a slowly varying function i.e. such that £(At)/¢(t) — 1 as t — oo for all A > 0.
The inverse failure rate function H ™ is said to be regularly varying at infinity with index 6
and this property is denoted by H— € Ry. We refer to [8] for more information on regular
variation theory. As a comparison, Pareto type distributions satisfy (1/(1 — F))” € R,
and v > 0 is the so-called extreme-value index. As often in extreme-value theory, (A.1) is
not sufficient to prove a central limit theorem for én(a). It needs to be strengthened with a
second order condition on ¢, namely that there exist p < 0 and a function b with limit O at

infinity such that

(A.2) log (E(AE)/£(8)) ~ b(t) [ ur=tdu,

uniformly locally on A > 1 and as ¢ — co. The second order parameter p < 0 tunes the rate of
convergence of £(At)/¢(t) to 1. The closer p is to 0, the slower is the convergence. Condition
(A.2) is the cornerstone in all proofs of asymptotic normality for extreme-value estimators.
It is used in [20, 19, 3] to prove the asymptotic normality of estimators of the extreme-
value index . Table 1 shows that many distributions satisfy (A.1) and (A.2). Among
them, Extended Weibull distributions, introduced in [21], encompass gamma, Gaussian and
Benktander IT distributions. We refer to [12], Table 3.4.4, for the derivation of b(z) and p in
each case. Other examples are the Weibull, logistic and extreme-value (with shape parameter
~ = 0) distributions.

Throughout the paper, we write Id for the identity function. In particular, if f is a
function and p a real number, the inequality f < Id” means f(t) < t? for any p where it is
defined. For general L-estimators, conditions on the weights are required to obtain a central

limit theorem (see for instance [23]). Our assumptions are the following:
(A.3) W is defined and continuously differentiable on the open unit interval,

(A.4) There exist M > 0, 0 < ¢ < 1/2 and p < 1 such that |[W| < MId™? and |W'| <

MId"P77 on the open unit interval.

Similar conditions have been introduced in the context of the estimation of the extreme-value

index [10, 25]. To write the limiting variance of 6, (), we introduce two quantities:

W( ) log(1/x)dx

/ / W mln(m y) — xydxdy
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Theorem 1 Suppose (A.1)—(A.4) hold. If (k,) is any intermediate sequence such that

EL/2b(log(n)) — X and kL/? max{1/log(n), |||

n,oo} — 0, (4)

then
kY2 (0(0) = 0) 5 N (X, 0202 (W) /12 (W)

Clearly, the bias of the estimator is driven by the function b. This bias term asymptotically
vanishes if A = 0. Some applications of this result are given in the next section, Corollary 1
and Corollary 2. The importance of the bias term is also illustrated on finite sample situations.

Finally, note that condition (4) implies k,/n — 0.

3 Comparison of two estimators

First, we show in Paragraph 3.1, that our family of estimators (3) encompasses the Hill type
estimator é{f proposed in [6]. Moreover, it will appear in Corollary 1 that the asymptotic
normality of 07 stated in [18], Theorem 2 is a consequence of our main result Theorem 1.
Second, in Paragraph 3.2, we use our framework to exhibit a new estimator of the Weibull tail-
coefficient and to establish its asymptotic normality in Corollary 2. In the third paragraph,

we show that the new estimator performs as well as the Hill one.

3.1 Hill type estimator

Beirlant et al. [18] propose the following estimator of the Weibull tail-coefficient:

kn—1 kn—1
é’l'l;:[ = z_; (log(Xn—i-‘rl,n) - 1Og(Xn—kn+1,n)) z_; (1Og log (n/l) - 1Og log (n/k”)) ' (5)

Clearly, #¥ is a particular case of 0, (a) with W (z) = 1 for all z € [0,1] and gin = 0 for
alli=1,...,k,. The asymptotic normality of é{f , established in Theorem 2 of [18], can be

obtained as a consequence of Theorem 1:

Corollary 1 Suppose (A.1) and (A.2) hold. If (k) is an intermediate sequence such that
ken/? max{b(log(n)), 1/ log(n)} — 0, then k¥/*(1 — 0) % N(0,62).

3.2 Zipf estimator

We propose a new estimator of the Weibull tail-coefficient based on a quantile plot adapted to
our situation. It consists of drawing the pairs (loglog (n/7),log (Xp_it1,,)) fori=1,...,n—1.

The resulting graph should be approximatively linear (with slope ), at least for the large



values of i. Thus, we introduce é,ZL the least square estimator of € based on the k, largest

observations:
kn—1 kp—1
07 =Y (loglog (n/i) = ¢u)log(Xp—it1,) / Y (loglog (n/i) — Gu)loglog (n/i) ,  (6)
i=1 i=1
where

kn—1
1

] Z loglog (n/i) .
" i=1

This estimator is similar to the Zipf estimator for the extreme-value index proposed by Kratz

Cn:

and Resnick [22] and Schultze and Steinebach [24]. We prove in Section 4 that Z belongs to

family (3) and thus apply Theorem 1 to obtain its asymptotic normality:

Corollary 2 Suppose (A.1) and (A.2) hold. If (k) is an intermediate sequence such that
ks/? max{b(log(n)), log? (k) / log(n)} — 0, then ki/*(6Z — 6) % N(0, 262).

3.3 Numerical experiments

The finite sample performance of the estimators éf and éf are investigated on 6 different
distributions: T'(0.5,1), I'(1.5,1), A (1.2,1), £, W(2.5,2.5) and W(0.4,0.4), see Table 1 for
their parameterizations.

We limit ourselves to these two estimators, since it is shown in [18] that éf gives better
results than the other approaches [9, 4]. In each case, N = 200 samples (X, ;)i=1,.. n of
size n = 500 were simulated. On each sample (X, ;), the estimates éfl(kn) and éfv(kn) are

computed for k, = 2,...,250. Finally, the Hill-type plots are built by drawing the points

<kn izN:éZ‘(k )) and <k: iZN:éH.(k: )).
N i=1 e N i=1 e
We also present the associated MSE (mean square error) plots obtained by plotting the points
<kn 1§N:(éz.(k )—9)2> and (k 1§N:(éH.(k )—9)2>.
’Ni:1 e mNi:1 e
The results are presented on figures 1-6. It appears that for both estimates the sign of the

bias is driven by the function b in (A.2). In all plots, éf appears to vary more smoothly
H

no

in terms of k, than 02, a feature which we find appealing. The results obtained with the
two estimators are very similar on Weibull distributions (figure 5 and figure 6), especially in
terms of mean square error. In other cases, i.e gamma, Gaussian and logistic distributions

(figures 1-4), éf gives better results in terms of bias and mean square error.

4 Proofs

Throughout this section, we assume that (k,) is an intermediate sequence and, for the sake

of simplicity, we note k for k,. Let us also introduce K,(\) = fl)\ uP~ldu for A > 1 and



J(x) = W(1 —z) for x € (0,1). The following notations will prove useful: E,_ji1, is
the (n — k + 1)th order statistics associated to n independent standard exponential variables
and (F; k—1)1<i<k—1 are order statistics, independent from FE, _j41,, generated by k — 1

independent standard exponential variables. The next lemma presents an expansion of én(a).
Lemma 1 Under (A.1) and (A.2), 0, () has the same distribution as

0T + (1 + 0p(1)b(Enki1,0)Tw"

7 |
where we have defined

1 ket

M = o1 Zai’n(log log (n/i) —loglog (n/k)) and
i=1
k—1

1 Fir
e = 1S, K <1+“>, <0
k-1 ; e ’ En—k:—&-l,n p=

Proof : Using the quantile transform, the order statistics (X;..,)1<i<n have the same distri-
bution as (H(E;n))1<i<n. Thus, (A.2) yields that the numerator of 6, (c) in (3) has the
same distribution as

1 k—1 E ) 1 k—1 E )
0—— ainlog (=222 ) 4 (1 (B prin)—— Y kK, | =)
g 2 oo () (L on (B sy oy (ot

The Rényi representation asserts that (Ep_it1.n/En—k+1,n)1<i<k—1 has the same distribution
as (14 Fr—ik—1/FEn—k+1,n)1<i<k—1, see [1], p. 72. Therefore, the numerator of én(a) has the

same distribution as

1 k—1 F._.
0 . 1 k—i,k—1
k=1 ;am % < " B

k—1
1 Fhih
+ (L4 op()b(En-tsrn)—7 > ink, <1 M Ekkill> '
p n— T

Changing i to k — 4 in the above formula and remarking that K is the logarithm function

conclude the proof. ]

The following lemma provides an expansion of

N

—1
S ﬁ (loglog (n/i) — loglog (n/k)),
1

%

which frequently appears in the proofs.

Lemma 2 The following expansion holds:

st (0 (52) o)




Proof : We write 7, as the sum

1 1 2 _ 1= log(k /i) log(k /4)
a1 2 o0 iy 3 i (14 00T ) - i |

Since
k!
E log(i/k) = log(kk)

Stirling’s formula shows that the ﬁrst term is

o (70 (757))

The inequality —2?/2 < log(1 + z) — 2 < 0, valid for nonnegative = shows that the second

term is of order at most

W Zlog (i/k) = (W) ;

since the above Riemann sum converges to 2 as k — oco. The result follows. [ |

The next lemmas are dedicated to the study of the different terms appearing in Lemma 1.

First, we focus on the non-random term Tfll).

Lemma 3 Under (A.1)—(A.4), the following expansion hold:

1 _ W) U 1
i 1Og(n/k){uo(lg(k)k )+o(bﬂmm)+oummmﬁ.

Proof : Clearly, Tél) can be rewritten as the sum
k—1 ) k-1 .
1 log(k /i) 1 _ log(k/7)
—_— inl 1 W(i/k)1 1+ ————= .
kE—1 ;E n 108 ( * log(n/k) + kE—1 ; (i/k)log | 1+ log(n/k)

which is O(||e]|n,00/10g(n/k)), by

The absolute value of the first term is less than

Lemma 2. The second term can be expanded as

et O+ S s 1+ S0 - TG
7t
~ log(n/k)
For z € (0,1), define H(x) = W(z)log(1/z). The Riemann sum T can be compared to
u(W) by:

+ T2,

1/k
e < Y s e [ e coum. 0

i—1 ¢/ k<z<(i+1)/

Assumption (A.4) implies that there exists a positive M’ such that |[H'| < M’Id"%"" on the

open unit interval, and thus the first term of (7) is bounded above by

M /1 a-tg e ) = © (k1) if ¢ # 0,
1/k

2k O (k~'log(k)) otherwise.



Assumption (A.4) also yields |H| < MId™?log(1/x) on the open unit interval and thus the
second term in (7) is O (k97 log(k)). It follows that

T = (W) + Ok log(k)). (8)

Besides, the well-known inequality | log(1+2z)—xz| < 22 /2, valid for all nonnegative = together

with (A.4) show that |T,(L1’2)| is bounded by

k—1

since the above Riemann sum converges to a finite integral. Collecting (8) and (9) gives the
result. u

Second, we focus on the random term Ty(lz’p ).

Lemma 4 Let £ be standard Gaussian random variable. Under (A.1)—(A.4), the following

expansion hold for all non-positive p:

(2.0) 4 _uW) oW), 12 o 1
T, B brin {1 + M(W)k §(1+op(1)) +Op (log (n/k)> +Op (||5||m)}.

Proof : Note that T,?’p) can be written as the sum

1 k—1 r 1 k—1 r

i,k—1 . i,k—1
e _inK, 1 : K, |1+ ——. 1
k_lz;jak in p< + g >+k_1i§=1J(z/k) p< +5 ) (10)

—k+1,n n—k+1,n

Since 0 < K,(1+4x) < « for all nonnegative z, the absolute value of the first term is bounded

by

o1 k—1

1 Fi k-1 ) 1 E: Fik—1
Elln,co7 7 K 1+ —_ S €lln,00 : ’
llln, E—1 ; o < En_kt1n le] k=1 En ki1n

which has the same distribution as

lellnoe 1 1
B 1 B = Er O el
+1 i=1

from the law of large numbers. The second term of (10) can be expanded as

k—1 k—1
1 1 . 1 . Fip_1 Fip 1
_— Fi_ _— K, |1 . — 2
kfliilj(z/k‘) ik 1+k1i_21J(Z/k){ p( + ) E }

En—k+1,n En—k+1,n n—k+1,n
2,p,1)
T
_. 2,p,2
n—k+1,n

Now, (A.3) and (A.4) imply that the L-statistics 7%V satisfies the conditions of [23] and

thus is asymptotically Gaussian. More precisely, we have

T20D) L (W) + o(W)E™Y2¢(1 + op(1)). (11)



The upper bound on 7% is obtained by remarking that |K,(1+z) —z| < (1 — p)x?/2 for

all nonnegative z. It follows that TT(LQ’p 2) is bounded above by
k—1 k—1
1 . Fir Fi k1 1—p 1 ) 9
o o[, (14 e ) - g < TG IR)IFE .
k—1 zzzl ? En_ktrin En_ktin 2E72L—k+1,n k—1 z:z1 k=1

Now, E,_k+1,, is equivalent to log (n/k) in probability and

k-1
1 .
T_1 Z |[J(i/k)|F2p_y = Op(1),
1=1

from the results of [23] on L-statistics. Thus

1 1
T(2,0,2) _ 0 ( ) ; 12
" En ki1 ' \log (n/k) (12

and then collecting (11) and (12), the second term of (10) is

1 1
- k=1/2¢(1 1 -
En_ktin (M(W) +olW) Sl +op(1) +0p (10g (n/k)>) ’
and the result follows. [ |

We are now in position to prove Theorem 1 and Corollary 2.

Proof of Theorem 1. From Lemma 1, k'/2(6,(a) — 0) has the same distribution as

e (T 1/2 wr)
0k T(l) 1) +k b(En_k+1’n)W(l + OP(l))

Now, E,_kt1.n is equivalent to log(n/k) in probability which is also equivalent to log(n),
see Lemma 5.1 in [15]. Since |b| is regularly varying (see [17]), b(En—g+1,n) is equivalent to

b(log(n)) in probability. As a consequence, k*/2(6, () — ) has the same distribution as

1/2 7" 1/2 7"
oK/ e 1|+ &Y b(log(n))w(l + op(1)). (13)

Let us consider the first term of this sum. Lemma 3, Lemma 4 and condition (4) entail that,
for all non-positive p, the ratio TT(Lz’p ) /Tr(tl) has the same distribution as

log(n/k) a(W)
Enk+1m {1 * N(W)

(1 + on(1) |

Now, Lemma 1 in [18] asserts a central limit theorem for order statistics of an exponential

sample, and thus

log(n/k) a <k1/2 )
—= 1 72 =140 .
En_kiim "\ log(n)
Consequently, the first term of (13) converges in distribution to N (0,8202(W)/u?(W)). We

also have that the second term of (13) converges to A in probability and the result is proved.



Proof of Corollary 2. First remark that (6) can be rewritten as

07 = "2_31 af, (10g(Xn—it1,n) = 10g(Xn—k+1,n)) ZO‘ (loglog (n/i) —loglog (n/k)) ,
i=1
where
oZ, = logn/k) (loglog (n/i) — Cu)
= log(n/k) (log (1 + f::gg((%) . Tn)
— log(k/i)+ O (k;gg ((:))) ~log(n/k) T,
= log(k/i)—1+0 (ig;((:))) +0 <1°gk(k)) :
uniformly on i = 1,...,k with Lemma 2. Therefore, we have o, = W(i/k) + &, with

W(z) = —(log(z) +1) and €;,,, = O(log®(k)/ log(n)) +O(log(k)/k), unlformly oni=1,...,k
Then, it is easy to check that W satisfies conditions (A.3) and (A.4) and that u(W) =1
and o2(W) = 2. [
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1— F(z) 0 b(z) p
Weibull exp(—(z/A)%) 1/a 0 o0
W(a, N)
Extended Weibull r(x) exp(—pz7) Ur| —&<r | 1
EW(r, 3,7) rER,
Gaussian m fzoo exp (* (t;;?Q) dt | 1/2 %10595 -1
N, ?)
Gamma % [t exp(—pt)dt 1 | (1-a)lez| —1
I'(3, o)
Benktander II 7L exp (—%xT) /T (1;27) IO§T -1
B(a, 1)
Logistic H_fm 1 - 1052 -1
L
Extreme Value 1 — exp(—exp(p — x)) 1 — -1

EVD(p)

11

Table 1: Some Weibull tail-distributions
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Figure 1: Comparison of estimates 6Z (solid line) and 62 (dashed line) for the I'(0.5,1)

distribution. In (a), the straight line is the true value of 6.
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(a) Mean as a function of k, (b) Mean square error as a function of k.

Figure 2: Comparison of estimates 67 (solid line) and 6 (dashed line) for the I'(1.5,1)

distribution. In (a), the straight line is the true value of 6.
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(a) Mean as a function of k, (b) Mean square error as a function of k.

Figure 3: Comparison of estimates 87 (solid line) and 0% (dashed line) for the N/(1.2,1)

distribution. In (a), the straight line is the true value of 6.
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(a) Mean as a function of k,, (b) Mean square error as a function of k.

Figure 4: Comparison of estimates 07 (solid line) and §% (dashed line) for the £ distribution.

In (a), the straight line is the true value of 6.
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(a) Mean as a function of k, (b) Mean square error as a function of k.

Figure 5: Comparison of estimates 67 (solid line) and 62 (dashed line) for the W(2.5,2.5)

distribution. In (a), the straight line is the true value of 6.
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(a) Mean as a function of k, (b) Mean square error as a function of k.

Figure 6: Comparison of estimates 67 (solid line) and 62 (dashed line) for the W(0.4,0.4)

distribution. In (a), the straight line is the true value of 6.
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