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Abstract

We present a new family of estimators of the Weibull tail-coefficient. The Weibull

tail-coefficient is defined as the regular variation coefficient of the inverse failure rate

function. Our estimators are based on a linear combination of log-spacings of the upper

order statistics. Their asymptotic normality is established and illustrated for two par-

ticular cases of estimators in this family. Their finite sample performances are presented

on a simulation study.
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1 Introduction

Weibull tail-distributions encompass a variety of light tailed distributions, i.e. distributions

in the Gumbel maximum domain of attraction, see [13] for further details. Weibull tail-

distributions include for instance Weibulls, Gaussians, gammas and logistic. The purpose of

this paper is to study the estimation of a tail parameter associated with these distributions.

More precisely, a cumulative distribution function F has a Weibull tail if its logarithmic tail

satisfies the following property: There exists θ > 0 such that for all λ > 0,

lim
t→∞

log(1 − F (λt))

log(1 − F (t))
= λ1/θ. (1)

The parameter of interest θ is called the Weibull tail-coefficient. Such distributions are

of great use to model large claims in non-life insurance [5]. In the particular case where

log(1 − F (λt))/log(1 − F (t)) = λ1/θ for all t > 0 and λ > 0, estimating θ reduces to esti-

mating the shape parameter of a Weibull distribution. In this context, simple and efficient

methods exist, see for instance [2], Chapter 4 for a review on this topic. Otherwise, dedi-

cated estimation methods have been proposed since the relevant information on the Weibull

tail-coefficient is only contained in the extreme upper part of the sample. A first direction

was investigated in [7] where an estimator based on the record values is proposed. Another

family of approaches [4, 6, 9, 11, 15, 16, 18] consists of using the kn upper order statistics

where (kn) is an intermediate sequence of integers i.e. such that

lim
n→∞

kn = ∞ and lim
n→∞

kn/n = 0. (2)

Note that, since θ is defined only by an asymptotic behavior of the tail, the estimator should

use the only extreme-values of the sample and thus the second part of (2) is required. The

estimators considered here belong to this approach. Let (Xi)1≤i≤n be a sequence of indepen-

dent and identically distributed random variables with cumulative distribution function F .

Denoting by X1,n ≤ . . . ≤ Xn,n the corresponding order statistics, our family of estimators is

θ̂n(α) =

kn−1
∑

i=1

αi,n(log(Xn−i+1,n) − log(Xn−kn+1,n))

/

kn−1
∑

i=1

αi,n(log log (n/i) − log log (n/kn))

(3)

with weights αi,n = W (i/kn)+εi,n defined from W a smooth score function and (εi,n)1≤i≤kn−1

a non-random sequence. We refer to [10, 25] for similar works in the context of the estimation

of the extreme-value index.

In Section 2 we state the asymptotic normality of these estimators. In Section 3, we

provide two examples of weights. The first one leads to the estimator of θ proposed by

Beirlant et al. [6]. The second one gives rise to a new estimator for Weibull tail-distributions.

The behavior of these two estimators is investigated on finite sample situations. Finally,

proofs are given in Section 4.
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2 Asymptotic normality

Consider the failure rate H = − log(1 − F ). Writing H← its generalized inverse H←(t) =

inf{x, H(x) ≥ t}, assumption (1) is equivalent to:

(A.1) H←(t) = tθℓ(t),

where ℓ is a slowly varying function i.e. such that ℓ(λt)/ℓ(t) → 1 as t → ∞ for all λ > 0.

The inverse failure rate function H← is said to be regularly varying at infinity with index θ

and this property is denoted by H← ∈ Rθ. We refer to [8] for more information on regular

variation theory. As a comparison, Pareto type distributions satisfy (1/(1 − F ))← ∈ Rγ ,

and γ > 0 is the so-called extreme-value index. As often in extreme-value theory, (A.1) is

not sufficient to prove a central limit theorem for θ̂n(α). It needs to be strengthened with a

second order condition on ℓ, namely that there exist ρ ≤ 0 and a function b with limit 0 at

infinity such that

(A.2) log (ℓ(λt)/ℓ(t)) ∼ b(t)
∫ λ

1
uρ−1du,

uniformly locally on λ > 1 and as t → ∞. The second order parameter ρ ≤ 0 tunes the rate of

convergence of ℓ(λt)/ℓ(t) to 1. The closer ρ is to 0, the slower is the convergence. Condition

(A.2) is the cornerstone in all proofs of asymptotic normality for extreme-value estimators.

It is used in [20, 19, 3] to prove the asymptotic normality of estimators of the extreme-

value index γ. Table 1 shows that many distributions satisfy (A.1) and (A.2). Among

them, Extended Weibull distributions, introduced in [21], encompass gamma, Gaussian and

Benktander II distributions. We refer to [12], Table 3.4.4, for the derivation of b(x) and ρ in

each case. Other examples are the Weibull, logistic and extreme-value (with shape parameter

γ = 0) distributions.

Throughout the paper, we write Id for the identity function. In particular, if f is a

function and p a real number, the inequality f ≤ Idp means f(t) ≤ tp for any p where it is

defined. For general L-estimators, conditions on the weights are required to obtain a central

limit theorem (see for instance [23]). Our assumptions are the following:

(A.3) W is defined and continuously differentiable on the open unit interval,

(A.4) There exist M > 0, 0 ≤ q < 1/2 and p < 1 such that |W | ≤ M Id−q and |W ′| ≤

M Id−p−q on the open unit interval.

Similar conditions have been introduced in the context of the estimation of the extreme-value

index [10, 25]. To write the limiting variance of θ̂n(α), we introduce two quantities:

µ(W ) =

∫ 1

0

W (x) log(1/x)dx,

σ2(W ) =

∫ 1

0

∫ 1

0

W (x)W (y)
min(x, y) − xy

xy
dxdy.
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We also define ‖ε‖n,∞ = max
i=1,...,kn−1

|εi,n|. We are now in position to state our main result.

Its proof is postponed to Section 4.

Theorem 1 Suppose (A.1)–(A.4) hold. If (kn) is any intermediate sequence such that

k1/2
n b(log(n)) → λ and k1/2

n max{1/ log(n), ‖ε‖n,∞} → 0, (4)

then

k1/2
n (θ̂n(α) − θ)

d
→ N (λ, θ2σ2(W )/µ2(W )).

Clearly, the bias of the estimator is driven by the function b. This bias term asymptotically

vanishes if λ = 0. Some applications of this result are given in the next section, Corollary 1

and Corollary 2. The importance of the bias term is also illustrated on finite sample situations.

Finally, note that condition (4) implies kn/n → 0.

3 Comparison of two estimators

First, we show in Paragraph 3.1, that our family of estimators (3) encompasses the Hill type

estimator θ̂H
n proposed in [6]. Moreover, it will appear in Corollary 1 that the asymptotic

normality of θ̂H
n stated in [18], Theorem 2 is a consequence of our main result Theorem 1.

Second, in Paragraph 3.2, we use our framework to exhibit a new estimator of the Weibull tail-

coefficient and to establish its asymptotic normality in Corollary 2. In the third paragraph,

we show that the new estimator performs as well as the Hill one.

3.1 Hill type estimator

Beirlant et al. [18] propose the following estimator of the Weibull tail-coefficient:

θ̂H
n =

kn−1
∑

i=1

(log(Xn−i+1,n) − log(Xn−kn+1,n))

/

kn−1
∑

i=1

(log log (n/i) − log log (n/kn)) . (5)

Clearly, θ̂H
n is a particular case of θ̂n(α) with W (x) = 1 for all x ∈ [0, 1] and εi,n = 0 for

all i = 1, . . . , kn. The asymptotic normality of θ̂H
n , established in Theorem 2 of [18], can be

obtained as a consequence of Theorem 1:

Corollary 1 Suppose (A.1) and (A.2) hold. If (kn) is an intermediate sequence such that

k
1/2
n max{b(log(n)), 1/ log(n)} → 0, then k

1/2
n (θ̂H

n − θ)
d
→ N (0, θ2).

3.2 Zipf estimator

We propose a new estimator of the Weibull tail-coefficient based on a quantile plot adapted to

our situation. It consists of drawing the pairs (log log (n/i) , log (Xn−i+1,n)) for i = 1, . . . , n−1.

The resulting graph should be approximatively linear (with slope θ), at least for the large
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values of i. Thus, we introduce θ̂Z
n the least square estimator of θ based on the kn largest

observations:

θ̂Z
n =

kn−1
∑

i=1

(log log (n/i) − ζn) log(Xn−i+1,n)

/

kn−1
∑

i=1

(log log (n/i) − ζn) log log (n/i) , (6)

where

ζn =
1

kn − 1

kn−1
∑

i=1

log log (n/i) .

This estimator is similar to the Zipf estimator for the extreme-value index proposed by Kratz

and Resnick [22] and Schultze and Steinebach [24]. We prove in Section 4 that θ̂Z
n belongs to

family (3) and thus apply Theorem 1 to obtain its asymptotic normality:

Corollary 2 Suppose (A.1) and (A.2) hold. If (kn) is an intermediate sequence such that

k
1/2
n max{b(log(n)), log2(kn)/ log(n)} → 0, then k

1/2
n (θ̂Z

n − θ)
d
→ N (0, 2θ2).

3.3 Numerical experiments

The finite sample performance of the estimators θ̂Z
n and θ̂H

n are investigated on 6 different

distributions: Γ(0.5, 1), Γ(1.5, 1), N (1.2, 1), L, W(2.5, 2.5) and W(0.4, 0.4), see Table 1 for

their parameterizations.

We limit ourselves to these two estimators, since it is shown in [18] that θ̂H
n gives better

results than the other approaches [9, 4]. In each case, N = 200 samples (Xn,i)i=1,...,N of

size n = 500 were simulated. On each sample (Xn,i), the estimates θ̂Z
n,i(kn) and θ̂H

n,i(kn) are

computed for kn = 2, . . . , 250. Finally, the Hill-type plots are built by drawing the points
(

kn,
1

N

N
∑

i=1

θ̂Z
n,i(kn)

)

and

(

kn,
1

N

N
∑

i=1

θ̂H
n,i(kn)

)

.

We also present the associated MSE (mean square error) plots obtained by plotting the points
(

kn,
1

N

N
∑

i=1

(

θ̂Z
n,i(kn) − θ

)2
)

and

(

kn,
1

N

N
∑

i=1

(

θ̂H
n,i(kn) − θ

)2
)

.

The results are presented on figures 1–6. It appears that for both estimates the sign of the

bias is driven by the function b in (A.2). In all plots, θ̂Z
n appears to vary more smoothly

in terms of kn than θ̂H
n , a feature which we find appealing. The results obtained with the

two estimators are very similar on Weibull distributions (figure 5 and figure 6), especially in

terms of mean square error. In other cases, i.e gamma, Gaussian and logistic distributions

(figures 1–4), θ̂Z
n gives better results in terms of bias and mean square error.

4 Proofs

Throughout this section, we assume that (kn) is an intermediate sequence and, for the sake

of simplicity, we note k for kn. Let us also introduce Kρ(λ) =
∫ λ

1
uρ−1du for λ ≥ 1 and
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J(x) = W (1 − x) for x ∈ (0, 1). The following notations will prove useful: En−k+1,n is

the (n− k + 1)th order statistics associated to n independent standard exponential variables

and (Fi,k−1)1≤i≤k−1 are order statistics, independent from En−k+1,n, generated by k − 1

independent standard exponential variables. The next lemma presents an expansion of θ̂n(α).

Lemma 1 Under (A.1) and (A.2), θ̂n(α) has the same distribution as

θT
(2,0)
n + (1 + oP (1))b(En−k+1,n)T

(2,ρ)
n

T
(1)
n

,

where we have defined

T (1)
n =

1

k − 1

k−1
∑

i=1

αi,n(log log (n/i) − log log (n/k)) and

T (2,ρ)
n =

1

k − 1

k−1
∑

i=1

αk−i,nKρ

(

1 +
Fi,k−1

En−k+1,n

)

, ρ ≤ 0.

Proof : Using the quantile transform, the order statistics (Xi,n)1≤i≤n have the same distri-

bution as (H←(Ei,n))1≤i≤n. Thus, (A.2) yields that the numerator of θ̂n(α) in (3) has the

same distribution as

θ
1

k − 1

k−1
∑

i=1

αi,n log

(

En−i+1,n

En−k+1,n

)

+ (1 + oP (1))b(En−k+1,n)
1

k − 1

k−1
∑

i=1

αi,nKρ

(

En−i+1,n

En−k+1,n

)

.

The Rényi representation asserts that (En−i+1,n/En−k+1,n)1≤i≤k−1 has the same distribution

as (1 + Fk−i,k−1/En−k+1,n)1≤i≤k−1, see [1], p. 72. Therefore, the numerator of θ̂n(α) has the

same distribution as

θ
1

k − 1

k−1
∑

i=1

αi,n log

(

1 +
Fk−i,k−1

En−k+1,n

)

+ (1 + oP (1))b(En−k+1,n)
1

k − 1

k−1
∑

i=1

αi,nKρ

(

1 +
Fk−i,k−1

En−k+1,n

)

.

Changing i to k − i in the above formula and remarking that K0 is the logarithm function

conclude the proof.

The following lemma provides an expansion of

τn =
1

k − 1

k−1
∑

i=1

(log log (n/i) − log log (n/k)),

which frequently appears in the proofs.

Lemma 2 The following expansion holds:

τn =
1

log(n/k)

{

1 + O

(

log(k)

k

)

+ O

(

1

log(n/k)

)}

.
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Proof : We write τn as the sum

1

log(n/k)

1

k − 1

k−1
∑

i=1

log(k/i) +
1

k − 1

k−1
∑

i=1

{

log

(

1 +
log(k/i)

log(n/k)

)

−
log(k/i)

log(n/k)

}

.

Since

1

k − 1

k−1
∑

i=1

log(i/k) =
1

k − 1
log

(

k!

kk

)

,

Stirling’s formula shows that the first term is

1

log(n/k)

(

1 + O

(

log(k)

2k

))

.

The inequality −x2/2 ≤ log(1 + x) − x ≤ 0, valid for nonnegative x shows that the second

term is of order at most

1

log2(n/k)

1

k − 1

k−1
∑

i=1

log2(i/k) = O

(

1

log2(n/k)

)

,

since the above Riemann sum converges to 2 as k → ∞. The result follows.

The next lemmas are dedicated to the study of the different terms appearing in Lemma 1.

First, we focus on the non-random term T
(1)
n .

Lemma 3 Under (A.1)–(A.4), the following expansion hold:

T (1)
n =

µ(W )

log(n/k)

{

1 + O
(

log(k)kq−1
)

+ O

(

1

log (n/k)

)

+ O (‖ε‖n,∞)

}

.

Proof : Clearly, T
(1)
n can be rewritten as the sum

1

k − 1

k−1
∑

i=1

εi,n log

(

1 +
log(k/i)

log(n/k)

)

+
1

k − 1

k−1
∑

i=1

W (i/k) log

(

1 +
log(k/i)

log(n/k)

)

.

The absolute value of the first term is less than ‖ε‖n,∞τn which is O(‖ε‖n,∞/log(n/k)), by

Lemma 2. The second term can be expanded as

1

log(n/k)

1

k − 1

k−1
∑

i=1

W (i/k) log(k/i) +
1

k − 1

k−1
∑

i=1

W (i/k)

{

log

(

1 +
log(k/i)

log(n/k)

)

−
log(k/i)

log(n/k)

}

=:
T

(1,1)
n

log(n/k)
+ T (1,2)

n .

For x ∈ (0, 1), define H(x) = W (x) log(1/x). The Riemann sum T
(1,1)
n can be compared to

µ(W ) by:

|T (1,1)
n − µ(W )| ≤

1

2k2

k−1
∑

i=1

sup
i/k≤x≤(i+1)/k

|H ′(x)| +

∫ 1/k

0

|H(x)|dx + O(1/k). (7)

Assumption (A.4) implies that there exists a positive M ′ such that |H ′| ≤ M ′Id−q−1 on the

open unit interval, and thus the first term of (7) is bounded above by

M ′

2k

(

∫ 1

1/k

t−q−1dt + kq

)

=







O
(

kq−1
)

if q 6= 0,

O
(

k−1 log(k)
)

otherwise.
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Assumption (A.4) also yields |H| ≤ M Id−q log(1/x) on the open unit interval and thus the

second term in (7) is O
(

kq−1 log(k)
)

. It follows that

T (1,1)
n = µ(W ) + O(kq−1 log(k)). (8)

Besides, the well-known inequality | log(1+x)−x| ≤ x2/2, valid for all nonnegative x together

with (A.4) show that |T
(1,2)
n | is bounded by

|T (1,2)
n | ≤

M

2 log2(n/k)

1

k − 1

k−1
∑

i=1

(i/k)−q log2(k/i) = O

(

1

log2(n/k)

)

, (9)

since the above Riemann sum converges to a finite integral. Collecting (8) and (9) gives the

result.

Second, we focus on the random term T
(2,ρ)
n .

Lemma 4 Let ξ be standard Gaussian random variable. Under (A.1)–(A.4), the following

expansion hold for all non-positive ρ:

T (2,ρ)
n

d
=

µ(W )

En−k+1,n

{

1 +
σ(W )

µ(W )
k−1/2ξ(1 + oP (1)) + OP

(

1

log (n/k)

)

+ OP (‖ε‖n,∞)

}

.

Proof : Note that T
(2,ρ)
n can be written as the sum

1

k − 1

k−1
∑

i=1

εk−i,nKρ

(

1 +
Fi,k−1

En−k+1,n

)

+
1

k − 1

k−1
∑

i=1

J(i/k)Kρ

(

1 +
Fi,k−1

En−k+1,n

)

. (10)

Since 0 ≤ Kρ(1+x) ≤ x for all nonnegative x, the absolute value of the first term is bounded

by

‖ε‖n,∞
1

k − 1

k−1
∑

i=1

Kρ

(

1 +
Fi,k−1

En−k+1,n

)

≤ ‖ε‖n,∞
1

k − 1

k−1
∑

i=1

Fi,k−1

En−k+1,n
,

which has the same distribution as

‖ε‖n,∞

En−k+1,n

1

k − 1

k−1
∑

i=1

Fi =
1

En−k+1,n
OP (‖ε‖n,∞) ,

from the law of large numbers. The second term of (10) can be expanded as

1

En−k+1,n

1

k − 1

k−1
∑

i=1

J(i/k)Fi,k−1 +
1

k − 1

k−1
∑

i=1

J(i/k)

{

Kρ

(

1 +
Fi,k−1

En−k+1,n

)

−
Fi,k−1

En−k+1,n

}

=:
T

(2,ρ,1)
n

En−k+1,n
+ T (2,ρ,2)

n .

Now, (A.3) and (A.4) imply that the L-statistics T
(2,ρ,1)
n satisfies the conditions of [23] and

thus is asymptotically Gaussian. More precisely, we have

T (2,ρ,1)
n

d
= µ(W ) + σ(W )k−1/2ξ(1 + oP (1)). (11)
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The upper bound on T
(2,ρ,2)
n is obtained by remarking that |Kρ(1 + x)− x| ≤ (1− ρ)x2/2 for

all nonnegative x. It follows that T
(2,ρ,2)
n is bounded above by

1

k − 1

k−1
∑

i=1

|J(i/k)|

∣

∣

∣

∣

Kρ

(

1 +
Fi,k−1

En−k+1,n

)

−
Fi,k−1

En−k+1,n

∣

∣

∣

∣

≤
1 − ρ

2E2
n−k+1,n

1

k − 1

k−1
∑

i=1

|J(i/k)|F 2
i,k−1.

Now, En−k+1,n is equivalent to log (n/k) in probability and

1

k − 1

k−1
∑

i=1

|J(i/k)|F 2
i,k−1 = OP (1),

from the results of [23] on L-statistics. Thus

T (2,ρ,2)
n =

1

En−k+1,n
OP

(

1

log (n/k)

)

, (12)

and then collecting (11) and (12), the second term of (10) is

1

En−k+1,n

(

µ(W ) + σ(W )k−1/2ξ(1 + oP (1)) + OP

(

1

log (n/k)

))

,

and the result follows.

We are now in position to prove Theorem 1 and Corollary 2.

Proof of Theorem 1. From Lemma 1, k1/2(θ̂n(α) − θ) has the same distribution as

θk1/2

(

T
(2,0)
n

T
(1)
n

− 1

)

+ k1/2b(En−k+1,n)
T

(2,ρ)
n

T
(1)
n

(1 + oP (1)).

Now, En−k+1,n is equivalent to log(n/k) in probability which is also equivalent to log(n),

see Lemma 5.1 in [15]. Since |b| is regularly varying (see [17]), b(En−k+1,n) is equivalent to

b(log(n)) in probability. As a consequence, k1/2(θ̂n(α) − θ) has the same distribution as

θk1/2

(

T
(2,0)
n

T
(1)
n

− 1

)

+ k1/2b(log(n))
T

(2,ρ)
n

T
(1)
n

(1 + oP (1)). (13)

Let us consider the first term of this sum. Lemma 3, Lemma 4 and condition (4) entail that,

for all non-positive ρ, the ratio T
(2,ρ)
n /T

(1)
n has the same distribution as

log(n/k)

En−k+1,n

{

1 +
σ(W )

µ(W )
k−1/2ξ(1 + oP (1))

}

.

Now, Lemma 1 in [18] asserts a central limit theorem for order statistics of an exponential

sample, and thus
log(n/k)

En−k+1,n

d
= 1 + OP

(

k−1/2

log(n)

)

.

Consequently, the first term of (13) converges in distribution to N (0, θ2σ2(W )/µ2(W )). We

also have that the second term of (13) converges to λ in probability and the result is proved.
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Proof of Corollary 2. First remark that (6) can be rewritten as

θ̂Z
n =

k−1
∑

i=1

αZ
i,n(log(Xn−i+1,n) − log(Xn−k+1,n))

/

k−1
∑

i=1

αZ
i,n(log log (n/i) − log log (n/k)) ,

where

αZ
i,n = log(n/k) (log log (n/i) − ζn)

= log(n/k)

(

log

(

1 +
log(k/i)

log(n/k)

)

− τn

)

= log(k/i) + O

(

log2(k)

log(n)

)

− log(n/k)τn,

= log(k/i) − 1 + O

(

log2(k)

log(n)

)

+ O

(

log(k)

k

)

,

uniformly on i = 1, . . . , k with Lemma 2. Therefore, we have αZ
i,n = W (i/k) + εi,n with

W (x) = −(log(x)+1) and εi,n = O(log2(k)/ log(n))+O(log(k)/k), uniformly on i = 1, . . . , k.

Then, it is easy to check that W satisfies conditions (A.3) and (A.4) and that µ(W ) = 1

and σ2(W ) = 2.
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1 − F (x) θ b(x) ρ

Weibull exp(−(x/λ)α) 1/α 0 −∞

W(α, λ)

Extended Weibull r(x) exp(−βxτ ) 1/τ − γ
τ2

log x
x −1

EW (τ, β, γ) r ∈ Rγ

Gaussian 1
(2πσ2)1/2

∫ ∞

x
exp

(

− (t−µ)2

2σ2

)

dt 1/2 1
4

log x
x −1

N (µ, σ2)

Gamma βα

Γ(α)

∫ ∞

x
tα−1 exp(−βt)dt 1 (1 − α) log x

x −1

Γ(β, α)

Benktander II xτ−1 exp
(

−α
τ xτ

)

1/τ (1−τ)
τ2

log x
x −1

B(α, τ)

Logistic 2
1+exp x 1 − log 2

x −1

L

Extreme Value 1 − exp(− exp(µ − x)) 1 −µ
x −1

EV D(µ)

Table 1: Some Weibull tail-distributions
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(b) Mean square error as a function of kn.

Figure 1: Comparison of estimates θ̂Z
n (solid line) and θ̂H

n (dashed line) for the Γ(0.5, 1)

distribution. In (a), the straight line is the true value of θ.
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(b) Mean square error as a function of kn.

Figure 2: Comparison of estimates θ̂Z
n (solid line) and θ̂H

n (dashed line) for the Γ(1.5, 1)

distribution. In (a), the straight line is the true value of θ.
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(b) Mean square error as a function of kn.

Figure 3: Comparison of estimates θ̂Z
n (solid line) and θ̂H

n (dashed line) for the N (1.2, 1)

distribution. In (a), the straight line is the true value of θ.
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(b) Mean square error as a function of kn.

Figure 4: Comparison of estimates θ̂Z
n (solid line) and θ̂H

n (dashed line) for the L distribution.

In (a), the straight line is the true value of θ.
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(b) Mean square error as a function of kn.

Figure 5: Comparison of estimates θ̂Z
n (solid line) and θ̂H

n (dashed line) for the W(2.5, 2.5)

distribution. In (a), the straight line is the true value of θ.
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Figure 6: Comparison of estimates θ̂Z
n (solid line) and θ̂H

n (dashed line) for the W(0.4, 0.4)

distribution. In (a), the straight line is the true value of θ.
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