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Modelling by homogenization of the long term rock dissolution and 
geomechanical effects 
 
Jolanta Lewandowska 
University of Montpellier 2, Laboratory of Mechanics and Civil Engineering LMGC 
 
 
1. Introduction 
 
 
The geological storage of CO2 coming from large industrial facilities has been studied in 
detail for the last several years as a solution against the greenhouse effect and climate change 
in a number of countries. It is considered as a complementary solution together with the 
research for the non pollutant or/and renewable energy sources. One of the available options 
is the injection of the supercritical CO2 in the saline aquifers. The idea of geological storage 
resides in various mechanisms of trapping coming into play progressively over time. In the 
short term the migration of CO2 is principally blocked by the impervious rock lying on the top 
of the aquifer. As time goes on, other mechanisms appear, in particular of geochemical nature, 
like the dissolution of CO2 in pore water, and finally the chemical reactions resulting in 
dissolution and /or precipitation of rock minerals. These reactions can generate important and 
irreversible modifications of the hydrodynamical as well as geomechanical properties of the 
reservoir.  
 
The long-term safety of the CO2 storage sites requires the understanding of the 
physicochemical processes related to the injection of the CO2 in the geological medium and 
their consequences, especially for the stability of the reservoir. These processes are still not 
completely known, in particular because of the complexity of natural systems, those are very 
often heterogeneous and multiscale, and also because of multiphysical couplings engendered 
by the CO2 injection.  
 
The experimental studies of CO2 injection into rock samples, conducted in the laboratory 
conditions, show different behaviour depending on the injection rate, the composition of the 
injected fluids and the nature of the rock (e.g. [LUQ 09, GOU 10, EGE 05, IZG 08]) The 
investigations focused on the long term behaviour assume that the rock is saturated with an 
acidified aqueous CO2 solution, and homogeneous chemical alteration occurs. The results of 
experimental studies conducted in such conditions show global porosity increase 
homogeneously distributed over the sample length (e.g. [NGU 11, BER 09]). Moreover, it 
was observed that chemical alteration induces mechanical weakening of the rocks with a 
decrease of both stiffness and shear strength. The triaxial testing in drained conditions on the 
altered carbonate samples showed the decrease of the elastic bulk modulus and the shear 
modulus (e.g. [NGU 11, BER 09]). Although this behaviour has been reported in the 
literature, very few contributions concerning the modelling of long term geomechanical 
effects related to CO2 storage are proposed. Of special interest in this case are the 
micromechanical methods because they provide suitable mathematical framework, capable to 
produce multiscale and multiphysics models of high predictive capacity.  
 
2. Microstructure and modelling by homogenization. 
 
Let us assume that the microstructure of the porous rock is known, Figure 1. We consider a 
porous medium with two phases: solid skeleton and (saline) water saturating the pores. Both 
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phases are assumed to be connected. The water contains the dissolved CO2. The porous 
medium is periodic and the periodic volume is representative from the point of view of both 
the microstructure and the phenomena taking place at the microscopic scale. We assume that 
the conditions of scale separation are satisfied, which means that the size of the period (l) is 
very small with respect to the dimension of the aquifer (L). Mathematically, this condition is 
written in the form:  
 

1<<=ε
L

�
              [1] 

 
where ε is the small parameter of homogenization.  
 

 

 
 

Figure 1. The porous aquifer with the microstructure 
 
The following phenomena will be taken into account: 
 

- The water flow through the pores (named hydraulic “H-problem”) 
- The solid deformation (named mechanical “M-problem”) 
- The transport of dissolved CO2 (named transport “T-problem”) 
- The chemical dissolution of solid (named chemical “C-problem”) 
 

The aim of the analysis is to develop of a macroscopic model of the behaviour of the system 
by using the method of homogenization of periodic structures ([SAN 80, BEN 78]). The 
analysis will be presented in two stages. In the first stage (section 3) the homogenization of 
the problem of water flow, solid deformation and CO2 transport (the “H-M-T problem”), will 
be analysed. We will use the principal results of homogenization of the “H-M problem” and 
the “T problem” that were previously analyzed as uncoupled problems ([AUR 77, AUR 96]). 
In the second stage (section 4), the chemo-mechanical coupling will be considered (the “C-M 
problem”). At this stage it will be assumed that the whole aquifer is subjected to 
homogeneous solid dissolution caused by chemical reaction between solid components and 
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acid pore water.  We will focus on the modification of the microstructure of the porous 
aquifer and progressive decrease of the mechanical parameters. In section 5 numerical 
computations of the chemo-mechanical coupling and the chemical degradation of the rock 
mechanical parameters will be presented.  
 
 
3. Homogenization of the H-M-T problem 
 
In order to model the coupled H-M-T behaviour at the macroscopic scale, the differential 
equations are firstly formulated at the microscopic (pore) scale. This formulation concerns: 
the equilibrium equation for stresses in the solid phase, the momentum equation for fluid 
flow, the mass balance equation of concentration of the dissolved CO2, and the appropriate 
interface conditions. Then, the classical homogenization process by using the asymptotic 
developments method ([SAN 80, BEN 78]), is carried out.  
 
3.1 Formulation of the problem at the microscopic scale 
 
The assumptions are as follows: 
 

• The porous medium is saturated by viscous incompressible fluid (eg. saline water) 
• The fluid is saturated by the dissolved CO2 
• The fluid flow is slow and laminar 
• The transport of the CO2 dissolved in fluid is governed by convection and diffusion 

mechanism  
• Small displacements and deformations of the solid 
• Linear elastic constitutive law for solid material 
• Quasi static deformation process 
 

The following set of differential equations can be written in the domain of the period (Fig. 2): 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The period of the porous medium 
 
 

 
 Stress equilibrium of the solid phase:  
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with )+(2/1= ,, kllkkl uue  

 
- Stress equilibrium and incompressibility condition of the fluid phase:  
 

F
j

Fij
in

X
Ω0=

䌖

䌖σ
             [4] 

FijjiFijFij invvp Ω)+(+ -= ,,µδσ           [5] 

F
i

i in
X

v
Ω0=

䌖

䌖

             [6] 

 
- Mass balance equation of the CO2 dissolved in the fluid phase:  
 

Fiij incv
X

c
D

Xt

c
Ω0=)+

䌖

䌖

-(
䌖

䌖

+
䌖

䌖

ji
                     [7] 

- Continuity conditions at the solid-fluid interface:  
 

ΓinNN jFijjSij 0= -σσ             [8] 

 
Γonvui 0= - i�              [9] 

 
- Zero-flux condition at the solid-fluid interface:  
 

ΓonN
X

c
D iij 0=)
䌖

䌖

-( 
j

             [10]                          

where : S

⇒⇒⇒⇒
is the stress tensor in the solid, F

⇒⇒⇒⇒
  is the stress tensor in the fluid, a is the 

microscopic rigidity tensor of the solid, e is the small deformation tensor in the solid, u is the 
displacement vector in the solid, p is the water pressure, Fµ is the viscosity of the fluid, c is 
the concentration of the CO2 dissolved in water, D  is the diffusion tensor of the CO2 in water, 
v is the water flow velocity, N is the unit normal outward vector. 
 
Before starting the homogenization, the description [2]–[10] has to be rewritten using the non-
dimensional variables. We adopt here the so called “microscopic point of view” [AUR 91] 
which means that the length scale used in the normalization will be the microscopic 
dimension l. For the physical (dimensional) space variable X two non-dimensional space 
variables are defined:  
 

L

X
x =  and 

�

X
y =   

 
The homogenization problem will be analyzed at two scales x and y simultaneously. 
 
The introduction of the non-dimensional variables is related with the evaluation of the order 
of magnitude of several quantities appearing in the microscopic model [2]–[10]. As a unit of 
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measure in this evaluation, the powers of the small parameter ε are used. The following 
estimations are supposed valid: 

- The Reynolds number is: )(==Re 1εµ
ρ

O
v

F
l

�
 where ρ is the volumetric density of 

the fluid. 
- The macroscopic gradient of water pressure is of the same order of magnitude as the 

microscopic viscous term: )/(=/ 2
�vOLp Fµ . 

- The local Péclet number is such that there is no dispersion: )(== 1εO
D

v
Pel

�
 

- The time scale ct  corresponds to the mass transport by diffusion at the macroscopic 

scale L, thus the associated non-dimensional number is )(== 2
2

εO
tD

P
c

l
�

 

- The displacements and stresses in solid and in fluid are of the same orders of 
magnitude: )(= FiSi uOu and )(= FijSij O σσ  

More details concerning the evaluations of the orders of magnitude can be found in ([AUR 
91], [AUR 77], [AUR 96]). Finally, the non-dimensional description takes the following 
form: 
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y
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D
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䌖

䌖

+
䌖

䌖

ji

2ε         [14] 

 
The interface conditions are rewritten in the non-dimensional form: 
 

ΓonNvvpea jijjiFij 0=))+(-+)(( ,,klijkl µεδu                                                   [15] 

Γonvui 0= - i�            [16] 

ΓonN
X

c
D iij 0=)
䌖

䌖

-( 
j

                                                                                            [17] 

 
The interface conditions [15]- [17] are completed by the periodicity conditions on the external 
boundaries of the period. 
 
Note that for convenience we keep the same notations for the non-dimensional variables in 
[11]-[17] as for the dimensional variables in [2]-[10]. Further, we introduce the relative 
velocity iii uvw �-= which is the velocity of the fluid with respect to the solid. Using the new 

definition of fluid velocity the problem can be rewritten in the form 
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where the boundary conditions are: 
 

ΓonNwwpea jijjiFij 0=))+(-+)(( ,,klijkl µεδu      [22] 

Γonw 0=i            [23] 

ΓonN
X

c
D iij 0=)
䌖

䌖

-( 
j

         [24] 

and the periodicity conditions of all unknowns holds. 
 
 
3.2 Asymptotic developments method. 
 
In the homogenization process the unknowns (i.e. solid displacement, fluid velocity and fluid 
pressure) are presented in the form of asymptotic developments (([SAN 80, BEN 78]). 
 

...+),,(+),,(+),,(=),,(
)2(2)1()0(

tutututu iiii yxyxyxyx εε    [25] 

...+),,(+),,(+),,(=),,(
)2(2)1()0(

tptptptp yxyxyxyx εε    [26] 

...+),,(+),,(+),,(=),,(
)2(2)1()0(

twtwtwtw iiii yxyxyxyx εε    [27] 

 
Each term in the asymptotic development is assumed periodic which means that it takes the 
same values in the corresponding points at the opposite walls of the period. Because of the 
existence of two separate scales the derivation operator in [18]-[24] is transformed 

into
xyy 䌖

䌖

+
䌖

䌖

䊻
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y
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In the process of homogenization the asymptotic developments [25]-[27] are introduced in the 
microscopic description [18]-[24], while simultaneously applying the two scale derivation 
operator. After identification of all terms staying by the same powers of ε , we obtain a series 
of successive order problems to be solved in the period. Typically, the first problem gives the 
solution for the term of the order zero (for example in case of displacement: the form of 

),,(
)0(

tyxu ). From the second problem we obtain the solution for the term of the order one 
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(for example in case of displacement: the form of ),,(
)1(

tyxu ) that means the first corrector. 

Finally, the third problem is subjected to volume averaging in order to obtain the macroscopic 
description (model).  
 
In section 3.3 the solutions of the homogenization process are presented. For more details 
concerning the homogenization of the problem [18]-[20] with the conditions [22]-[23] (see 
[AUR 77]). For the problem [21] and [24], see [AUR 96]. 
 
3.3 Solutions 
 
3.3.1 The zero-order solutions 
 

The analysis starts with the solution for the leading order of the main variables: )0(p , 
)0(u and 

)0(
c . 

The first problem is for pressure )0(p and comes from [19]: 
 

F
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p
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䌖

)0(

           [28] 

where )0(p is periodic. The solution to this problem is ),(=),,(
)0()0(

tptp xyx . 

 

The second problem defines the displacement )0(u and comes from [18] and [22]: 
 

S
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j
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where 
)0(u is periodic. The solution is ),(=),,(

)0()0(
tutu xyx . 

The third problem is for 
)0(

c and is given by [21] and [24] 

Fij in
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䌖
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          [31] 

ΓonN
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c
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䌖

䌖

-( 
j
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          [32] 

where 
)0(

c is periodic. The solution is ),(=),,(
)0()0(

tctc xyx .  

We can see that for each physical phenomenon we defined a macroscopic variable which does 
not depend on the microscopic space variable y. 
 
The analysis is continued at the next order for the problem [19], [20] and [23], to obtain a 

solution for the relative flow velocity ),(
)0(

yxw : 
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where )1(p and 
)0(

iw are periodic. The solution to the problem [33]-[35] is  

j
i x

p
w

䌖

䌖

k -=
)0(

ij
)0(

           [36] 

If we substitute 
)0(

iw according to iii uvw �-= , and calculate the volume average of the 

relative velocity, we obtain the Darcy law in the form ([AUR 77]) 
 

j
iii x

p
Kunvw
䌖

䌖

 -=-><=><
)0(

ij
)0()0(

�         [37] 

where ><= ijkK ij is the macroscopic permeability tensor. It can be computed from the 

local boundary value problem that arises, after injection of [36] into [33]- [35] ([AUR 05, 
AUR 77 ]). 
 
3.3.2 The first-order solutions 
 

The next problem concerning the solid behaviour comes from [18] and [22] and defines 
)1(

iu  

S
)(

xkl
)(

yklijkl
j

ineea
y

Ω0=)))(+)(((
䌖

䌖 01 uu      [38] 

ΓonNpNeea ij
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xkl
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ykl
)0(01
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where 
)1(

iu is periodic. The solution is a linear function as follows 
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xkl
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ii xu ηξ        [40] 

 

where ),(
)1(

tui x is an arbitrary vector. The characteristic (microscopic) functions � and �  are 

a third order tensor and a vector, respectively. They can be computed from the local boundary 
problem if we inject [40] into [38] and [39] ([AUR 77, ENE 84]). 
 

The next order approximation of the concentration,
)1(

c is the solution of a problem obtained 

from [21] and [24]: 
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where )1(c is periodic. In [41]- [42] we took into account that ),(
)0(

tc x . The solution is a 

linear function of the macroscopic gradient of concentration 

),(+
䌖

䌖

= )1(
)0(

)1(
tc

x

c
c

i
i xζ           [43] 

where ),()1( tc x  is an arbitrary function. The characteristic vectorial function � can be 
calculated, if we introduce the solution [43] into the problem [41]-[42]. For details see [AUR 
96]. 
 
3.3.3 The macroscopic equations 
 
From [18], [19] and [22] at the next order we obtain the following set of equations  
 

S
jj

in
xy

Ω0=
䌖

䌖

+
䌖

䌖

(0)
Sij

(1)
Sij σσ

          [44] 

F
ij

in
x

p

y
Ω0=

䌖

䌖

-
䌖

䌖

(0)(1)
Fijσ

          [45] 

ΓonNN jj
(1)
Fij

(1)
Sij = σσ           [46] 

 
with the periodicity conditions.  

In order to obtain the macroscopic equations, equations [44] and [45] are integrated over the 

respective domains, and summed. Then, the boundary condition [46] is applied, that leads to 

the elimination of the derivatives with respect to the microscopic variable y. Finally, the 

macroscopic equilibrium equation is get [AUR 77] 

 0=>
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where 
T(0)⇒⇒⇒⇒

is the total stress tensor that is written as 
(0)
S

⇒⇒⇒⇒
and 

(0)
F

⇒⇒⇒⇒
within the respective 

domains SΩ and FΩ . After several transformations consisting mainly in the introduction of 

the solution for 
)1(

iu in the expression for stresses in the solid domain we can write the total 

stress tensor in the form [AUR 77]  

)0(
ij

)0(T(0)
ij -)(= pueC xklijkl ασ          [48] 

where  

)(= )0((0)
Sij ueC xklijklσ            [49] 
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and the macroscopic elasticity tensors ijklC and ijα mean the rigidity tensor and the hydro-

mechanical coupling elasticity tensor, respectively [AUR 77] 

>)(<= +
kl

ymnijmnijklijkl eaaC �          [50] 

>)(<+= ηα ymnijmnijij eaIn          [51] 

Both tensors can be computed for a given microstructure of the period, after the solution of 

the local boundary problems for �  and η .  

The second macroscopic equation is obtained from equation [20]. At the order ε it gives 
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Next, equation [52] is integrated within the domainFΩ . We take into account the continuity 

of displacement onΓ , equation [23] and the previously obtained solution for 
)0(

u . Finally, 

the following macroscopic equation is get [AUR 77] 
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where� and β are two new coupling tensor and vector that are defined as follows: 
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It can be shown that �=�   [AUR 77] 

Concerning the transport of the dissolved CO2, from [21] and [24] we have  
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In order to obtain the macroscopic equation, eq. [56] is integrated over the volumeFΩ . 

Next, the interface condition [57], the periodicity, eq. [23] and the solution for )0(c , are 
applied. After introduction of the solution [43] the final form of the macroscopic diffusion-
convection equation is obtained ([AUR 96]) 
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where  the macroscopic diffusion tensor *
ijD is defined as 
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and ><
)0(

iw is the Darcy velocity. 

 
3.4 Summary of the macroscopic “H-M-T model“ 
 
Let us summarize the results of homogenization performed in the section 3. The macroscopic 
model of coupled fluid flow, CO2 transport and solid deformation (“H-M-T model”) is 
defined by a set of macroscopic equations:  [47]-[48], [53], [37] and [58]. The model shows 
two kinds of couplings that can be called:  the “weak” and the “strong” coupling. The “weak” 
coupling can be observed between the fluid flow and the CO2 transport, through the water 
velocity appearing in [58]. The “strong” coupling is the hydro-mechanical coupling that can 
be seen in [53] and [48].  
 
The advantage of modelling by homogenization is that it provides the definitions of the 
macroscopic parameters, like the rigidity tensor C (see [50]), the hydro-mechanical coupling 
tensor αααα ([51]) and the scalar β (see [55]), and the effective diffusion tensor D* ([59]). All 
these quantities can be calculated, if the microstructure of the porous aquifer is known, by 
using numerical methods. 
 
4. Homogenization of the C-M problem 
 
Let us now assume that the porous medium is subjected to homogeneous solid dissolution. 
Such situation corresponds to the long-term (slow) degradation mechanism. In this section we 
focus on the analysis of the chemo-mechanical coupling. We are interested in the progressive 
alteration of the mechanical parameters as a consequence of material dissolution.   
 
4.1 Formulation of the problem at the microscopic scale 
 
The following two microscopic problems for the non-dimensional variables are formulated in 
the period domain (Figure 3): 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The dissolution of the solid in the period 
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-    The mechanical “M-problem”: 
 

We recall the previously formulated mechanical problem, with )( yijkla  being now the 

microscopic rigidity tensor depending on the local space variable y 
 

SjSij in Ω0=,σ            [60] 

SklijklSij inea Ω)(= uσ           [61] 

)+(2/1= ,, kllkkl uue  

ΓonN jSij 0=σ            [62] 

 
- The chemical “C-problem”: 
 
The dissolution problem is governed by a single diffusion equation for the concentration 
in solid (solid fraction) Sc , with one characteristic parameter DS describing the rate of the 

process. Such assumption is an evident simplification of the complex chemical reactions 
taking place at the microscopic scale, and will be used as a first approach to the problem.  
We further introduce a local dissolution mechanism. This process starts at the interface 
Γ , and progresses towards the inside of the solid (Figure 3) 

 

Fintyc Ω0=),(S            [63] 

SSS incgraddiv
t

c
Ω)(=

䌖

䌖S D          [64] 

 
where the boundary and initial conditions are 
 

Γonc 0=S             [65] 

ΩΩ 䌖䌽䌖0=)( SSS oncgradDN          [66] 

Sintc Ω1=)0=(S  

 
where SD is the diffusion tensor related to the evolution of the solid dissolution. Note 

that we further assume that it is constant but the extension to the case )( SS cD is possible.  

The dissolution problem is time-dependent which makes the associated elasticity 
problem also time-dependent, through the dependence of the local rigidity tensor ijkla on the 

concentration in solid (Sc ). It is assumed that the constitutive relationship )( Sijkl ca  is 

known.  
 
4.2 Homogenization 
 
The homogenization process follows the classical scheme. It can be shown that the results 
obtained have similar form as those presented in section 3.3. In this case the macroscopic 
model is written: 
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0=>
䌖

䌖

<

(0)
Sij

jx

σ
         [67] 

where the macroscopic stress tensor is 
  

)(= )0((0)
Sij ueC xklijklσ         [68] 

 
The macroscopic tensor ijklC is the rigidity tensor that can be obtained from the iterative 

solution of the local boundary value problem. The local boundary value problem is the same 

as in the case presented in section 3.3.2. It should be noted that in the case considered in this 

section we have to solve the coupled chemo-mechanical problem for each time increment. 

The two local boundary value problems to be solved simultaneously are:  

 

- The mechanical “M-problem”: 
 

S
kl

ymnSijmnSijkl
j

inecaca
y

Ω0=))()(+)((
䌖

䌖

�      [69a] 

ΓonNecaca j
kl

ymnSijmnSijkl 0=))()((+)(( �      [69b] 

kl� is periodic          [69c] 
 

- The chemical “C-problem”: 
 

SS incgradDdiv
t

c
Ω)(=

䌖

䌖S         [70a] 

Γonc 0=S           [70b]

         
ΩΩ 䌖䌽䌖0=)( SS oncgradDN        [70c] 

Sintc Ω1=)0=(S          [70d] 

 

The unknown of the problem is the displacement vector ),,( kl
3

kl
2

kl
1

kl ����  which depends on 

the local space variable y and time t, )( ty,kl� . Remark that kl� is a particular periodic 

solution corresponding to the unit macroscopic strain tensor Ekl= ( ke ⊗ le  + le ⊗ ke )/2. where 

k, l = 1, 2, 3. The symbol ⊗  means the tensorial product between the unit vectors of the basis. 
This solution should also verify the zero volume average condition.  
 

Once kl� is known, the macroscopic rigidity tensor is defined as the volume average for each 
time increment as follows: 
 

>)()(+)(<= kl
ymnSijmnSijklijkl ecacaC �      [71] 
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Thus, the macroscopic tensor is time-dependent, )(tC . In section 5 we present an example of 
the numerical computations of this tensor for a particular microstructure of the porous 
medium.  
 
4.3 Summary of the macroscopic “C-M model“ 
 
The chemo-mechanical model related to the modification of the microstructure of the porous 
aquifer, is proposed. The model consists of the macroscopic equation of the mechanical 
equilibrium [67]-[68] that is coupled with the local model describing the chemical 
degradation of the mechanical parameters ([69]-[70]-[71]). The computations of the evolution 
of the mechanical parameters can be carried out, if the initial microstructure is given. 
 
It has to be pointed out that the presented model does not take into account the modification 
of the hydro-mechanical coupling parameters (as proposed in [LEW 12]). 
 
5. Numerical computations of the time degradation of the macroscopic rigidity tensor. 
 
5.1 Definition of the problem. 
 
Let us analyse the porous medium presenting three dimensional periodic microstructure, 
Figure 4. The period is a cube of the unit dimension. The three cylinders representing pores 
have the diameter 0.1. Both domains (fluid ΩF and solid ΩS) are connected. The aim is to 
calculate the macroscopic fourth order rigidity tensor 

CCCC
that can be converted into the second 

order tensor 
DDDD
(6×6) by using the classical conversion rules. The two coupled chemo-

mechanical problems (69)-(70) were solved using the commercial code Comsol Multiphysics. 
 
 
 
 
 
 
 
 
 
            
 
 
 
 
 
 
 

Figure 4. The microstructure considered in the numerical example 
 

Initially, the (intact) material is locally isotropic with two elasticity parameters: the Young 
modulus E=1 and the Poisson ratio ν=0.2. As a first approximation it is assumed that the local 
constitutive relationship )( Sijkl ca is such that the only parameter affected by the local 

variation of the volumetric fraction of the solid is the Young modulus. We used the formula of 

SΩ

FΩ

Γ

SΩ

FΩ

Γ
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Hashin and Shtrikman (1963) for the upper bound of the effective Young modulus of a porous 
material [ROB 02] : 
 

)-1(+1
=

S

S

S cS

c

E

E
           [62] 

 
where S is given as a function of the Poisson ratio Sν by the following formula 

 

)5-7(×2

)15-13(×)+1(
=

S

SSS ν
νν

          [63] 

 
and Sc is the solid fraction. In the example the tensor SD is assumed isotropic I D SS D= , 

where I is the identity matrix and smDS /10= 2-9 .  

The period possesses three identical planes of geometry and material symmetry, therefore the 
rigidity tensor at the macroscopic scale presents cubic symmetry, with three independent 
elasticity parameters. The following general property holds: D11=D22= D33, D12=D13= D23 
=D21= D31 =D32, D44=D55= D66 In order to calculate the components D11, D21, and D66, two 
elementary mechanical problems have to be solved, namely the traction test and the shearing 
test. We considered the tests: 

- traction test with E11= ( 1e ⊗ 1e  + 1e ⊗ 1e )/2. 

- shearing test with E12= ( 1e ⊗ 2e  + 1e ⊗ 2e )/2. 
For each test we take into account the transient chemical degradation of the local parameters 
of the material.  
 
Because of the symmetry, instead of solving the coupled problem (69)-(70) in the full period 
domain with the periodicity conditions, we solved the problem in the 1/8 of the period (the 
volume is 0.5×0.5× .0.5) with the appropriate boundary conditions as in [BOR 01]. For 
example, for the traction tests the boundary conditions on all external boundaries are:  

0=Nu  and 0=Tσ .  

For the shearing test in the plane (i, j) we have the following conditions:  
 

0=Tu and 0=Nσ on the external boundaries orthogonal to the axis i and j,  

0=Nu and 0=Tσ on the external boundaries orthogonal to the axis k. 

 
where Nu  and Tu are the displacement in the direction normal to the plane and the 

displacement in the directions tangent to the plane, respectively.  Nσ and Tσ are the normal 

and tangential stress components. 
 
5.2 Results and discussion 
 
In Figure 5a the result of the computations of the solid concentration (solid fraction) at time t 
= 1e7 is presented. We can observe the decrease of the solid concentration initiated in the 
pores. The maximum value in the domain is equal 1. In Figure 5b the intensity of the 

displacement vector ),,(11 11
3

11
2

11
1 ���� at t= 1e7 for the case of unit macroscopic traction test 

in the direction 1, is shown. In Figures 6a and 6b the solid concentration and the intensity of 
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the displacement vector 11� at t= 1e8 are presented. The maximum value of the concentration 
in the domain at this time is equal to 0.594. It can be observed that strain is localized in the 
weak (the most altered) zones.  
 
In Figure 7 the three components of the rigidity tensor, C11, C12 and C66, as functions of time 
and as function of average matrix porosity, are plotted. It can be seen that all components of 
the rigidity matrix are logarithmically decreasing with time.  On the other hand, a dramatic 
decrease of all three components with the increasing average porosity (or decreasing average 
solid concentration) of the matrix is seen. If we interpret the results in terms of engineering 
parameters (Figure 8), we can see that the Poisson ratio ν seems to decrease to an asymptotic 
value equal to 90% of the initial value. Note that it was assumed that the local Poisson ratio in 
not altered. The Young modulus E and the shear modulus G decrease significantly to about 
50% of the initial values for the average porosity of the matrix of approximately 30%. The 
most affected parameter in this case is the shear modulus. 
 
The results of numerical computations using the model obtained by homogenization can be 
compared with the experiments published in the literature (e.g. [NGU 11]). For example, in 
Figure 9 [NGU 11] the drained bulk modulus and the shear modulus against porosity for the 
carbonate samples (named by the authors the Euville limestone), are plotted. These 
parameters were measured in standard triaxial tests.  The curves show a decrease of the 
parameters under the effect of chemical alteration, which manifests itself by the increase of 
the porosity. It can be seen that these curves agree qualitatively with the computed curves, 
coming from coupled chemo-mechanical model obtained by homogenization. It has to be 
pointed out that the microstructure of the carbonate investigated in [NGU 11] is very 
complex, with bimodal distribution of pore sizes (microporosity and macroporosity). It is 
believed that the quantitative reproduction of the observed behaviour would be possible by 
following the presented approach, if the real geometry of the microstructure would be 
considered.  
 
6. Conclusions 
 
The macroscopic models describing the behaviour of a porous saturated aquifer in which the 
injected CO2 is migrating, are presented. The theoretical framework is the homogenization of 
periodic structures. This homogenization method is one of the micromechanical approaches 
that are very well established in the literature. The analysis was focused on the long term 
effects, including the chemo-mechanical coupling. The model of chemical degradation and 
mechanical weakening of the material at long time was proposed. It was shown that the 
chemo-mechanical coupled computations for a particular three dimensional microstructure 
can be performed by using the finite elements commercial code Comsol Multiphysics.  
 
The results of the numerical computations of the full macroscopic rigidity tensor showed the 
degradation with time of all non-zero components of the tensor. Also, the decrease of the 
rigidity tensor is observed with the decrease of the average solid fraction (or increase of the 
average porosity). The material of porous aquifer analysed in the numerical example shows 
the cubic symmetry at the macroscopic scale (cubic anisotropy). The three (independent) 
engineering elasticity parameters (E, G and ν) decrease with time. It can be seen that the 
proposed degradation mechanism leads to the significant decrease of the Young modulus and 
the shear modulus when the average porosity increases from 0 to 30 %, while at the same time 
the Poisson ratio seems to tend to as asymptotic value of 90% of the initial value.  
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The comparison between the numerical computations and the experimental data published in 
the literature showed that the proposed model of chemo-mechanical coupling is able to 
qualitatively reproduce the curves of the elastic parameters of a rock subjected to the chemical 
alteration. In order to enable the quantitative comparison, the computations have to be 
performed for the real geometry of the microstructure.  
 
Further investigations concerning the chemical modification of the microstructure and its 
geomechanical effects are currently carried out.  
 

 
Figure 5a. The distribution of the solid concentration from 0 to 1 in the 1/8 of the period at 

time t=107s 
 

 
Figure 5b. The intensity of the displacement vector ),,(11 11

3
11
2

11
1 ���� in the 1/8 of the 

period at time t=107s. The axis 1 is orthogonal to the surface seen in the frontal plane. 
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Figure 6a. The distribution of the solid concentration from 0 to 0.594 in the 1/8 of the period 

at time t=108s 
 

 
Figure 6b. The intensity of the displacement vector ),,(11 11

3
11
2

11
1 ���� in the 1/8 of the 

period at time t=108s. The axis 1 is orthogonal to the surface seen in the frontal plane. 
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a) b) 
 

Figure 7. The plots of the three components of the macroscopic rigidity tensor: C11, C12 and 
C66, as functions of time (a), and as functions of the average matrix porosity (b).  
 
 

 
 
Figure 8. The variation of the three independent engineering parameters of elasticity (E, G, ν) 
with respect to the initial values (at t=0) as a function of the average matrix porosity. 
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Figure 9. The experimental data of the degradation of the elastic parameters (K, G) of 
limestone rocks when subjected to chemical alteration.  

Reproduced after [NGU 11] (permission has been requested). 
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