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Modelling by homogenization of the long term rock dsolution and
geomechanical effects

Jolanta Lewandowska
University of Montpellier 2, Laboratory of Mechasiand Civil Engineering LMGC

1. Introduction

The geological storage of G@oming from large industrial facilities has bedundsed in
detail for the last several years as a solutionnag#he greenhouse effect and climate change
in a number of countries. It is considered as apiementary solution together with the
research for the non pollutant or/and renewableggngources. One of the available options
is the injection of the supercritical G@ the saline aquifers. The idea of geologicataie
resides in various mechanisms of trapping coming pidy progressively over time. In the
short term the migration of GGs principally blocked by the impervious rock lgion the top

of the aquifer. As time goes on, other mechanigopear, in particular of geochemical nature,
like the dissolution of C®in pore water, and finally the chemical reactioasulting in
dissolution and /or precipitation of rock mineralfiese reactions can generate important and
irreversible modifications of the hydrodynamicalvasll as geomechanical properties of the
reservoir.

The long-term safety of the GOstorage sites requires the understanding of the
physicochemical processes related to the injeaiothe CQ in the geological medium and
their consequences, especially for the stabilityhef reservoir. These processes are still not
completely known, in particular because of the clexipy of natural systems, those are very
often heterogeneous and multiscale, and also beagusultiphysical couplings engendered
by the CQ injection.

The experimental studies of G@jection into rock samples, conducted in the labmy
conditions, show different behaviour depending loa injection rate, the composition of the
injected fluids and the nature of the rock (e.dJ@ 09, GOU 10, EGE 05, 1ZG 08]) The
investigations focused on the long term behavi@sume that the rock is saturated with an
acidified aqueous CO2 solution, and homogeneousiicla¢ alteration occurs. The results of
experimental studies conducted in such conditiom®ws global porosity increase
homogeneously distributed over the sample lengity (&lGU 11, BER 09]). Moreover, it
was observed that chemical alteration induces nmchlaweakening of the rocks with a
decrease of both stiffness and shear strengthtrighéal testing in drained conditions on the
altered carbonate samples showed the decrease @fasiec bulk modulus and the shear
modulus (e.g. [NGU 11, BER 09]). Although this beloar has been reported in the
literature, very few contributions concerning theodwelling of long term geomechanical
effects related to COstorage are proposed. Of special interest in tase are the
micromechanical methods because they provide saitabthematical framework, capable to
produce multiscale and multiphysics models of hpgedictive capacity.

2. Microstructure and modelling by homogenization.

Let us assume that the microstructure of the porock is known, Figure 1. We consider a
porous medium with two phases: solid skeleton aatine) water saturating the pores. Both



phases are assumed to be connected. The watelinsottie dissolved CO The porous
medium is periodic and the periodic volume is repregative from the point of view of both
the microstructure and the phenomena taking plateeamicroscopic scale. We assume that
the conditions of scale separation are satisfiddchvmeans that the size of the peribdig
very small with respect to the dimension of the squiL). Mathematically, this condition is
written in the form:

g:%<<1 [1]

wheree is the small parameter of homogenization.

:ﬁ: % agL?fLésr :‘:': f

N
I | I

Microstructure

Figure 1. The porous aquifer with the microstructure
The following phenomena will be taken into account:

- The water flow through the pores (named hydrawigotoblem”)
- The solid deformation (hamed mechanical “M-problem”

- The transport of dissolved G@hamed transport “T-problem”)
- The chemical dissolution of solid (named chemi€&igroblem”)

The aim of the analysis is to develop of a macrpgcmodel of the behaviour of the system
by using the method of homogenization of perioditictures ([SAN 80, BEN 78]). The
analysis will be presented in two stages. In th&t fitage (section 3) the homogenization of
the problem of water flow, solid deformation and Q@nsport (the “H-M-T problem”), will
be analysed. We will use the principal results ainbgenization of the “H-M problem” and
the “T problem” that were previously analyzed asaupled problems ([AUR 77, AUR 96]).
In the second stage (section 4), the chemo-mediatoapling will be considered (the “C-M
problem”). At this stage it will be assumed that thwhole aquifer is subjected to
homogeneous solid dissolution caused by chemicaitimn between solid components and



acid pore water. We will focus on the modificatioh the microstructure of the porous
aquifer and progressive decrease of the mechapaameters. In section 5 numerical
computations of the chemo-mechanical coupling dreddhemical degradation of the rock
mechanical parameters will be presented.

3. Homogenization of the H-M-T problem

In order to model the coupled H-M-T behaviour a thacroscopic scale, the differential
equations are firstly formulated at the microscafpore) scale. This formulation concerns:
the equilibrium equation for stresses in the sqlthse, the momentum equation for fluid
flow, the mass balance equation of concentratiothefdissolved C¢& and the appropriate
interface conditions. Then, the classical homogsdion process by using the asymptotic
developments method ([SAN 80, BEN 78)), is carriatl o

3.1Formulation of the problem at the microscopic scale
The assumptions are as follows:

* The porous medium is saturated by viscous incorsfiesfluid (eg. saline water)

» The fluid is saturated by the dissolved £O

* The fluid flow is slow and laminar

» The transport of the CQlissolved in fluid is governed by convection aiftludion
mechanism

* Small displacements and deformations of the solid

» Linear elastic constitutive law for solid material

* Quasi static deformation process

The following set of differential equations canvagtten in the domain of the period (Fig. 2):
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Figure 2. The period of the porous medium

Stress equilibrium of the solid phase:

Osjj
Tj =0in Qg [2]

Osij = 8jjki & (U) [3]



with eq =1/2(ug, +uj )

- Stress equilibrium and incompressibility conditiof the fluid phase:

w ..

TE”=0in Qr [4]
j

OFij =-PGj + 4 (M, j +Vji)in Qp [3]

a5

% =0in Qf [6]

- Mass balance equation of the £dissolved in the fluid phase:

- Continuity conditions at the solid-fluid interfac
USiij'aFiij =0inT [8]
U -v; =0onTl [9]

- Zero-flux condition at the solid-fluid interface:

('Dij %)Ni =0onTl [10]

where : g is the stress tensor in the sol  is the stress tensor in the fluiais the
microscopic rigidity tensor of the solie is the small deformation tensor in the souls the
displacement vector in the solipis the water pressur yg is the viscosity of the fluiccis

the concentration of the G@issolved in watel D is the diffusion tensor of the Gnh water,
vis the water flow velocitylN is the unit normal outward vector.

Before starting the homogenization, the descripiit}a[10] has to be rewritten using the non-
dimensional variables. We adopt here the so cdlt@droscopic point of view” [AUR 91]
which means that the length scale used in the ri@atan will be the microscopic
dimensionl. For the physical (dimensional) space variaklédwo non-dimensional space
variables are defined:

The homogenization problem will be analyzed at sealesx andy simultaneously.

The introduction of the non-dimensional variablesalated with the evaluation of the order
of magnitude of several quantities appearing innteroscopic model [2]-[10]. As a unit of



measure in this evaluation, the powers of the sipathmetere are used. The following
estimations are supposed valid:

, 4 . . .
- The Reynolds number iRg :'C')u— = O(gl) where pis the volumetric density of
F

the fluid.
- The macroscopic gradient of water pressure is ®fsime order of magnitude as the

microscopic viscous termp/ L = O(ug v/ﬁz) :

. . . v/
- The local Péclet number is such that there is spatsionPg = o = O(sl)

- The time scale; corresponds to the mass transport by diffusioth@tmacroscopic

2

. . . . 14
scale L, thus the associated non-dimensional nuraldgr= DL = 0(52)
C

- The displacements and stresses in solid and in fiue of the same orders of
magnitude ugj = O(ug;) and Ogjj = O( OFij )
More details concerning the evaluations of the radg magnitude can be found in (JAUR

91], [AUR 77], [AUR 96]). Finally, the non-dimengsial description takes the following
form:

0
R (ajjki eyki(u)) =0in Qg [11]

J

azvI d .

E Up i ¥ - 5 =0in Qf [12]
M 0in Q [13]
¥ "
£2 ?t:+—( Djj — - ¥, +v,c) 0in Q [14]

The interface conditions are rewritten in the nomelisional form:

(1 & (U) + PGj - € (g (v j +Vji))Nj=0onl 15]
=0onTl [16]
@

( ij @( )N =0onTl [17]

The interface conditions [15]- [17] are completedlisy periodicity conditions on the external
boundaries of the period.

Note that for convenience we keep the same notafionthe non-dimensional variables in
[11]-[17] as for the dimensional variables in [2PQ]. Further, we introduce the relative
velocity wi = v; - Uj which is the velocity of the fluid with respectttee solid. Using the new

definition of fluid velocity the problem can be ratten in the form



0
e (ajjki ey (U)) =0in Qg [18]
j

Py CAVI: P o [19]
Vi &
M _0in 0 [20]
¥ -
& 9
523+ @ﬁ( iy, +W|c) 0in Qf [21]

where the boundary conditions are:

(ajjki & (U) + PGy - & 1 (W, j +Wj i))Nj=0onl [22]
=0 onl' [23]
(-Dj X, )N =0onTl [24]

and the perlod|C|ty conditions of all unknowns Hld

3.2 Asymptotic developments method.

In the homogenization process the unknowns (il sissplacement, fluid velocity and fluid
pressure) are presented in the form of asymptetieldpments (([SAN 80, BEN 78]).

U 06y, 1) = 42 0y ) +eul 06,y ) + 6242 (x, v, + [25]
px,y.0) = pQ x, 1) +£p® (x,y, 1) + 2 p@ (x, y ) + .. [26]
w06,y 8) =W (x,yt) +ew® (1) + e2w () + [27]

Each term in the asymptotic development is assureeddic which means that it takes the
same values in the corresponding points at the sifgpwalls of the period. Because of the
existence of two separate scales the derivationratgre in [18]-[24] is transformed

0 0 0
into— — —+ &— . Note that we have

¥y ¥ X

i 1
eyjj (U) = (_ +_) and ey;; (u) =

g |
2 @/J ¥

In the process of homogenization the asymptotielbgments [25]-[27] are introduced in the
microscopic description [18]-[24], while simultanety applying the two scale derivation
operator. After identification of all terms stayibg the same powers @f, we obtain a series
of successive order problems to be solved in thiegeTypically, the first problem gives the
solution for the term of the order zero (for exaenpl case of displacement: the form of

u(o) (x,y,t) ). From the second problem we obtain the solutmrtle term of the order one



(for example in case of displacement: the fornu(l) (x,y,t) ) that means the first corrector.

Finally, the third problem is subjected to volunweraging in order to obtain the macroscopic
description (model).

In section 3.3 the solutions of the homogenizatoocess are presented. For more details
concerning the homogenization of the problem [Z&]}{with the conditions [22]-[23] (see
[AUR 77]). For the problem [21] and [24], see [A9R].

3.3 Solutions

3.3.1 The zero-order solutions

The analysis starts with the solution for the legdorder of the main variabhp(o) ,

u© and c(o).

The first problem is for pressu p(o) and comes from [19]:

—~—=0in Qf [28]

where p(o) is periodic. The solution to this problen p(o) (x,y,t) = p(o)(x,t).

The second problem defines the displaceru(o) and comes from [18] and [22]:

0 .
5, @ ey () =0in Qg [29]
(ajjki €x (U(O)))Nj =0onl [30]
where u(o) is periodic. The solution iu(o) (x,y,t) = u(o)(x,t).

The third problem is foc(o) and is given by [21] and [24]

5 Y
—(-Djj ——)=0in Q 31
@/i ( J| @/j ) F [31]
+©
(-Dsy ——)N; =0onT [32]
ij @(j [
where c(o) is periodic. The solution ic(o) (x,y,t) = c(o) (x,1).

We can see that for each physical phenomenon vireded macroscopic variable which does
not depend on the microscopic space variable y.

The analysis is continued at the next order forpgtablem [19], [20] and [23], to obtain a
: . . (0) _
solution for the relative flow velociw ™ (X, y) :



ﬁwi(o) @3(1) @3(0)

HE iy & =0 S 133]
@

& =0in Qf [34]
w® =oonr [35]

©)

where p(l) and w; " are periodic. The solution to the problem [33]-[85]

)
©) _ P

W = ke —— [36]
I ij a(j

If we substitutevvi(o) according tw; =v;-U;, and calculate the volume average of the

relative velocity, we obtain the Darcy law in tloerh (JAUR 77])

©)
0 0 . P

<w? >=<v® >_ny ='KijTj
where Kj; =<kjj > is the macroscopic permeability tensor. It can bemuted from the

local boundary value problem that arises, afteedtipn of [36] into [33]- [35] (JAUR 05,
AUR 77)).

[37]

3.3.2 The first-order solutions

The next problem concerning the solid behaviour cofrem [18] and [22] and defin(ui(l)

0 .
?j(aijm (eykl(u(l)) +egq(u(?)) =0in Qg [38]
(@i (Eyia (U + exg (W PMN; = -pON; onr [39]
where ui(l) is periodic. The solution is a linear function akdias

ui(1) = &M (U) -7 p©@ +Ui(1)(><,t) [40]

where Ui(l) (x,t) is an arbitrary vector. The characteristic (micrgaécpfunctionséand  are

a third order tensor and a vector, respectivelyyTdan be computed from the local boundary
problem if we inject [40] into [38] and [39] (JAUR7, ENE 84]).

The next order approximation of the concentrac(l)

from [21] and [24]:

is the solution of a problem obtained

0 a:(l) a:(O)
Y (Dij (——+ X
@/i j

Y ) =0in Q, [41]



a:(l) a:(O)
+

¥, &,

where ¢c@ is periodic. In [41]- [42] we took into account trc(o)(x,t). The solution is a

linear function of the macroscopic gradient of camtcation
x 0
C(l) = Zi T-l-é(l) (X,t) [43]

'(Dij (

)N, =0onTl [42]

where t® (x,t) is an arbitrary function. The characteristic veedofunction ¢ can be
calculated, if we introduce the solution [43] inkee problem [41]-[42]. For details sp&UR
96].

3.3.3 The macroscopic equations

From [18], [19] and [22] at the next order we obttie following set of equations

1 0
a7éij) a7éij)

3 Y =0in Qg [44]
j j
1) 4.0
aal(:ij) P
@/j -Ti—om Qf [45]
1 1
o5 Nj =0 NjonT [46]

with the periodicity conditions.

In order to obtain the macroscopic equations, egousif44] and [45] are integrated over the
respective domains, and summed. Then, the bourdengition [46] is applied, that leads to
the elimination of the derivatives with respecttb@ microscopic variable y. Finally, the
macroscopic equilibrium equation is get [AUR 77]

1O

<——>=0 [47]
J
%)

where is the total stress tensor that is written go) and ?:O) within the respective

domainsQg and Qg . After several transformations consisting maimiythie introduction of

@

the solution fory;™ in the expression for stresses in the solid domagrcan write the total

stress tensor in the form [AUR 77]

0
UijT( )= Cija e (u?)-aj p© [48]
where
0
Uéij) = Cij exa (u) [49]



and the macroscopic elasticity tensCjj; and aj; mean the rigidity tensor and the hydro-
mechanical coupling elasticity tensor, respectiJAlyR 77]

Cijki =<&jkl + &jjmn eymn(é‘kI ) > [50]

ajj =n ljj + <ajmn eymn(77) > [51]

Both tensors can be computed for a given microstracof the period, after the solution of

the local boundary problems f&-andr.

The second macroscopic equation is obtained framatean [20]. At the ordeg it gives

aNi(O) + aN'(l) =0in Q [52]
&; ¥i F
Next, equation [52] is integrated within the donQp . We take into account the continuity
of displacement cI" , equation [23] and the previously obtained sotufior u(o) . Finally,
the following macroscopic equation is get [AUR 77]
a<v-(°) >-nu;) . 0 ,
= e ) pp® (53]
{
where y and S are two new coupling tensor and vector that arandédfas follows:
Vij:nlij'<fig),p> [54]
B=<Mpp> [55]
It can be shownth y =a [AUR 77]
Concerning the transport of the dissolved,Citom [21] and [24] we have
@ 5 @  &@ 5 D @ 3 (o (O
— - (D t—))-— (D (— —+— ))+—_(W|( @)+
a & X ¥i Xj X; (56]
0
E(Wi(l)c(o) + vvi(o)c(l)): 0in Qf
|
@ &)
(0, (X + )N, =00nT [57]
&; ¥,

In order to obtain the macroscopic equation, e§] [S integrated over the volur Qf .

Next, the interface condition [57], the periodi¢iyg. [23] and the solution fcc(o), are
applied. After introduction of the solution [43]ethinal form of the macroscopic diffusion-
convection equation is obtained (JAUR 96])

10



@ 5 ., z0 J . (0) (0)
nT-E(DijTj)ﬁLg(c <w’ >)=0 [58]

where the macroscopic diffusion ten Dﬁ is defined as

.1 &
D, —EQ; (Dy (1 +7k))d§2 [59]

©)

and<w; " >is the Darcy velocity.

3.4 Summary of the macroscopic “H-M-T model®

Let us summarize the results of homogenizationopertd in the section 3. The macroscopic
model of coupled fluid flow, C@transport and solid deformation (“H-M-T model”) is
defined by a set of macroscopic equations: [43];[f53], [37] and [58]. The model shows
two kinds of couplings that can be called: the &weand the “strong” coupling. The “weak”
coupling can be observed between the fluid flow #re CQ transport, through the water
velocity appearing in [58]. The “strong” couplingtise hydro-mechanical coupling that can
be seen in [53] and [48].

The advantage of modelling by homogenization is thairovides the definitions of the
macroscopic parameters, like the rigidity ten€ofsee [50]), the hydro-mechanical coupling
tensora ([51]) and the scalaf (see [55]), and the effective diffusion ten&dr ([59]). All
these quantities can be calculated, if the micuotire of the porous aquifer is known, by
using numerical methods.

4. Homogenization of the C-M problem

Let us now assume that the porous medium is s@oect homogeneous solid dissolution.
Such situation corresponds to the long-term (sld@gradation mechanism. In this section we
focus on the analysis of the chemo-mechanical cogiplWe are interested in the progressive
alteration of the mechanical parameters as a coesegq of material dissolution.

4.1 Formulation of the problem at the microscopic scale

The following two microscopic problems for the namdnsional variables are formulated in
the period domain (Figure 3):
r

RN
N>
. y,J'J —LA ; dissolution

process

Figure 3. The dissolution of the solid in the period

11



- The mechanical “M-problem”:

We recall the previously formulated mechanical peablwith ajy (y) being now the
microscopic rigidity tensor depending on the |agg@hce variablg

Osjj,j =0in Qg [60]
Osij = &jjki & (u) in Qg [61]
& =1/2(ug ) +uk)

ogjjNj =0onT [62]

- The chemical “C-problem”:

The dissolution problem is governed by a singléudibn equation for the concentration
in solid (solid fraction cg , with one characteristic parameteg describing the rate of the
process. Such assumption is an evident simplioatif the complex chemical reactions
taking place at the microscopic scale, and wilubed as a first approach to the problem.
We further introduce a local dissolution mechanidinis process starts at the interface
I" , andprogresses towards the inside of the solid (Figdre

cs(y,t)=0in Qf [63]
&
75 = div(Dg gradcs) in Qg [64]

where the boundary and initial conditions are

cg=0onrl [65]
N (Dggradcg)=00on Qg N [66]
Cs(t =0)=1in QS

where Dg is the diffusion tensor related to the evolutiortteé solid dissolution. Note
that we further assume that it is constant buettiension to the casDg(cg) is possible.

The dissolution problem is time-dependent which esakhe associated elasticity
problem also time-dependent, through the dependefttes local rigidity tensoajy, on the
concentration in solid cg). It is assumed that the constitutive relationsay (Cs) is
known.

4.2 Homogenization

The homogenization process follows the classiches®. It can be shown that the results
obtained have similar form as those presented aticse 3.3. In this case the macroscopic
model is written:

12



—>=0 [67]

where the macroscopic stress tensor is
0
Uéij) = Cijk eqa(u®) [68]

The macroscopic tens(Cjjy is the rigidity tensor that can be obtained frore fterative

solution of the local boundary value problem. Tbeal boundary value problem is the same
as in the case presented in section 3.3.2. It dh@eilnoted that in the case considered in this
section we have to solve the coupled chemo-mecalaproblem for each time increment.

The two local boundary value problems to be sobigtlltaneously are:

- The mechanical “M-problem”:

0
?j(aijkl (s) + Bjmn (Cs) &ymn(¢™)) =01in Qg [69a]
(@i (Cs) + (@jmn (cs) eymn(E< )N =0on T [69b]
4"" is periodic [69c]

- The chemical “C-problem”:

&

75 = div(D gradcs) in Qg [70a]
cg=0onrl [70Db]
N (Dgradcg)=00on Qg NA [70c]
cg(t =0)=1in Qg [70d]

The unknown of the problem is the displacementorEf:.rkl (é’lfl ,é’lz(l ,cf'gf') which depends on

the local space variable y and timefkI (y,t). Remark tha1§kI is a particular periodic

solution corresponding to the unit macroscopicistiensorE'= (& [ g + qle)/2. where
k,1 =1, 2, 3. The symbdl means the tensorial product between the unit vecthe basis.
This solution should also verify the zero volumerage condition.

OncefkI is known, the macroscopic rigidity tensor is defirzs the volume average for each
time increment as follows:

Ciji =<aijki (Cs) + &jmn (Cs) eymn(é:kl )> [71]

13



Thus, the macroscopic tensor is time-depencC (t). In section 5 we present an example of

the numerical computations of this tensor for atipalar microstructure of the porous
medium.

4.3 Summary of the macroscopic “C-M model*

The chemo-mechanical model related to the modifinabf the microstructure of the porous
aquifer, is proposed. The model consists of theros@opic equation of the mechanical
equilibrium [67]-[68] that is coupled with the Idcanodel describing the chemical
degradation of the mechanical parameters ([69]-[70]). The computations of the evolution
of the mechanical parameters can be carried otltg iinitial microstructure is given.

It has to be pointed out that the presented modes ¢hot take into account the modification
of the hydro-mechanical coupling parameters (apgsed in [LEW 12]).

5. Numerical computations of the time degradation fothe macroscopic rigidity tensor.
5.1 Definition of the problem.

Let us analyse the porous medium presenting thmeergional periodic microstructure,
Figure 4. The period is a cube of the unit dimemsithe three cylinders representing pores
have the diameter 0.1. Both domains (flddd and solidQs) are connected. The aim is to
calculate the macroscopic fourth order rigidityser that can be converted into the second
order tensor (6x6) by using the classical conversion rules. The twopled chemo-
mechanical problems (69)-(70) were solved usingctmremercial code Comsol Multiphysics.

Figure 4. The microstructure considered in the numerical gptam

Initially, the (intact) material is locally isotrapwith two elasticity parameters: the Young
modulus E=1 and the Poisson rate0.2. As a first approximation it is assumed tihat local
constitutive relationshigajjy (Cs)is such that the only parameter affected by thelloc

variation of the volumetric fraction of the solglthe Young modulus. We used the formula of

14



Hashin and Shtrikman (1963) for the upper bounthefeffective Young modulus of a porous
material [ROB 02}

E Cs
> B 2
Es 1+S(l-cg) [62]
where S is given as a function of the Poisson vgby the following formula
1+vg)x(@3-15v
_ d+vs)x( s) (63]

2% (7-5Vg)

and cgis the solid fraction. In the example the tenDg is assumed isotrof Dg = Dg | ,

where | is the identity matrix an Dg = 109m?/s.

The period possesses three identical planes of gepand material symmetry, therefore the
rigidity tensor at the macroscopic scale presenticcsymmetry, with three independent
elasticity parameters. The following general propdrolds: Di1=D2y= D33 D1,=D13= D3
=Dj;= D33 =D35, D4s=Dss= Degs In order to calculate the componentg,D,;, and Bg, two
elementary mechanical problems have to be solvedelyathe traction test and the shearing
test. We considered the tests:

- traction test wittE™= (e, g + e, e)/2.

- shearing test witk'’= (g0 e, + g e,)/2.
For each test we take into account the transiesnadal degradation of the local parameters
of the material.

Because of the symmetry, instead of solving theplsmliproblem (69)-(70) in the full period
domain with the periodicity conditions, we solvdg tproblem in the 1/8 of the period (the
volume is 0.%0.5x.0.5) with the appropriate boundary conditions mgBOR 01]. For
example, for the traction tests the boundary cambton all external boundaries are:

uy =0 andot =0.
For the shearing test in the plane (i, j)) we hdaneefollowing conditions:

ur =0and oy =0on the external boundaries orthogonal to the aarlij,
uy =0and o =0o0n the external boundaries orthogonal to the axis k

where uy and upare the displacement in the direction normal to fhene and the
displacement in the directions tangent to the plaespectively. oy and o7 are the normal
and tangential stress components.

5.2 Results and discussion

In Figure 5a the result of the computations ofgbkd concentration (solid fraction) at time t
= le7 is presented. We can observe the decrease @olid concentration initiated in the
pores. The maximum value in the domain is equalnlFigure 5b the intensity of the

displacement vectcéll(é‘lll,é%l, 4’%1) at t= 1e7 for the case of unit macroscopic tractesh
in the direction 1, is shown. In Figures 6a andt@bsolid concentration and the intensity of
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the displacement vect<§11 at t= 1e8 are presented. The maximum value ofdheantration

in the domain at this time is equal@b94. It can be observed that strain is localirethe
weak (the most altered) zones.

In Figure 7 the three components of the rigiditystar, G1, C;2 and G, as functions of time
and as function of average matrix porosity, ardtetb It can be seen that all components of
the rigidity matrix are logarithmically decreasimgth time. On the other hand, a dramatic
decrease of all three components with the incrgaswerage porosity (or decreasing average
solid concentration) of the matrix is seen. If wgerpret the results in terms of engineering
parameters (Figure 8), we can see that the Porssiony seems to decrease to an asymptotic
value equal to 90% of the initial value. Note thatas assumed that the local Poisson ratio in
not altered. The Young modulus E and the shear laedd decrease significantly to about
50% of the initial values for the average porosifythe matrix of approximately 30%. The
most affected parameter in this case is the shedulus.

The results of numerical computations using the ehathtained by homogenization can be
compared with the experiments published in theditee (e.g. [NGU 11]). For example, in
Figure 9 [NGU 11] the drained bulk modulus and shear modulus against porosity for the
carbonate samples (named by the authors the Eulitiestone), are plotted. These
parameters were measured in standard triaxial. te$tse curves show a decrease of the
parameters under the effect of chemical alteratidrich manifests itself by the increase of
the porosity. It can be seen that these curvesagualitatively with the computed curves,
coming from coupled chemo-mechanical model obtaingdomogenization. It has to be
pointed out that the microstructure of the carbeniamvestigated in [NGU 11] is very
complex, with bimodal distribution of pore sizesi¢mporosity and macroporosity). It is
believed that the quantitative reproduction of tiserved behaviour would be possible by
following the presented approach, if the real geoynef the microstructure would be
considered.

6. Conclusions

The macroscopic models describing the behavioar pdrous saturated aquifer in which the
injected CQ is migrating, are presented. The theoretical fraark is the homogenization of
periodic structures. This homogenization methodns of the micromechanical approaches
that are very well established in the literaturbe Tanalysis was focused on the long term
effects, including the chemo-mechanical couplinge Thodel of chemical degradation and
mechanical weakening of the material at long times wroposed. It was shown that the
chemo-mechanical coupled computations for a padictiiree dimensional microstructure
can be performed by using the finite elements coroimlecode Comsol Multiphysics.

The results of the numerical computations of tHerfiacroscopic rigidity tensor showed the
degradation with time of all non-zero componentshe tensor. Also, the decrease of the
rigidity tensor is observed with the decrease efdlerage solid fraction (or increase of the
average porosity). The material of porous aquifealgsed in the numerical example shows
the cubic symmetry at the macroscopic scale (cabisotropy). The three (independent)
engineering elasticity parameters (E, G andlecrease with time. It can be seen that the
proposed degradation mechanism leads to the signifidecrease of the Young modulus and
the shear modulus when the average porosity inesdasm 0 to 30 %, while at the same time
the Poisson ratio seems to tend to as asymptdtie \wd 90% of the initial value.
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The comparison between the numerical computatiodstize experimental data published in
the literature showed that the proposed model @mdimechanical coupling is able to
gualitatively reproduce the curves of the elasticameters of a rock subjected to the chemical
alteration. In order to enable the quantitative parison, the computations have to be
performed for the real geometry of the microstruetur

Further investigations concerning the chemical rincation of the microstructure and its
geomechanical effects are currently carried out.

Figure 5a.The distribution of the solid concer(litration frono0L in the 1/8 of the period at
time t=10s

Figure 5b. The intensity of the displacement vecéll(élll,é%l,éél) in the 1/8 of the
period at time t=18. The axis 1 is orthogonal to the surface se¢heirirontal plane.
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Figure 6a. The distribution of the solid concentration fronn00.594 in the 1/8 of the period
at time t=16s

Figure 6b. The intensity of the displacement vecéll(élll,é%l, 531,1) in the 1/8 of the
period at time t=1%. The axis 1 is orthogonal to the surface se¢heirirontal plane.
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Figure 7. The plots of the three components of the macrosaagidity tensor: @, C;» and
Css, as functions of time (a), and as functions ofdfierage matrix porosity (b).
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Figure 8. The variation of the three independent enginegoamgmeters of elasticity (E, @)
with respect to the initial values (at t=0) as action of the average matrix porosity.
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Figure 9. The experimental data of the degradation of tastie parameters (K, G) of
limestone rocks when subjected to chemical alt@nati
Reproduced after [NGU 11] (permission has been estrd).
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