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Abstract

Elaborating on a Maxwellian representation of longitudinal wave prop-
agation in a viscothermal fluid, a general nonlocal macroscopic theory of
sound propagation in homogeneous porous media saturated with a viscother-
mal fluid has been recently proposed. The present paper validates this new
nonlocal Maxwellian theory by showing that, in the case of the propagation
in straight circular tubes, it is in complete agreement with the long known
Kirchhoff-Langevin’s full solutions.
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1. Introduction

In a recent paper [1], by using Kirchhoff-Langevin’s description of com-
pressional wave propagation in a fluid and following, as a powerful heuristic
guide, a deep acoustic–electromagnetic analogy, we introduced two new up-
scaling procedures allowing to compute two ‘acoustic permittivities’ from
microstructure of porous media. These describe in a nonlocal ‘Maxwellian’
manner, the phenomenon of macroscopic sound propagation in rigid-framed
homogeneous porous materials permeated by a viscothermal fluid. The first
is a macroscopic effective density playing the role of macroscopic electric
permittivity, the second a macroscopic effective compressibility playing the
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role of macroscopic magnetic permittivity. By ‘macroscopic’ we mean that
the theory is not concerned with the values of the acoustic fields at every
microscopic spatial position, but only, with their ‘macroscopic’ effective val-
ues, obtained by averaging in a way to be precised. In the proposed theory,
an energetic ‘Umov-Poynting’ definition of the macroscopic pressure is intro-
duced, and the permittivities are fully nonlocal, i.e. they are frequency and
also wavenumber dependent.

The physical motivation of the new nonlocal theory is the recognition
that spatial dispersion effects are not always well described by the existing
theories, based on perturbative approaches. Indeed, at the zero’th order
of the asymptotic two-scale homogenization theory [2, 3], and in all existing
macroscopic models such as [4] and [3, 5], spatial dispersion effects are entirely
absent. In the full asymptotic two-scale homogenization theory [2, 6], or its
recent variants [7, 8, 9], some spatial dispersion effects can be described, but
only in a limited manner, when these are small corrections.

The limited possible use of these asymptotic perturbative approaches were
in recent years highlighted by their inability to cope simultaneously with all
geometries and frequencies, and in particular, to describe the whole dynam-
ics of metamaterial structures with Helmholtz resonators [10] on one hand,
and the complete Bloch mode spectrum in periodic structures on the other
hand. With the new ‘Maxwellian’ nonlocal and nonperturbative theory we
have proposed, these limitations disappear and no restriction on periodic ge-
ometries or frequencies subsist, even if we have so far formulated the solution
only for the case of propagation along a principal axis of an unbounded ma-
terial, or a symmetry axis for a periodic material. Therefore, it is important
to note that the new theory is suitable to predict the exact properties of the
so-called metamaterials [10], from microstructure.

As this new nonlocal theory is intended to provide the true physico-
mathematical solution of the macroscopic wave propagation problem, it needs
to be mathematically checked in unequivocal precise manner. Indeed, a
proper check is especially desirable, since a detailed verification of the gen-
eral ideas of the theory cannot be performed in electromagnetics, where the
counterpart of the conjectured upscaling procedures, cannot be formulated
yet. In electromagnetics, the nonlocal Maxwell macroscopic theory compara-
ble to the proposed acoustic one, is elusive. We believe that its completion is
not possible yet, because the necessary thermodynamics of electromagnetic
fields in matter is missing.

In this paper we concentrate on the simplest explicitly solvable example
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allowing precise checking of theory. This example concerns sound propaga-
tion in cylindrical ducts. For ducts of circular cross-section the exact solution,
in the framework of near-equilibrium ordinary fluid mechanics accounting for
the effects of viscous losses and thermal conduction in the fluid, is known
since G. Kirchhoff [11]. Kirchhoff’s investigation had been conducted using
the ideal gas theory. Langevin [12, 13], later showed that Kirchhoff’s so-
lution applied more generally, to a viscothermal fluid obeying an arbitrary
equation of state. It will appear on this example that the predictions of the
nonlocal macroscopic Maxwellian theory are, up to the numerical accuracy of
the calculations, indistinguishable from those of Kirchhoff-Langevin’s direct
solution.

The paper is organized as follows. In section 2 we present Kirchhoff-
Langevin’s treatment of the problem of small-amplitude sound propagation
in a tube of axis x and circular cross section filled with a viscothermal
fluid. We recall how can be computed, at given angular frequency ω, the
complex wavenumbers k(m,n)(ω) of the axisymmetric normal modes m = 0,
n = 0, 1, 2, ..., where m and n are azimuthal and radial mode indexes: the
corresponding wavenumbers kl(ω) = k(0,l−1)(ω), l = 1, 2, ..., are the complex
roots of the transcendent Kirchhoff-Langevin’s dispersion equation (46).

Anticipating on the Maxwellian theory’s definition of a macroscopic pres-
sure field H by means of the following fundamental ‘Umov-Poynting’ ther-
modynamic definition

〈pv〉 = H 〈v〉 (1)

where p is excess thermodynamic pressure, v velocity, and 〈 〉 is the averaging
operation over a cross section, we then introduce at a given real angular
frequency ω, the following complex impedance factors Zl(ω), l = 1, 2, ...

H = Zl 〈v〉 · ex (2)

where ex represents the unit vector along the x-axis. These frequency-
dependent Kirchhoff-Langevin’s wavenumbers kl(ω) and impedances Zl(ω)
enable us to evaluate two frequency-dependent (Kirchhoff-Langevin’s) per-
mittivities, namely the densities ρl(ω) and bulk modulii χ−1

l (ω) associated
with the different radial modes n = l − 1, l = 1, 2, ...

ρl(ω) = klZl/ω, χ−1
l (ω) = ωZl/kl (3)

In section 3 we recall the principles of the proposed macroscopic Maxwellian
nonlocal theory. There, two (Maxwell’s) permittivities are introduced, which
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are fundamentally nonlocal both in time and space. They correspond to two
nonlocal (density and bulk modulus) operators, also described in Fourier
space by frequency-dependent and wavenumber-dependent complex ampli-
tudes ρ(ω, k) and χ−1(ω, k). These functions ρ(ω, k) and χ−1(ω, k) are inde-
pendently computable thanks to the two conjectured upscaling procedures.
It will be shown that the Kirchhoff-Langevin’s complex wavenumbers and
impedances kl and Zl still make sense in the framework of the macroscopic
Maxwellian theory. The wavenumbers kl are the solutions of the ‘Maxwell’
dispersion equation

ρ(ω, k)χ(ω, k)ω2 = k2 (4)

and the impedances Zl then can be computed by

Zl =
√

ρ(ω, kl)χ−1(ω, kl) (5)

They may be referred to as Maxwell’s wavenumbers and impedances. The
coincidence between Kirchhoff-Langevin’s and Maxwell’s complex wavenum-
bers and impedances serves as a test of the exactness of the two upscaling
procedures of the new theory. Equivalently, this coincidence will be expressed
through the coincidence of Kirchhoff-Langevin’s and Maxwell’s densities and
bulk modulii:

ρl(ω) = ρ(ω, kl) χ−1
l (ω) = χ−1(ω, kl) (6)

A successful numerical check of Eqs.(6), performed in section 4, will clearly
indicate that the two nonlocal upscaling procedures described in [1] are exact
in cylindrical tubes having circular cross section.

Kirchhoff-Langevin’s theory has been scarcely used in practice. For the
least attenuated plane mode which is often the only important one, it gives re-
sults undistinguishable in practice from those of the simple approximate the-
ory developed much later by Zwikker and Kosten [14]. Zwikker and Kosten’s
theory may be interpreted as the one taking into account only temporal dis-
persion, whereas our proposed Maxwellian theory takes into account, also,
spatial dispersion, hence giving the precise solution. Extended to arbitrary
geometries, the physically simplified local treatment, is nothing but that of
the zero’th order homogenization theory; it captures the essential physics
of the wave propagation phenomenon as long as a separation condition is
satisfied and the geometry is sufficiently simple. The geometry must be suf-
ficiently simple not to include cavities in the form of Helmholtz’s resonators,
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and the pores sizes must be much smaller than the wavelengths. When these
conditions are no longer satisfied, it no longer describes the physical solu-
tion. The propagation models ordinarily used in acoustic studies of porous
media [15, 3, 5], are all developed in this local-theory framework. In elec-
tromagnetism, this would correspond to the widely used simplification which
consists in assuming that the permittivities have no dependencies on the
wavenumber. These simplifications, however, are clashing with the wave
nature of the problems which would imply that spatial dispersion should al-
ways be present at least to some extent. Thus, even if Zwikker and Kosten’s
theory works very well for the least-attenuated plane wave mode, it never
provides the complete physical solution of the macroscopic (i.e. cross-section
averaged) wave propagation. It cannot predict the existence of the higher
order modes, and also the change of nature of the propagation in very wide
tubes, illustrated by a fundamental mode which is no longer plane-wave like,
but tends to become surface-wave like.

Zwikker and Kosten’s local theory is derived in Appendix A without
recourse to the classical two-scale asymptotic homogenization theory, using
instead, only, the language of temporal and spatial dispersion. It will then
be more clear, how the present complete Maxwellian description of sound
propagation in a cylindrical circular duct is nothing but a sort of Zwikker and
Kosten’s treatment, now suitably generalized to include spatial dispersion.

2. Kirchhoff-Langevin’s theory of sound propagation in a tube of

circular cross-section

Kirchhoff’s original investigations on the effects of viscosity and heat con-
duction on sound propagation in free air, and also, air inside a hollow solid
tube, were conducted by treating the air as an ideal gas [11]. Langevin
completed much later Kirchhoff’s theory by considering air as having second
viscosity and a general equation of state [12]. We commence by recalling this
complete Kirchhoff-Langevin’s theory, which is usually not presented without
simplifications in the acoustic literature.

2.1. Linearized equations, in the Navier-Stokes-Fourier model

Following [13] we are given a homogeneous viscothermal fluid which obeys
an arbitrary caloric equation of state

ε = ε(s, υ) (7)
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with ε the specific internal energy per unit mass, s the specific entropy,
and υ = 1/ρ the specific volume. The thermodynamic pressure p, absolute
temperature T , and specific heats at constant pressure and constant volume
cp and cv are defined by

p ≡ −
(

∂ε

∂υ

)

s

, T ≡
(

∂ε

∂s

)

υ

, cp ≡ T

(

∂s

∂T

)

p

, cv ≡ T

(

∂s

∂T

)

υ

(8)

Elimination of s in Eqs.(7) and (8) results in a thermal equation of state
p = p(T, υ). The fluid thermal expansion coefficient is defined by

β ≡ 1

υ

(

∂υ

∂T

)

p

(9)

Let us define two fixed reference sound speed values ca and ci, adiabatic
and isothermal respectively, by

c2a ≡
(

∂p

∂ρ

)

s

, c2i ≡
(

∂p

∂ρ

)

T

(10)

An application of general thermodynamic methods [16] show that the quan-
tities introduced in Eqs.(8), (9), and (10), are not independent. They are
related by the following thermodynamic identities

γ − 1 =
Tβ2c2a
cp

, c2a = γc2i (11)

where γ ≡ cp/cv is the specific heat ratio. With v, the Euler’s fluid velocity,
σ the stress tensor, and q the heat flux, the conservation equations of mass,
momentum, and energy are expressed by

∂ρ

∂t
+∇.(ρv) = 0 (12a)

∂(ρvi)

∂t
+ ∂j (ρvivj − σij) = 0 (12b)

∂(ρε)

∂t
+∇.(ρεv + q) = σij∂jvi (12c)

The first law of thermodynamics is written as

dε = −pd(1/ρ) + Tds (13)
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which follows from Eqs.(7) and (8). As such, Eq.(12c) may be put in the
following equivalent form of a balance law for entropy

∂(ρs)

∂t
+∇.(ρsv +

1

T
q) =

1

T
(σij + pδij)∂jvi + q.∇(

1

T
) (14)

In the right-hand side, one sees the density of local entropy sources in the
fluid, which is required to be positive by the second law. Now substituting
in Eqs.(12a), (12b) and (12c), the total fields

ρ(t,x) = ρ0 + ρ′(t,x) (15a)

σij(t,x) = −pδij + σ′

ij = −(P0 + p′(t,x))δij + σ′

ij(t,x) (15b)

s(t,x) = s0 + s′(t,x) (15c)

T (t,x) = T0 + τ(t,x) (15d)

where ρ0, P0, s0, T0 represent the constant thermodynamic equilibrium val-
ues, and p′ the thermodynamic excess pressure p′ = p(T, 1/ρ)−p(T0, 1/ρ0) =
p(T, 1/ρ)− P0, the following linearised equations governing the small ampli-
tudes perturbations are immediately obtained

∂ρ′

∂t
+ ρ0∇.v = 0 (16)

ρ0
∂vi
∂t

= −∂ip
′ + ∂jσ

′

ij (17)

ρ0
∂s′

∂t
= − 1

T0

∇.q (18)

To close the system of equations, there remain to precise the constitutive
laws which give the deviatoric stresses σ′

ij and the heat flux q in terms of
other variables. In the Navier-Stokes-Fourier theory used in this paper, it is
assumed that the σ′

ij are purely viscous and determined by the first spatial
derivatives of the velocity; the q is purely thermal and determined by the first
spatial derivatives of the excess temperature. The Maxwell’s stress terms
[17, 18, 19] appearing in nonisothermal fluids and required by the kinetic
theory of gases are neglected. In addition, molecular relaxation phenomena
will not be considered; if necessary they may be incorporated as it has been
done in e.g. [20].
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Within these simplifying assumptions, the constitutive equations are writ-
ten in the following Newton-Stokes form [21]

σ′

ij = η

(

∂jvi + ∂ivj −
2

3
δij∇.v

)

+ ζδij∇.v (19)

and Fourier form

qi = −κ∂iT (20)

The coefficients of thermal conductivity κ, first and second viscosity η and
ζ, are constants to be evaluated in the ambient state (P0, T0). The second
law of thermodynamics results in the inequalities

κ ≥ 0, η ≥ 0, ζ ≥ 0 (21)

The precise values of these fluid constitutive parameters are difficult to obtain
by molecular theories; they are generally best found experimentally.

Inserting the constitutive equations (19-20) in the 5 balance equations
(12a), (12b) and (14), we find for the system of 5 linearized conservation
equations of mass, momentum, and energy

∂ρ′

∂t
+ ρ0∇.v = 0 (22a)

ρ0
∂vi
∂t

= −∂ip
′ + ∂j

{

η

(

∂jvi + ∂ivj −
2

3
δij∇.v

)

+ ζδij∇.v

}

(22b)

ρ0
∂s′

∂t
=

κ

T0

∇
2τ (22c)

In what follows, we keep using the 6 variables velocity, condensation b ≡
ρ′/ρ0, excess pressure, and excess temperature. To obtain a closed system
of equations on these 6 variables we use the equation of state ρ = ρ(p, T ),
whose linearized version gives

b = ρ′/ρ0 =

(

γ

ρc2a

)

0

p′ − β0τ (23)

where the index 0 is used for quantities to be evaluated in the ambient
state. The linearized version of the state equation T = T (p, s) gives τ =
(

Tβ
ρcp

)

0
p′ +

(

T
cp

)

0
s′, where the coefficient (∂T/∂p)s = βT/ρcp is expressed
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using Maxwell’s relation (∂υ/∂s)p = (∂T/∂p)s, the identity (∂υ/∂s)p =
− (∂υ/∂p)s (∂p/∂s)υ, and the general thermodynamic identity (11). Using
this state equation to eliminate s′ in (22c), and rewriting the first coefficient
in (23) by introducing the adiabatic ambient bulk modulus

χ0 ≡
(

1/ρc2a
)

0
(24)

our starting complete system of six linearized viscothermal equations with
the six variables v, b, p′, τ , is finally written as

ρ0
∂v

∂t
= −∇p′ + η∇2v + (ζ +

η

3
)∇(∇ · v) (25a)

∂b

∂t
+∇ · v = 0 (25b)

γχ0p
′ = b+ β0τ (25c)

ρ0cp
∂τ

∂t
= β0T0

∂p′

∂t
+ κ∇2τ (25d)

Eqs.(25a) and (25d) are the linearized Navier-Stokes and Fourier equations,
respectively. For simplicity, in what follows the prime over the excess ther-
modynamic pressure p′ is omitted.

2.2. Propagation in the circular tube

The solutions of the viscothermal fluid equations were given by Kirch-
hoff, for the case of axisymmetric wave propagation in a circular tube filled
with ideal gas, taking into account viscous losses and thermal exchanges [11].
Kirchhoff assumed that the solid walls would remain at ambient temperature
due to the large heat capacity and conduction coefficient of the solid com-
pared to the fluid. This means that the excess-temperature vanishes on the
solid walls. This boundary condition, well-verified in general, is used for
simplicity in the following as well.

Here, we derive the axisymmetric ‘Kirchhoff-Langevin’s’ solutions of the
above equations (25), more general than Kirchhoff’s as they are written for a
fluid having nonzero value of the second viscosity ζ, and, arbitrary equation
of state i.e. a coefficient β0 that differs from the ideal gas value 1/T0. The
reason to study only the axisymmetric solutions, is that we restrict in section
3 to consider the case where the wave motion is created by distributed source
terms representing longitudinal macroscopic wave variations, directed along
the tube axis x and invariant in the transverse direction.
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Following Rayleigh’s presentation of Kirchhoff’s theory [22], we first sub-
stitute the state equation (25c) in Fourier’s equation (25d) and use the ther-
modynamic identity (11) and definition (24) to obtain the following alterna-
tive form of (25d)

∂τ

∂t
=

γ − 1

β0

∂b

∂t
+

κ

ρ0cv
∇

2τ (26)

Using the variable

τ ′ =
β0τ

γ − 1
(27)

Eqs.(25c) and (26) are simplified and become

p

ρ0
= c2i b+ (c2a − c2i )τ

′ (28)

and

∂τ ′

∂t
=

∂b

∂t
+

κ

ρ0cv
∇

2τ ′ (29)

Then, assuming that the variables v, b, p, τ ′, are varying with time as e−iωt,
Eqs.(25) yield

−ρ0iωv = −∇p+ η∇2v + (ζ +
η

3
)iω∇b (30a)

−iωb+∇ · v = 0 (30b)
p

ρ0
= c2i b+ (c2a − c2i )τ

′ (30c)

−iωτ ′ = −iωb+
κ

ρ0cv
∇

2θ′ (30d)

Eliminating the pressure and condensation, give rise to the following
velocity-temperature equations

−iωv − η

ρ0
∇

2v = −∇X (31a)

X =

[

c2a −
η
3
+ ζ

ρ0
iω

]

τ ′ +
κ

ρ0cviω

[

c2i −
η
3
+ ζ

ρ0
iω

]

∇
2τ ′ (31b)

∇ · v − iωτ ′ − κ

ρ0cv
∇

2τ ′ = 0 (31c)
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Elimination of the velocity by taking the divergence of (31a) and using
Eq.(30b) results in the temperature equation

ω2τ ′ +

[

c2a − iω

(

κ

ρ0cv
+

4η
3
+ ζ

ρ0

)]

∇
2τ ′

+
κ

ρ0cviω

[

c2i − iω
4η
3
+ ζ

ρ0

]

∇
2
∇

2τ ′ = 0 (32)

Let λ1 and λ2 be the two, small and large, solutions of the associated
Kirchhoff-Langevin’s characteristic equation

ω2+

[

c2a − iω

(

κ

ρ0cv
+

4η
3
+ ζ

ρ0

)]

λ+
κ

ρ0cviω

[

c2i − iω
4η
3
+ ζ

ρ0

]

λ2 = 0 (33)

The small solution – mainly real – describes propagating acoustic waves with
small bulk absorption, the large solution – purely imaginary – highly damped
diffusive entropic waves.

The field τ ′ solution to (32) will be in the form

τ ′ = A1ϕ1 + A2ϕ2 (34)

with functions ϕ1 and ϕ1 verifying

∇
2ϕ1 = λ1ϕ1, ∇

2ϕ2 = λ2ϕ2 (35)

The velocity v will write

v = v′ +B1∇ϕ1 +B2∇ϕ2 (36)

with v′ the vortical part, such that

∇
2v′ =

−iωρ0
η

v′, ∇ · v′ = 0 (37)

The relation between coefficients B and A follows from (31c)

B1,2 =

(

κ

ρ0cv
+

iω

λ1,2

)

A1,2 (38)
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In summary, the viscothermal fields are generally decomposed as

v = v′ +

(

κ

ρ0cv
+

iω

λ1

)

A1∇ϕ1 +

(

κ

ρ0cv
+

iω

λ2

)

A2∇ϕ2 (39a)

b =

(

1 +
κ

ρ0cviω
λ1

)

A1ϕ1 +

(

1 +
κ

ρ0cviω
λ2

)

A2ϕ2 (39b)

p

ρ0
=

(

c2a + c2i
κ

ρ0cviω
λ1

)

A1ϕ1 +

(

c2a + c2i
κ

ρ0cviω
λ2

)

A2ϕ2 (39c)

τ ′ = A1ϕ1 + A2ϕ2 (39d)

Concerning the application to axisymmetric fields propagating in the
right-going x direction in a tube of circular cross-section, we wish to deter-
mine normal modes as functions of x, proportional to e+iklx, where the kl’s,
ℑ(kl) > 0, l = 1, 2, ..., are complex constants to be specified. In what fol-
lows, for convenience, the index l labelling the different axisymmetric modes
solutions will be omitted.

For these modes, the operators ∇ and ∇
2 can be replaced by ikex+er

∂
∂r

(er representing the radial unit vector) and ∂2

∂r2
+ ∂

r∂r
− k2, and the differ-

ent fields a(t,x) can be replaced by their amplitudes a such that a(t,x) =
a(r)e−iωt+ikx. By elementary calculations there follows that the correspond-
ing ϕ1 and ϕ2 will be described by Bessel functions

ϕ1,2 = J0

(

r
√

−λ1,2 − k2
)

(40)

Writing the vortical velocity v′ in the form v′ = u′ex + q′er, with axial and
radial amplitudes u′ and q′ independent of azimuthal angle ϑ, it is easy to
see that Eqs.(37) imply u′ is the solution to

(

∂2

∂r2
+

∂

r∂r

)

u′ =

(−iω

ν
+ k2

)

u′ (41)

where ν ≡ η/ρ0 is the kinematic viscosity and q′ is determined by the relation

q′ =
−ik

−iω
ν

+ k2

∂u′

∂r
(42)

As a result, u′ and q′ will be written as

u′ = Aϕ, q′ = A
−ik

−iω
ν

+ k2

∂ϕ

∂r
(43)
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where ϕ is the Bessel function

ϕ = J0

(

r

√

iω

ν
− k2

)

(44)

Finally, writing the total velocity in the form of v = uex + qer, u and q
are obtained as

u = Aϕ+ ik

(

κ

ρ0cv
+

iω

λ1

)

A1ϕ1 + ik

(

κ

ρ0cv
+

iω

λ2

)

A2ϕ2 (45a)

q = A
−ik

−iω
ν

+ k2

∂ϕ

∂r
+

(

κ

ρ0cv
+

iω

λ1

)

A1
∂ϕ1

∂r
+

(

κ

ρ0cv
+

iω

λ2

)

A2
∂ϕ2

∂r
(45b)

The tube being assumed sufficiently inert thermally to remain at ambi-
ent temperature, and no temperature-jump occurring on the tube wall, the
excess temperature vanishes on the latter. On the other hand, no-slip con-
dition is applied. Thus, (45a-45b) and (39d) vanish at rw = R. These three
homogeneous equations have non vanishing solutions only if their determi-
nant is zero, which consequently yields the following Kirchhoff’s dispersion
equation, hereafter referred to as Kirchhoff-Langevin’s dispersion equation
to remind its validity for a general viscothermal fluid

(

κ

ρ0cv
+

iω

λ1

)

1

ϕ1w

∂ϕ1

∂rw
−
(

κ

ρ0cv
+

iω

λ2

)

1

ϕ2w

∂ϕ2

∂rw

− k2

−iω
ν

+ k2

(

iω

λ1

− iω

λ2

)

1

ϕw

∂ϕ

∂rw
= 0 (46)

The index w indicates that the functions and derivatives are evaluated at the
tube wall rw = R. Kirchhoff-Langevin’s dispersion equation (46) has a series
of discrete complex solutions kl, ℑkl > 0, l = 1, 2, ..., which can be sorted
by convention in ascending order according to the values of ℑkl: ℑk1 < ℑk2
< ... . In order to determine the solutions kl, the Newton-Raphson root-
finding method can be used. In the lossless limit η, ζ, κ → 0, (46) simplifies

and tends to the equation J1

(

R
√

ω2

c2a
− k2

)

= 0, yielding the following k0l

starting values, k2
0l =

ω2

c2a
− x2

l

R2 , where xl ≥ 0 are the successive zeros of the

function J1(x). As J1(0) = 0, i.e. x1 = 0, the first solution is k01 = ω/ca,
which corresponds to the plane wave mode. At a given frequency, there are
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one (plane wave mode k01) or more real positive solutions describing right-
going propagating waves, and an infinite discrete set of purely imaginary
solutions with ℑ(k0l) > 0, describing evanescent waves which attenuate as
e−ℑk0lx along positive x-axis.

In general, a few Newton-Raphson iterations suffice to make these starting
lossless purely real or purely imaginary solutions k0l (to which may be added
either a small imaginary or small real part), converge towards the complete
complex solutions kl. The solution with positive imaginary part is retained,
as we consider waves propagating in the direction +x, which can be created
by a source placed on the left. The condition that the imaginary part is
positive, automatically fixes the sign of the real part.

We note that, for a given solution l and on account of the two independent
conditions expressing the vanishing of τ ′ and u at the tube wall rw = R

A1ϕ1w + A2ϕ2w = 0 (47a)

Aϕw + ik

(

κ

ρ0cv
+

iω

λ1

)

A1ϕ1w + ik

(

κ

ρ0cv
+

iω

λ2

)

A2ϕ2w = 0 (47b)

the solution may be fixed in terms of only one arbitrary complex amplitude
(related to the arbitrary choice of the sound pressure level and phase). We
denote it A and write

A = Aik

(

iω

λ1

− iω

λ2

)

ϕ1wϕ2w, A1 = −Aϕwϕ2w, A2 = Aϕwϕ1w (48)
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In summary, with this notation the different fields write as follows

u

ikA =

(

iω

λ1

− iω

λ2

)

ϕ1wϕ2wϕ−
(

κ

ρ0cv
+

iω

λ1

)

ϕwϕ2wϕ1

+

(

κ

ρ0cv
+

iω

λ2

)

ϕwϕ1wϕ2 (49a)

q

A =

(

iω

λ1

− iω

λ2

)

ϕ1wϕ2w
k2

−iω
ν

+ k2

∂ϕ

∂r
−
(

κ

ρ0cv
+

iω

λ1

)

ϕwϕ2w
∂ϕ1

∂r

+

(

κ

ρ0cv
+

iω

λ2

)

ϕwϕ1w
∂ϕ2

∂r
(49b)

b

A = −
(

1 +
κ

ρ0cviω
λ1

)

ϕwϕ2wϕ1 +

(

1 +
κ

ρ0cviω
λ2

)

ϕwϕ1wϕ2 (49c)

p

−Aρ0
=

(

c2a + c2i
κ

ρ0cviω
λ1

)

ϕwϕ2wϕ1

+

(

c2a + c2i
κ

ρ0cviω
λ2

)

ϕwϕ1wϕ2 (49d)

τ ′

A = −ϕwϕ2wϕ1 + ϕwϕ1wϕ2 (49e)

Definite and different field patterns are obtained by substituting for the
wavenumber k in the above expressions, one of its possible values kl. Suitable
averaging of these fields patterns will then yield the quantities making sense
in the forthcoming macroscopic theory, and in particular, the wavenumbers
kl and impedances Zl.

Let us denote by a bracket 〈f〉 the average of a field f , performed over
the cross-section of the tube

〈f〉 = 1

πR2

∫ R

0

dr

∫ 2π

0

rdϑf (50)

For later use, a macroscopic mean pressure H is introduced through setting
up the general definition

〈pv〉 = H〈v〉 (51)

Thermodynamic-relating reasons to define in such a way the macroscopic
pressure were given in [1] with an ensemble-averaging conception. As ex-
plained in the next section, for the single tube considered here, this average
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is interpreted as a cross-section average. The notation H comes from the
affinity of this concept with that of Maxwell’s magnetic density field H . In
accordance with this general definition, a characteristic complex impedance
factor Zl can be defined for a given mode, by setting

H = Zl〈u〉, i.e. Zl =
〈pu〉
〈u〉2 (52)

where the averages can be computed analytically knowing the wavenumber
kl.

By knowing the complex wavenumber kl(ω) and impedance Zl(ω) for a
given radial mode solution l, an equivalent-fluid complex density ρl(ω) and
bulk modulus χ−1

l (ω) might be defined through setting relations having the

usual form (see e.g. [14]) kl = ω/cl = ω
√
ρlχl and Zl = ρlcl =

√

ρlχ
−1
l , i.e.

ρl(ω) =
kl
ω
Zl =

kl
ω

〈pu〉
〈u〉2 , χ−1

l (ω) =
ω

kl
Zl =

ω

kl

〈pu〉
〈u〉2 (53)

For a given mode l propagating in the +x direction, macroscopic equivalent-
fluid equations of motion of the following form

−ρl(ω)iω〈u〉 = −iklH, −χl(ω)iωH = −ikl〈u〉 (54)

are then satisfied.
There are known formulae giving the cross-section average 〈 〉 of Bessel

functions ϕ, ϕ1 and ϕ2 and their products, in terms of other Bessel func-
tions. Thus, the above Kirchhoff-Langevin’s impedance factors Zl(ω) (52)
and densities and bulk modulii ρl(ω) and χ−1

l (ω) (53) are the expression of
closed-form functions F (ω, kl), directly computable once kl is evaluated.

3. General nonlocal theory applied to sound propagation in a tube

with circular cross-section

The general nonlocal theory of sound propagation presented in [1] is in-
tended to be exact – within the considered Navier-Stokes-Fourier physics
– for the description of sound propagation in rigid-framed fluid-saturated
porous materials whose macroscopic properties are defined in an ensemble-
averaged sense. To justify the fact that this theory also exactly describes the
cross-section-averaged propagation in one single tube, let us imagine that we
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are given an ensemble Ω of samples ω, each of which is obtained by random
translation in the axial directions, of one reference sample ω0 permeated by
identical parallel pores of radius R directed in the axial direction x. Then,
apart from a constant porosity normalization factor of which we can make
abstraction, the ensemble-average operation in the sense of [1], over the space
Ω, becomes the above cross-section average 〈 〉, in a single tube. In fact, the
fields relating to the harmonic action-response problems considered in [1]
have the form a(ω, k, r)e−iωt+ikx, with amplitudes a(ω, k, r) independent of
x, and thereby, needed to be averaged only over a cross-section.

3.1. Linearized macroscopic equations in Maxwellian nonlocal theory

Considering, as explained above, that the operation 〈 〉 is the cross-section
average in one single tube, and introducing the macroscopic variables V =
V · ex = 〈u〉 and B = 〈b〉, where u is the axial velocity, the nonlocal theory
[1] predicts that the wave propagation of the averaged quantities V and B
is described by the following field equations (see Eqs.(60), (61), (64a) and
(64b) in [1])

∂B

∂t
+

∂V

∂x
= 0 (55)

∂D

∂t
= −∂H

∂x
(56)

and constitutive relations

D(t, x) =

∫ t

−∞

dt′
∫

dx′ρ(t− t′, x− x′)V (t′, x′) (57)

H(t, x) =

∫ t

−∞

dt′
∫

dx′χ−1(t− t′, x− x′)B(t′, x′) (58)

where ρ(t, x) and χ−1(t, x) are constitutive kernel functions independent of
temporal and spatial variations of the fields. They are determined by the
fluid constants and the microgeometry of the porous medium, i.e. here, the
tube radius R. The integrations over t′ determine the so-called temporal
dispersion effects and the integrations over x′ determine the so-called spatial
dispersion effects [23, 24]. The upscaling recipes [1] lead to specify the Fourier
coefficients ρ(ω, k) and χ−1(ω, k) of these constitutive functions, and will be
described in the next two sections.
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3.2. Determination of the nonlocal density ρ(ω, k)

To compute ρ(ω, k), we first consider the response of the fluid subjected
to the action of an external driving bulk force f (per unit volume), which de-
rives from a fictitious harmonic pressure waveform inserted in Navier-Stokes
equation (see section 4 in [1]). Thus we consider solving the action-response
problem

∂v

∂t
+

1

ρ0
∇p = ν∇2v − (η

3
+ ζ)

ρ0
∇

∂b

∂t
+

1

ρ0
f (59a)

∂b

∂t
+∇ · v = 0 (59b)

γχ0p = b+ β0τ (59c)

∂τ

∂t
=

β0T0

ρ0cP

∂p

∂t
+

κ

ρ0cP
∇

2τ (59d)

for r < R, and

v = 0 (60a)

τ = 0 (60b)

at r = R, with driving force given by

f = −∇P = −ikexP0e
−iωt+ikx (61)

With calculations entirely similar to those which have been done before,
Eqs.(31) become

−iωv − ν∇2v = −∇X +
1

ρ0
f (62a)

X =

[

c2a −
η
3
+ ζ

ρ0
iω

]

τ ′ +
κ

ρ0cviω

[

c2i −
η
3
+ ζ

ρ0
iω

]

∇
2τ ′ (62b)

∇ · v − iωτ ′ − κ

ρ0cv
∇

2τ ′ = 0 (62c)

and the temperature Eq.(32) becomes

− ω2τ ′ −
[

c2a − iω

(

κ

ρ0cv
+

4η
3
− ζ

ρ0

)]

∇
2τ ′

− κ

ρ0cviω

[

c2i − iω
4η
3
+ ζ

ρ0

]

∇
2
∇

2τ ′ +
k2

ρ0
P = 0 (63)
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A particular solution of the above equation is

τ ′p = C
k2

ρ0
P (64)

with

C =

{

ω2 −
[

c2a − iω

(

κ

ρ0cv
+

4η
3
+ ζ

ρ0

)]

k2 +
κ

ρ0cviω

[

c2i − iω
4η
3
+ ζ

ρ0

]

k4

}−1

(65)

The complete solution of Eq.(63) is this particular solution added to the
general solution (34) of the homogeneous equation (32)

τ ′ = τ ′0 + τ ′p = A1ϕ1 + A2ϕ2 + C
k2

ρ0
P (66)

Similarly, the complete expression of the velocity will be

v = uex + qer = v0 + vp (67)

where v0 is written as in (39a), and vp = upex is the particular solution
with up determined by (62c), and τ ′ = τ ′p, i.e., ikup = (iω − κk2/ρ0cv)τ

′

p.
Only the x component u will be required to compute ρ(ω, k). However, the
radial component q needs also to be written as it is involved in the boundary
conditions, by means of which the amplitudes A,A1, A2 are finally fixed.
Both components write accordingly

u = Aϕ+ ik

(

κ

ρ0cv
+

iω

λ1

)

A1ϕ1 + ik

(

κ

ρ0cv
+

iω

λ2

)

A2ϕ2

+

(

−iω +
κ

ρ0cv
k2

)

C
ik

ρ0
P (68a)

q = A
−ik

−iω
ν

+ k2

∂ϕ

∂r
+

(

κ

ρ0cv
+

iω

λ1

)

A1
∂ϕ1

∂r
+

(

κ

ρ0cv
+

iω

λ2

)

A2
∂ϕ2

∂r
(68b)

Now, we seek the excess pressure solution as the last required quantity. It
has the complete form

p = p0 + pp (69)
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where p0 is given by (39c), and the particular solution pp is determined by
(25c) with τ ′ = τ ′p, b = bp, and iωbp = ikup. Thus

p

ρ0
=

(

c2a + c2i
κ

ρ0cviω
λ1

)

A1ϕ1 +

(

c2a + c2i
κ

ρ0cviω
λ2

)

A2ϕ2

+

(

c2a − c2i
κ

ρ0cviω
k2

)

C
k2

ρ0
P (70)

The boundary conditions imply that the three quantities, excess tempera-
ture and the two components of velocity (66), (68a) and (68b), should vanish
at the tube wall r = rw = R. This yields a linear system whose solution
uniquely determines the three response amplitudes A, A1 and A2, in terms
of the arbitrary driving pressure amplitude P0. Knowing the response fields
(68a) and (70) as functions of ω, k and r, is all we need to compute the den-
sity ρ(ω, k). According to the conjectured upscaling procedure we assume
that in the action-response problem (59), the role of the macroscopic field H
in Eqs.(55-58) is played by the field P + P where P is the macroscopic part
of the response pressure field p, which is defined by (see section 4 in [1])

〈pv〉 = P〈v〉, i.e. 〈pu〉 = P〈u〉 (71)

This assumption leads to Eqs.(68) and (69) in [1], which give here

ρ(ω, k) =
k(P+ P)

ω〈u〉 (72)

A direct verification of this conjectured upscaling procedure would be
to see whether or not, when the amplitudes A and P are adjusted so that
the gradient −∇H = −iklexH in section 2.2 is the same as the gradient
−∇(P+ P) = −iklex(P+ P) in this section, the averages of the velocities v
appearing respectively in Eqs.(25) and (59) turn out to be exactly the same.
This macroscopic coincidence of the two mean velocities obtained in two
different problems, is highly nontrivial even in the present simplest case of
cylindrical duct geometry. In principle, the two problems have fundamentally
different nature; one is an eigenvalue (source-free) problem and the other
is an action-response (source-driven) problem. In the two problems, the
corresponding sets of microscopic field patterns are not the same; but after
averaging, the two mean velocities divided by the corresponding two gradients
are conjectured to be exactly the same.
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A comparison between the first Eq.(54) and (72) shows that this matching
is expressed in explicit equivalent form by the following equation

ρl(ω) = ρ(ω, kl) (73)

It is in this last convenient form, that the validity of the upscaling procedure
for ρ(ω, k) will be directly checked. We may name ‘Maxwell’s’ the nonlocal
density function (72). There are known formulae giving the average of Bessel
functions ϕ, ϕ1 and ϕ2 and their products, in terms of other Bessel functions,
which allow to write the nonlocal density function (72) in closed form. This
function is a complicated ratio of sums containing many terms, each of which
involving the product of 6 Bessel functions, multiplied by factors involving ω,
k2, λ1, λ2. To save time, instead of seeking its most compact final expression,
we have made a direct Matlab programming of the function ρ(ω, k), with ω
and k as input arguments.

3.3. Determination of the nonlocal bulk modulus χ−1(ω, k)

The same type of calculations as seen in the above to obtain ρ(ω, k),
can be performed to compute χ−1(ω, k). Here, we need first to consider
the response of the fluid subjected to the action of an external driving bulk
rate of heat supply Q̇ (per unit volume and unit time), which derives from
a fictitious harmonic pressure waveform inserted in Fourier equation (see
section 4 in [1]). Thus we consider solving the action-response problem

∂v

∂t
+

1

ρ0
∇p = ν∇2v − (η

3
+ ζ)

ρ0
∇

∂b

∂t
(74a)

∂b

∂t
+∇ · v = 0 (74b)

γχ0p = b+ β0τ (74c)

∂τ

∂t
=

β0T0

ρ0cp

∂p

∂t
+

κ

ρ0cp
∇

2τ +
1

ρ0cp
Q̇ (74d)

for r < R, and

v = 0 (75a)

τ = 0 (75b)

at r = R, with the driving rate of heat supply given by

Q̇ = β0T0
∂P
∂t

= −iωβ0T0P0e
−iωt+ikx (76)
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Through similar calculations as seen before, Eqs.(31) now become

−iωv − ν∇2v = −∇X (77a)

X =

[

c2a −
η
3
+ ζ

ρ0
iω

]

τ ′ +
κ

ρ0cviω

[

c2i −
η
3
+ ζ

ρ0
iω

]

∇
2τ ′ (77b)

∇ · v − iωτ ′ − κ

ρ0cv
∇

2τ ′ = γχ0
∂P
∂t

(77c)

and the temperature Eq.(32) becomes

− ω2τ ′ −
[

c2a − iω

(

κ

ρ0cv
+

4η
3
− ζ

ρ0

)]

∇
2τ ′

− κ

ρ0cviω

[

c2i − iω
4η
3
+ ζ

ρ0

]

∇
2
∇

2τ ′ − (iω − νk2)γχ0iωP = 0 (78)

A particular solution to the above equation will be

τ ′p = −C(iω − νk2)γχ0iωP (79)

with the same constant C as before. The complete excess temperature so-
lution is this particular solution added to the general solution (34) of the
homogeneous equation (32):

τ ′ = τ ′0 + τ ′p = A1ϕ1 + A2ϕ2 − C(iω − νk2)γχ0iωP (80)

Likewise, the complete velocity solution is the form

v = uex + qer = v0 + vp (81)

where v0 writes as in (40), and vp = upex is the particular solution with up

determined by (77c) and τ ′ = τ ′p, i.e., ikup = (iω − κk2/ρ0cv)τ
′

p − iωγχ0P .
We obtain for the two components of the velocity

u = Aϕ+ ik

(

κ

ρ0cv
+

iω

λ1

)

A1ϕ1 + ik

(

κ

ρ0cv
+

iω

λ2

)

A2ϕ2

+

[(

−iω +
κ

ρ0cv
k2

)

C(iω − νk2)− 1

]

γχ0
ω

k
P (82a)

q = A
−ik

−iω
ν

+ k2

∂ϕ

∂r
+

(

κ

ρ0cv
+

iω

λ1

)

A1
∂ϕ1

∂r
+

(

κ

ρ0cv
+

iω

λ2

)

A2
∂ϕ2

∂r
(82b)
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The complete pressure solution, similarly, is written as

p = p0 + pp (83)

where p0 writes as in (39c) and pp is determined by (25c) with τ ′ = τ ′p and
b = bp, iωbp = ikup. We will have

p

ρ0
=

(

c2a + c2i
κ

ρ0cviω
λ1

)

A1ϕ1 +

(

c2a + c2i
κ

ρ0cviω
λ2

)

A2ϕ2

− C(iω − νk2)iω

(

c2a − c2i
κ

ρ0cviω
k2

)

γχ0P − c2i γχ0P (84)

The complete condensation solution will now also be required. It may be
written from (30c) and the expressions (80) and (84), which yield

b =

(

1 +
κ

ρ0cviω
λ1

)

A1ϕ1 +

(

1 +
κ

ρ0cviω
λ2

)

A2ϕ2

− C(iω − νk2)iω

(

1− κ

ρ0cviω
k2

)

γχ0P − γχ0P (85)

As before, the boundary conditions imply that the three quantities, ex-
cess temperature and the two components of velocity (80), (82a) and (82b),
should vanish at the tube wall r = rw = R. This yields a linear system whose
solution uniquely determines the three response amplitudes A, A1 and A2,
in terms of the arbitrary driving amplitude P0. Knowing the response fields
(82a), (84) and (85) as functions of ω, k and r, is what we need to compute
the bulk modulus χ−1(ω, k). According to the conjectured upscaling proce-
dure [1] we assume that in the action-response problem (74), the role of the
macroscopic field H in Eqs.(55-58) is played by the field P+P where P is the
macroscopic part of the response pressure field p, which is defined by

〈pv〉 = P〈v〉, i.e. 〈pu〉 = P〈u〉 (86)

and, at the same time, the role of the macroscopic field B is played by the
averaged field 〈b+ γχ0P〉.

This leads to Eqs.(68) and (73) in [1], which write here

χ−1(ω, k) =
P(ω, k) + P

〈b(ω, k, r)〉+ γχ0P
(87)
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A direct verification of this, would be to see whether or not, when the
amplitudes A and P are adjusted so that the amplitude H in section 2.2 is
the same as the amplitude P + P in this section, then, the average of the
condensation b appearing in Eqs.(25) and the average of the condensation
b + γχ0P , where b is the quantity appearing in (74), turn out to be also
exactly the same. Again, this macroscopic accordance is by no means trivial,
even in the present simplest case of cylindrical duct geometry.

A comparison between the second Eq.(54) and (87) shows that this match-
ing is equivalently expressed by the following equation

χ−1
l (ω) = χ−1(ω, kl) (88)

It is in this last convenient form,that the validity of the upscaling procedure
for χ−1(ω, k) will be directly checked. As for the nonlocal density, we may
name ‘Maxwell’s’ the nonlocal bulk modulus function (87). As before, this
Maxwell’s nonlocal bulk modulus is known in closed form as a complicated
ratio of sums containing many terms, each of which involving the product of
6 Bessels. Again to save time, a direct programming of the function χ(ω, k)
was made, with ω and k as input arguments.

3.4. Dispersion equation, wavenumbers, and impedances

The above nonlocal theory predicts that, at a given frequency, normal
mode solutions with averaged fields varying as e−iωt+ikx will exist, for wavenum-
ber k solution to the dispersion equation

ρ(ω, k)χ(ω, k)ω2 = k2 (89)

Indeed, this equation comes from Eqs.(55-58), making use of macroscopic
fields varying like e−iωt+ikx. Hereafter, we refer to this dispersion equation as
to the nonlocal Maxwell’s dispersion equation.

For the proposed nonlocal theory to be correct, Maxwell’s dispersion
equation (89) must be mathematically equivalent to the original Kirchhoff-
Langevin’s dispersion equation (46). In particular, both equations must
have the same set of solutions kl at given ω. In addition, the macroscopic
impedances of the corresponding modes must also be the same. Recall that
for any field freely propagating in the tube, the nonlocal theory definition
of the macroscopic field H(t, x) originates from the fundamental ‘Umov-
Poynting’s’ identification (Eq.(65) in [1])

〈p(t, x, r)u(t, x, r)〉 = H(t, x)〈u(t, x, r)〉 (90)
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Since we have used the same expression to define ‘Kirchhoff-Langevin’s’
macroscopic impedance factors Zl (52), Kirchhoff-Langevin’s and Maxwell’s
wavenumbers and macroscopic impedances match automaticaly, provided the
following aforementioned relations are satisfied

ρl(ω) =
kl
ω
Zl = ρ(ω, kl), χ−1

l (ω) =
ω

kl
Zl = χ−1(ω, kl) (91)

The calculations to be performed in order to show the mathematical
equivalence between (46) and (89) appear very tedious, because of the large
number of terms to be collected and rearranged in order to express the mean
term 〈pu〉. Moreover, it is even not evident that the mathematical iden-
tity between the two forms of the dispersion equation would directly appear,
once the calculations are performed. In what follows, in order to check this
equivalence and thus the validity of the theory, the easier way is to make
a direct numerical check of the relations such as (91). The finite precision
of the Matlab computations would limit the number of modes that can be
valuably checked; the results to be presented next, however, clearly validate
the theory.

4. A check on the nonlocal theory

We describe in what follows three significant different cases representative
of the three main types of duct wave frequency regimes referred to as ‘narrow’
tube, ‘wide’ tube, and ‘very wide’ tube, in acoustic literature [25].

In the section 4.1 we consider the case of low frequencies or ‘narrow’
tubes. In this low frequency range, the viscous skin depth δ = (2ν/ω)1/2

and thermal skin depth – having the same order for air – are greater than
R. Calculations are performed at frequency f = 100Hz for a tube of radius
R = 10−4m. This is the narrow tube configuration considered in [26]. The
value R = 10−4m is typical for the pore size dimensions found in ordinary
porous materials used in noise control applications [15] – such as pore-size
parameter Λ of dynamically connected pores in [4]. With a viscous skin
depth equal to two times the radius, the fundamental plane-wave like mode
is mostly diffusive and the higher order modes are highly attenuated.

Certainly due to insufficient accuracy of Matlab Bessel’s functions, only
the first mode appears to be numerically very well characterized. However,
it provides a first check of the theory: Kirchhoff-Langevin’s and Maxwell’s
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Table 1: Fluid properties used in all computations.

ρ0 T0 c0 η ζ κ χ0 cp γ
(kg/m3) (K) (m/s) (kg ms−1) (kg ms−1) (Wm−1K−1) (Pa−1) (J kg−1K−1)

1.205 293.5 340.1391 1.8369× 10−5 0.6 η 2.57× 10−2 7.173× 10−6 997.5422 1.4

results for this mode are found to be identically the same, up to the numerical
accuracy.

In the section 4.2 we consider the case of high frequencies or ‘wide’ tubes.
In this frequency range, the viscous skin depth and thermal skin depth be-
come significantly smaller than R. The calculations are done at frequency
f = 10kHz for a tube of radius R = 10−3m. This is the ‘wide’ tube configura-
tion considered in [26]. With the radius now being more than 50 times the vis-
cous skin depth, the fundamental plane-wave-like mode is a well-propagating
mode, whose macroscopic characteristics may be followed with great numer-
ical accuracy by the Matlab nonlocal theory computations. Several higher
order modes are also successfully described, whether they are below or above
the cutoff frequency. Again, the results provide unequivocal validation of the
proposed nonlocal theory.

Finally, in subsection 4.3, taking a tube radius of 1cm, and a frequency
f = 500kHz, we consider the case of ‘very wide’ tubes. There, the funda-
mental least attenuated mode is no longer plane-like as predicted by Zwikker
and Kosten theory. Sound energy tends to concentrate near the walls. Once
again Kirchhoff-Langevin’s results are exactly reproduced by the nonlocal
Maxwellian theory and provide unequivocal remarkable validation of the the-
ory. In all foregoing calculations the parameters of the air are set to the values
shown in Table 1.

Given the radius R and the frequency f , we proceed as follows to eval-
uate different quantities. To evaluate the Zwikker and Kosten density and
bulk modulus ρZ and χ−1

Z , and then the corresponding wavenumber and
impedance kZ and ZZ , the formulae reported in Appendix A are used.

To evaluate the same set of quantities for a given mode using Kirchhoff-
Langevin’s theory – not necessarily the least-attenuated mode considered
in Zwikker and Kosten’s theory – we have first to determine the Kirchhoff-
Langevin mode wavenumber kK by solving, via a Newton-Raphson scheme,
the Kirchhoff-Langevin’s dispersion equation (46). In order to do this, we
dispose of the explicit analytical expression of the function F (ω, k). Thus
we also have an explicit analytical expression for its derivative with respect
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to k. Once a wavenumber k = kK solution to (46) is determined, the field
patterns in the Kirchhoff-Langevin’s source-free propagation problem can be
explicitly written. The impedance ZK can then be analytically computed by
using the explicit expression (52). The density ρK and bulk modulus χ−1

K are
obtained using the relations (53).

In order to evaluate anew a complete set of quantities, for a given mode,
using the nonlocal Maxwellian theory, we now have first to determine the
Maxwell mode wavenumber kM by solving the Maxwell’s dispersion equation
(89). Here in the Newton scheme, to save time we compute numerically the
k derivative of function F (ω, k). This is carefully done by evaluating the
function F at two close values of the wavenumber k(1± ǫd/2 eiθ), with ǫd a
very small and adjustable parameter (e.g. ǫd = 10−9), and then averaging
over several random orientations θ between 0 and 2π. The results which are
reported below are insensitive to the variation of ǫd and to the angles θ. Our
stopping condition, in the Newton scheme, is that the relative error between
two successive evaluations of kK or kM should be less than a very small fixed
value ǫs (e.g. ǫs = 10−12). The Newton scheme is more stable and converges
in fewer iterations for Kirchhoff-Langevin’s dispersion equation (46) than for
Maxwell’s dispersion equation (89). Once a mode wavenumber k = kM is
determined, the field patterns in the Maxwell’s source-driven action-response
problems, can be explicitly written. The Maxwell’s density ρM = ρ(ω, kM)
and bulk modulus χ−1

M = χ−1(ω, kM) can then be computed in analytical
way, using the explicit expressions (71) and (72), and (71) and (87). Then,
the impedance ZM is obtained using the general relation (5).

As the two wavenumbers kK and kM may not coincide exactly due to
the finite precision of calculations and especially, the small inaccuracies in
the Matlab computation of Bessel functions, all other quantities ‘K’ and
‘M ’ may also not coincide exactly; nevertheless, if the theory is correct,
we expect to see consistency between the different calculations, when no
numerical problems arise – what will be shown to be the case, below. The
precise matching of the values of densities and bulk modulii ρK , ρM , and
χ−1
K , χ−1

M , will express the coincidences (91).

4.1. Narrow tubes: R = 10−4m, f = 100Hz

For the least attenuated plane wave mode, the values obtained of the
wavenumbers, impedances, densities and bulk modulii are given in Tables
2-5.
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Table 2: Narrow tubes – least attenuated plane mode. Wavenumber.

kZ 7.01099685499484 + 6.61504658906530i
kK 7.01099585405403 + 6.61504764250774i
kM 7.01099585405408 + 6.61504764250779i
ℜ(∆k/k), ℑ(∆k/k) < 10−14

Table 3: Narrow tubes – least attenuated plane mode. Impedance.

ZZ 1.122582910810147× 103 + 1.037174340699598× 103i
ZK 1.122582790953336× 103 + 1.037174463077600× 103i
ZM 1.122582790953347× 103 + 1.037174463077563× 103i
ℜ(∆Z/Z), ℑ(∆Z/Z) < 10−14

Table 4: Narrow tubes – least attenuated plane mode. Density.

ρZ 1.60661929116825 + 23.39190009091327i
ρK 1.60661313808787 + 23.39190042443754i
ρM 1.60661313808843 + 23.39190042443734i
ℜ(∆ρ/ρ), ℑ(∆ρ/ρ) < 10−14

Table 5: Narrow tubes – least attenuated plane mode. Bulk modulus.

χ−1
Z 9.962016440824576× 104 − 1.043527914142315× 103i

χ−1
K 9.962016409534546× 104 − 1.043531769001552× 103i

χ−1
M 9.962016409534391× 104 − 1.043531769003666× 103i

ℜ(∆χ−1/χ−1), ℑ(∆χ−1/χ−1) < 10−14
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Table 6: Wide tubes – least attenuated plane mode. Wavenumber.

kZ 1.877218171102030× 102 + 3.047328259173055ei
kK 1.877217761268940× 102 + 3.050105788888088i
kM 1.877217761268940× 102 + 3.050105788888080i
ℜ(∆k/k),ℑ(∆k/k) < 10−17

Table 7: Wide tubes – least attenuated plane mode. Impedance.

ZZ 4.122429513133025× 102 + 2.490000257701453i
ZK 4.122428467151478× 102 + 2.490594992301288i
ZM 4.122428467151476× 102 + 2.490594992301310i
ℜ(∆Z/Z), ℑ(∆Z/Z) < 10−16

Zwikker and Kosten’s wavenumber differs from the exact wavenumber on
the 6th decimal. Kirchhoff-Langevin’s and Maxwell’s values of the wavenum-
ber are the same: the difference expresses on the 14th decimal, which is not
meaningful numerically. Kirchhoff-Langevin’s value kK is relatively insensi-
tive to the starting value. Convergence to the given solution is obtained by
starting from the lossless case solution k = ω/ca, the Zwikker-Kosten solu-
tion, or the value k = 6+ 2i taken in [26]. On the contrary, Maxwell’s value
kM is sensitive to the starting value. A meaningless unattenuated value kM
is found, when using as starting value the lossless-relating solution k = ω/ca
which is not reported here.

The errors ∆f/f indicate the relative differences computed between Maxwell’s
values and Kirchhoff-Langevin’s reference values. Their small magnitudes
show that the discrepancies are numerically insignificant. There is com-
plete matching between Kirchhoff-Langevin’s and Maxwell’s wavenumbers,
impedances, densities and bulk modulii, for the first least attenuated mode.
For the first higher order mode, the imaginary part of the wavenumber is
already in the order of 5.× 104i. This leads to a large imaginary part in the
complex arguments of the Bessel functions ϕ and ϕ1,2. The resulting loss of
precision prevents making precise checks with Matlab.

4.2. Wide tubes: R = 10−3m, f = 10kHz

For the least attenuated plane wave mode, the values obtained of the
wavenumbers, impedances, densities and bulk modulii are given in Tables
66–9.
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Table 8: Wide tubes – least attenuated plane mode. Density.

ρZ 1.23153152867920 + 0.02743301182273i
ρK 1.23153080833621 + 0.02745300551283i
ρM 1.23153080833621 + 0.02745300551283i
Re(∆ρ/ρ), (ℑ∆ρ/ρ) < 10−15

Table 9: Wide tubes – least attenuated plane mode. Bulk modulus.

χ−1
Z 1.379578791782648× 105 − 1.406078512972857× 103i

χ−1
K 1.379578235612869× 105 − 1.407920077798555× 103i

χ−1
M 1.379578235612869× 105 − 1.407920077798562× 103i

ℜ(∆χ−1/χ−1), ℑ(∆χ−1/χ−1) < 10−15

The deviations are not significant owing to the calculation precision. This
is again a clear validation of the nonlocal upscaling procedures. The cutoff
frequency of the first higher-order axisymmetric mode is a little above 10kHz.
While this mode is still very significantly attenuated, its macroscopic charac-
teristics k, Z, ρ and χ−1 shown in Tables 1010–13, are nevertheless once again
obtained with a precision showing the exactness of the upscaling performed
by the proposed nonlocal Maxwellian theory.

It may be noted that the negative real part of the bulk modulus is the
type of behavior described for metamaterials [10], the negative real part
of wavenumber also being present and associated with the phenomenon of
negative group velocity. Spatial nonlocality necessarily plays an essential
role in this metamaterial-type behavior. Without spatial nonlocality the
local Zwikker and Kosten description is obtained and no higher-order mode
exists.

4.3. Very wide tubes: R = 10−2m, f = 500kHz

In this new regime of wave propagation, the least attenuated mode is
no longer a plane mode. It tends to concentrate near the walls [25]. The

Table 10: Wide tubes – first higher-order axisymmetric mode. Wavenumber.

kK −4.306909087685141× 10 + 3.869321168683033× 103i
kM −4.306909087685137× 10 + 3.869321168683033× 103i
ℜ(∆k/k), ℑ(∆k/k) < 10−15
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Table 11: Wide tubes – first higher-order axisymmetric mode. Impedance.

ZK 1.776687018193479× 109 + 3.970076285107318× 107i
ZM 1.776687018142111× 109 + 3.970076267272126× 107i
ℜ(∆Z/Z), ℑ(∆Z/Z) < 10−16

Table 12: Wide tubes – first higher-order axisymmetric mode. Density.

ρK 3.662717005908636× 106 − 1.093850090017855× 108i
ρM 3.662716993171710× 106 − 1.093850089982904× 108i
ℜ(∆ρ/ρ), ℑ(∆ρ/ρ) < 10−10

obtained values of the wavenumbers, impedances, densities and bulk modulii
are indicated in Tables 14–17.

They show the exactness of the upscaling procedure in this regime, as well.
Since there are now considerable differences between Zwikker and Kosten’s
values and the exact ones, spatial nonlocality plays an essential role here
already for the least attenuated mode. Recall that the local Zwikker and
Kosten theory assimilates the field H with mean pressure 〈p〉 and the mean
pressure with the pressure itself, which is very nearly a cross-sectional con-
stant. But now, this is no longer the case. The pressure is no longer a
constant over the section, and thus, the local approach is largely in error.
The proposed theory, with its fundamental Umov-Poynting definition (1) of
the H field, properly takes into account the nonlocal behavior, and thus, all
different physical regimes of wave propagation.

5. Conclusion

The perfect matching between the macroscopic translation of the long-
known Kirchhoff-Langevin’s results and the results obtained on the basis of
the nonlocal macroscopic theory recently proposed in [1], provides a clear
validation of this theory, whose nonlocal-relating upscaling procedures are

Table 13: Wide tubes – first higher-order axisymmetric mode. Bulk modulus.

χ−1
K −3.235050540472611× 108 + 2.885427853699511× 1010i

χ−1
M −3.235050516110349× 108 + 2.885427853625859× 1010i

ℜ(∆χ−1/χ−1), ℑ(∆χ−1/χ−1) < 10−10
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Table 14: Very wide tubes – least attenuated mode. Wavenumber.

kZ 9.238319493530025× 103 + 2.120643432935189i
kK 9.230724176891270× 103 + 6.352252888390387i
kM 9.230724176891270× 103 + 6.352252888390393i
ℜ(∆k/k), ℑ(∆k/k) < 10−18

Table 15: Very wide tubes – least attenuated mode. Impedance.

ZZ 4.099012309061263× 102 + 3.362191197362033× 10−2i
ZK 2.443313123663708× 102 − 1.548257724791978× 103i
ZM 2.443313123674066× 102 − 1.548257724791642× 103i
ℜ(∆Z/Z), ℑ(∆Z/Z) < 10−12

Table 16: Very wide tubes – least attenuated mode. Density.

ρZ 1.20537538699515 + 0.00037556247686i
ρK 0.72103233188038− 4.54864444048231i
ρM 0.72103233188340− 4.54864444048128i
ℜ(∆ρ/ρ), ℑ(∆ρ/ρ) < 10−12

Table 17: Very wide tubes – least attenuated mode. Bulk modulus.

χ−1
Z 1.393914394285537× 105 − 2.056360890188126× 10i

χ−1
K 8.279327305799672× 104 − 5.269923491004282× 105i

χ−1
M 8.279327305835144× 104 − 5.269923491003189× 105i

ℜ(∆χ−1/χ−1), ℑ(∆χ−1/χ−1) < 10−12
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not based on conventional homogenization.
The important concept, which leads us in [1] to these exact new homoge-

nization upscaling procedures, is the ‘Umov-Poynting-Heaviside-Schoch’ phys-
ical concept of ‘acoustic part of energy current density’. Using an analogy
with electromagnetics, we had to identify exactly this acoustic part of the
energy current for wave propagation in the fluid, with the quantity s = pv,
where p is the thermodynamic pressure. This served in turn as a basis to
define a macroscopic pressure field in a fluid-saturated material, through the
macroscopic relation-definition 〈pv〉 = H〈v〉. This thermodynamic definition
appeared to be the key to make use of the solutions of two simple action-
response problems in the appropriate way, leading finally to the independent
computation of the two nonlocal acoustical susceptibilities ρ and χ. In forth-
coming papers it will be shown that the proposed nonlocal Maxwellian theory,
providing exact homogenization procedures, is valid also in the case of non-
trivial geometries, thus including metamaterials. Indeed, while in the present
case of cylindrical ducts, the inclusion of spatial dispersion effects leads only
to relatively marginal extensions of the local treatment, it will be seen that
in the case of nontrivial geometries, the inclusion of spatial dispertion plays
central role to describe the new metamaterial behaviors.

Appendix A. Zwikker and Kosten’s simplified local theory

The complete equations of the Navier-Stokes-Fourier linear wave propa-
gation problem in the circular tube are

ρ0
∂v

∂t
= −∇p+ η∇2v + (ζ +

η

3
)∇(∇ · v) (A.1a)

∂b

∂t
+∇ · v = 0 (A.1b)

γχ0p = b+ β0τ (A.1c)

ρ0cp
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ (A.1d)

for r < R, and

v = 0 (A.1e)

τ = 0 (A.1f)

at r = R. A simplified Zwikker and Kosten’s solution to these equations
can be found in a long-wavelength limit. The aim of Zwikker and Kosten’s
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theory is to find ρZ(ω) and χZ(ω), such that in harmonic regime

ρZ(ω)
∂V

∂t
= −∂P

∂x
(A.2a)

χZ(ω)
∂P

∂t
= −∂V

∂x
(A.2b)

where V and P are the cross-section averages of velocity and pressure.
Knowing ρZ(ω) and χZ(ω) would entirely specifies the tube propagation

characteristics. It would give the propagation constant

kZ = ω
√

ρZ(ω)χZ(ω) (A.3)

and the characteristic impedance of the progressive plane wave

ZZ =
√

ρZ(ω)χ
−1
Z (ω) (A.4)

where the index Z stands for ‘Zwikker and Kosten’.
We note first that, in addition to Eqs.(A.2), it must also be assumed

a relation between the cross-section average of excess temperature and the
pressure. This relation, between 〈τ〉 and 〈p〉, would play the role of (A.2a)
between V and P . Using the similarity between (A.1a) and (A.1d) we write
it

ρ′Z(ω)
∂〈τ〉
∂t

= β0T0
∂P

∂t
(A.5)

We note next, that, combining (A.1b) and (A.1c) and averaging over a cross–
section, a general relation between ∂P/∂t, ∂〈τ〉/∂t, and ∂V/∂x can be ob-
tained

γχ0
∂P

∂t
= −∂V

∂x
+ β0

∂〈τ〉
∂t

(A.6)

Thus, putting in this equation the relation (A.5) and using the general ther-
modynamic identity (11), it is easy to verify that, as soon as the functions
χZ and ρ′Z exist, they must be such that

χZ(ω) = χ0

[

γ − (γ − 1)
ρ0cp
ρ′Z(ω)

]

(A.7)
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Now we observe that the equations (A.2) have exactly the same form as
the Maxwellian equations (55-58) with, however, the crucial difference that
they are written excluding spatial dispersion:

∂B

∂t
+

∂V

∂x
= 0 (A.8a)

∂D

∂t
= −∂H

∂x
(A.8b)

D(t, x) =

∫ t

−∞

dt′ρZ(t− t′)V (t′, x) (A.8c)

H(t, x) =

∫ t

−∞

dt′χ−1
Z (t− t′)B(t′, x), H ≡ P (A.8d)

(without confusion, the previous ρZ(ω) and χ−1
Z (ω) are now the complex

Fourier amplitudes of the present real kernel functions ρZ(t) and χ−1
Z (t)).

We explain later on in conclusion, why, in this context, the field H coin-
cides with the mean pressure. For the moment, we note that Eqs.(A.2-A.8),
local in space, are incompatible with Eqs.(A.1). Indeed, as we have seen,
Eqs.(A.1) consistently lead to Maxwellian acoustic equations which are –
contrary to the above – nonlocal in space as well as in time.

Thus, what Zwikker and Kosten’s theory is doing to arrive at equations
having the local form (A.2), is not to solve the complete Eqs.(A.1), expressed
in the complete action-response problems (59-61) and (74-76), but, by intro-
ducing various simplifications and idealizations, to solve only some truncated
simplified versions of these equations.

The simplifications to be made will be justified to capture the character-
istics of the plane-wave component fields, in the limit where the wavelengths
are large compared to the duct transverse dimensions. It is only in this
limit that the functions ρZ and χ−1

Z of Zwikker and Kosten’s theory allow to
describe with high precision the propagation of the least-attenuated, plane
wave mode. The simplified versions of the equations, and action-response
problems determining ρZ and χ−1

Z , can be directly guessed on the basis that
they have to neglect spatial dispersion.

To compute the density we consider that, because the wavelengths are
very large compared to the duct transverse dimensions, the spatial variation
of the pressure gradient term in Eq.(A.1a) can be neglected for the purpose
of determining the fluid velocity pattern accross a section. We thus look at
the response of the fluid subjected to the action of an external driving force-
per-unit-volume f , which is, while harmonic in time, a pure spatial constant
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(in any real physical wave propagation problem, the temporal variation of
the pressure gradient would mean that this gradient is also, to some extent,
spatially variable). In this circumstance we have not only to replace the
driving f (61) by a spatial constant f 0e

−iωt, but also to drop the response
pressure gradient term in (59). Indeed, in the cylindrical duct geometry
and with constant driving force, no response pressure is generated and no
compression-dilatation of the fluid occurs. Thus we also have to drop the
two other fields b and τ . The resulting fictitious problem reads:

∂v

∂t
= ν∇2v +

1

ρ0
f (A.9a)

∇ · v = 0 (A.9b)

for r < R, with

v = 0 (A.10a)

at r = R, and driving force given by

f = −∇P = exf0e
−iωt (A.11)

The corresponding density ρZ(ω), such that

−iωρZ(ω)〈v〉 = f (A.12)

or, to compare with (72)

ρZ(ω) =
f0

−iω〈u0〉
(A.13)

is the wanted Zwikker and Kosten density. It is found by elementary calcu-
lations to be given by

1

ρZ(ω)
=

1

ρ0
[1− ξZ(ω)] (A.14)

where ξZ(ω) is the following Zwikker and Kosten’s relaxation function

ξZ(ω) =
2J1

(

( iω
ν
R2)1/2

)

( iω
ν
R2)1/2J0

(

( iω
ν
R2)1/2

) (A.15)

In a similar manner, to compute the compressibility, we now consider that
in the long-wavelength limit, the pressure driving term in Eq.(A.1d) may be
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viewed as a pure spatial constant for the purpose of determining the excess
temperature response pattern, across a section. Thus we consider that this
driving term acts as a spatial constant β0T0

∂p
∂t

≡ Q̇0e
−iωt with Q̇0 a constant.

The resulting fictitious heat conduction problem reads

∂τ

∂t
=

κ

ρ0cp
∇

2τ +
1

ρ0cp
Q̇ (A.16)

for r < R, and

τ = 0 (A.17)

at r = R, with

Q̇ = β0T0
∂P
∂t

= Q̇0e
−iωt (A.18)

The corresponding function ρ′Z(ω) such that

−iωρ′(ω)〈τ〉 = Q̇ (A.19)

is found by elementary calculations as

1

ρ′Z(ω)
=

1

ρ0cp
[1− ξZ(ω Pr)] (A.20)

where ξZ(ω) is the previous relaxation function (A.15) and Pr = ηcp/κ is the
Prandtl number. Finally, as ρ′Z is related to the compressibility χZ by the
relation (A.7), the end Zwikker and Kosten’s result for χZ(ω) is

χZ(ω) = χ0 [1 + (γ − 1)ξZ(ω Pr)] (A.21)

In conclusion we note that, within the simplifications made in Zwikker
and Kosten’s local theory, as the excess pressure gradient term in Eq.(A.1a) is
represented by the constant term f , and as the excess pressure time derivative
term in Eq.(A.1a) is represented by the constant term Q̇, the excess pressure
is replaced by a constant over the cross-section. Thus, when writing the
definition 〈up〉 = H〈u〉 of the H field, the pressure can be extracted from
the averaging symbol and it turns out that H = p, which also yields H = P
since the pressure is constant. We now see why, in the framework of Zwikker
and Kosten’s local theory, no distinction is to be made between the mean
pressure P and the effective macroscopic pressure H. This remarks extends
more generally to the case of the usual local description [3, Appendix A],
which generalizes Zwikker and Kosten’s local solution to the case of arbitrary
geometries.
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