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CONSISTENT EXPLICIT STAGGERED SCHEMES

FOR COMPRESSIBLE FLOWS

PART II: THE EULER EQUATIONS.

R. HERBIN ∗, J.-C. LATCHÉ † , AND TT. NGUYEN ‡

May 7, 2013

Abstract. In this paper, we build and analyze the stability and consistency of an explicit scheme
for the Euler equations. This scheme is based on staggered space discretizations, with an upwinding
performed with respect to the material velocity only. The pressure gradient is defined as the transpose
of the natural velocity divergence, and is thus centered. The energy equation which is solved is the
internal energy balance, which offers two main advantages: first, we avoid the space discretization of
the total energy, the expression of which involves cell-centered and face-centered variables; second, the
discretization ensures by construction the positivity of the internal energy, under a CFL condition.
However, since this scheme does not use the original (total) energy conservative equation, in order to
obtain correct weak solutions (in particular, with shocks satisfying the Rankine-Hugoniot conditions),
we need to introduce corrective terms in the internal energy balance. These corrective terms are
found by deriving a discrete kinetic energy balance, observing that this relation contains residual
terms which do not tend to zero (at least, under reasonable stability assumptions) and, finally,
compensating them in the discrete internal energy balance. It is then shown in the 1D case, that,
if the scheme converges, the limit is indeed a weak solution. Finally, we present numerical results
which confort this theory.

Key words. finite volumes, finite elements, staggered discretizations, Euler equations, compressible
flows, analysis.
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1. Introduction. We address in this paper the so-called Euler equations, which
read:

∂tρ+ div(ρu) = 0, (1.1a)

∂t(ρu) + div(ρu⊗ u) +∇p = 0, (1.1b)

∂t(ρE) + div(ρE u) + div(pu) = 0, (1.1c)

p = (γ − 1) ρ e, E =
1

2
|u|2 + e, (1.1d)

where t stands for the time, ρ, u, p, E and e are the density, velocity, pressure, total
energy and internal energy respectively, and γ > 1 is a coefficient specific to the
considered fluid. The problem is supposed to be posed over Ω× (0, T ), where Ω is an
open bounded connected subset of Rd, 1 ≤ d ≤ 3, and (0, T ) is a finite time interval.

System (1.1) is complemented by initial conditions for ρ, e and u, denoted by ρ0,
e0 and u0 respectively, with ρ0 > 0 and e0 > 0, and by a boundary condition which
we suppose to be u ·n = 0 at any time and a.e. on ∂Ω, where n stands for the normal
vector to the boundary.

Let us suppose that the solution is regular, and let Ek be the kinetic energy,
defined by Ek = 1

2 |u|
2. Taking the inner product of (1.1b) by u yields, after formal

compositions of partial derivatives and using the mass balance (1.1a):

∂t(ρEk) + div
(
ρEk u

)
+∇p · u = 0. (1.2)

This relation is referred to as the kinetic energy balance. Substracting this relation
from the total energy balance (1.1c), we obtain the internal energy balance equation:

∂t(ρe) + div(ρeu) + p divu = 0. (1.3)

Since,
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- thanks to the mass balance equation, the first two terms in the left-hand side of
(1.3) may be recast as a transport operator: ∂t(ρe)+div(ρeu) = ρ [∂te+u·∇e],

- and, from the equation of state, the pressure vanishes when e = 0,

this equation implies, if e ≥ 0 at t = 0 and with suitable boundary conditions, that e
remains non-negative at all times.

The objective pursued in this work is to develop and study, from a theoretical
point of view, an explicit scheme for the solution of (1.1). More precisely, we in-
tend to build an explicit variant of pressure correction schemes that were developed
and studied recently in the framework of the simulation of compressible flows at all
speeds [13, 11, 12], and implemented in the industrial open-source computer code ISIS
[16]. Indeed, our initial motivation was to provide in the same software an efficient
alternative of these schemes for quickly varying unsteady flows, with a characteristic
Mach number in the range or greater than 1. In order to remain stable in the incom-
pressible limit, the starting-point algorithms are based on (inf-sup stable) staggered
finite volume or finite element discretizations, and the present scheme thus also relies
on these space approximations. In our approach, the upwinding techniques which
are implemented for stability reasons are performed for each equation separately and
with respect to the material velocity only. This is in contradiction with the most
common strategy adopted for hyperbolic systems, where upwinding is built from the
wave structure of the system (see e.g. [21, 6, 2] for surveys). However, it yields al-
gorithms which are used in practice (see e.g. the so-called AUSM family of schemes
[19, 18]), because of their generality (a closed-form solution of Riemann problems
is not needed), theirease of implementation and their efficiency, thanks to an easy
construction of the fluxes at the cell faces.

Another salient feature of the proposed scheme is that we discretize the internal
energy balance (1.3) instead of the total energy balance (1.1c); this presents two
advantages:

- first, it avoids the space discretization of the total energy, which is rather
unnatural for staggered schemes since the degrees of freedom for the velocity
and the scalar variables are not collocated,

- second, by a suitable discretization of (1.3), we obtain a scheme which ensures,
”by construction”, the positivity of the internal energy.

However, for solutions with shocks, Equation (1.3) is not equivalent to (1.1c);
more precisely speaking, at the locations of shocks, positive measures should appear,
at the right-hand side of Equation (1.3). Discretizing (1.3) instead of (1.1c) may thus
yield a scheme which does not compute the correct weak discontinuous solutions;
in particular, the numerical solutions may present (smeared) shocks which do not
satisfy the Rankine-Hugoniot conditions associated to (1.1c). The essential result of
this paper is to provide solutions to circumvent this problem. To this purpose, we
closely mimic the above performed formal computation:

- we establish a discrete equivalent of the kinetic energy balance (1.3), and remark
that the residual terms at the right-hand side do no tend to zero with the space
and time steps (they are the discrete manifestations of the above mentioned
measures),

- we thus compensate these residual terms by corrective terms in the internal
energy balance.

We provide a theoretical justification of this process by showing that, in the 1D
case, if the scheme is stable and converges to a limit (in a sense to be defined),
this limit satisfies a weak form of (1.1c) which implies the correct Rankine-Hugoniot
conditions. This paper is structured as follows. We begin with the presentation of the

space discretization (Section 2), then the scheme is given (Section 3), and we derive
the discrete kinetic and elastic potential balances satisfied by its solutions (Section
4). Next section is dedicated to the proof, in 1D, of the consistency of the scheme
(Section 5). We then present some numerical tests, to assess the behaviour of the
algorithm (Section 6).
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The present work is an extension of a companion paper devoted to the barotropic
Euler equations [15]. However, we provide here a self-consistent presentation of the
discretization and the scheme, and only refer to [15] for the proof of some theoretical
results.

2. Meshes and unknowns. In this section, we focus on the discretization of a
multi-dimensional domain (i.e. d = 2 or d = 3); the extension to the one-dimensional
case is straightforward (see Section 5).

Let M be a mesh of the domain Ω, supposed to be regular in the usual sense of
the finite element literature (e.g. [3]). The cells of the mesh are assumed to be:

- for a general domain Ω, either non-degenerate quadrilaterals (d = 2) or hex-
ahedra (d = 3) or simplices, both type of cells being possibly combined in a
same mesh,

- for a domain the boundaries of which are hyperplanes normal to a coordinate
axis, rectangles (d = 2) or rectangular parallelepipeds (d = 3) (the faces of
which, of course, are then also necessarily normal to a coordinate axis).

By E and E(K) we denote the set of all (d− 1)-faces σ of the mesh and of the element
K ∈ M respectively. The set of faces included in the boundary of Ω is denoted by
Eext and the set of internal faces (i.e. E \ Eext) is denoted by Eint; a face σ ∈ Eint
separating the cells K and L is denoted by σ = K|L. The outward normal vector
to a face σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the
measure of K and by |σ| the (d− 1)-measure of the face σ. For 1 ≤ i ≤ d, we denote

by E(i) ⊂ E and E
(i)
ext ⊂ Eext the subset of the faces of E and Eext respectively which

are perpendicular to the ith unit vector of the canonical basis of Rd.

The space discretization is staggered, using either the Marker-And Cell (MAC)
scheme [10, 9], or nonconforming low-order finite element approximations, namely the
Rannacher and Turek element (RT) [20] for quadrilateral or hexahedric meshes, or
the lowest degree Crouzeix-Raviart element (CR) [4] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure, the
density and the internal energy (i.e. the discrete pressure, density and internal energy
unknowns) are associated to the cells of the mesh M, and are denoted by:

{
pK , ρK , eK , K ∈ M

}
.

Let us then turn to the degrees of freedom for the velocity (i.e. the discrete velocity
unknowns).

- Rannacher-Turek or Crouzeix-Raviart discretizations – The degrees of
freedom for the velocity components are located at the center of the faces of
the mesh, and we choose the version of the element where they represent the
average of the velocity through a face. The set of degrees of freedom reads:

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.

- MAC discretization – The degrees of freedom for the ith component of the
velocity are defined at the centre of the faces σ ∈ E(i), so the whole set of
discrete velocity unknowns reads:

{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.

We now introduce a dual mesh, which will be used for the finite volume approximation
of the time derivative and convection terms in the momentum balance equation.

- Rannacher-Turek or Crouzeix-Raviart discretizations – For the RT or CR
discretizations, the dual mesh is the same for all the velocity components. When
K ∈ M is a simplex, a rectangle or a cuboid, for σ ∈ E(K), we define DK,σ as
the cone with basis σ and with vertex the mass center of K (see Figure 2.1).
We thus obtain a partition of K in m sub-volumes, where m is the number of
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Fig. 2.1. Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart elements.

faces of the mesh, each sub-volume having the same measure |DK,σ| = |K|/m.
We extend this definition to general quadrangles and hexahedra, by supposing
that we have built a partition still of equal-volume sub-cells, and with the
same connectivities. The volume DK,σ is referred to as the half-diamond cell
associated to K and σ.
For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated to σ by
Dσ = DK,σ ∪DL,σ; for an external face σ ∈ Eext ∩ E(K), Dσ is just the same
volume as DK,σ.

- MAC discretization – For the MAC scheme, the dual mesh depends on the
component of the velocity. For each component, the MAC dual mesh only dif-
fers from the RT or CR dual mesh by the choice of the half-diamond cell, which,
for K ∈ M and σ ∈ E(K), is now the rectangle or rectangular parallelepiped
of basis σ and of measure |DK,σ| = |K|/2.

We denote by |Dσ| the measure of the dual cell Dσ, and by ǫ = Dσ|Dσ′ the face
separating two diamond cells Dσ and Dσ′ . The set of the faces of a dual cell Dσ is
denoted by Ẽ(Dσ).

Finally, we need to deal with the impermeability (i.e. u · n = 0) boundary con-
dition. Since the velocity unknowns lie on the boundary (and not inside the cells),
these conditions are taken into account in the definition of the discrete spaces. To
avoid technicalities in the expression of the schemes, we suppose throughout this pa-
per that the boundary is a.e. normal to a coordinate axis, (even in the case of the RT
or CR discretizations), which allows to simply set to zero the corresponding velocity
unknowns:

for i = 1, . . . , d, ∀σ ∈ E
(i)
ext, uσ,i = 0. (2.1)

Therefore, there are no degrees of freedom for the velocity on the boundary for the
MAC scheme, and there are only d − 1 degrees of freedom on each boundary face
for the CR and RT discretizations, which depend on the orientation of the face. In
order to be able to write a unique expression of the discrete equations for both MAC

and CR/RT schemes, we introduce the set of faces E
(i)
S associated to the degrees of

freedom of each component of the velocity (S stands for “scheme”):

E
(i)
S =

∣
∣
∣
∣
∣

E(i) \ E
(i)
ext for the MAC scheme,

E \ E
(i)
ext for the CR or RT schemes.
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For both schemes, we define Ẽ(i), for 1 ≤ i ≤ d, as the set of faces of the dual mesh
associated to the ith component of the velocity. For the RT or CR discretizations,
the sets Ẽ(i) does not depend on the component (i.e. of i), up to the elimination of
some unknowns (and so some dual cells and, finally, some external faces) to take the
boundary conditions into account. For the MAC scheme, Ẽ(i) depends on i; note that
each face of Ẽ(i) is perpendicular to a unit vector of the canonical basis of Rd, but not
necessarily to the ith one.

General domains can be addressed (of course, with the CR or RT discretizations)
by redefining, through linear combinations, the degrees of freedom at the external
faces, so as to introduce the normal velocity as a new degree of freedom.

3. The scheme. Let us consider a partition 0 = t0 < t1 < . . . < tN = T of
the time interval (0, T ), which we suppose uniform for the sake of simplicity, and let
δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the (constant) time step. We consider an
explicit-in-time scheme, which reads in its fully discrete form, for 0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn
K,σ = 0, (3.1a)

∀K ∈ M,
|K|

δt
(ρn+1

K en+1
K − ρnKenK) +

∑

σ∈E(K)

Fn
K,σe

n
σ + |K| pnK (divu)nK = Sn

K , (3.1b)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (3.1c)

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ,i − ρnDσ

un
σ,i) +

∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫu

n
ǫ,i + |Dσ| (∇p)n+1

σ,i = 0, (3.1d)

where the terms introduced for each discrete equation are defined hereafter.

Equation (3.1a) is obtained by the discretization of the mass balance equation
(1.1a) over the primal mesh, and Fn

K,σ stands for the mass flux across σ outward
K, which, because of the impermeability condition, vanishes on external faces and is
given on the internal faces by:

∀σ = K|L ∈ Eint, Fn
K,σ = |σ| ρnσ un

K,σ, (3.2)

where un
K,σ is an approximation of the normal velocity to the face σ outward K. This

latter quantity is defined by:

un
K,σ =

∣
∣
∣
∣
∣
∣

un
σ,i e

(i) · nK,σ for σ ∈ E(i) in the MAC case,

u
n
σ · nK,σ in the CR and RT cases,

(3.3)

where e
(i) denotes the i-th vector of the orthonormal basis of Rd. The density at the

face σ = K|L is approximated by the upwind technique:

ρnσ =

∣
∣
∣
∣
∣

ρnK if un
K,σ ≥ 0,

ρnL otherwise.
(3.4)

We now turn to the discrete momentum balance (3.1d), which is obtained by
discretizing the momentum balance equation (1.1b) on the dual cells associated to
the faces of the mesh. The first task is to define the values ρn+1

Dσ
and ρnDσ

, which
approximate the density over the dual cell Dσ at time tn+1 and tn respectively, and
the discrete mass flux through the dual face ǫ outward Dσ, denoted by Fn

σ,ǫ; the
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guideline for their construction is that a finite volume discretization of the mass
balance equation over the diamond cells, of the form

∀σ ∈ E ,
|Dσ|

δt
(ρn+1

Dσ
− ρnDσ

) +
∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫ = 0, (3.5)

must hold in order to be able to derive a discrete kinetic energy balance (see Section
4 below). The density on the dual cells is given by the following weighted average:

for σ = K|L ∈ Eint, for k = n and k = n+ 1,

|Dσ| ρ
k
Dσ

= |DK,σ| ρ
k
K + |DL,σ| ρ

k
L. (3.6)

For the MAC scheme, the flux on a dual face which is located on two primal faces is
the mean value of the sum of fluxes on the two primal faces, and the flux of a dual
face located between two primal faces is again the mean value of the sum of fluxes
on the two primal faces [14]. In the case of the CR and RT schemes, for a dual face
ǫ included in the primal cell K, this flux is computed as a linear combination (with
constant coefficients, i.e. independent of the cell) of the mass fluxes through the faces
of K, i.e. the quantities (Fn

K,σ)σ∈E(K) appearing in the discrete mass balance (3.1a).
We refer to [1, 5] for a detailed construction of this approximation. Let us remark
that a dual face lying on the boundary is then also a primal face, and the flux across
this face is zero. Therefore, the values un

ǫ,i are only needed at the internal dual faces,
and we make the upwind choice for their discretization:

for ǫ = Dσ|Dσ′ , un
ǫ,i =

∣
∣
∣
∣
∣

un
σ,i if Fn

σ,ǫ ≥ 0,

un
σ′,i otherwise.

(3.7)

The last term (∇p)n+1
σ,i stands for the i-th component of the discrete pressure

gradient at the face σ. The gradient operator is built as the transpose of the discrete
operator for the divergence of the velocity, the discretization of which is based on the
primal mesh. Let us denote the divergence of un+1 over K ∈ M by (divu)n+1

K ; its
natural approximation reads:

for K ∈ M, (divu)n+1
K =

1

|K|

∑

σ∈E(K)

|σ| un+1
K,σ . (3.8)

Consequently, the components of the pressure gradient are given by:

for σ = K|L ∈ Eint, (∇p)n+1
σ,i =

|σ|

|Dσ|
(pn+1

L − pn+1
K ) nK,σ · e(i), (3.9)

this expression being derived thanks to the following duality relation with respect to
the L2 inner product:

∑

K∈M

|K| pn+1
K (divu)n+1

K +

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| u
n+1
σ,i (∇p)n+1

σ,i = 0. (3.10)

Note that, because of the impermeability boundary conditions, the discrete gradient
is not defined at the external faces.

Equation (3.1b) is an approximation of the internal energy balance over the primal
cell K. The positivity of the convection operator is ensured if we use an upwinding
technique for this term [17]:

for σ = K|L ∈ Eint, enσ =

∣
∣
∣
∣
∣

enK if Fn
K,σ ≥ 0,

enL otherwise.
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The discrete divergence of the velocity, (divu)nK , is defined by (3.8). The right-hand
side, Sn

K , is derived using consistency arguments in the next section; at the first time
step, it is simply set to zero:

∀K ∈ M, S0
K = 0.

Finally, the initial approximations for ρ, e and u are given by the average of the
initial conditions ρ0 and e0 on the primal cells and of u0 on the dual cells:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx, and e0K =
1

|K|

∫

K

e0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S , u0

σ,i =
1

|Dσ|

∫

Dσ

(u0(x))i dx.

(3.11)

The following positivity result is a classical consequence of the upwind choice in
the mass balance equation.

Lemma 3.1 (Positivity of the density). Let ρ0 be given by (3.11). Then, since
ρ0 is assumed to be a positive function, ρ0 > 0 and, under the CFL condition:

δt ≤
|K|

∑

σ∈E(K) |σ| (u
n
K,σ)

+
, ∀K ∈ M, for 0 ≤ n ≤ N − 1, (3.12)

where, for a ∈ R, a+ ≥ 0 is defined by a+ = max(a, 0), the solution to the scheme
satisfies ρn > 0, for 1 ≤ n ≤ N .

4. Discrete kinetic energy balance and corrective source terms. Equa-
tion (4.1) below is a discrete analogue of the kinetic energy balance equation (1.2),
with an upwind discretization of the convection term. Its proof may be found in [15]
(Lemma 4.1).

Lemma 4.1 (Discrete kinetic energy balance).

A solution to the system (3.1) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E
(i)
S

and 0 ≤ n ≤ N − 1:

1

2

|Dσ|

δt

[

ρn+1
Dσ

(un+1
σ,i )2 − ρnDσ

(un
σ,i)

2
]

+
1

2

∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫ (un

ǫ,i)
2

+ |Dσ| (∇p)n+1
σ,i un+1

σ,i = −Rn+1
σ,i , (4.1)

with:

Rn+1
σ,i =

1

2

|Dσ|

δt
ρn+1
Dσ

(un+1
σ,i − un

σ,i)
2 +

1

2

∑

ǫ=Dσ |Dσ′∈Ẽ(Dσ)

(Fn
σ,ǫ)

−(un
σ′,i − un

σ,i)
2

−
∑

ǫ=Dσ|Dσ′∈Ẽ(Dσ)

(Fn
σ,ǫ)

−(un+1
σ,i − un

σ,i) (u
n
σ′,i − un

σ,i), (4.2)

where, for a ∈ R, a− ≥ 0 is defined by a− = −min(a, 0).

The next step is now to define corrective terms in the internal energy balance,
with the aim to recover a consistent discretization of the total energy balance. The
first idea to do this could be just to sum the (discrete) kinetic energy balance with the
internal energy balance: it is indeed possible for a collocated discretization. But here,
we face the fact that the kinetic energy balance is associated to the dual mesh, while
the internal energy balance is discretized on the primal mesh. The way to circumvent
this difficulty is to remark that we do not really need a discrete total energy balance;
in fact, we only need to recover (a weak form of) this equation when the mesh and
time steps tend to zero. To this purpose, we choose the quantities (Sn+1

K ) in such a

7



way as to somewhat compensate the terms (Rn+1
σ,i ) given by (4.2). For K ∈ M, we

obtain Sn+1
K =

∑d

i=1 S
n+1
K,i with:

Sn+1
K,i =

1

2
ρn+1
K

∑

σ∈E(K)∩E
(i)
S

|DK,σ|

δt

(
un+1
σ,i − un

σ,i

)2

+
∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅,

ǫ=Dσ|Dσ′ , F
n
σ,ǫ≤0

αK,ǫ

[ |Fn
σ,ǫ|

2
(un

σ,i − un
σ′,i)

2 + Fn
σ,ǫ

(
un+1
σ,i − un

σ,i

)
(un

σ′,i − un
σ,i)

]

.

(4.3)

The coefficient αK,ǫ is fixed to 1 if the face ǫ is included in K, and this is the only
situation to consider for the RT and CR discretizations. For the MAC scheme, some
dual faces are included in the primal cells, but some lie on their boundary; for such a
boundary edge ǫ, we denote by Nǫ the set of cells M such that M̄ ∩ǫ 6= ∅ (the cardinal
of this set is always 4, except for boundary edges through which, anyway, the mass
flux vanishes), and compute αK,ǫ by:

αK,ǫ =
|K|

∑

M∈Nǫ
|M |

. (4.4)

For a uniform grid, this formula yields αK,ǫ = 1/4.

The expression of the (Sn+1
K )K∈M is justified by the passage to the limit in the

scheme (for a one-dimensional problem) performed in the next section. We note
however here that:

∑

K∈M

Sn+1
K −

d∑

i=1

∑

σ∈E
(i)
S

Rn+1
σ,i = 0. (4.5)

Indeed, the first part of Sn+1
K,i , thanks to the expression (3.6) of the density at the face

ρn+1
Dσ

, results from a dispatching of the first part of the residual over the two adjacent
cells:

1

2

|Dσ|

δt
ρn+1
Dσ

(
un+1
σ,i − un

σ,i

)2
=

1

2

|DK,σ|

δt
ρn+1
K

(
un+1
σ,i − un

σ,i

)2

︸ ︷︷ ︸

affected to K

+
1

2

|DL,σ|

δt
ρn+1
L

(
un+1
σ,i − un

σ,i

)2

︸ ︷︷ ︸

affected to L

.

The same argument holds for the terms associated to the dual faces, which explains,
in particular, the definition of the coefficients αK,ǫ. The scheme thus conserves the
integral of the total energy over the computational domain. In the scheme itself, we
shall use the term Sn

K rather than Sn+1
K , because we want an explicit scheme, but this

does not hinder the consitency of the scheme, as shown in the proof of Theorem 5.2.
The definition (4.3) of (Sn+1

K )K∈M allows to prove that, under a CFL condition, the

scheme preserves the positivity of e.

Lemma 4.2. Let us suppose that, for 0 ≤ n ≤ N − 1, for all K ∈ M and
σ ∈ E(K), we have:

δt ≤ min
( |K|

γ
∑

σ∈E(K)

|σ| (un
K,σ)

+
,

|DK,σ| ρ
n+1
K

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

αK,ǫ (Fn
σ,ǫ)

−

)

. (4.6)

Then the internal energy (en)1≤n≤N given by the scheme (3.1) is positive.
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Proof. Let n such that 0 ≤ n ≤ N be given, and let us assume that enK ≥ 0 and
Sn
K ≥ 0 for all K ∈ M. Since, by assumption, γ > 1, the CFL condition (4.6) implies

that the CFL condition (3.12) is satisfied, and by Lemma 3.1 we thus have ρnK > 0
and ρn+1

K > 0, for all K ∈ M. In the internal energy equation (3.1b), let us express
the pressure thanks to the equation of state (3.1c) to obtain:

|K|

δt
ρn+1
K en+1

K =
[ |K|

δt
ρnK −

∑

σ∈E(K)

(Fn
K,σ)

+ − (γ − 1) ρnK
∑

σ∈E(K)

|σ| (un
K,σ)

+
]

enK

+
∑

σ∈E(K)

(Fn
K,σ)

−enL + (γ − 1) ρnK enK
∑

σ∈E(K)

|σ| (un
K,σ)

− + Sn
K . (4.7)

Using the fact that, when un
K,σ ≥ 0, the upwind density at the face is ρnK , we have:

(Fn
K,σ)

+ + (γ − 1) |σ| ρnK (un
K,σ)

+ = γ |σ| ρnK (un
K,σ)

+,

and hence Relation (4.7) reads:

|K|

δt
ρn+1
K en+1

K =
[ |K|

δt
− γ

∑

σ∈E(K)

|σ| (un
K,σ)

+
]

ρnK enK

+
∑

σ∈E(K)

(Fn
K,σ)

−enL + (γ − 1) ρnK enK
∑

σ∈E(K)

|σ| (un
K,σ)

− + Sn
K .

Then we get en+1
K > 0 under the following CFL condition:

δt ≤
|K|

γ
∑

σ∈E(K) |σ|(u
n
K,σ)

+
.

Let us now derive a condition for the non-negativity of the source term. Applying
Young’s inequality to the last term of Sn+1

K,i , denoted by (Sn+1
K,i )3, we obtain

(Sn+1
K,i )3 ≥ −

[ ∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅,

ǫ=Dσ |Dσ′ , F
n
σ,ǫ≤0

αK,ǫ

|Fn
σ,ǫ|

2

] (
un+1
σ,i − un

σ,i

)2

−
∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅,

ǫ=Dσ|Dσ′ , F
n
σ,ǫ≤0

αK,ǫ

|Fn
σ,ǫ|

2
(un

σ′,i − un
σ,i)

2.

Gathering all terms of Sn+1
K,i yields:

Sn+1
K,i ≥

∑

σ∈E(K)

1

2

(
un+1
σ,i − un

σ,i

)2
[ |DK,σ|

δt
ρn+1
K −

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

αK,ǫ (F
n
σ,ǫ)

−
]

,

thus Sn+1
K,i is non-negative under the CFL condition:

δt ≤
|DK,σ| ρ

n+1
K

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

αK,ǫ (F
n
σ,ǫ)

−
, ∀σ ∈ E(K),

which concludes the proof.

5. Passing to the limit in the scheme. The objective of this section is to
show, in the one dimensional case, that if a sequence of solutions is controlled in
suitable norms and converges to a limit, this latter necessarily satisfies a (part of the)
weak formulation of the continuous problem.
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The 1D version of the scheme which is studied in this section may be obtained
from Scheme (3.1) by taking the MAC variant of the scheme, using only one horizontal
stripe of grid cells, supposing that the vertical component of the velocity (the degrees
of freedom of which are located on the top and bottom boundaries) vanishes, and that
the measure of the vertical faces is equal to 1. For the sake of readability, however,
we completely rewrite this 1D scheme, and, to this purpose, we first introduce some
adaptations of the notations to the one dimensional case. For any face σ ∈ E , let xσ

be its abscissa. For K ∈ M, we denote by hK its length (so hK = |K|); when we
write K = [σσ′], this means that either K = (xσ , xσ′) or K = (xσ′ , xσ); if we need to

specify the order, i.e. K = (xσ, xσ′ ) with xσ < xσ′ , then we write K = [
−→
σσ′]. For an

interface σ = K|L between two cells K and L, we define hσ = (hK + hL)/2, so, by
definition of the dual mesh, hσ = |Dσ|. If we need to specify the order of the cells K

and L, say K is left of L, then we write σ =
−−→
K|L. With these notations, the explicit

scheme (3.1) may be written as follows in the one dimensional setting:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx, e0K =
1

|K|

∫

K

e0(x) dx,

∀σ ∈ Eint, u0
σ =

1

|Dσ|

∫

Dσ

u0(x) dx,
(5.1a)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρnK) + Fn
σ′ − Fn

σ = 0, (5.1b)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K en+1
K − ρnKenK) + Fn

σ′enσ′ − Fn
σ e

n
σ + pnK(un

σ′ − un
σ) = Sn

K , (5.1c)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (5.1d)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ − ρnDσ

un
σ) + Fn

Lu
n
L − Fn

Kun
K + pn+1

L − pn+1
K = 0. (5.1e)

The mass flux in the discrete mass balance equation is given, for σ ∈ Eint, by Fn
σ =

ρnσu
n
σ, where the upwind approximation for the density at the face, ρnσ , is defined by

(3.4).

In the convection terms of the internal energy balance, the approximation for enσ
is upwind with respect to Fn

σ (i.e., for σ =
−−→
K|L ∈ Eint, e

n
σ = enK if Fn

σ ≥ 0 and enσ = enL
otherwise). The corrective term Sn

K reads, for 1 ≤ n ≤ N and ∀K = [σ′ → σ]:

Sn
K =

|K|

4 δt
ρnK

[
(un

σ − un−1
σ )2 + (un

σ′ − un−1
σ′ )2

]
+

|Fn−1
K |

2
(un−1

σ − un−1
σ′ )2

− |Fn−1
K |(un

σ − un−1
σ ) (un−1

σ′ − un−1
σ ), (5.2)

where the notation K = [σ′ → σ] means that the flow goes from σ′ to σ (i.e., if

Fn
K ≥ 0, K = [

−→
σ′σ] and, if Fn

K ≤ 0, K = [
−→
σσ′]). At the first time step, we set

S0
K = 0, ∀K ∈ M.

In the momentum balance equation, the application of the procedure described
in Section 3 yields for the density associated to the dual cell Dσ with σ = K|L and

for the mass fluxes at the dual face located at the center of the mesh K = [
−→
σσ′]:

for k = n and k = n+ 1, ρkDσ
=

1

2 |Dσ|
(|K| ρkK + |L| ρkL), Fn

K =
1

2
(Fn

σ + Fn
σ′ ),

(5.3)
and the approximation of the velocity at this face is upwind: un

K = un
σ if Fn

K ≥ 0 and
un
K = un

σ′ otherwise.
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Let a sequence of discretizations (M(m), δt(m))m∈N be given. We define the size
h(m) of the mesh M(m) by h(m) = supK∈M(m) hK . Let ρ(m), p(m), e(m) and u(m) be
the solution given by the scheme (5.1) with the mesh M(m) and the time step δt(m).
To the discrete unknowns, we associate piecewise constant functions on time intervals
and on primal or dual meshes, so the density ρ(m), the pressure p(m), the internal
energy e(m) and the velocity u(m) are defined almost everywhere on Ω× (0, T ) by:

ρ(m)(x, t) =
N−1∑

n=0

∑

K∈M

(ρ(m))nK XK(x)X[n,n+1)(t),

p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK(x)X[n,n+1)(t),

e(m)(x, t) =

N−1∑

n=0

∑

K∈M

(e(m))nK XK(x)X[n,n+1)(t),

u(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
(x)X[n,n+1)(t),

(5.4)

where XK , XDσ
and X[n,n+1) stand for the characteristic function of the intervals K,

Dσ and [tn, tn+1) respectively.

For discrete functions q and v defined on the primal and dual mesh respectively,
we define a discrete L1((0, T ); BV(Ω)) norm by:

‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ=K|L∈Eint

|qnL − qnK |, ‖v‖T ,x,BV =

N∑

n=0

δt
∑

ǫ=Dσ|Dσ′∈Ẽint

|vnσ′ − vnσ |,

and a discrete L1(Ω; BV((0, T ))) norm by:

‖q‖T ,t,BV =
∑

K∈M

|K|
N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

|Dσ|
N−1∑

n=0

|vn+1
σ − vnσ |.

For the consistency result that we are seeking (Theorem 5.2 below), we have to assume
that a sequence of discrete solutions (ρ(m), p(m), e(m), u(m))m∈N satisfies ρ(m) > 0,
p(m) > 0 and e(m) > 0, ∀m ∈ N (which may be a consequence of the fact that the CFL
stability condition (3.12) is satisfied), and is uniformly bounded in L∞(Ω× (0, T ))4,
i.e., for m ∈ N and 0 ≤ n ≤ N (m):

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C, 0 < (e(m))nK ≤ C, ∀K ∈ M(m), (5.5)

and

|(u(m))nσ| ≤ C, ∀σ ∈ E(m), (5.6)

where C is a positive real number. Note that, by definition of the initial conditions of
the scheme, these inequalities imply that the functions ρ0, e0 and u0 belong to L∞(Ω).
We also have to assume that a sequence of discrete solutions satisfies the following
uniform bounds with respect to the discrete BV-norms:

‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (5.7)

and:

‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (5.8)

We are not able to prove the estimates (5.5)–(5.8) for the solutions of the scheme;
however, such inequalities are satisfied by the ”interpolates” (for instance, by taking
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the cell average) of the solution to a Riemann problem, and are observed in compu-
tations (of course, as far as possible, i.e. with a limited sequence of meshes and time
steps).

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞
c

(
Ω× [0, T )

)
:

−

∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (5.9a)

−

∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)u0(x)ϕ(x, 0) dx = 0, (5.9b)

−

∫

Ω×(0,T )

[

ρE ∂tϕ+ (ρE + p)u ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)E0(x)ϕ(x, 0) dx = 0, (5.9c)

p = (γ − 1)ρ e, E =
1

2
u2 + e, E0 =

1

2
u2
0 + e0. (5.9d)

Note that these relations are not sufficient to define a weak solution to the problem,
since they do not imply anything about the boundary conditions. However, they allow
to derive the Rankine-Hugoniot conditions; hence if we show that they are satisfied
by the limit of a sequence of solutions to the discrete problem, this implies, loosely
speaking, that the scheme computes correct shocks (i.e. shocks where the jumps of the
unknowns and of the fluxes are linked to the shock speed by the Rankine-Hugoniot
conditions). This is the result we are seeking and which we state in Theorem 5.2. In
order to prove this theorem, we need some definitions of interpolates of regular test
functions on the primal and dual mesh.

Definition 5.1 (Interpolates on one-dimensional meshes). Let Ω be an open
bounded interval of R, let ϕ ∈ C∞

c (Ω × [0, T )), and let M be a mesh over Ω. The
interpolate ϕM of ϕ on the primal mesh M is defined by:

ϕM(x, 0) =
∑

K∈M

ϕ0
K XK and, for t > 0, ϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K XK X(tn,tn+1],

where, for 0 ≤ n ≤ N and K ∈ M, we set ϕn
K = ϕ(xK , tn), with xK the mass center

of K. The time discrete derivative of the discrete function ϕM is defined by:

ðtϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕn

K

δt
XK X(tn,tn+1],

and its space discrete derivative by:

ðxϕM =

N−1∑

n=0

∑

σ=
−−→
K|L∈Eint

ϕn+1
L − ϕn+1

K

hσ

XDσ
X(tn,tn+1].

Let ϕE be an interpolate of ϕ on the dual mesh, defined by:

ϕE(x, 0) =
∑

σ∈E

ϕ0
σ XDσ

and, for t > 0, ϕE =
N−1∑

n=0

∑

σ∈E

ϕn+1
σ XDσ

X(tn,tn+1],

where, for 0 ≤ n ≤ N and σ ∈ E, we set ϕn
σ = ϕ(xσ , t

n). We also define the time and
space discrete derivatives of this function by:

ðtϕE =

N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕn

σ

δt
XDσ

X(tn,tn+1],

ðxϕE =

N−1∑

n=0

∑

K=[
−−→
σσ′]∈M

ϕn+1
σ′ − ϕn+1

σ

hK

XK X(tn,tn+1].
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Finally, we define ðxϕM,E by:

ðxϕM,E =

N−1∑

n=0

∑

K=[
−−→
σσ′]∈M

ϕn+1
K − ϕn+1

σ

hK/2
XDK,σ

X(tn,tn+1]

+
ϕn+1
σ′ − ϕn+1

K

hK/2
XDK,σ′

X(tn,tn+1].

We are now in position to state the following result.
Theorem 5.2 (Consistency of the one-dimensional explicit scheme).

Let Ω be an open bounded interval of R. We suppose that the initial data satisfies
ρ0 ∈ L∞(Ω), p0 ∈ BV(Ω), e0 ∈ L∞(Ω) and u0 ∈ L∞(Ω). Let (M(m), δt(m))m∈N

be a sequence of discretizations such that both the time step δt(m) and the size h(m)

of the mesh M(m) tend to zero as m → ∞, and let (ρ(m), p(m), e(m), u(m))m∈N be
the corresponding sequence of solutions. We suppose that this sequence satisfies the
estimates (5.5)–(5.8) and converges in Lr(Ω×(0, T ))4, for 1 ≤ r < ∞, to (ρ̄, p̄, ē, ū) ∈
L∞(Ω× (0, T ))4.

Then the limit (ρ̄, p̄, ē, ū) satisfies the system (5.9).
Proof. It is clear that with the assumed convergence for the sequence of solutions,

the limit satisfies the equation of state. The fact that the limit satisfies the weak mass
balance equation (5.9a) and the weak momentum balance equation (5.9b) is proven
in [15]. There only remains to prove that (5.9c) holds, by passing to the limit in the
scheme, in the internal and the kinetic energy balance equations.

Let ϕ ∈ C∞
c (Ω×[0, T )). Let m ∈ N, M(m) and δt(m) be given. Dropping for short

the superscript (m), let ϕM be the interpolate of ϕ on the primal mesh and let ðtϕM

and ðxϕM be its time and space discrete derivatives in the sense of Definition 5.1.
Thanks to the regularity of ϕ, these functions respectively converge in Lr(Ω× (0, T )),
for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ and ∂xϕ respectively. In addition, ϕM(·, 0)
(which, for K ∈ M and x ∈ K, is equal to ϕ0

K = ϕ(xK , 0)) converges to ϕ(·, 0) in
Lr(Ω) for r ≥ 1.

We also define ϕE , ðtϕE and ðxϕE , as, respectively, the interpolate of ϕ on the
dual mesh and its discrete time and space derivatives, still in the sense of Definition
5.1; once again thanks to the regularity of ϕ, these functions converge in Lr(Ω×(0, T )),
for r ≥ 1, to ϕ, ∂tϕ and ∂xϕ respectively. As for the primal mesh interpolate, the dual
mesh interpolate ϕE(·, 0) (which, for σ ∈ E and x ∈ Dσ, is equal to ϕ0

σ = ϕ(xσ , 0))
converges to ϕ(·, 0) in Lr(Ω) for r ≥ 1.

Since the support of ϕ is compact in Ω×[0, T ), form large enough, the interpolates
of ϕ vanish on the boundary cells and at the last time step(s); hereafter, we assume
that we are in this case.

On one hand, let us multiply the one dimensional discrete internal energy balance
equation (5.1c) by δt ϕn+1

K , and sum the result for 0 ≤ n ≤ N−1 and K ∈ M. On the
other hand, let us multiply the one-dimensional version of the discrete kinetic energy
balance (4.1) by δt ϕn+1

σ , and sum the result for 0 ≤ n ≤ N − 1 and σ ∈ Eint. Finally,
adding the two obtained relations, we get:

T
(m)
1 + T

(m)
2 + T

(m)
3 + T̃

(m)
1 + T̃

(m)
2 + T̃

(m)
3 = S(m) − R̃(m), (5.10)

where:

T
(m)
1 =

N−1∑

n=0

δt
∑

K∈M

|K|

δt

[
ρn+1
K en+1

K − ρnK enK
]
ϕn+1
K ,

T
(m)
2 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
ρnσ′ enσ′ un

σ′ − ρnσ e
n
σ u

n
σ

]
ϕn+1
K ,
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T
(m)
3 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

pnK (un
σ′ − un

σ) ϕ
n+1
K ,

T̃
(m)
1 =

1

2

N−1∑

n=0

δt
∑

σ∈Eint

|Dσ|

δt

[
ρn+1
Dσ

(un+1
σ )2 − ρnσ(u

n
σ)

2
]
ϕn+1
σ ,

T̃
(m)
2 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
Fn
L (un

L)
2 − Fn

K (un
K)2

]
ϕn+1
σ ,

T̃
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K )un+1
σ ϕn+1

σ ,

S(m) =

N−1∑

n=0

δt
∑

K∈M

Sn
K ϕn+1

K , R̃(m) =

N−1∑

n=0

δt
∑

σ∈Eint

Rn+1
σ ϕn+1

σ ,

and the quantities Sn
K and Rn+1

σ are given by Equation (5.2) and (the 1D version of)
Equation (4.2) respectively.

Reordering the sums in T
(m)
1 yields:

T
(m)
1 = −

N−1∑

n=0

δt
∑

K∈M

|K| ρnK enK
ϕn+1
K − ϕn

K

δt
−

∑

K∈M

|K| ρ0K e0K ϕ0
K ,

so that:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) e(m)
ðtϕM dxdt−

∫

Ω

(ρ(m))0(x) (e(m))0(x) ϕM(x, 0) dx.

The boundedness of ρ0, e0 and the definition (5.1a) of the initial conditions for the
scheme ensures that the sequences ((ρ(m))0)m∈N and ((e(m))0)m∈N converge to ρ0 and
e0 respectively in Lr(Ω) for r ≥ 1. Since, by assumption, the sequence of discrete
solutions and of the interpolate time derivatives converge in Lr

(
Ω× (0, T )

)
for r ≥ 1,

we thus obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ē ∂tϕdxdt−

∫

Ω

ρ0(x) e0(x) ϕ(x, 0) dx.

Reordering the sums in T
(m)
2 , we get:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

ρnσ e
n
σ u

n
σ (ϕn+1

L − ϕn+1
K ).

Using the fact that hσ = |Dσ|, this relation reads:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

|Dσ| ρ
n
σ e

n
σ u

n
σ

ϕn+1
L − ϕn+1

K

hσ

,

thus T
(m)
2 = T

(m)
2 +R

(m)
2 with:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

[

|DK,σ| ρ
n
K enK + |DL,σ| ρ

n
L enL

]

un
σ

ϕn+1
L − ϕn+1

K

hσ

,

R
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

[

|Dσ| ρ
n
σ e

n
σ − |DK,σ| ρ

n
K enK − |DL,σ| ρ

n
L enL

]

un
σ

ϕn+1
L − ϕn+1

K

hσ

.
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The first expression reads:

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) e(m) u(m)
ðxϕM dxdt,

and thus, thanks to the convergence assumptions:

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ē ū ∂xϕdxdt.

Let us make a change of notation for the orientation of σ in such a way that ρnσ = ρnK
and enσ = enK (in other words, we choose to call K the upwind cell to σ instead of the
left cell, which we denote by σ = K → L). We thus get, with Cϕ = ‖∂xϕ‖L∞(Ω×(0,T )):

|R
(m)
2 | ≤ Cϕ

N−1∑

n=0

δt
∑

σ=K→L∈E

|DL,σ|
∣
∣
∣ρnK enK − ρnL enL

∣
∣
∣ |un

σ|.

Applying the identity 2 (ab− cd) = (a− c)(b+ d) + (a+ c)(b− d), which holds for any
{a, b, c, d} ⊂ R, to the quantity ρnK enK − ρnL enL, we obtain:

|R
(m)
2 | ≤ Cϕ h(m) ‖u(m)‖L∞(Ω×(0,T ))

[

‖ρ(m)‖L∞(Ω×(0,T )) ‖e
(m)‖T ,x,BV

+ ‖e(m)‖L∞(Ω×(0,T )) ‖ρ
(m)‖T ,x,BV

]

,

and thus |R
(m)
2 | tends to zero when m tends to +∞.

For the term T̃
(m)
1 , the definition (5.3) of ρDσ

and a reordering in the summation
yield:

T̃
(m)
1 = −

N−1∑

n=0

δt
∑

σ=K|L∈E

[

|DK,σ| ρ
n
K + |DL,σ| ρ

n
L

]

un
σ

ϕn+1
K − ϕn

K

δt

−
∑

σ=K|L∈E

[

|DK,σ| ρ
0
K + |DL,σ| ρ

0
L

]

u0
σ ϕ0

K ,

so that, by similar arguments as for the term T
(m)
1 , we get:

lim
m→+∞

T̃
(m)
1 = −

∫ T

0

∫

Ω

1

2
ρ̄ ū2 ∂tϕdxdt −

∫

Ω

1

2
ρ0(x) u0(x)

2 ϕ(x, 0) dx.

Let us now turn to the term T̃
(m)
2 . Reordering the sums, we get:

T̃
(m)
2 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

Fn
K (un

K)2 (ϕn+1
σ′ − ϕn+1

σ ),

and, by definition of the mass flux at the dual edges:

T̃
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(ρnσu
n
σ + ρnσ′un

σ′) (un
K)2 (ϕn+1

σ′ − ϕn+1
σ ),

where we recall that un
K is equal to either un

σ or un
σ′ , depending on the sign of Fn

K .

Let us write T̃
(m)
2 = T̃

(m)
2 + R̃

(m)
2 , with:

T̃
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρnK
[
(un

σ)
3 + (un

σ′)3
]
(ϕn+1

σ′ − ϕn+1
σ ).
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We have:

T̃
(m)
2 = −

∫ T

0

∫

Ω

1

2
ρ(m) (u(m))3 ðxϕE dxdt,

and hence:

lim
m→+∞

T̃
(m)
2 = −

∫ T

0

∫

Ω

1

2
ρ̄ ū3 ∂xϕdxdt.

The remainder term reads:

R̃
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

(ρnσu
n
σ + ρnσ′un

σ′) (un
K)2 − ρnK

(

(un
σ)

3 + (un
σ′)3

)]

(ϕn+1
σ′ − ϕn+1

σ ).

Using the notation K = σ → σ′ in the above summation in order to have un
K = un

σ,
we obtain:

R̃
(m)
2 = −

ε

4

N−1∑

n=0

δt
∑

K=σ→σ′∈M

[

(ρnσu
n
σ + ρnσ′un

σ′) (un
σ)

2 − ρnK

(

(un
σ)

3 + (un
σ′)3

)]

(ϕn+1
σ′ − ϕn+1

σ ).

Since, for 0 ≤ n ≤ N − 1 and K ∈ M,

(ρnσu
n
σ + ρnσ′un

σ′) (un
σ)

2 − ρnK

(

(un
σ)

3 + (un
σ′)3

)

=

− (ρnK − ρnσ) (u
n
σ)

3 + ρnK un
σ′ (un

σ + un
σ′) (un

σ − un
σ′)− (ρnK − ρnσ′)un

σ′ (un
σ)

2,

we have:

|R̃
(m)
2 | ≤ Cϕ h(m)

[

‖u(m)‖
3

L∞(Ω×(0,T )) ‖ρ‖T ,x,BV

+ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u
(m)‖

2

L∞(Ω×(0,T )) ‖u
(m)‖T ,x,BV

]

,

where the real number Cϕ only depends on ϕ. Hence |R̃
(m)
2 | tends to zero when m

tends to +∞.

We now turn to T
(m)
3 and T̃

(m)
3 . By a change in the notation of the time exponents,

using the fact that ϕσ vanishes at the last time step(s), we get:

T̃
(m)
3 =

N−1∑

n=1

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK)un
σ ϕ

n
σ = T̃

(m)
3 + R̃

(m)
3 ,

with:

T̃
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK)un
σ ϕ

n+1
σ ,

R̃
(m)
3 = −δt

∑

σ=
−−→
K|L∈Eint

(p0L − p0K)u0
σ ϕ

0
σ

+

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK)un
σ (ϕn

σ − ϕn+1
σ ).

We have, thanks to the regularity of ϕ:

|R̃
(m)
3 | ≤ Cϕ δt(m)

[

‖(u(m))0‖L∞(Ω) ‖(p
(m))0‖BV(Ω)+‖u(m)‖L∞(Ω×(0,T )) ‖p

(m)‖T ,x,BV

]

.
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Therefore, invoking the regularity of the initial conditions, this term tends to zero
when m tends to +∞. We now have for the other terms, reordering the summations:

T
(m)
3 + T̃

(m)
3 = −

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

pnK un
σ (ϕ

n+1
K − ϕn+1

σ ) + pnK un
σ′ (ϕn+1

σ′ − ϕn+1
K )

= −

∫ T

0

∫

Ω

p(m) u(m)
ðxϕM,E dxdt.

Since ðxϕM,E converges to ∂xϕ in Lr(Ω× (0, T )) for any r ≥ 1, we get:

lim
m→+∞

(T
(m)
3 + T̃

(m)
3 ) = −

∫ T

0

∫

Ω

p̄ ū ∂xϕdxdt.

Finally, it now remains to check that limm→+∞(S(m) − R̃(m)) = 0. Let us write

this quantity as S(m) − R̃(m) = R
(m)
1 +R

(m)
2 where, using S0

K = 0, ∀K ∈ M:

R
(m)
1 =

N−1∑

n=0

δt
[ ∑

K∈M

Sn+1
K ϕn+1

K −
∑

σ∈E

Rn+1
σ ϕn+1

σ

]
,

R
(m)
2 =

N−1∑

n=1

δt
∑

K∈M

Sn
K (ϕn+1

K − ϕn
K).

First, we prove that limm→+∞ R
(m)
1 = 0. Gathering and reordering the sums, we

obtain R
(m)
1 = R

(m)
1,1 +R

(m)
1,2 +R

(m)
1,3 with

R
(m)
1,1 =

1

2

N−1∑

n=0

δt
∑

σ=K|L∈E

[ |DK,σ|

δt
ρn+1
K (un+1

σ − un
σ)

2(ϕn+1
K − ϕn+1

σ )

+
|DL,σ|

δt
ρn+1
L (un+1

σ − un
σ)

2(ϕn+1
L − ϕn+1

σ )
]

,

R
(m)
1,2 =

1

2

N−1∑

n=0

δt
∑

K∈M

|Fn
K | (un

σ − un
σ′)2 (ϕn+1

K − ϕn+1
σ ),

R
(m)
1,3 =

N−1∑

n=0

δt
∑

K=[σ′→σ]∈M

|Fn
K | (un

σ′ − un
σ) (u

n+1
σ − un

σ) (ϕ
n+1
K − ϕn+1

σ ).

We thus obtain:

|R
(m)
1,1 | ≤ h(m) Cϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u

(m)‖L∞(Ω×(0,T )) ‖u
(m)‖T ,t,BV,

and

|R
(m)
1,2 |+ |R

(m)
1,3 | ≤ h(m) Cϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u

(m)‖
2

L∞(Ω×(0,T )) ‖u
(m)‖T ,x,BV,

so all these terms tend to zero. The fact that |R
(m)
2 | behaves as δt(m) my be proven

by similar arguments.

Gathering the limits of all terms concludes the proof.

Remark 5.1 (On BV-stability assumptions).
The proof of Theorem 5.2 in [15] and of Theorem 5.2 shows that the scheme is con-
sistent under a BV-stability assumption much weaker than (5.7)-(5.7), namely:

lim
m→+∞

(h(m) + δt(m))
[

‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV

+ ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV + ‖u(m)‖T ,t,BV

]

= 0.
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Fig. 6.1. A Riemann problem (Test 3 of [21, Chapter 4]) – h = 0.001 and δt = h/100 – Density
at t = 0.012.

Fig. 6.2. A Riemann problem (Test 3 of [21, Chapter 4]) – h = 0.001 and δt = h/100 –
Pressure at t = 0.012.

6. Numerical results. We assess in this section the behaviour of the scheme on
a Riemann problem referred to as Test 3 in [21, Chapter 4], which is stiff enough to
evidence consistency and stability properties of the scheme. The left and right states
are given by:

left state:





ρL = 1
uL = 0

pL = 1000



 ; right state:





ρR = 1
uR = 0

pR = 0.001



 .

The computational domain is Ω = (0, 1) and the final time is T = 0.012. The (known)
analytical solution of this type of problem consists in two genuinely nonlinear waves
(i.e. rarefaction or shock waves) separated by a contact discontinuity. For the initial
data chosen in this section, the left wave is a rarefaction wave, travelling to the left,
and the right wave is a shock wave, travelling to the right.

6.1. Results. The density, pressure, internal energy and velocity obtained at
t = 0.012 = T with h = 0.001 and δt = h/100 (as the maximal celerity of waves
is close to 60) are shown on Figures 6.1, 6.2, 6.3 and 6.4 respectively. We observe
that the scheme is rather diffusive especially for contact discontinuities for which the
beneficial compressive effect of the shocks does not apply. More accurate variants
may certainly be derived, using for instance MUSCL-like techniques; this work is
underway.
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Fig. 6.3. A Riemann problem (Test 3 of [21, Chapter 4]) – h = 0.001 and δt = h/100 – Internal
energy at t = 0.012.

Fig. 6.4. A Riemann problem (Test 3 of [21, Chapter 4]) – h = 0.001 and δt = h/100 – Velocity
at t = 0.012.

We also observe that the scheme keeps the velocity and pressure constant through
the contact discontinuity; this may be checked directly from the expression of the
discrete balance equations (precisely speaking, one may prove that, if pn and un are
constant, so are pn+1 and un+1).

In addition, we perform a convergence study, successively dividing by two the
space and time steps (so keeping the CFL number constant). The differences between
the computed and analytical solution at t = 0.025, measured in L1(Ω) norm, are
reported in the following table.

space step h0 = 0.001 h0/2 h0/4 h0/8 h0/16

‖ρ− ρ̄‖L1(Ω) 0.0651 0.0455 0.0310 0.0217 0.0153

‖p− p̄‖L1(Ω) 1.87 1.05 0.530 0.284 0.164

‖u− ū‖L1(Ω) 0.0967 0.0536 0.0258 0.0134 0.00795

We measure a convergence rate which is slightly lower to 1 for the variables which
are constant through the contact discontinuity (i.e. p and u), and equal to 1/2 for ρ.

Finally, we test the behaviour of the scheme obtained when setting to zero the
corrective terms in the internal energy balance. The density obtained with h = 0.001
and δt = h/100 is reported on Figure 6.5. From this result and from further numerical
experiments with more and more refined meshes, it seems that the scheme converge,
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Fig. 6.5. A Riemann problem (Test 3 of [21, Chapter 4]) – Scheme without corrective terms –
h = 0.001 and δt = h/100 – Density at t = 0.012.

but to a limit which is not a weak solution to the Euler system: indeed, the Rankine-
Hugoniot condition applied to the total energy balance, with the states obtained
numerically, yields a right shock velocity slightly greater than the analytical solution
one, while the same shock velocity obtained numerically is clearly lower.

6.2. On a naive scheme. We also test the “naive” explicit scheme obtained
by evaluating all the terms, except in time-derivative one, at time tn. In the one
dimensional setting and with the same notations as in Section 5, this scheme thus
reads:

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρnK) + Fn
σ′ − Fn

σ = 0, (6.1a)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ − ρnDσ

un
σ) + Fn

Lu
n
L − Fn

Kun
K + pnL − pnK = 0, (6.1b)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K en+1
K − ρnKenK) + Fn

σ′enσ′ − Fn
σ e

n
σ + pnK(un

σ′ − un
σ) = Sn+1

K , (6.1c)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K . (6.1d)

Hereafter and on the figure captions, this scheme is referred to by the ρ;u;e;p
scheme (according to the order of update of the unknowns). Note that we are able,
for this scheme also, to prove a consistency result similar to Theorem 5.2.

The computed density at time T = 0.012 is plotted on figures 6.9. From this
result, it appears clearly that the ρ; u; e; p scheme generates discontinuities
in the rarefaction wave, and further experiments show that this phenomenon is not
cured by a reduction of the time and space step. A similar behaviour is observed in
the barotropic case (see [15] for a discussion on this issue).

7. Conclusion. We have presented in this paper an explicit scheme based on
staggered meshes for Euler equations. This algorithm uses a very simple first-order
upwinding strategy which consists, equation by equation, to implement an upwind
discretization with respect of the material velocity of the convection term. In addition,
it solves the internal energy balance instead of the total energy balance, and thus turns
out to be non-conservative: indeed, the total energy conservation law is only recovered
at the limit of vanishing time and space steps, thanks to the addition of corrective
source terms in the discrete internal energy balance. Under CFL-like conditions based
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Fig. 6.6. A Riemann problem (Test 3 of [21, Chapter 4]) – ρ;u;e;p scheme – h = 0.001
and δt = h/100 – Density at t = 0.012.

on the material velocity only (by opposition to the celerity of waves), this scheme
preserves the positivity of the density, the internal energy and the pressure (in other
words, the scheme preserves the convex of admissible states), and its solution satisfies
a property of conservation (in fact, as often at the discrete level, non-increase) of
the integral of the total energy over the computational domain. Finally, the scheme
has been shown to be consistent for 1D problems, in the sense that, if a sequence of
numerical solutions obtained with more and more refined meshes (and, accordingly,
smaller and smaller time steps) converges, then the limit is a weak solution to the
continuous problem.

This theoretical result may probably be extended in two directions: first, to check
whether limits of convergent sequences are entropy solutions, and, second, to deal with
the consistency issue in the multi-dimensional case. The investigation of this latter
point should help to clarify the constraints on mesh generality imposed by consistency
requirements, in particular with the aim to design a discretization able to cope with
non-conforming locally refined meshes. This work is now being undertaken.

Numerical studies show that the proposed algorithm is stable, even if the biggest
time step before blow-up is smaller than suggested by the above-mentionned CFL
conditions. This behaviour had to be expected, since these CFL conditions only
involve the velocity (and not the celerity of the acoutic waves): indeed, were they
the only limitation, we would have obtained an explicit scheme stable up to the
incompressible limit. However, the mechanisms leading to the blow-up of the scheme
(or, conversely, the way to fix the time step to ensure stability) remain to be clarified,
even if one may anticipate from qualitative arguments (the scheme should allow a
”transport of the information” at the same speed as the continuous problem) that the
time step should be small enough to avoid that the waves cross more than one mesh
per time step. In addition, still as expected, the scheme is rather diffusive, especially
at contact discontinuities; MUSCL-like extensions are under development to cure this
problem, possibly combined with a strategy similar to the so-called entropy-viscosity
technique [7, 8] to damp spurious oscillations which are sometimes observed when
the velocity is small (see the companion paper [15] on the barotropic problem for a
numerical study of this issue).

Since the proposed scheme uses very simple numerical fluxes, it is well suited to
large multi-dimensionnal parallel computing applications, and such studies are now
starting at IRSN. Still for the same reasons (and, in particular, because the construc-
tion of the discretization does not require the solution of the Riemann problem), it
seems that the presented approach offers natural extensions to more complex prob-
lems, such as reacting flows; this development is foreseen at IRSN, for applications to
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explosion hazards.
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