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CONSISTENT EXPLICIT STAGGERED SCHEMES

FOR COMPRESSIBLE FLOWS

PART I: THE BAROTROPIC EULER EQUATIONS.

R. HERBIN ∗, J.-C. LATCHÉ † , AND TT. NGUYEN ‡

May 6, 2013

Abstract. In this paper, we build and analyze the stability and consistency of an explicit scheme for
the compressible barotropic Euler equations. This scheme is based on a staggered space discretization,
with an upwinding performed with respect to the material velocity only (so that, in particular, the
pressure gradient term is centered). The velocity convection term is built in such a way that the
solutions satisfy a discrete kinetic energy balance, with a remainder term at the left-hand side which
is shown to be non-negative under a CFL condition. Then, in one space dimension, we prove that if
the solutions to the scheme converge to some limit as the time and space step tend to zero, then this
limit is an entropy weak solution of the continuous problem. Numerical tests confirm this theory,
and show in addition (in 1D, and thus in absence of contact discontinuities) a first-order convergence
rate.

Key words. Finite volumes, finite elements, staggered discretizations, barotropic Euler equations,
shallow-water equations, compressible flows, analysis.
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1. Introduction. We address in this work the numerical solution of the so-called
barotropic Euler equations, which read:

∂tρ+ div(ρu) = 0, (1.1a)

∂t(ρu) + div(ρu⊗ u) +∇p = 0, (1.1b)

p = ℘(ρ) = ργ , (1.1c)

where t stands for the time, ρ, u and p are the density, velocity and pressure in
the flow, and γ ≥ 1 is a coefficient specific to the considered fluid. The problem is
supposed to be posed over Ω×(0, T ), where Ω is an open bounded connected subset of
Rd, 1 ≤ d ≤ 3, and (0, T ) is a finite time interval. This system must be supplemented
by initial conditions for ρ and u, denoted by ρ0 and u0, and we assume ρ0 > 0. It
must also be supplemented by a suitable boundary condition, which we suppose to
be:

u · n = 0, at any time and a.e. on ∂Ω,

where n stands for the normal vector to the boundary.

Let us denote by Ek the kinetic energy Ek = 1
2 |u|

2. Taking the inner product
of (1.1b) by u yields, after formal compositions of partial derivatives and using the
mass balance (1.1a):

∂t(ρEk) + div
(

ρEk u
)

+∇p · u = 0. (1.2)

This relation is referred to as the kinetic energy balance.

Let us now define the function P , from (0,+∞) to R, as a primitive of s 7→
℘(s)/s2; this quantity is often called the elastic potential. Let H be the function
defined by H(s) = sP(s), ∀s ∈ (0,+∞). For the specific equation of state ℘ used
here, we obtain:

H(s) = sP(s) =











sγ

γ − 1
if γ > 1,

s ln(s) if γ = 1.

. (1.3)
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Since ℘ is an increasing function, H is convex. In addition, it may easily be checked
that ρH′(ρ) − H(ρ) = ℘(ρ). Therefore, by a formal computation, detailed in the
appendix, multiplying (1.1a) by H′(ρ) yields:

∂t
(

H(ρ)
)

+ div
(

H(ρ)u
)

+ p div(u) = 0. (1.4)

Let us denote by S the quantity S = ρEk +H(ρ). Summing (1.2) and (1.4), we
get:

∂tS + div
(

(S + p)u
)

= 0. (1.5)

In fact, to avoid invoking unrealistic regularity assumption, such a computation should
be done on regularized equations (obtained by adding diffusion perturbation terms,
see e.g. [7, Introduction, Section 3.2]), and, when making these regularization terms
tend to zero, positive measures appear at the left-hand-side of (1.5), so that we get
in the distribution sense:

∂tS + div
(

(S + p)u
)

≤ 0. (1.6)

The quantity S is an entropy of the system, and an entropy solution to (1.1) is thus
required to satisfy:

∫ T

0

∫

Ω

[

−S∂tϕ− (S + p)u ·∇ϕ
]

dx dt−

∫

Ω

S0 ϕ(x, 0) dx ≤ 0,

∀ϕ ∈ C∞
c

(

Ω× [0, T )
)

, ϕ ≥ 0, (1.7)

with S0 = 1
2ρ0|u0|

2 +H(ρ0). Then, since the normal velocity is prescribed to zero at
the boundary, integrating (1.6) over Ω yields:

d

dt

∫

Ω

[1

2
ρ |u|2 +H(ρ)

]

dx ≤ 0. (1.8)

Since ρ ≥ 0 by (1.1a) (and the associated initial and boundary conditions) and the
function s 7→ H(s) is bounded by below and increasing at least for s large enough,
Inequality (1.8) provides an estimate on the solution.

The purpose of this paper is to build an explicit scheme for the numerical solution
of System (1.1). This scheme is, in fact, an explicit variant of a recent all-Mach-number
pressure correction scheme [5, 12] implemented in the open-source software ISIS [16],
and is developed with the aim to offer an efficient alternative for quickly varying
unstationary flows, with a characteristic Mach number in the range or greater than
the unity. The proposed algorithm thus keeps the space discretizations used in [5, 12],
namely staggered finite volume or finite element discretizations. This discretization
precludes the use of Riemann solvers (see e.g. [20, 7, 2] for textbooks on this latter
technique), and we thus implement the most naive upwinding, with respect to the
material velocity only (similarly to what is proposed in the collocated context in the
AUSM method [18, 17], although with a simpler upwinding algorithm). The pressure
gradient is defined as the transpose of the natural velocity divergence, and is thus
centered. Last but not least, the velocity convection term is built in such a way to
allow to derive a discrete kinetic energy balance.

We prove the following results for this scheme:

- a discrete kinetic energy balance (i.e. a discrete analogue of (1.2)) is established
on dual cells, while a discrete potential elastic balance (i.e. a discrete analogue
of (1.4)) is established on primal cells.
Note however that, because of residual terms appearing in the potential elastic
balance, contrary to what is obtained for implicit and semi-implicit variants of
the present scheme [5, 12], these equations do not seem to yield the stability
of the scheme (i.e. a discrete global entropy conservation analogue to Equation
(1.8)), at least unless supposing drastic limitations of the time step.
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- Second, in one space dimension, the limit of any convergent sequence of solu-
tions to the scheme is shown to be a weak solution to the continuous problem,
and thus to satisfy the Rankine-Hugoniot conditions.

- Finally, still in one space dimension, passing to the limit in the discrete kinetic
energy and elastic potential balances, such a limit is also shown to satisfy the
entropy inequality (1.7).

This paper is structured as follows. We begin with the presentation of the space
discretization (Section 2), then the scheme is given (Section 3), and we derive the
discrete kinetic and elastic potential balances satisfied by its solutions (Section 4).
The next section is dedicated to the proof, in 1D, of the consistency of the scheme
(Section 5). We then present some numerical tests, to assess the behaviour of the
algorithm (Section 6). The discrete kinetic energy and elastic potential balances
are obtained as particular cases of more general results concerning the explicit finite
volume discretization of transport operators, which are established in the appendix.

The results presented in this work are extended in a companion paper [15] to the
”full” Euler equations.

2. Meshes and unknowns. In this section, we focus on the discretization of a
multi-dimensional domain (i.e. d = 2 or d = 3); the extension to the one-dimensional
case is straightforward (see Section 5).

Let M be a decomposition of the domain Ω, supposed to be regular in the usual
sense of the finite element literature (e.g. [3]). The cells may be:

- for a general domain Ω, either non-degenerate quadrilaterals (d = 2) or hex-
ahedra (d = 3) or simplices, both type of cells being possibly combined in a
same mesh,

- for a domain the boundaries of which are hyperplanes normal to a coordinate
axis, rectangles (d = 2) or rectangular parallelepipeds (d = 3) (the faces of
which, of course, are then also necessarily normal to a coordinate axis).

By E and E(K) we denote the set of all (d− 1)-faces σ of the mesh and of the element
K ∈ M respectively. The set of faces included in the boundary of Ω is denoted by
Eext and the set of internal faces (i.e. E \ Eext) is denoted by Eint; a face σ ∈ Eint
separating the cells K and L is denoted by σ = K|L. The outward normal vector
to a face σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the
measure of K and by |σ| the (d− 1)-measure of the face σ. For 1 ≤ i ≤ d, we denote

by E(i) ⊂ E and E
(i)
ext ⊂ Eext the subset of the faces of E and Eext, respectively, which

are perpendicular to the ith unit vector of the canonical basis of Rd.

The space discretization is staggered, using either the Marker-And Cell (MAC)
scheme [11, 10], or nonconforming low-order finite element approximations, namely
the Rannacher and Turek element (RT) [19] for quadrilateral or hexahedric meshes,
or the lowest degree Crouzeix-Raviart element (CR) [4] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure and the
density (i.e. the discrete pressure and density unknowns) are associated to the cells
of the mesh M, and are denoted by:

{

pK , ρK , K ∈ M
}

.

Let us then turn to the degrees of freedom for the velocity (i.e. the discrete velocity
unknowns).

- Rannacher-Turek or Crouzeix-Raviart discretizations – The degrees of
freedom for the velocity components are located at the center of the faces of
the mesh, and we choose the version of the element where they represent the
average of the velocity through a face. The set of degrees of freedom reads:

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.
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Fig. 2.1. Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart elements.

- MAC discretization – The degrees of freedom for the ith component of the
velocity are defined at the centre of the faces σ ∈ E(i), so the whole set of
discrete velocity unknowns reads:

{

uσ,i, σ ∈ E(i), 1 ≤ i ≤ d
}

.

We now introduce a dual mesh, which will be used for the finite volume approximation
of the time derivative and convection terms in the momentum balance equation.

- Rannacher-Turek or Crouzeix-Raviart discretizations – For the RT or CR
discretizations, the dual mesh is the same for all the velocity components. When
K ∈ M is a simplex, a rectangle or a cuboid, for σ ∈ E(K), we define DK,σ as
the cone with basis σ and with vertex the mass center of K (see Figure 2.1).
We thus obtain a partition of K in m sub-volumes, where m is the number of
faces of the mesh, each sub-volume having the same measure |DK,σ| = |K|/m.
We extend this definition to general quadrangles and hexahedra, by supposing
that we have built a partition still of equal-volume sub-cells, and with the
same connectivities. Note that this is of course always possible, but that such
a volumeDK,σ may be no longer a cone; indeed, ifK is far from a parallelogram,
it may not be possible to build a cone having σ as basis, the opposite vertex
lying in K and a volume equal to |K|/m. The volume DK,σ is referred to as
the half-diamond cell associated to K and σ.
For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated to σ by
Dσ = DK,σ ∪DL,σ; for an external face σ ∈ Eext ∩ E(K), Dσ is just the same
volume as DK,σ.

- MAC discretization – For the MAC scheme, the dual mesh depends on the
component of the velocity. For each component, the MAC dual mesh only dif-
fers from the RT or CR dual mesh by the choice of the half-diamond cell, which,
for K ∈ M and σ ∈ E(K), is now the rectangle or rectangular parallelepiped
of basis σ and of measure |DK,σ| = |K|/2.

We denote by |Dσ| the measure of the dual cell Dσ, and by ǫ = Dσ|Dσ′ the face
separating two diamond cells Dσ and Dσ′ .

Finally, we need to deal with the impermeability (i.e. u · n = 0) boundary con-
dition. Since the velocity unknowns lie on the boundary (and not inside the cells),
these conditions are taken into account in the definition of the discrete spaces. To
avoid technicalities in the expression of the schemes, we suppose throughout this pa-
per that the boundary is a.e. normal to a coordinate axis, (even in the case of the RT
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or CR discretizations), which allows to simply set to zero the corresponding velocity
unknowns:

for i = 1, . . . , d, ∀σ ∈ E
(i)
ext, uσ,i = 0. (2.1)

Therefore, there are no degrees of freedom for the velocity on the boundary for the
MAC scheme, and there are only d − 1 degrees of freedom on each boundary face
for the CR and RT discretizations, which depend on the orientation of the face. In
order to be able to write a unique expression of the discrete equations for both MAC

and CR/RT schemes, we introduce the set of faces E
(i)
S associated to the degrees of

freedom of each component of the velocity (S stands for “scheme”):

E
(i)
S =

∣

∣

∣

∣

∣

E(i) \ E
(i)
ext for the MAC scheme,

E \ E
(i)
ext for the CR or RT schemes.

For both schemes, we define Ẽ(i), for 1 ≤ i ≤ d, as the set of faces of the dual mesh
associated to the ith component of the velocity. For the RT or CR discretizations,
the sets Ẽ(i) does not depend on the component (i.e. of i), up to the elimination of
some unknowns (and so some dual cells and, finally, some external faces) to take the
boundary conditions into account. For the MAC scheme, Ẽ(i) depends on i; note that
each face of Ẽ(i) is perpendicular to a unit vector of the canonical basis of Rd, but not
necessarily to the ith one.

Extension to general domains (of course, with the CR or RT discretizations) may
be obtained by redefining, through linear combinations, the degrees of freedom at the
external faces, so as to introduce the normal velocity as a new degree of freedom.

3. The scheme. Let us consider a partition 0 = t0 < t1 < . . . < tN = T of
the time interval (0, T ), which we suppose uniform for the sake of simplicity, and let
δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the (constant) time step. We consider an
explicit-in-time scheme, which reads in its fully discrete form, for 0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn
K,σ = 0, (3.1a)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ , (3.1b)

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ,i − ρnDσ

unσ,i) +
∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫu

n
ǫ,i + |Dσ| (∇p)n+1

σ,i = 0,

(3.1c)

where the terms introduced for each discrete equation are defined herafter.

Equation (3.1a) is obtained by the discretization of the mass balance equation
(1.1a) over the primal mesh, and Fn

K,σ stands for the mass flux across σ outward
K, which, because of the impermeability condition, vanishes on external faces and is
given on the internal faces by:

∀σ = K|L ∈ Eint, Fn
K,σ = |σ| ρnσ u

n
K,σ, (3.2)

where unK,σ is an approximation of the normal velocity to the face σ outward K,
defined by:

unK,σ =

∣

∣

∣

∣

∣

∣

unσ,i e
(i) · nK,σ for σ ∈ E(i) in the MAC case,

u
n
σ · nK,σ in the CR and RT cases,

(3.3)
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where e
(i) denotes the i-th vector of the orthonormal basis of Rd. The density at the

face σ = K|L is approximated by the upwind technique:

ρnσ =

∣

∣

∣

∣

∣

ρnK if unK,σ ≥ 0,

ρnL otherwise.
(3.4)

We now turn to the discrete momentum balance (3.1c), which is obtained by
discretizing the momentum balance equation (1.1b) on the dual cells associated to
the faces of the mesh. The first task is to define the the values ρn+1

Dσ
and ρnDσ

, which
approximate the density over the dual cell Dσ at time tn+1 and tn respectively, and
the discrete mass flux through the dual face ǫ outward Dσ, denoted by Fn

σ,ǫ; the
guideline for their construction is that a finite volume discretization of the mass
balance equation over the diamond cells, of the form

∀σ ∈ E ,
|Dσ|

δt
(ρn+1

Dσ
− ρnDσ

) +
∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫ = 0, (3.5)

must hold in order to be able to derive a discrete kinetic energy balance (see Section
4 below). The density on the dual cells is given by the following weighted average:

for σ = K|L ∈ Eint, for k = n and k = n+ 1,

|Dσ| ρ
k
Dσ

= |DK,σ| ρ
k
K + |DL,σ| ρ

k
L. (3.6)

For the MAC scheme, the flux on a dual face which is located on two primal faces is
the mean value of the sum of fluxes on the two primal faces, and the flux of a dual
face located between two primal faces is again the mean value of the sum of fluxes
on the two primal faces [14]. In the case of the CR and RT schemes, for a dual face
ǫ included in the primal cell K, this flux is computed as a linear combination (with
constant coefficients, i.e. independent of the cell) of the mass fluxes through the faces
of K, i.e. the quantities (Fn

K,σ)σ∈E(K) appearing in the discrete mass balance (3.1a).
We refer to [1, 6] for a detailed construction of this approximation. Let us remark
that a dual face lying on the boundary is then also a primal face, and the flux across
this face is zero. Therefore, the values un+1

ǫ,i are only needed at the internal dual faces,
and are upwinded:

for ǫ = Dσ|Dσ′ , unǫ,i =

∣

∣

∣

∣

∣

unσ,i if F
n
σ,ǫ ≥ 0,

unσ′,i otherwise.
(3.7)

The last term (∇p)n+1
σ,i stands for the i-th component of the discrete pressure

gradient at the face σ. The gradient operator is built as the transpose of the discrete
operator for the divergence of the velocity, the discretization of which is based on the
primal mesh. Let us denote the divergence of un+1 over K ∈ M by (divu)n+1

K ; its
natural approximation reads:

for K ∈ M, (divu)n+1
K =

1

|K|

∑

σ∈E(K)

|σ| un+1
K,σ . (3.8)

Consequently, we choose the components of the pressure gradient as:

for σ = K|L ∈ Eint, (∇p)n+1
σ,i =

|σ|

|Dσ|
(pn+1

L − pn+1
K ) nK,σ · e(i), (3.9)

in order that the following duality relation (with respect to the L2 inner product) be
satisfied:

∑

K∈M

|K| pn+1
K (divu)n+1

K +

d
∑

i=1

∑

σ∈E
(i)
S

|Dσ| u
n+1
σ,i (∇p)n+1

σ,i = 0. (3.10)
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Note that, because of the impermeability boundary conditions, the discrete gradient
is not defined at the external faces.

Finally, the initial approximations for ρ and u are given by the average of the
initial conditions ρ0 and u0 on the primal and dual cells respectively:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S , u0σ,i =

1

|Dσ|

∫

Dσ

(u0(x))i dx.

(3.11)

The following positivity result is a classical consequence of the upwind choice in
the mass balance equation.

Lemma 3.1 (Positivity of the density). Let ρ0 be given by (3.11). Then, since
ρ0 is assumed to be a positive function, ρ0 > 0 and, under the CFL condition:

δt ≤
|K|

∑

σ∈E(K) |σ| max(unK,σ, 0)
, ∀K ∈ M and for 0 ≤ n ≤ N − 1, (3.12)

the solution to the scheme satisfies ρn > 0, for 1 ≤ n ≤ N .

4. Discrete kinetic energy and elastic potential balances. We begin by
deriving a discrete kinetic energy balance equation, as was already done in [12] in
the implicit and fractional time step cases. Equation (4.1) is a discrete analogue of
Equation (1.2), with an upwind discretization of the convection term.

Lemma 4.1 (Discrete kinetic energy balance).

A solution to the system (3.1) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E
(i)
S

and 0 ≤ n ≤ N − 1:

1

2

|Dσ|

δt

[

ρn+1
Dσ

(un+1
σ,i )2 − ρnDσ

(unσ,i)
2
]

+
1

2

∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫ (unǫ,i)

2

+ |Dσ| (∇p)n+1
σ,i un+1

σ,i = −Rn+1
σ,i , (4.1)

with:

Rn+1
σ,i =

1

2

|Dσ|

δt
ρn+1
Dσ

(un+1
σ,i − unσ,i)

2 +
1

2

∑

ǫ=Dσ |Dσ′∈Ẽ(Dσ)

(Fn
σ,ǫ)

−(unσ′,i − unσ,i)
2

−
∑

ǫ=Dσ|Dσ′∈Ẽ(Dσ)

(Fn
σ,ǫ)

−(unσ′,i − unσ,i) (u
n+1
σ,i − unσ,i), (4.2)

where, for a ∈ R, a− ≥ 0 is defined by a− = −min(a, 0). This remainder term is
non-negative under the following CFL condition:

∀σ ∈ E
(i)
S , δt ≤

|Dσ| ρ
n+1
Dσ

∑

ǫ∈Ẽ(Dσ)
(Fn

σ,ǫ)
−
. (4.3)

Proof. The proof of this lemma is obtained by multiplying the (ith component
of the) momentum balance equation (3.1c) associated to the face σ by the unknown
un+1
σ,i , and invoking Lemma A.2 of the appendix.

Similarly, the solution to the scheme (3.1) satisfies a discrete version of the elastic
potential identity (1.4), which we now state.

Lemma 4.2 (Discrete potential balance). Let H be defined by (1.3). A solution
to the system (3.1) satisfies the following equality, for K ∈ M and 0 ≤ n ≤ N − 1:

|K|

δt

[

H(ρn+1
K )−H(ρnK)

]

+
∑

σ∈E(K)

|σ| H(ρnσ) u
n
K,σ+ |K| pnK(divun)K = −Rn+1

K . (4.4)

7



In this relation, the remainder term is defined by:

Rn+1
K =

1

2

|K|

δt
H′′(ρnK,1) (ρ

n+1
K −ρnK)2+

1

2

∑

σ=K|L∈E(K)

|σ| (unK,σ)
− H′′(ρnσ) (ρ

n
K−ρnL)

2

+
∑

σ∈E(K)

|σ|unK,σ H′′(ρnK,2) ρ
n
σ (ρ

n+1
K − ρnK), (4.5)

with ρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, and ρnσ ∈ |[ρnK , ρ
n
σ]| for all σ ∈ E(K), where, for a, b ∈

R, we denote by |[a, b]| the interval |[a, b]| = {θa+ (1− θ)b, θ ∈ [0, 1]}.

Proof. The proof of this lemma is obtain by multiplying the discrete mass balance
equation (3.1a) by H′(ρn+1

K ) and invoking Lemma A.1 of the appendix.

Unfortunately, it does not seem that Rn+1
K ≥ 0 in any case, and so we are not

able to prove a discrete counterpart of the total entropy estimate (1.8), which would
yield a stability estimate for the scheme. However, under a condition for a time step
which is only slightly more restrictive than a CFL-condition, and under some stability
assumptions for the solutions to the scheme, we are able to show that the possible
non-positive part of this remainder term tends to zero in L1(Ω×(0, T )) with the space
and time steps, which allows to conclude, in the 1D case, that a convergent sequence
of solutions satisfies the entropy inequality (1.7): this is the result stated in Lemma
5.3 below.

5. Passing to the limit in the scheme. The objective of this section is to
show, in the one dimensional case, that if a sequence of solutions is controlled in
suitable norms and converges to a limit, this latter necessarily satisfies a (part of the)
weak formulation of the continuous problem.

The 1D version of the scheme which is studied in this section may be obtained
from Scheme (3.1) by taking the MAC variant of the scheme, using only one horizontal
stripe of grid cells, supposing that the vertical component of the velocity (the degrees
of freedom of which are located on the top and bottom boundaries) vanishes, and that
the measure of the vertical faces is equal to 1. For the sake of readability, however,
we completely rewrite this 1D scheme, and, to this purpose, we first introduce some
adaptations of the notations to the one dimensional case. For any face σ ∈ E , let xσ
be its abscissa. For K ∈ M, we denote by hK its length (so hK = |K|); when we
write K = [σσ′], this means that either K = (xσ , xσ′) or K = (xσ′ , xσ); if we need to

specify the order, i.e. K = (xσ, xσ′ ) with xσ < xσ′ , then we write K = [
−→
σσ′]. For an

interface σ = K|L between two cells K and L, we define hσ = (hK + hL)/2, so, by
definition of the dual mesh, hσ = |Dσ|. If we need to specify the order of the cells K

and L, say K is left of L, then we write σ =
−−→
K|L. With these notations, the explicit

scheme (3.1) may be written as follows in the one dimensional setting:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,
(5.1a)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρnK) + Fn
σ′ − Fn

σ = 0, (5.1b)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ , (5.1c)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ − ρnDσ

unσ) + Fn
Lu

n
L − Fn

Ku
n
K + pn+1

L − pn+1
K = 0.

(5.1d)
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The mass flux in the discrete mass balance equation is given, for σ ∈ Eint, by F
n
σ =

ρnσu
n
σ, where the upwind approximation for the density at the face, ρnσ , is defined by

(3.4). In the momentum balance equation, the density associated to the dual cell Dσ,
with σ = K|L, reads

for k = n and k = n+ 1, ρkDσ
=

1

2 |Dσ|
(|K| ρkK + |L| ρkL), (5.2)

and the application of the procedure described in Section 3 yields, for the mass fluxes

at the dual face located at the center of the mesh K = [
−→
σσ′]:

Fn
K =

1

2
(Fn

σ + Fn
σ′ ). (5.3)

The approximation of the velocity at this face is upwind: unK = unσ if Fn
K ≥ 0 and

unK = unσ′ otherwise.

Let a sequence of discretizations (M(m), δt(m))m∈N be given. We define the size
h(m) of the mesh M(m) by h(m) = supK∈M(m) hK . Let ρ(m), p(m) and u(m) be the
solution given by the scheme (5.1) with the mesh M(m) and the time step δt(m). To
the discrete unknowns, we associate piecewise constant functions on time intervals
and on primal or dual meshes, so the density ρ(m), the pressure p(m) and the velocity
u(m) are defined almost everywhere on Ω× (0, T ) by:

ρ(m)(x, t) =
N−1
∑

n=0

∑

K∈M

(ρ(m))nK XK(x)X[n,n+1)(t),

p(m)(x, t) =
N−1
∑

n=0

∑

K∈M

(p(m))nK XK(x)X[n,n+1)(t),

u(m)(x, t) =

N−1
∑

n=0

∑

σ∈E

(u(m))nσ XDσ
(x)X[n,n+1)(t),

(5.4)

where XK , XDσ
and X[n,n+1) stand for the characteristic function of the intervals K,

Dσ and [tn, tn+1) respectively.

For discrete functions q and v defined on the primal and dual mesh, respectively,
we define a discrete L1((0, T ); BV(Ω)) norm by:

‖q‖T ,x,BV =

N
∑

n=0

δt
∑

σ=K|L∈Eint

|qnL − qnK |, ‖v‖T ,x,BV =

N
∑

n=0

δt
∑

ǫ=Dσ|Dσ′∈Ẽint

|vnσ′ − vnσ |,

and a discrete L1(Ω; BV((0, T ))) norm by:

‖q‖T ,t,BV =
∑

K∈M

|K|

N−1
∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

|Dσ|

N−1
∑

n=0

|vn+1
σ − vnσ |.

For the consistency result that we are seeking (Theorem 5.2 below), we have to assume
that a sequence of discrete solutions

(

ρ(m), p(m), u(m)
)

m∈N
satisfies ρ(m) > 0 and

p(m) > 0, ∀m ∈ N (which may be a consequence of the fact that the CFL stability
condition (3.12) is satisfied), and is uniformly bounded in L∞((0, T )× Ω)3, i.e.:

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N,
(5.5)

and

|(u(m))nσ| ≤ C, ∀σ ∈ E(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (5.6)

where C is a positive real number. Note that, by definition of the initial conditions of
the scheme, these inequalities imply that the functions ρ0 and u0 belong to L∞(Ω).
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We also have to assume that a sequence of discrete solutions satisfies the following
uniform bounds in the discrete BV-norms:

‖ρ(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (5.7)

We are not able to prove the estimates (5.5)–(5.7) for the solutions of the scheme;
however, such inequalities are satisfied by the ”interpolates” (for instance, by taking
the cell average) of the solution to a Riemann problem, and are observed in computa-
tions (of course, as far as possible, i.e. in a limited number of cases and with a limited
sequence of meshes and time steps).

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞
c

(

Ω× [0, T )
)

:

−

∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (5.8a)

−

∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)u0(x)ϕ(x, 0) dx = 0, (5.8b)

p = ργ . (5.8c)

Note that these relations are not sufficient to define a weak solution to the problem,
since they do not imply anything about the boundary conditions. However, they allow
to derive the Rankine-Hugoniot conditions; hence if we show that they are satisfied by
the limit of a sequence of solutions to the scheme, this implies, loosely speaking, that
the scheme computes correct shocks (i.e. shocks where the jumps of the unknowns and
of the fluxes are linked to the shock speed by Rankine-Hugoniot conditions). This
is the result we are seeking and which we state in Theorem 5.2. In order to prove
this theorem, we need some definitions of interpolates of regular test functions on the
primal and dual mesh.

Definition 5.1 (Interpolates on one-dimensional meshes). Let Ω be an open
bounded interval of R, let ϕ ∈ C∞

c (Ω × [0, T )), and let M be a mesh over Ω. For
0 ≤ n ≤ N and K ∈ M, we set ϕn

K = ϕ(xK , t
n), with xK the mass center of K. The

interpolate ϕM of ϕ on the primal mesh M is defined by:

ϕM(x, 0) =
∑

K∈M

ϕ0
K XK and, for t > 0, ϕM =

N−1
∑

n=0

∑

K∈M

ϕn+1
K XK X(tn,tn+1]. (5.9)

The time discrete derivative of ϕM is given by:

ðtϕM =

N−1
∑

n=0

∑

K∈M

ϕn+1
K − ϕn

K

δt
XK X(tn,tn+1], (5.10)

and its space discrete derivative by:

ðxϕM =

N−1
∑

n=0

∑

σ=
−−→
K|L∈Eint

ϕn+1
L − ϕn+1

K

hσ
XDσ

X(tn,tn+1]. (5.11)

For 0 ≤ n ≤ N and σ ∈ E, we set ϕn
σ = ϕ(xσ, t

n). Then ϕE , the interpolate of ϕ on
the dual mesh, is defined by:

ϕE(x, 0) =
∑

σ∈E

ϕ0
σ XDσ

and, for t > 0, ϕE =
N−1
∑

n=0

∑

σ∈E

ϕn+1
σ XDσ

X(tn,tn+1]. (5.12)

We also define the time and space discrete derivatives of this function by:

ðtϕE =

N−1
∑

n=0

∑

σ∈E

ϕn+1
σ − ϕn

σ

δt
XDσ

X(tn,tn+1],

ðxϕE =

N−1
∑

n=0

∑

K=[
−−→
σσ′]∈M

ϕn+1
σ′ − ϕn+1

σ

hK
XK X(tn,tn+1].

(5.13)
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We are now in position to state the following result.

Theorem 5.2 (Consistency of the one-dimensional scheme).
Let Ω be an open bounded interval of R. We suppose that the initial data satisfies
ρ0 ∈ L∞(Ω) and u0 ∈ L∞(Ω). Let (M(m), δt(m))m∈N be a sequence of discretizations
such that both the time step δt(m) and the size h(m) of the mesh M(m) tend to zero as
m → +∞, and let (ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions.
We suppose that this sequence satisfies the estimates (5.5)–(5.7) and converges in
Lr(Ω× (0, T ))3, for 1 ≤ r <∞, to (ρ̄, p̄, ū) ∈ L∞(Ω× (0, T ))3.

Then the limit (ρ̄, p̄, ū) satisfies the system (5.8).

Proof. It is clear that, with the assumed convergence for the sequence of solutions,
the limit satisfies the equation of state. The proof of this theorem is thus obtained by
passing to the limit in the scheme for the mass balance equation first, and then for
the momentum balance equation.

Mass balance equation – Let ϕ ∈ C∞
c (Ω × [0, T )). Let m ∈ N, M(m) and

δt(m) be given. Dropping for short the superscript (m), let ϕM be the interpolate
of ϕ on the primal mesh and let ðtϕM and ðxϕM be its time and space discrete
derivatives in the sense of Definition 5.1. Thanks to the regularity of ϕ, these functions
respectively converge in Lr(Ω× (0, T )), for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ and
∂xϕ respectively. In addition, ϕM(·, 0) (which, for K ∈ M and x ∈ K, is equal
to ϕ0

K = ϕ(x, 0)) converges to ϕ(·, 0) in Lr(Ω) for r ≥ 1. Since the support of ϕ
is compact in Ω × [0, T ), for m large enough, the interpolate of ϕ vanishes at the
boundary cells and at the last time step(s); hereafter, we systematically assume that
we are in this case.

Let us multiply the first equation (3.1a) of the scheme by δt ϕn+1
K , and sum the

result for 0 ≤ n ≤ N − 1 and K ∈ M, to obtain T
(m)
1 + T

(m)
2 = 0 with

T
(m)
1 =

N−1
∑

n=0

∑

K∈M

|K|(ρn+1
K −ρnK)ϕn+1

K , T
(m)
2 =

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(Fn
σ′−Fn

σ )ϕ
n+1
K .

Reordering the sums in T
(m)
1 yields:

T
(m)
1 = −

N−1
∑

n=0

δt
∑

K∈M

|K| ρnK
ϕn+1
K − ϕn

K

δt
−

∑

K∈M

|K| ρ0K ϕ0
K ,

so that:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m)
ðtϕM dxdt−

∫

Ω

(ρ(m))0(x) ϕM(x, 0) dx.

The boundedness of ρ0 and the definition (5.1a) of the initial conditions for the scheme
ensures that the sequence ((ρ(m))0)m∈N converges to ρ0 in Lr(Ω) for r ≥ 1. Since, by
assumption, the sequence of discrete solutions and of the interpolate time derivatives
converge in Lr

(

Ω× (0, T )
)

for r ≥ 1, we thus obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ∂tϕdxdt−

∫

Ω

ρ0(x)ϕ(x, 0) dx.

Using the expression of the mass flux Fn
σ and reordering the sums in T

(m)
2 , we get,

remarking that |Dσ| = hσ:

T
(m)
2 = −

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈E

|Dσ| ρ
n
σu

n
σ

ϕn+1
L − ϕn+1

K

hσ
.
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Since |Dσ| = (|K|+ |L|)/2 and ρnσ is the upwind approximation of ρn at the face σ,

we can rewrite T
(m)
2 = T

(m)
2 +R

(m)
2 with

T
(m)
2 = −

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈E

( |K|

2
ρnK +

|L|

2
ρnL

)

unσ
ϕn+1
L − ϕn+1

K

hσ
,

R
(m)
2 = −

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈E

(ρnK − ρnL)
[ |K|

2
(unσ)

− +
|L|

2
(unσ)

+
] ϕn+1

L − ϕn+1
K

hσ
,

where, for a ∈ R, a+ = max(a, 0) and a− = −min(a, 0) (so a = a+ − a−). We have,

for the term T
(m)
2 :

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m)u(m)
ðxϕM dxdt

and therefore

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū ∂xϕdxdt.

The remainder term R
(m)
2 is bounded as follows, with Cϕ = ‖∂xϕ‖L∞(Ω×(0,T )):

|R
(m)
2 | ≤ Cϕ

N−1
∑

n=0

δt
∑

σ=K|L∈E

|ρnK − ρnL| |Dσ| |u
n
σ|

≤ Cϕ ‖u(m)‖L∞(Ω×(0,T )) ‖ρ
(m)‖T ,x,BV h(m),

and therefore tends to zero when m tends to +∞, by the assumed stability of the
solution.

Momentum balance equation – Let ϕE , ðtϕE and ðxϕE be the interpolate
of ϕ on the dual mesh and its discrete time and space derivatives, in the sense of
Definition 5.1, which converge in Lr(Ω× (0, T )), for r ≥ 1 (including r = +∞), to ϕ,
∂tϕ and ∂xϕ respectively. Let us multiply Equation (3.1c) by δt ϕn+1

σ , and sum the

result for 0 ≤ n ≤ N − 1 and σ ∈ Eint. We obtain T
(m)
1 + T

(m)
2 + T

(m)
3 = 0 with

T
(m)
1 =

N−1
∑

n=0

∑

σ∈Eint

|Dσ| (ρ
n+1
Dσ

un+1
σ − ρnDσ

unσ)ϕ
n+1
σ ,

T
(m)
2 =

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[

Fn
L u

n
L − Fn

K unK

]

ϕn+1
σ ,

T
(m)
3 =

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K )ϕn+1
σ .

Reordering the sums, we get for T
(m)
1 :

T
(m)
1 = −

N−1
∑

n=0

δt
∑

σ∈Eint

|Dσ| ρ
n
Dσ
unσ

ϕn+1
σ − ϕn

σ

δt
−

∑

σ∈Eint

|Dσ| ρ
0
Dσ
u0σ ϕ

0
σ.

Thanks to the definition of the quantity ρDσ
(namely the fact that |Dσ| ρ

n
Dσ

= (|K| ρnK+
|L| ρnL)/2), we have:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðtϕE dxdt−

∫

Ω

(ρ(m))0(x) (u(m))0(x) ϕE(x, 0) dx.
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By the same arguments as for the mass balance equation, we therefore obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ū ∂tϕdxdt −

∫

Ω

ρ0(x)u0(x)ϕ(x, 0) dx.

Let us now turn to T
(m)
2 . Reordering the sums and using the definition of the mass

fluxes at the dual faces, we get:

T
(m)
2 = −

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

Fn
K unK (ϕn+1

σ′ − ϕn+1
σ )

= −
1

2

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(ρnσu
n
σ + ρnσ′unσ′)unK (ϕn+1

σ′ − ϕn+1
σ ). (5.14)

Using the relation

∫ T

0

∫

Ω

ρ(m) (u(m))2 ðxϕE dxdt

=
1

2

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρnK
[

(unσ)
2 + (unσ′)2

]

(ϕn+1
σ′ − ϕn+1

σ ),

we can rewrite the term T
(m)
2 as

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) u(m)2
ðxϕE dxdt+R

(m)
2 ,

where:

R
(m)
2 = −

1

2

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′ ]∈M

[

(ρnσu
n
σ+ρ

n
σ′unσ′)unK−ρnK

(

(unσ)
2+(unσ′)2

)

]

(ϕn+1
σ′ −ϕn+1

σ ).

Let us split this latter expression as R
(m)
2 = R

(m)
21 +R

(m)
22 , with:

R
(m)
21 = −

1

2

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

unσ (ρnσu
n
K − ρnKu

n
σ) (ϕ

n+1
σ′ − ϕn+1

σ ),

R
(m)
22 = −

1

2

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

unσ′ (ρnσ′unK − ρnKu
n
σ′) (ϕn+1

σ′ − ϕn+1
σ ).

Applying the identity 2(ab− cd) = (a− c)(b+ d) + (a+ c)(b− d), ∀(a, b, c, d) ∈ R4, to
the term ρnσu

n
K−ρnKu

n
σ and using the fact that the quantities ρnσ−ρ

n
K and unσ−u

n
K are

either zero or differences of the density at two neighbouring cells and of the velocity

at two neighbouring faces respectively, we obtain for R
(m)
21 :

|R
(m)
21 | ≤ Cϕ

[

‖u(m)‖
2

L∞(Ω×(0,T )) ‖ρ
(m)‖T ,x,BV

+ ‖u(m)‖L∞(Ω×(0,T )) ‖u
(m)‖T ,x,BV ‖ρ(m)‖L∞(Ω×(0,T ))

]

h(m),

where the real number Cϕ only depends on ϕ. Since the same estimate holds for

R
(m)
22 , the remainder term R

(m)
2 tends to zero when m tends to +∞ and:

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕdxdt.
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Let us finally study T
(m)
3 . Reordering the sums, we obtain T

(m)
3 = T

(m)
3 +R

(m)
3 with:

T
(m)
3 = −

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

pnK (ϕn+1
σ′ − ϕn+1

σ ),

R
(m)
3 = −

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(pn+1
K − pnK) (ϕn+1

σ′ − ϕn+1
σ ).

The remainder term reads:

R
(m)
3 =

N−1
∑

n=1

δt
∑

K=[
−−→
σσ′]∈M

pnK
[

(ϕn+1
σ′ −ϕn+1

σ )−(ϕn
σ′−ϕn

σ)
]

+δt
∑

K=[
−−→
σσ′]∈M

p0K (ϕ1
σ′−ϕ1

σ),

and thus:

|R
(m)
3 | ≤ Cϕ (δt(m) + h(m)) ‖p‖L∞(Ω×(0,T )),

where the real number Cϕ only depends on (the first and second derivatives of) ϕ.

Thus R
(m)
3 tends to zero when m tends to +∞ and, since

T
(m)
3 = −

∫ T

0

∫

Ω

p(m)
ðxϕM dxdt,

we obtain that:

lim
m→+∞

T
(m)
3 =

∫ T

0

∫

Ω

p̄ ∂xϕdxdt.

Conclusion – Gathering the limits of all the terms of the mass and momentum
balance equations concludes the proof.

We now turn to the entropy condition (1.7). To this purpose, we need to introduce
the following additional condition for a sequence of discretizations:

lim
m→+∞

δt(m)

minK∈M(m) hK
= 0. (5.15)

Note that this condition is slightly more restrictive that a standard CFL condition. It
allows to bound the remainder term in the discrete elastic potential balance as stated
in the following lemma.

Lemma 5.3. Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be
a sequence of discretizations such that the time step δt(m) tends to zero as m→ +∞,
and let (ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose
that this sequence satisfies the estimates (5.5) and (5.6). In addition, we assume that
(ρ(m))m∈N satisfies the following uniform BV estimate:

‖ρ(m)‖T ,t,BV ≤ C, ∀m ∈ N, (5.16)

and, for γ < 2 only, is uniformly bounded by below, i.e. that there exists c > 0 such
that:

c ≤ (ρ(m))nK , ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N. (5.17)

Let us suppose that the CFL condition (5.15) holds. Let R(m) be defined by:

R(m) =

N−1
∑

n=0

δt
∑

K∈M

(Rn+1
K )−,
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with Rn+1
K given by (4.5). Then:

lim
m→+∞

R(m) = 0.

Proof. For K = [
−→
σσ′] ∈ M, with σ =

−−−→
M |K and σ′ =

−−→
K|L, we write Rn+1

K =
(T1)

n+1
K + (T2)

n+1
K + (T3)

n+1
K , with:

(T1)
n+1
K =

1

2

|K|

δt
H′′(ρnK,1) (ρ

n+1
K − ρnK)2,

(T2)
n+1
K =

1

2

[

(unσ′)− H′′(ρnσ′) (ρnK − ρnL)
2 + (−unσ)

− H′′(ρnσ) (ρ
n
K − ρnM )2

]

,

(T3)
n+1
K =

[

ρnσ′ unσ′ − ρnσ u
n
σ

]

H′′(ρnK,2) (ρ
n+1
K − ρnK),

where ρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, ρnσ′ ∈ |[ρnK , ρ
n
L]| and ρnσ ∈ |[ρnK , ρ

n
M ]|. The first two

terms are non-negative, and thus (Rn+1
K )− ≤ |(T3)

n+1
K |. Since both ρ, u and, for

γ < 2, 1/ρ are supposed to be bounded, we have:

N−1
∑

n=0

δt
∑

K∈M

|(T3)
n+1
K | ≤ C

δt(m)

minK∈M hK
‖ρ(m)‖T ,t,BV,

which yields the conclusion by the assumption (5.15).

We are now in position to state the following consistency result.

Theorem 5.4 (Entropy consistency of the one dimensional scheme).
Let the assumptions of Theorem 5.2 hold. Let us suppose in addition that the consid-
ered sequence of discretizations satisfies (5.15), and that (ρ(m))m∈N satisfies the BV
estimate (5.16) and, for γ < 2, the uniform control (5.17) of 1/ρ(m). Then the limit
(ρ̄, p̄, ū) satisfies the entropy condition (1.7).

Proof. Let ϕ ∈ C∞
c

(

Ω × [0, T )
)

, ϕ ≥ 0. With the notations for the interpolate
of ϕ given in Definition 5.1, we multiply the kinetic balance equation (4.1)-(4.2) by
ϕn+1
σ , and the elastic potential balance (4.4)-(4.5) by ϕn+1

K , sum over the edges and
cells respectively and over the time steps, to obtain the discrete version of (1.7):

T
(m)
1 + T

(m)
2 + T

(m)
3 + T̃

(m)
1 + T̃

(m)
2 + T̃

(m)
3 = −R(m) − R̃(m) (5.18)

where:

T
(m)
1 =

N−1
∑

n=0

∑

K∈M

|K|
[

H(ρn+1
K )−H(ρnK)

]

ϕn+1
K ,

T
(m)
2 =

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

H(ρnσ′)unσ′ −H(ρnσ)u
n
σ

]

ϕn+1
K ,

T
(m)
3 =

N−1
∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

pnK(unσ′ − unσ)
]

ϕn+1
K ,

T̃
(m)
1 =

1

2

N−1
∑

n=0

∑

σ∈Eint

|Dσ|
[

ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)
2
]

ϕn+1
σ ,

T̃
(m)
2 =

1

2

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[

Fn
L (unL)

2 − Fn
K (unK)2

]

ϕn+1
σ ,

T̃
(m)
3 =

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K )un+1
σ ϕn+1

σ ,
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R(m) =

N−1
∑

n=0

δt
∑

K∈M

Rn+1
K ϕn+1

K , R̃(m) =

N−1
∑

n=0

δt
∑

σ∈Eint

Rn+1
σ ϕn+1

σ ,

and the quantities Rn+1
K and Rn+1

σ are given by (the one-dimensional version of)
Equation (4.5) and (4.2) respectively.

The fact that

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

H(ρ̄) ∂tϕdxdt−

∫

Ω

H(ρ0)(x) ϕ(x, 0) dx,

is proven by the same technique as for passing to the limit in the term T
(m)
1 of

the discrete mass balance equation in the proof Theorem 5.2, thanks to the fact that,
with the assumed convergence of the sequence (ρ(m))m∈N, the sequence (H(ρ(m)))m∈N

converge to H(ρ̄) in Lr(Ω×(0, T )), for r ≥ 1. For T
(m)
2 , we have, reordering the sums:

T
(m)
2 = −

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

H(ρnσ)u
n
σ (ϕn+1

L − ϕn+1
K ).

Let us write T
(m)
2 = T

(m)
2 +R

(m)
2 , with

T
(m)
2 = −

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(

|DK,σ| H(ρnK) + |DL,σ| H(ρnL)
)

unσ
ϕn+1
L − ϕn+1

K

hσ
.

We have:

T
(m)
2 = −

∫ T

0

∫

Ω

H(ρ(m)) u(m)
ðxϕM dxdt,

so

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

H(ρ̄) ū ∂xϕdxdt.

The remainder term R
(m)
2 reads:

R
(m)
2 = −

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[

|Dσ| H(ρnσ)− |DK,σ| H(ρnK)− |DL,σ| H(ρnL)
]

unσ
ϕn+1
L − ϕn+1

K

hσ
.

This term satisfies:

|R
(m)
2 | ≤

N−1
∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

|H(ρnK)−H(ρnL)| u
n
σ |ϕn+1

L − ϕn+1
K |,

and so

|R
(m)
2 | ≤ Cϕ h(m) ‖u(m)‖L∞(Ω×(0,T )) ‖ρ

(m)‖T ,x,BV,

provided that a uniform (with respect to the faces, the time steps and the meshes)
Lipschitz condition holds for |H(ρnK) − H(ρnL)| which, in view of the expression of
H, requires that the sequence (ρ(m))m∈N be bounded by below away from zero when
γ = 1.

For the other terms at the left-hand side of (5.18), we refer to [15, Theorem 5.3].
Finally, the remainder term R(m) is non-negative under the CFL condition (4.3), while
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Fig. 6.1. Test 1 – h = 0.001, δt = h/12 – Density at t = 0.025.

the positive part of R̃(m) tends to zero in L1(Ω× (0, T )) under the assumption (5.15)
by Lemma 5.3. The proof is thus complete.

Remark 5.1 (On BV-stability assumptions).
The proof of Theorem 5.2 shows that the scheme is consistent under a BV-stability
assumption much weaker than (5.7), namely:

lim
m→+∞

h(m)
[

‖ρ(m)‖T ,x,BV + ‖u(m)‖T ,x,BV

]

= 0.

The situation is completely different when prooving that the limit of convergent se-
quences is an entropy solution ( i.e. when prooving Theorem 5.4 or, more precisely
speaking, the preliminary lemma 5.3), since we need:

lim
m→+∞

δt(m)

minK∈M(m) hK
‖ρ(m)‖T ,t,BV = 0.

6. Numerical results. We assess in this section the behaviour of the scheme
on various test cases. For all these tests, we chose p = ρ2 for the equation of state, so
the solved system turns out to be the so-called shallow water equations.

6.1. A first Riemann problem. We begin with a Riemann problem, i.e. a
1D problem which initial conditions consists in two constant states separated by a
discontinuity. The chosen left and right states are given by:

left state:

[

ρL = 1
uL = 5

]

; right state:

[

ρR = 10
uR = 7.5

]

.

The computational domain is Ω = (0, 1) and the final time is T = 0.025. The (known)
analytical solution of this problem consists, from the left to the right, in a shock wave
and a rarefaction wave, both travelling to the right, separated by constant states.

6.1.1. Results. The density and velocity obtained at t = 0.025 = T are shown
of Figures 6.1 and 6.2 respectively; this results have been obtain with h = 0.001 and
δt = h/12 (the maximum velocity and sound speed computed from the analytical
solution being umax = 7.5 and cmax ≃ 4.5, respectively). In addition, we performed a
convergence study, successively dividing by two the space and time steps (so keeping
the CFL number constant). The difference between the computed and analytical
solution at t = 0.025, measured in L1(Ω) norm, are reported in the following table:

space step h0 = 1/250 h0/2 h0/4 h0/8 h0/16

‖ρ− ρ̄‖L1(Ω) 0.0449 0.0256 0.0135 0.00775 0.00429

‖u− ū‖L1(Ω) 0.0411 0.0233 0.0119 0.00696 0.00384
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Fig. 6.2. Test 1 – h = 0.001, δt = h/12 –Velocity at t = 0.025.

We observe an approximatively first-order convergence rate.

To complete the study, we performed a computation of the same problem, but
subtracting a constant real number to the left and right velocity, in such a way that
the velocity on the intermediate state nearly vanishes. In this case, we observe
spurious oscillations on the solution, probably due to the fact that the numerical
diffusion in the scheme vanishes. However, adding an artificial viscosity term in the
discrete momentum balance equation, with a constant viscosity equal to 0.5 ρ h (so
equal to the upwind viscosity which would be associated to a velocity equal to 1)
completely cures the problem. This observation strongly supports the idea to build a
higher order scheme using an a posteriori fitted viscosity technique, as in the so-called
entropy viscosity method [8, 9]; this work is underway.

6.1.2. On a naive scheme. We also test the “naive” explicit scheme obtained
by evaluating all the terms, except of course the time-derivative one, at time tn. In
the one dimensional setting and with the same notations as in Section 5, this scheme
thus reads:

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρnK) + Fn
σ′ − Fn

σ = 0, (6.1a)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ − ρnDσ

unσ) + Fn
Lu

n
L − Fn

Ku
n
K + pnL − pnK = 0,

(6.1b)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ . (6.1c)

Hereafter and on the figure captions, this scheme is referred to as the ”ρ; u; p
scheme” (since the pressure is updated after the computation of the velocity rather
than after the computation of the density).

The computed density and velocity at time T = 0.025 are plotted on figures 6.3
and 6.4 respectively. From these results, it appears clearly that the ρ;u;p scheme
generates discontinuities in the rarefaction wave, and further experiments show that
this phenomenon is not cured by a decrease of the time and space steps; this seems
to be connected to the fact that, for this variant, we cannot prove that the limits of
converging sequences satisfy the entropy condition (in fact, they probably do not).
When trying to do so, in our proof and from a purely technical point of view, the
trouble comes from the fact that the pressure gradient term which appears in the
kinetic energy balance reads un+1

∇pn and it seems difficult to make the counterpart
(i.e. pndiv(un+1)) appear, with the corresponding time levels, in the elastic potential
balance, starting from a mass balance with a convection term written with u

n; hence
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Fig. 6.3. Test 1, ρ;u;p scheme – h = 0.001, δt = h/12 – Density at t = 0.025.

Fig. 6.4. Test 1, ρ;u;p scheme – h = 0.001, δt = h/12 – Velocity at t = 0.025.

a dicretization of the momentum balance equation with an updated pressure gradient
term ∇pn+1, and thus the inversion of steps in the algorithm, to get the actual scheme
proposed in this paper.

6.2. Problems involving vacuum zones in the flow. The objective of the
two tests presented in this section is to check that the time step does not have to be
drastically reduced in the presence of vacuum. Both are Riemann problems, posed on
Ω = (0, 1).

We first begin with a case where the vacuum is initially present, at the right initial
state:

left state:

[

ρL = 1
uL = 1

]

; right state:

[

ρR = 0
uR = 0

]

.

In the computer code, ρR is fixed as ρR = 10−20, to prevent divisions by zero due to
imprudent programming. The results obtained at t = 0.05 are plotted on Figure 6.5
(density) and Figure 6.6 (velocity); they have been obtained with h = 0.001 and a
constant time step equal to δt = h/8, which seems to be near to the stability limit
(the maximum velocity and sound speed computed from the analytical solution being
given by umax ≃ 3.8 and cmax ≃ 1.4, respectively). We observe that the prediction
velocity is rather poor near to the vacuum front; we however check on Figure 6.7
that the scheme converges to the right solution; moreover, Figure 6.8 shows that the
quantity ρ u (which is, in this case, the quantity of physical interest) is in fact obtained
with a reasonable accuracy with the coarsest meshes of this study.
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Fig. 6.5. Riemann problem with vacuum at the right state – h = 0.001, δt = h/8 – Density at
t = 0.05.

Fig. 6.6. Riemann problem with vacuum at the right state – h = 0.001, δt = h/8 – Velocity at
t = 0.05.

We now turn to a case where the chosen left and right states are given by:

left state:

[

ρL = 1
uL = −8

]

; right state:

[

ρR = 1
uR = 8

]

.

In this case, the solution consists in an intermediate state corresponding to vacuum
connected to the left and right initial states by rarefaction waves. The computed
density and velocity at t = 0.03, with h = 0.001 and δt = h/12 (while, in the
analytical solution, umax = 8 and cmax ≃ 1.4), are plotted on Figures 6.9 and 6.10
respectively. Once again, the behaviour of the scheme is satisfactory.

7. Conclusion. We presented in this paper an explicit scheme based on stag-
gered meshes for the hyperbolic system of the barotropic Euler equations. This algo-
rithm uses a very simple first-order upwinding strategy which consists, equation by
equation, to implement an upwind discretization of the convection term with respect
of the material velocity. Under CFL-like conditions based on the material velocity
only (by opposition to the celerity of waves), this scheme preserves the positivity of
the density and the pressure, and has been shown to be consistent for 1D problems,
in the sense that, if a sequence of numerical solutions obtained with more and more
refined meshes (and, accordingly, smaller and smaller time steps) converges, then the
limit is a weak entropy solution to the continuous problem. This theoretical result
may probably be extended to the multi-dimensional case, and this work is now being
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Fig. 6.7. Riemann problem with vacuum at the right state – h = h0 = 0.001 to h = h0/16,
δt = h/8 – Velocity at t = 0.05.

Fig. 6.8. Riemann problem with vacuum at the right state – h = h0 = 0.001 to h = h0/16,
δt = h/8 – Mass flowrate at t = 0.05.

undertaken. The proposed scheme has a natural extension to the full Euler equations,
which is the topic of a companion paper. Note also that a partial time-implicitation,
using pressure correction techniques, has been shown to yield consistent uncondition-
ally stable schemes [12, 13].

Numerical studies show that the proposed algorithm is stable, even if the largest
time step before blow-up is smaller than suggested by the above-mentionned CFL con-
ditions. This behaviour had to be expected, since these CFL conditions only involve
the velocity (and not the celerity of the acoutic waves): indeed, were they the only
limitation, we would have obtained an explicit scheme stable up to the incompressible
limit. However, the mechanisms leading to the blow-up of the scheme (or, conversely,
the way to fix the time step to ensure stability) remain to be understood.

In addition, numerical experiments show that some oscillations appear near stag-
nation points, where the numerical diffusion brought by the upwinding vanishes.
These oscillations are damped by a small amount of artificial (physical-like) viscosity,
and this suggests to implement techniques consisting in adding to the scheme such
a diffusion term, with a viscosity monitored by an a posteriori (i.e. performed in
view of the results of the previous time step) analysis of the solution, as the so-called
entropy-viscosity technique. Besides, such an extension should allow to design a more
accurate scheme, based on higher-order numerical fluxes. This work is underway.

Last but not least, since the proposed scheme uses very simple numerical fluxes,
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Fig. 6.9. Riemann problem with vacuum appearance – h = 0.001, δt = h/12 – Density at t = 0.03.

Fig. 6.10. Riemann problem with vacuum appearance – h = 0.001, δt = h/12 – Mass flowrate
at t = 0.03.

it is well suited to large multi-dimensionnal parallel computing applications. This is
the topic of ongoing studies at IRSN.

Appendix A. Some results concerning explicit finite volume convection

operators.

We begin with the convection operator appearing in the mass balance equation,
which reads, in the continuous problem, ρ → C(ρ) = ∂tρ + div(ρu), where u stands
for a given velocity field, which is not assumed to satisfy any divergence constraint.
Let ψ be a regular function from (0,+∞) to R; then:

ψ′(ρ) C(ρ) = ψ′(ρ) ∂t(ρ) + ψ′(ρ)u ·∇ρ+ ψ′(ρ) ρ divu

= ∂t(ψ(ρ)) + u ·∇ψ(ρ) + ρψ′(ρ) divu,

so adding and subtracting ψ(ρ) divu yields:

ψ′(ρ) C(ρ) = ∂t
(

ψ(ρ)
)

+ div
(

ψ(ρ)u
)

+
(

ρψ′(ρ)− ψ(ρ)
)

divu. (A.1)

This computation is of course completely formal and only valid for regular functions
ρ and u. The following lemma states a discrete analogue to (A.1).

Lemma A.1. Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp.
R3), and let E(P ) be the set of its edges (resp. faces). Let ψ be a twice continuously
differentiable function defined over (0,+∞). Let ρ∗P > 0, ρP > 0, δt > 0; consider
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three families (ρ∗η)η∈E(P ) ⊂ R+ \ {0}, (V ∗
η )η∈E(P ) ⊂ R and (F ∗

η )η∈E(P ) ⊂ R such that

∀η ∈ E(P ), F ∗
η = ρ∗η V

∗
η .

Let RP,δt be defined by:

RP,δt =
[ |P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

F ∗
η

]

ψ′(ρP )

−
|P |

δt
[ψ(ρP )− ψ(ρ∗P )] +

∑

η∈E(P )

ψ(ρ∗η)V
∗
η + [ρ∗Pψ

′(ρ∗P )− ψ(ρ∗P )]
∑

η∈E(P )

V ∗
η .

Then this quantity may be expressed as follows:

RP,δt =
1

2

|P |

δt
(ρP − ρ∗P )

2 ψ′′(ρ
(1)
P )−

1

2

∑

η∈E(P )

V ∗
η (ρ∗P − ρ∗η)

2 ψ′′(ρ∗η)

+
∑

η∈E(P )

V ∗
η ρ

∗
η (ρP − ρ∗P )ψ

′′(ρ
(2)
P ),

where ρ
(1)
P , ρ

(2)
P ∈ |[ρP , ρ

∗
P ]| and ∀η ∈ E(P ), ρ∗η ∈ |[ρ∗P , ρ

∗
η]|. We recall that, for

a, b ∈ R, we denote by |[a, b]| the interval |[a, b]| = {θa+ (1− θ)b, θ ∈ [0, 1]}.
Proof. By the definition of F ∗

η , we have:

[ |P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

F ∗
η

]

ψ′(ρP ) =
|P |

δt
(ρP − ρ∗P )ψ

′(ρP )

+
∑

η∈E(P )

ρ∗ηV
∗
η ψ

′(ρ∗P ) +
∑

η∈E(P )

ρ∗ηV
∗
η

[

ψ′(ρP )− ψ′(ρ∗P )
]

. (A.2)

By Taylor expansions of ψ, there exist two real numbers ρ
(1)
P and ρ

(2)
P ∈ |[ρ∗P , ρP ]| and

a family of real numbers (ρ∗η)η∈E(P ) satisfying, ∀η ∈ E(P ), ρ∗η ∈ |[ρ∗P , ρ
∗
η]|, and such

that:

(ρP − ρ∗P )ψ
′(ρP ) = ψ(ρP )− ψ(ρ∗P ) +

1

2
(ρP − ρ∗P )

2 ψ′′(ρ
(1)
P ),

ρ∗ηψ
′(ρ∗P ) = ψ(ρ∗η) + [ρ∗Pψ

′(ρ∗P )− ψ(ρ∗P )]−
1

2
(ρ∗η − ρ∗P )

2 ψ′′(ρ∗η),

ψ′(ρP )− ψ′(ρ∗P ) = (ρP − ρ∗P )ψ
′′(ρ

(2)
P ).

Substituting in (A.2) yields the result we are seeking.

We now turn to the convection operator appearing in the momentum balance
equation, which reads, in the continuous setting, z → Cρ(z) = ∂t(ρz) + div(ρzu),
where ρ (resp. u) stands for a given scalar (resp. vector) field; we wish to obtain
some property of Cρ under the assumption that ρ and u satisfy the mass balance
equation, i.e. ∂tρ+ div(ρu) = 0. Formally, using twice the mass balance yields:

ψ′(z) Cρ(z) = ψ′(z)
[

∂t(ρ z) + div(ρ z u)
]

= ψ′(z)ρ
[

∂tz + u ·∇z
]

= ρ
[

∂tψ(z) + u ·∇ψ(z)
]

= ∂t
(

ρψ(z)
)

+ div
(

ρψ(z)u
)

.

Taking for z a component of the velocity field, this relation is the central argument
used to derive the kinetic energy balance. The following lemma states a discrete
counterpart of this identity, for a finite volume first-order explicit convection operator.

Lemma A.2. Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp.
R3) and let E(P ) be the set of its edges (resp. faces). Let ρ∗P > 0, ρP > 0, δt > 0,
and (F ∗

η )η∈E(P ) ⊂ R be such that

|P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

F ∗
η = 0. (A.3)
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Let ψ be a twice continuously differentiable function defined over (0,+∞). For u∗P ∈
R, uP ∈ R and (u∗η)η∈E(P ) ⊂ R let us define:

RP,δt =
[ |P |

δt

(

ρP uP − ρ∗P u
∗
P

)

+
∑

η∈E(P )

F ∗
η u∗η

]

ψ′(uP )

−
[ |P |

δt

[

ρP ψ(uP )− ρ∗P ψ(u
∗
P )

]

+
∑

η∈E(P )

F ∗
η ψ(u∗η)

]

.

Then:

(i) the remainder term RP,δt reads:

RP,δt =
1

2

|P |

δt
ρP (uP −u∗P )

2ψ′′(u
(1)
P )−

1

2

∑

η∈E(P )

F ∗
η (u∗η−u

∗
p)

2ψ′′(u∗η)

+
∑

η∈E(P )

F ∗
η (u∗η − u∗P ) (uP − u∗P ) ψ

′′(u
(2)
P ) (A.4)

with u
(1)
P , u

(2)
P ∈ |[uP , u

∗
P ]|, and ∀η ∈ E(P ), u∗η ∈ |[u∗P , u

∗
η]|.

(ii) If we suppose that the function ψ is convex and that u∗η = u∗P as soon as
F ∗
η ≥ 0, then RP,δt is non-negative under the CFL condition:

δt ≤
|P | ρP ψ

′′

P
∑

η∈E(P )(F
∗
η )

− (ψ
′′

P )
2/ψ′′

η

, (A.5)

where ψ′′

P
= min

s∈|[uP ,u∗

P
]|
ψ′′(s), ψ

′′

P = max
s∈|[uP ,u∗

P
]|
ψ′′(s) and ψ′′

η
= min

s∈|[u∗

P
,u∗

η]|
ψ′′(s).

For ψ(s) = s2/2 (and therefore ψ′′(s) = 1, ∀s ∈ (0,+∞)), this CFL condition
simply reads:

δt ≤
|P | ρP

∑

η∈E(P )(F
∗
η )

−
. (A.6)

Proof. Let TP be defined by:

TP =
[ |P |

δt

(

ρP uP − ρ∗P u
∗
P

)

+
∑

η∈E(P )

F ∗
η u∗η

]

ψ′(uP ).

Using equation (A.3) multiplied by u∗P , we obtain:

TP =
[ |P |

δt
ρP

(

uP − u∗P
)

+
∑

η∈E(P )

F ∗
η (u∗η − u∗P )

]

ψ′(uP ).

We now define the remainder terms rP and (r∗η)η∈E(P ) by:

rP = (uP −u∗P ) ψ
′(uP )−

[

ψ(uP )−ψ(u
∗
P )

]

, r∗η = (u∗P −u∗η) ψ
′(u∗P )−

[

ψ(u∗P )−ψ(u
∗
η)
]

.

With these notations, we get:

TP =
|P |

δt
ρP

[

ψ(uP )− ψ(u∗P )
]

+
∑

η∈E(P )

F ∗
η

[

ψ(u∗η)− ψ(u∗P )
]

+
|P |

δt
ρP rP −

∑

η∈E(P )

F ∗
η r∗η +

∑

η∈E(P )

F ∗
η (u∗η − u∗P )

(

ψ′(uP )− ψ′(u∗P )
)

.
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Using once again equation (A.3), this time multiplied by ψ(u∗P ), we obtain:

TP =
|P |

δt

[

ρPψ(uP )− ρ∗Pψ(u
∗
P )

]

+
∑

η∈E(P )

F ∗
ηψ(u

∗
η)

+
|P |

δt
ρP rP −

∑

η∈E(P )

F ∗
η r∗η +

∑

η∈E(P )

F ∗
η (u∗η − u∗P )

(

ψ′(uP )− ψ′(u∗P )
)

.

The expression (A.4) of the remainder term RP,δt follow by remarking that, by a

Taylor expansion, there exist u
(1)
P , u

(2)
P ∈ |[uP , u

∗
P ]|, and ∀η ∈ E(P ), u∗η ∈ |[u∗P , u

∗
η]|

such that:

rP =
1

2
ψ′′(u

(1)
P ) (uP − u∗P )

2, r∗η =
1

2
ψ′′(u∗η) (u

∗
η − u∗p)

2

and

ψ′(uP )− ψ′(u∗P ) = ψ′′(u
(2)
P ) (uP − u∗P ).

If ψ is convex, rP is non-negative. If, in addition, u∗P − u∗η vanishes ∀η ∈ E(P ) when
F ∗
η is non-negative, −r∗η is non-negative. By Young’s inequality, the last term in RP,δt

may be bounded as follows:

∣

∣

∣

∑

η∈E(P )

(F ∗
η )

− (u∗η − u∗P ) (uP − u∗P ) ψ
′′(u

(2)
P )

∣

∣

∣

≤
ψ′′(u

(2)
P )2

2

[

∑

η∈E(P )

(F ∗
η )

− 1

ψ′′(u∗η)

]

(uP −u∗P )
2+

1

2

∑

η∈E(P )

(F ∗
η )

− (u∗η−u
∗
P )

2 ψ′′(u∗η),

so this term may be absorbed in the first two ones under the CFL condition (A.5).
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