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Abstract

The aim of this study is to evaluate the consequences of accounting for vari-

able Chl:C (chlorophyll:carbon) and C:N (carbon:nitrogen) ratios in the for-

mulation of phytoplankton growth in biogeochemical models. We compare

the qualitative behaviour of a suite of phytoplankton growth formulations

with increasing complexity: 1) a Redfield formulation (constant C:N ratio)

without photo-acclimation (constant Chl:C ratio), 2) a Redfield formula-

tion with diagnostic chlorophyll (variable and empirical Chl:C ratio), 3) a

quota formulation (variable C:N ratio) with diagnostic chlorophyll, and 4)

a quota formulation with prognostic chlorophyll (dynamic variable). These

phytoplankton growth formulations are embedded in a simple marine ecosys-
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tem model in a 1D framework at the Bermuda Atlantic Time-series (BATS)

station. The model parameters are tuned using a stochastic assimilation

method (micro-genetic algorithm) and skill assessment techniques are used

to compare results. The lowest misfits with observations are obtained when

photo-acclimation is taken into account (variable Chl:C ratio) and with non-

Redfield stoichiometry (variable C:N ratio), both under spring and summer

conditions. This indicates that the most flexible models (i.e., with variable

ratios) are necessary to reproduce observations. As seen previously, photo-

acclimation is essential in reproducing the observed deep chlorophyll maxi-

mum and subsurface production present during summer. Although Redfield

and quota formulations of C:N ratios can equally reproduce chlorophyll data

the higher primary production that arises from the quota model is in better

agreement with observations. Under the oligotrophic conditions that typify

the BATS site no clear difference was detected between quota formulations

with diagnostic or prognostic chlorophyll.

Keywords: Biogeochemical modelling, Phytoplankton, Photo-acclimation,

Redfield ratio, Internal quota, BATS, Optimization, Micro-genetic

algorithm.

1. Introduction1

During the last twenty years, marine ecosystem (or biogeochemical) mod-2

els have been widely used to study the response of primary production to3

perturbation of the physical environment along a wide range of temporal4

and spatial scales. Most of these models follow the same general structure:5

they use nitrogen as the main currency, and account for a simplified food-web6
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which generally includes phytoplankton and zooplankton, and a regeneration7

network with detritus, dissolved organic nitrogen, and various nutrients (i.e.,8

Fasham et al., 1990). Whereas the complexity of marine biogeochemical mod-9

els has increased in the last decade (reaching sometimes about eighty state10

variables as in Follows et al., 2007), simple phytoplankton growth models are11

still usually embedded within these ecosystem models, with strong simplifica-12

tions on phytoplankton physiology, such as using constant C:N stoichiometry13

or not accounting for photo-acclimation (using constant Chl:C ratio).14

Phytoplankton growth formulations involving different complexities in15

the representation of physiological processes (such as photosynthesis, nutri-16

ent uptake, photo-acclimation, or energy storage) have been derived from17

laboratory experiments (Zonneveld, 1998; Baklouti et al., 2006). However,18

directly transposing the relationships derived from these laboratory exper-19

iments, which generally involve a single phytoplankton species and explore20

a limited set of forcing conditions (nutrient supply, temperature, light), to21

global marine ecosystem models is not straightforward and is currently the22

subject of some debates (Flynn, 2003a; Franks, 2009; Flynn, 2010; Anderson,23

2010).24

The simplest phytoplanktonic growth formulations use a classical Michaelis-25

Menten representation of nutrient uptake (Monod, 1949, 1950) and assume26

constant stoichiometry between carbon, nitrogen and phosphorus (Redfield27

et al., 1963). In these models, phytoplankton are represented by a single state28

variable, the phytoplankton biomass, expressed in nitrogen, phosphorus or29

carbon currency. Because of their relative simplicity, these models are gen-30

erally used for global scale studies (Aumont and Bopp, 2006; Follows et al.,31
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2007; Dutkiewicz et al., 2009). More sophisticated formulations, inspired32

from the original work of Droop (1968, 1983), explicitly account for the dy-33

namics of internal quotas of phytoplanktonic cells (Flynn, 2008; Klausmeier34

et al., 2004; Bougaran et al., 2010; Mairet et al., 2011; Bernard, 2011). In35

these formulations, phytoplankton are represented by at least two variables,36

usually the phytoplankton biomass in both carbon and nitrogen currency.37

This allows to decouple the dynamics of nutrient uptake from carbon fixa-38

tion, depending on the physiological state of phytoplankton. Various versions39

of such formulations have been successfully applied to 1D marine ecosystem40

models (Lancelot et al., 2000; Allen et al., 2002; Lefèvre et al., 2003; Mongin41

et al., 2003; Blackford et al., 2004; Salihoglu et al., 2008) and also attempted42

in 3D ecosystem models (Tagliabue and Arrigo, 2005; Vichi et al., 2007; Vichi43

and Masina, 2009; Vogt et al., 2010).44

The dynamics of pigment contents, most frequently of chlorophyll a (Chl),45

can also be represented with different levels of complexity. The Chl:C ratios46

can either be constant (no photo-acclimation), diagnostic (from an empirical47

(Cloern et al., 1995; Bernard, 2011) or a mechanistic (Geider and Platt, 1986;48

Doney et al., 1996; Bissett et al., 1999) static relationship), or prognostic49

(i.e., with a dynamic evolution) (Flynn and Flynn, 1998; Geider et al., 1998;50

Baumert and Petzoldt, 2008; Ross and Geider, 2009). For instance, Geider51

et al. (1998) proposed a phytoplankton growth formulation calibrated for52

chemostat experiments, in which chlorophyll production is proportional to53

both nitrogen assimilation and carbon fixation.54

The different behaviours associated to these different growth formula-55

tions have generally been examined in the context of laboratory experiments56
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(Vatcheva et al., 2006), i.e. for monospecific cultures under a limited set57

of idealized forcing. Significant variations from Redfield stoichiometry ob-58

served in experimental data of nutrient-limited phytoplankton cultures have59

highlighted the limits of the Redfield-Monod-type models and the need for60

non-Redfieldian formulations (quota formulations) (Sciandra, 1991; Dearman61

et al., 2003; Flynn, 2003a, 2010). Besides, formulations that assume con-62

stant Chl:C ratio fail to reproduce experimental data (Flynn et al., 2001)63

or in situ observations (Doney et al., 1996; Lévy et al., 1998; Spitz et al.,64

1998). However, it is not straightforward to find the right trade-off between a65

model which is too simple to reproduce the observed dynamics and a complex66

model with too many free parameters to tune against limited data (Flynn,67

2003b). Based on comparisons with laboratory experiments, Flynn (2003a)68

suggested that quota-type models with empirical Chl:C relationship ”should69

be adequate for most oceanographic modeling scenarios”, although it must70

be kept in mind that even if a model using simplified assumptions may fit to71

observed data, it may not be acceptable (Mitra et al., 2007; Flynn, 2010).72

A rigorous comparison of the qualitative and quantitative behaviours of73

Redfield, quota-type, and mechanistic models in more realistic oceanic con-74

ditions remains an open question. Based on model results at the Bermuda75

Atlantic Time-series Study (BATS) site, Schartau et al. (2001) suggested76

that an optimized model (i.e., after data assimilation procedure) with Red-77

field stoichiometry may not be able to correctly simulate primary production78

in oligotrophic subtropical regions, but, in an optimized marine ecosystem79

model of the Northwestern Mediterranean Sea, Faugeras et al. (2003) could80

not decipher significant differences between Redfield and quota growth for-81
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mulations.82

In this context, the present work aims at comparing, in a rigorous frame-83

work, the qualitative and quantitative behaviours of different formulations of84

phytoplankton growth in an oceanographic context and to determine whether85

increasing complexity leads to significant improvement of the seasonal dy-86

namics of phytoplankton. This is examined with a 1D ecosystem model87

which simulates a seasonal cycle at BATS station. This site was chosen88

because strongly variable Chl:C and C:N ratios have been observed at this89

station over the year (for the phytoplankton and the particulate organic mat-90

ter, respectively; Sambrotto et al., 1993; Michaels and Knap, 1996; Steinberg91

et al., 2001). A coherent suite of consistent phytoplankton growth formula-92

tions is constructed by adding stepwise complexity. Constant, diagnostic,93

and prognostic Chl:C ratios are considered with Redfield stoichiometry or94

with variable C:N ratio. All formulations are then incorporated within the95

same ecosystem model applied in a 1D framework at BATS. Data assimila-96

tion through micro-genetic algorithm is used to calibrate the different models.97

This enables to compare the different formulations on the basis of their best98

performance relatively to standard observations.99

After briefly presenting the study site, we describe the general structure of100

the marine ecosystem model and the different phytoplankton growth formu-101

lations. Then we present the micro-genetic algorithm used to tune the model102

parameters. In the Results section, the outputs of the different formulations103

are described and the skill of each formulation to reproduce observations104

is assessed. Finally, the choice of the phytoplankton growth formulation in105

marine biogeochemical models is discussed.106

6



2. Models and methods107

2.1. Study site108

The Bermuda Atlantic Time-series Study (BATS) site is located in the109

Sargasso Sea, in the western North Atlantic subtropical gyre (31◦40’ N,110

64◦10’ W). This station has been monthly sampled since October 1988 as111

part of the US Joint Global Ocean Flux Study (JGOFS) program and the112

data are freely available at http://bats.bios.edu/index.html. The sea-113

sonal dynamics of nitrate, chlorophyll and primary production at BATS have114

been described by Steinberg et al. (2001). In winter, strong vertical mixing115

supplies nutrients to the surface layers, allowing a moderate bloom to occur116

between January and March. In summer, nutrient supply collapses because117

of thermal stratification and primary production is low, with a subsurface118

chlorophyll maximum (60-120 m). In situ measurements also indicate that119

the stoichiometric ratios of particulate C, N and P deviate from the tradi-120

tional Redfield ratios, especially during the oligotrophic summer (Michaels121

and Knap, 1996; Cotner et al., 1997; Steinberg et al., 2001).122

2.2. General model structure123

The general structure of the model is a simple ’NPZD’ type ecosystem,124

used in a 1D-framework which simulates the seasonal cycle of phytoplankton125

at BATS station. We used the LOBSTER marine ecosystem model, which126

has been previously used and calibrated for the North Atlantic (Lévy et al.,127

2005; Kremeur et al., 2009; Lévy et al., 2012). Besides phytoplankton (PN),128

the ecosystem model has five additional prognostic variables expressed in ni-129

trogen units (mmolN.m−3): Nitrate (NO3), Ammonium (NH4), Zooplankton130
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(ZN), Detritus (DN), and Dissolved Organic Matter (DOM) (Fig. 1). The131

photosynthetic available radiation (PAR) is derived from a two-wavelengths132

light absorption model, with absorption coefficients depending on the lo-133

cal phytoplankton concentrations. The detailed equations of the LOBSTER134

model are presented in Table 1. The definition of the parameters and their135

default values are presented in Table 2.136

2.3. Model implementation137

The ecosystem model is embedded in a simple 1D physical model, which138

accounts for the observed seasonal evolution of the mixed layer depth (MLD)139

and temperature at BATS in 1998. The 1D-model has 30 vertical layers,140

with a vertical discretization of 10 m from 0-100 m and then increasing141

with depth. Only vertical diffusion is taken into account. Monthly values142

of observed MLD, temperature and salinity at BATS in 1998 are used and143

linearly interpolated in time at each model time-step. The vertical eddy144

diffusivities Kz are diagnosed from the MLD: they are set to 1 m2.s−1 within145

the mixed layer and to 10−5 m2.s−1 below the mixed layer. A specific reaction146

term sms (source minus sink) is added to the diffusion equation. For each of147

the state variables i, the prognostic equation reads as follows:148

∂Ci
∂t

=
∂

∂z

(
Kz

∂Ci
∂z

)
+ sms(Ci) (1)

where Ci is the tracer concentration. The initial nitrate conditions are set149

to in situ observations at BATS in January 1998, whereas they are set to150

0.1 mmolN.m−3 for the dissolved organic matter, to 0.03 mmolN.m−3 for151

the ammonium (Lipschultz, 2001), and to extremely low values for the other152
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state variables (10−8 mmolN.m−3). The biophysical model is spun up for one153

year and a time step of 1.2 hours is used.154

2.4. Increasing the complexity in the representation of phytoplankton155

The complexity of phytoplankton growth formulations is progressively156

increased. Four levels of complexity are compared: 1) a Redfield formula-157

tion with constant Chl:C ratio, 2) a Redfield formulation with a diagnostic158

Chl:C ratio, 3) a quota formulation with a diagnostic Chl:C ratio, and 4) a159

quota formulation with a prognostic Chl:C ratio. In these formulations, the160

phytoplankton compartment is thus represented by 1, 2 or 3 state variables.161

For convenience, these formulations have then been named P1.0, P1.5, P2.5,162

and P3.0 respectively, with the arbitrary convention that a prognostic state163

variable counts for one and a diagnostic variable (chlorophyll) counts for a164

half.165

2.4.1. Redfield stoichiometry and constant Chl:C ratio (P1.0 formulation)166

In the simplest formulation, phytoplankton are represented by a unique167

state variable (P1.0 formulation) (Fig. 2A, Tables 4 and 5). The phytoplank-168

ton carbon biomass PC and nitrogen biomass PN are related by a constant169

Redfield ratio RC:N = PC/PN = 6.56 molC.molN−1. The Chl:C ratio RChl:C170

of the phytoplanktonic cells is also assumed to be constant and equal to171

1/60 gChl.gC−1 (Fasham et al., 1990). Nitrogen uptake accounts for light172

and nutrient limitation. Light limitation LI is defined according to Webb173

et al. (1974). Note that in order to keep the models as simple as possi-174

ble, this expression is shared by the four phytoplankton growth formulations175

P1.0, P1.5, P2.5, and P3.0. Nutrient-limitation LN is expressed as the sum176
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of nitrate and ammonium limitations following Wroblewski (1977) and as177

used in Fasham et al. (1990). Primary production (in carbon currency) is178

proportional to nutrient uptake (in nitrogen currency) by the factor RC:N .179

2.4.2. Redfield stoichiometry and diagnostic Chl:C ratio (P1.5 formulation)180

The structure of the P1.5 formulation is similar to that of P1.0, except181

that photo-acclimation is accounted for (Tables 4 and 5). In this model, the182

phytoplanktonic chlorophyll:carbon ratio RChl:C is thus a diagnostic variable183

(Fig. 2B), calculated following Geider et al. (1996, 1998) as a function of184

light and nutrient limitation.185

2.4.3. Cell quota and diagnostic Chl:C ratio (P2.5 formulation)186

In the P2.5 formulation, the phytoplanktonic nitrogen:carbon ratio Q =187

PN/PC is variable (quota formulation) (Tables 4 and 5). The phytoplanktonic188

compartment is thus represented by two state variables: the phytoplanktonic189

nitrogen biomass PN and the phytoplanktonic carbon biomass PC (Fig. 2C).190

As in P1.5, the phytoplanktonic chlorophyll:carbon ratio RChl:C is a diag-191

nostic variable calculated following Geider et al. (1998). The formulations of192

nutrient uptake and primary production have also been chosen following Gei-193

der et al. (1996, 1998). Nutrient uptake (in nitrogen currency) is expressed194

as the product of quota and nutrient limitation terms. Primary production195

(in carbon currency) is expressed as the product of quota and light limitation196

terms.197

2.4.4. Cell quota and prognostic chlorophyll (P3.0 formulation)198

The P3.0 formulation corresponds to P2.5 with the addition of a fully199

prognostic equation for chlorophyll (Tables 4 and 5). Phytoplankton are thus200
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represented by three state variables: phytoplanktonic nitrogen biomass PN ,201

phytoplanktonic carbon biomass PC , and chlorophyll biomass PChl (Fig. 2D).202

The dynamical equation of the phytoplanktonic chlorophyll PChl is defined203

following Geider et al. (1998): the chlorophyll production is a function of ni-204

trogen uptake, carbon fixation (production) and light and it does not respond205

rapidly to environmental changes when using the original set of parameters.206

2.4.5. Geider model (GP3.0 formulation)207

All previous formulations share the same expression of light limitation,208

which is independent of nutrient limitation and internal C:N quota, an as-209

sumption that can be discussed (Flynn, 2003b, 2008). To check the conse-210

quences of this assumption, a fifth model is constructed from P3.0 by using211

the following light limitation term, which now depends on the internal C:N212

quota Q:213

LI(Q) =

[
1 − EXP

(
−α.RChl:C .PAR

µm.
Q−Q0

Qmax−Q0

)]
(2)

This new formulation, named GP3.0, corresponds to the original phytoplank-214

ton growth formulation proposed by Geider et al. (1996, 1998), and which215

has been previously incorporated in various marine ecosystem models (e.g.,216

Moore et al., 2002; Lefèvre et al., 2003).217

2.5. Parameter tuning using micro-genetic algorithm218

Model parameters are tuned using a micro-genetic algorithm to best fit219

the observed seasonal cycle at BATS. Genetic algorithms are stochastic meth-220

ods in which a population of parameters evolves with mutation/selection pro-221

cesses (evolutionary tuning approach). In the particular case of micro-genetic222

algorithms, the size of the population is small and no mutation is considered223
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(Carroll, 1996). A micro-genetic algorithm with binary coding, elitism, tour-224

nament selection of the parents, and uniform cross-over was used (Carroll,225

1996; Schartau and Oschlies, 2003). At the beginning, a set (or population)226

of parameter vectors (individuals) is randomly generated within a predefined227

range (Table 7). Each parameter vector is coded as a binary string (chro-228

mosome). Then, at each generation, the misfit of each parameter vector229

(fitness of each individual) is estimated as the misfit (cost function) between230

the data and the model outputs for this parameter vector. The parameter231

vector with the lowest misfit (best individual of its generation or ’elite’) is232

conserved to the next generation. Then, four vectors are randomly chosen233

and associated in two pairs. The vectors with the lowest misfit (best fitness)234

within each pair are selected (parents), and a new parameter vector (child)235

is produced by randomly crossing each bit of the two selected vectors. This236

process (reproduction) is repeated until the replenishment of the population.237

New generations are produced (evolution), until the population of parameter238

vectors has converged (all the vectors are identical to the elite). Then, a239

new generation is randomly generated, with the elite conserved. This pro-240

cess was repeated 500 times for a population whose size was chosen equal241

to the number of parameters to identify (Schartau and Oschlies, 2003). For242

each model, the parameter space was reduced to the parameters for which243

the cost function was the most sensible, as learnt from preliminary sensibility244

analyses (four to six parameters depending on the model, see Table 7).245

2.6. Cost function and model comparison246

In situ data measured at BATS in 1998, including monthly records of ni-247

trate concentration, total particulate organic nitrogen concentration, chloro-248
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phyll concentration, and primary production, are used for optimization. In249

the model, total particulate organic nitrogen (PON) is taken as the sum250

of phytoplanktonic nitrogen, zooplanktonic nitrogen and detritus: PON =251

PN + ZN + DN . These monthly profiles are re-gridded along the 1D ver-252

tical grid of the model. The cost function F is taken as the weighted253

sum of squared differences between monthly vertical profiles of observations254

obsn(k, l) and model outputs modn(k, l) (Evans, 2003; Stow et al., 2009):255

F =
1

KL

N∑
n=1

K∑
k=1

L∑
l=1

Wn [obsn(k, l) −modn(k, l)]2 (3)

Four data types are used (N = 4): nitrate concentration, chlorophyll concen-256

tration, total particulate organic nitrogen and primary production. The cost257

function is calculated from monthly data (L=12) and only the first vertical258

layers from 0 to 168 m are used (K=15). The weights Wn are chosen equal259

to the inverse of the standard deviation of the monthly observations (1/σn),260

with σNO3 = 0.541 mmolN.m−3, σChl = 0.080 mgChl.m−3, σPON = 0.106261

mmolN.m−3, σPP = 0.177 mmolC.m−3.d−1.262

Model outputs are also compared with in situ data and with each other263

using skill assessment technics, such as Taylor diagrams and target diagrams264

(Taylor, 2001; Stow et al., 2009; Jolliff et al., 2009). These diagrams can be265

seen as complementary indicators of the misfit between data and model out-266

puts, including correlation, root mean squared differences, relative standard267

deviations, and bias.268
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3. Results269

3.1. Parameter tuning using micro-genetic algorithm270

For each phytoplankton growth formulation, four to six parameters are271

identified trough an optimization algorithm, with the number of optimized272

parameters increasing with the formulation complexity. The parameter val-273

ues obtained after optimization are in the same range of magnitude among274

the different models (Table 8). We can note that, after optimization and275

compared to their initial default values, grazing parameters (Kg,g) and max-276

imal Chl:N ratio (RMax
Chl:N) are increased, whereas the other parameters remain277

close to their default values. For each model, the best constrained parameter278

is the initial PI slope α (as indicated by the evolution of the minimum mis-279

fit obtained for each of the 64 possible values of this parameter during the280

optimization procedure, not shown).281

After optimization, cost functions are reduced for all models, by 23% for282

P1.0 to 38% for P2.5 (Table 8). Model performances to reproduce all data283

types are improved (Fig. 3). The optimizations increase the correlation be-284

tween the model outputs and the observations (angular coordinates on the285

Taylor diagram) and decrease the ratio of the standard deviations of model286

outputs and observations (radial coordinates on the Taylor diagram). Op-287

timizations also decrease the bias and the normalized unbiased root mean288

squared differences between model outputs and observations (abscissae and289

ordinates on the Target digram). Nitrate is the observation which is glob-290

ally best reproduced by all models, contrary to particulate organic nitrogen291

(PON).292
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3.2. Seasonal dynamics293

The temporal evolution of the vertical profiles of nitrate, PON, chloro-294

phyll and primary production confirms that all the models, after the param-295

eter identification procedure, behave similarly. This may suggest a strong296

impact of the initial conditions and physical forcing (Fig. 4). The evolutions297

of nitrate and PON distributions are not significantly different between the298

phytoplankton growth formulations. In response to the deepening of the299

mixed layer in March, nitrate is entrained to the surface. It is then quickly300

consumed in the euphotic layer during winter and spring, leaving very low ni-301

trate concentrations in summer. Accordingly, PON and chlorophyll exhibit a302

strong seasonal variability with a strong contrast between winter/spring and303

summer. A strong phytoplankton bloom occurs between March and April,304

characterized by high PON and chlorophyll concentrations in the surface305

mixed layer, followed by a subsurface maxima in chlorophyll in summer.306

Larger differences between phytoplankton growth formulations can be307

seen in chlorophyll and production, with larger discrepancies between simu-308

lations and observations than among simulations (Fig. 4). None of the model309

correctly reproduces the exact dynamics of the observations. All models310

are able to reproduce the subsurface chlorophyll maximum in summer, but311

simulated chlorophyll concentrations are lower than observed whatever the312

model, except during the bloom. None of the models is able to reproduce313

the observed temporal evolution of production, which is characterized by a314

maximum value in February and high values during the oligotrophic sea-315

son. However, the high production period is longer for quota formulations.316

As expected from previous studies (Doney et al., 1996; Spitz et al., 1998),317
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the Redfield formulation with constant Chl:C ratio (P1.0) is unable to si-318

multaneously reproduce the deep chlorophyll maximum and the subsurface319

production maximum during the oligotrophic season, because of its constant320

Chl:C ratio (Fig. 5). Conversely, models with photo-acclimation (i.e., vari-321

able Chl:C ratio) are all able to simulate the deep chlorophyll maximum and322

the subsurface production maximum during the oligotrophic season. Taking323

into account photo-acclimation allows to increase the C:Chl ratio in surface,324

especially during oligotrophic conditions (Fig. 5).325

The cell quota formulations with photo-acclimation (P2.5, P3.0 and GP3.0)326

exhibit significant differences from the Redfield formulations in terms of327

C:Chl ratio, phytoplankton biomass in carbon, and C:N ratio, particularly328

during oligotrophic conditions (Fig. 5). During the bloom, lower C:Chl and329

C:N ratios are simulated by the models that allow these ratios to vary. Dur-330

ing the oligotrophic period, higher C:Chl and C:N ratios are simulated at the331

surface by these models, with very close values for the three formulations.332

The Redfield formulation with photo-acclimation (P1.5) simulates the lowest333

variations of the C:Chl ratio, suggesting that this model could be less efficient334

than the quota formulations to simulate photo-acclimation, likely because it335

is less flexible.336

3.3. Annual and seasonal production in carbon and nitrogen337

In general, similar total and new productions in nitrogen are simulated338

by the different models (relative differences about 5 %), except for the new339

production between P1.0 and P2.5 (about 30 % higher for P2.5) (Table 9).340

F-ratios vary from 0.43 to 0.49 during the bloom and from 0.20 to 0.27 dur-341

ing the oligotrophic period. Total productions in carbon are much larger342
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for the formulations with a variable C:N quota than for the Redfield for-343

mulations (about 50 % larger). This increase in carbon production is simu-344

lated both during the bloom and during oligotrophic conditions, suggesting a345

more efficient photosynthesis per chlorophyll content. Temporal evolution of346

vertically-integrated daily production in nitrogen are close between models,347

whereas strong differences are observed in vertically-integrated daily produc-348

tion in carbon between Redfield and quota formulations, both during the349

bloom and in summer (Fig. 6).350

With cell quota formulations (P2.5, P3.0 and GP3.0), the C:N ratio of351

total production is higher than the Redfield ratio and it increases at the352

surface in summer, i.e. during oligotrophic conditions, with the highest C:N353

values simulated by GP3.0 (about 15 at the surface at the end of the year)354

(Fig. 7). Note that this feature is an emergent property of these cell quota355

formulations, since the value of the C:N ratio was not constrained during356

the optimization procedure. Besides, with the cell quota formulations the357

C:N ratio of total production is always higher than the C:N ratio of phyto-358

plankton, because of the cost of the nitrogen uptake (ζ parameter). With359

the P2.5 formulation, for instance, the C:N ratios of total production and360

of phytoplankton vary between 9 and 14 molC.molN−1 and between 5 and361

10 molC.molN−1, respectively.362

4. Discussion363

The aim of the present work was to assess the consequences of taking into364

account photo-acclimation and variable stoichiometry of the phytoplankton365

growth in marine ecosystem models, by comparing the qualitative and quan-366
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titative behaviours of several growth formulations within a rigorous frame-367

work. A parameter tuning based on optimization procedure was performed368

before the comparison, using observed data of nitrate, particulate organic369

nitrogen (PON), chlorophyll, and primary production at BATS. The opti-370

mization increases the ability of all models to reproduce the observed data.371

Globally, all models behave similarly after optimization and no difference372

in the ability to reproduce nitrate or PON data is observed. However, as373

expected from previous studies at BATS (Doney et al., 1996; Spitz et al.,374

1998), photo-acclimation (i.e., a variable Chl:C ratio) is needed to simul-375

taneously reproduce subsurface production and deep chlorophyll maximum376

during oligotrophic conditions in summer. Moreover, Redfield formulations377

underestimated production compared to quota formulations, which suggests378

that the latter should be preferred. No clear difference is detected between379

quota formulations with diagnostic or prognostic chlorophyll. Our main con-380

clusion it that quota formulations with diagnostic or prognostic chlorophyll381

enable to simulate more realistic values of chlorophyll and phytoplankton382

production during oligotrophic conditions, compared with formulations with383

constant Chl:C and C:N ratios. Indeed, these formulations are able to simu-384

late a more ’flexible’ phytoplankton physiology. They are then able to better385

reproduce the phytoplankton dynamics under a wider range of environmental386

conditions.387

4.1. Parameter tuning388

In order to compare the different phytoplankton growth formulations, we389

have followed the methodology which consists in calibrating parameters prior390

to comparison using advanced parameter estimation approaches (Faugeras391
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et al., 2004; Friedrichs et al., 2006; Smith and Yamanaka, 2007; Ward et al.,392

2010; Bagniewski et al., 2011). This ensures that all models performed the393

best they could. Sensitivity analyses have been needed to properly choose394

the cost function and the parameters to calibrate with the optimization pro-395

cedure: the sensitivity of several cost functions have been tested a priori396

and only the most constrained parameters have been selected as candidates397

for the minimization algorithm. Optimization procedure also provides a pos-398

teriori estimates of the parameter uncertainty (Matear, 1995; Fennel et al.,399

2001; Faugeras et al., 2003; Schartau and Oschlies, 2003). For instance, using400

dissolved inorganic nitrogen, PON, chlorophyll, silicate, and oxygen data to401

optimize the parameters of a simple marine ecosystem model through varia-402

tional optimization, Bagniewski et al. (2011) concluded that phytoplankton403

parameters (such as µ, α, and mP ) were better constrained than zooplankton404

parameters (such as g). In the present study, the strength of the minimiza-405

tion algorithm has been qualitatively estimated from the shape of the misfit406

function for each of the selected parameters. The best constrained parameter407

is the initial PI slope α, which is not surprising since this parameter appears408

in the equations of nitrate, PON, chlorophyll, and primary production, i.e.,409

the data used during the optimization procedure.410

4.2. Model framework411

For the purpose of our study, we used a relatively simple biogeochemi-412

cal model and the annual primary production in carbon was underestimated413

with all the phytoplankton growth formulations (assuming the production414

data are correct). This shortcoming is a problem faced by most biogeochem-415

ical models in the North Atlantic subtropical gyre (see for instance Oschlies,416
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2002). Several reasons can been advanced to explain it. One reason is the417

use of a simple 1D physical framework, since lateral transport, which could418

provide an additional source of DOM that would then be remineralized in419

situ (Williams and Follows, 1998), and nutrient supply by mesoscale and sub-420

mesoscale processes (Oschlies, 2002; McGillicuddy et al., 2003; Lévy et al.,421

2012) may significantly increase the production in the North Atlantic. A422

second hypothesis is the lack of nitrogen-fixers in our model. Finally, a third423

hypothesis would be that the structure of the model is not complex enough,424

in particular because of the lack of explicit bacteria. Indeed, this compart-425

ment may play an important role during summer, especially for regenerated426

production (Steinberg et al., 2001). However, the presence of a DOM pool in427

our model implicitly assumes remineralization through bacterial activity and428

allows local remineralization of the organic matter being produced. Besides,429

the LOBSTER model have been complexified with an explicit representa-430

tion of bacteria and the versions of LOBSTER with and without bacteria431

have been compared in the Mediterranean sea and showed little differences432

in terms of primary production, even during the summer oligotrophic period433

(Lévy et al., 1998). Moreover, sensitivities to the DOM remineralization rate,434

which mimics the action of bacteria, did not enable to significantly change435

the simulated primary production, further highlighting that the reason for436

this might more probably be the lack of nitrogen sources in the model rather437

than to the simplified microbial network. This model could also have been438

improved by the representation of additional phytoplankton types, since the439

composition of the phytoplankton community changes along the year, or440

by the use of additional nutrients such as phosphate (Cotner et al., 1997;441

20



Steinberg et al., 2001), but then it would have required to take into account442

multi-nutrient growth limitation of phytoplankton. Although a better agree-443

ment between model and observation might then be obtained using a more444

complex biogeochemical model and/or a more realistic physical forcing, the445

model framework can be used to compare the different phytoplankton growth446

formulations in a robust manner.447

4.3. Photo-acclimation in marine biogeochemical models448

Our comparative modelling study at BATS suggests that taking into ac-449

count photo-acclimation (i.e., a variable Chl:C ratio) is mandatory to si-450

multaneously reproduce deep chlorophyll maximum and subsurface primary451

production during oligotrophic conditions. Indeed, a model without photo-452

acclimation (P1.0) is able to predict the spring bloom and the depth of the453

chlorophyll maximum, but has difficulties to reproduce the high production454

observed in summer in subsurface, compared to the formulations with photo-455

acclimation that are more flexible. Since in the latter formulations the Chl:C456

ratio can vary depending on environmental conditions (namely light and nu-457

trient availability), they can better perform along a wider range of conditions458

(surface and subsurface, spring and summer).459

These results are in agreement with previous modelling studies at BATS460

indicating that the phytoplankton dynamic could not be reproduced when461

using a constant Chl:C ratio (Doney et al., 1996; Hurtt and Armstrong, 1996,462

1999; Spitz et al., 1998, 2001; Fennel et al., 2001). Doney et al. (1996) hy-463

pothesized that this may be ”because not enough nutrient were available464

to sustain [the production in summer]”. Our comparative study highlights465

that difficulties to simulate the high production in summer may partly be466
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due to the fixed Chl:C ratio, since models with variable Chl:C were able to467

reproduce the observations better. Similarly, Fennel et al. (2001) and Spitz468

et al. (1998) could not correctly reproduce observation data at BATS with469

simple NPZD models with constant Redfield and Chl:N ratios, even after470

parameter optimization. Fennel et al. (2001) suggested that this was due471

to the physical forcing and/or to the too simple hypotheses of the ecosys-472

tem model, whereas Spitz et al. (1998) proposed three possible explanations473

for this failure: the use of a Redfield stoichiometry, the absence of photo-474

acclimation, and approximations about vertical processes. In the present475

study, the same physical forcing is used for all models and our results indi-476

cate that the failure to reproduce the nitrate and chlorophyll data may be477

due to the absence of photo-acclimation (constant Chl:N ratio). Our results478

are in agreement with the improvements of the Fasham model proposed by479

Hurtt and Armstrong (1996, 1999) using a variable Chl:N ratio as a function480

of the irradiance, or by Spitz et al. (2001) using a prognostic Chl:N ratio:481

photo-acclimation of phytoplankton should be taken into account to simulate482

the subsurface chlorophyll maximum under summer oligotrophic conditions.483

In summer this chlorophyll maximum is observed in subsurface, with max-484

imum production rates at the surface. This means that the phytoplankton485

decrease its pigment content at the surface and increase it to collect more486

light in subsurface. Our results suggest that such flexibility in phytoplankton487

physiology can only be simulated in marine ecosystem models if the ratio of488

pigment content over biomass can vary depending on environmental condi-489

tions (photo-acclimation).490

Our suite of numerical experiments also allows to compare several formu-491
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lations of photo-acclimation. The P2.5 formulation, with diagnostic chloro-492

phyll, and the P3.0 formulation, with fully dynamical chlorophyll, produced493

relatively similar results. Slight differences were observed between the P3.0494

and the GP3.0 formulations, both with dynamical chlorophyll but with differ-495

ent light limitation formulations. In the latter, light limitation is a function496

of the cell quota, as recommended by Flynn (2003b) to assure that, at steady497

state, the growth-irradiance curve has the correct initial slope. However, phy-498

toplankton growth in the ocean is often not at steady state. Additional data499

on phytoplanktonic carbon concentration and C:N ratio would be needed500

to constrain these cell quota formulations with photo-acclimation and com-501

pare their ability to reproduce phytoplanktonic dynamics. In the meantime,502

and as suggested by Flynn (2003a) from growth formulation comparison for503

laboratory experiments, phytoplankton models with diagnostic chlorophyll504

should be preferred when coupled with marine ecosystem models.505

4.4. Stoichiometry of phytoplanktonic production506

Our results indicate that compared to Redfield growth formulations, quota507

growth formulations better reproduce the primary production during olig-508

otrophic conditions. Several problems arose from previous modelling studies509

at BATS using constant C:N ratios with photo-acclimation because of the510

assumed Redfield stoichiometry. Schartau et al. (2001) concluded that pro-511

duction data could not be reproduced after optimization when a constant512

C:N ratio was assumed. Schartau and Oschlies (2003) also indicated that the513

parameter optimization of a Redfield NPZD model with photo-acclimation514

leads to high value of the parameter α (initial PI slope) ”likely [to] com-515

pensat[e] for a deficiency in the parameterization of light-limited growth.”516
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Finally, Oschlies and Schartau (2005) concluded that their model was unable517

to reproduce the observed data after optimization due ”both to errors in518

the physical model component and to errors in the structure of the ecosys-519

tem model, which an objective estimation of ecosystem model parameters by520

data assimilation alone cannot resolve.” Besides, the stoichiometry of total521

particulate organic matter is known to be non-Redfield at BATS (Michaels522

and Knap, 1996; Cotner et al., 1997), as already reported in other parts of523

the North Atlantic (Sambrotto et al., 1993; Kortzinger et al., 2001). Sur-524

face and mixed layer values of the C:N ratio of particulate organic matter525

recorded at BATS in 1998 vary from 6.19 to 10.26 molC.molN−1, with val-526

ues larger than 8 molC.molN−1 from June to August (Fig. 7). However,527

the comparison of these observed values with simulated C:N ratios of pro-528

duction and phytoplankton are not straightforward, since the proportions529

of phytoplanktonic nitrogen and carbon relative to total particulate organic530

nitrogen and carbon are unknown. Nevertheless, the increase of C:N ratios531

during oligotrophic conditions is well reproduced by the cell quota formula-532

tions, because of low nutrient availability during the summer. For cell-quota533

formulations, it is then the ability of the C:N ratio to vary under changing534

environmental conditions (flexibility) that is responsible to a more realistic535

simulated production.536

Similarly, an in situ study of the evolution of the C:N ratios of particu-537

late organic matter and production in the mixed layer in the North-East At-538

lantic indicated that these C:N ratios were higher during summer than during539

spring, with values of C:N ratio of production of 10-16 and 5-6 molC.molN−1,540

respectively (Kortzinger et al., 2001). These results suggest that our conclu-541
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sions at BATS may extend to other areas in the ocean. Besides, it would be542

interesting to adapt this study to a station where data of phytoplanktonic543

nitrogen and carbon would be available in order to discriminate between the544

different quota formulations (P2.5, P3.0, and GP3.0).545

4.5. Implications for marine ecosystem modelling546

Several recent studies, that have compared different biogeochemical mod-547

els, have focused on the structure of the model rather than on the formu-548

lation of phytoplankton growth (Friedrichs et al., 2006, 2007; Ward et al.,549

2010; Kriest et al., 2010; Bagniewski et al., 2011). Friedrichs et al. (2006)550

found that a change in the physical model had a more important impact than551

a change in the ecosystem model complexity. Similarly, Kriest et al. (2010)552

demonstrated that increasing complexity of a simple biogeochemical model at553

global scale did not necessarily improve the model’s performance. Neverthe-554

less, the choice of model complexity (food web structure, description of key555

physiological processes, parameter estimations, plankton functional types) is556

one of the challenges of future marine ecosystem modelling (Flynn, 2003a;557

Le Quéré et al., 2005; Flynn, 2010; Anderson, 2010; Allen and Fulton, 2010;558

Allen and Polimene, 2011). Besides, the use of complex models is still under559

debate because of our lack of specific knowledge in parameterizing plankton560

physiology and its variability (Anderson, 2005; Allen et al., 2010; Allen and561

Polimene, 2011).562

Our study allows to quantify the error made when a constant Redfield563

stoichiometry is considered (instead of a variable C:N ratio) in phytoplank-564

ton growth formulation, as it is still the case in most biogeochemical mod-565

els, especially when they are used at global scale. Indeed, only a few global566
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ecosystem models decouple nitrogen and carbon dynamics (Vichi et al., 2007;567

Vichi and Masina, 2009). A recent study using a marine ecosystem model at568

global scale decoupled nitrogen and phosphorus dynamics relative to carbon,569

but still used a Monod-type version of nutrient limitation (Tagliabue et al.,570

2011). This model was thus ”in between” Monod-Redfield and cell quota for-571

mulations. Global scale models that decouple carbon and nitrogen uptakes572

are particularly needed to study the impact of increased CO2 in the ocean.573

Indeed, carbon dioxide enhances carbon fixation but not dissolved inorganic574

nitrogen uptake, thus potentially increasing C:N ratios. Such processes have575

already been observed in mesocosm experiments (Riebesell et al., 2007), and576

should now be incorporated in global marine ecosystem models. Besides, cli-577

mate change will likely modify to some degree the stoichiometry of inorganic578

and organic C:N:P in the oceans (Hutchins et al., 2009). For these reasons,579

models without enough ’flexibility’ in their formulation will not be able to580

represent the non-linearities between carbon and nitrogen assimilation. In581

parallel with model improvements, field and in situ experiments should con-582

tinue in collaboration with modelers to increase our knowledge in plankton583

physiology and dynamics under varying environment and provide data to584

calibrate and validate models.585

5. Conclusion586

The aim of the present work was to assess the advantages of taking into587

account photo-acclimation and variable stoichiometry of the phytoplankton588

growth in marine ecosystem models. After parameter calibration through589

an optimization procedure, lower misfits with observed data at BATS were590
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simulated when photo-acclimation and non-Redfield stoichiometry were con-591

sidered (i.e., variable Chl:C and C:N ratios). The main differences in qual-592

itative and quantitative behaviours of phytoplankton growth models were593

observed under oligotrophic conditions, because of the lack of model flexibil-594

ity. In agreement with previous studies, photo-acclimation was mandatory595

to simultaneously reproduce the observed deep chlorophyll maximum and596

subsurface production during oligotrophic conditions. Moreover, quota for-597

mulations enabled a better agreement with production data in subsurface and598

during oligotrophic conditions than Redfield formulations. No clear differ-599

ence was detected between quota formulations with diagnostic or prognostic600

chlorophyll, and more data would be needed to discriminate between these601

quota formulations with photo-acclimation. Future work would embed these602

different phytoplankton growth formulations within a 3D physical model to603

test whether our results can be generalized under contrasted oceanic regime604

and at basin scale (Ayata et al., in prep.).605
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Figure 1: Structure of the LOBSTER marine ecosystem model. The six state variables

are in nitrogen currency (blue color). The detailed equations of the model are given in

Table 1. Nitr.: Nitrification; Remin.: Remineralization.
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Figure 2: Structure of the phytoplankton growth formulations: A) Redfield formulation

with constant chlorophyll:carbon ratio (P1.0), B) Redfield formulation with diagnostic

chlorophyll (P1.5), C) quota formulation with diagnostic chlorophyll (P2.5), and D) quota

formulation with prognostic chlorophyll (P3.0). Note that the Geider formulation (GP3.0)

shares the same structure as P3.0. State variables are in plain color and diagnostic variables

in shaded color. The colors of the variables indicate their currency: blue for nitrogen, grey

for carbon, and green for chlorophyll.
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Figure 3: Taylor and target diagrams of the monthly vertical profiles of nitrate con-

centration (diamonds), PON concentration (triangles), chlorophyll concentration (circle)

and primary production (square) calculated for each formulation with default parameters

(empty symbol) and after optimization (full symbol). The Taylor diagram represents in

polar coordinates the normalized standard deviation and the correlation between observa-

tion and model output. On this diagram, the distance with the point of coordinates (1,0)

measures the normalized root mean squared differences between observation and model

output.
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Figure 4: Seasonal cycles of nitrate, particulate organic nitrogen (PON), chlorophyll, and

primary production at BATS in 1998, simulated with the different models after optimiza-

tion and observed at BATS in 1998. The observed mixed layer depth is superimposed in

white over the observed nitrate profiles.
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Figure 5: Average vertical profiles during boom (Mar-Apr) and during oligotrophic con-

ditions (Jul-Aug) of the concentrations of phytoplanktonic nitrogen, phytoplanktonic car-

bon, C/ N ratio and C:Chl ratio, simulated with P1.0 (dark blue), P1.5 (light blue), P2.5

(green), P3.0 (red), and GP3.0 (magenta) after optimization.
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Figure 6: Temporal evolution of integrated daily production in carbon and in nitrogen

from 0 to 234 m, simulated by the Redfield formulations P1.0 (blue) and P1.5 (light

blue), and by the quota formulations P2.5 (green), P3.0 (red), and GP3.0 (magenta) after

optimization. The observed values of the integrated daily production in carbon at BATS

are indicated (black crosses).
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Figure 7: Temporal evolution of the C:N ratio of the production and of the phytoplankton

at 0-10 m, 40-50 m and 90-100 m after optimization, simulated by the Redfield formulations

P1.0 and P1.5 (light blue), and by the quota formulations P2.5 (green), P3.0 (red), and

GP3.0 (magenta). The C:N ratio of the production is calculated as the ratio between the

total production in carbon and the total production in nitrogen. The observed surface

values of the C:N ratio of the total particulate organic matter measured at BATS in 1998

are superimposed on the simulated C:N ratio of the phytoplankton (black crosses).
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Table 2: Parameters of the LOBSTER model, with default values from previous studies

(Lévy et al., 2005; Kremeur et al., 2009).

Symbol Definition Value Unit

Nutrient-related parameters

KNO3 NO3 half saturation constant 0.7 e-6 mmolN.m−3

KNH4 NH4 half saturation constant 0.001 e-6 mmolN.m−3

ψ Inhibition of NO3 uptake by NH4 3 unitless

λNH4 NH4 nitrification rate 0.05 d−1

Phytoplankton growth and death

α Photosynthesis-irradiance (PI) initial slope 1.82 d−1.W−1.m2.gC.gChl−1

µm Maximal growth rate of phytoplankton 1 d−1

δ Excretion ratio of phytoplankton 0.05 unitless

mP Phytoplankton mortality rate 0.05 d−1

Zooplankton grazing and mortality

Kg Grazing half saturation constant 1 e-6 mmolN.m−3

g Maximal zooplankton grazing rate 0.8 d−1

aZ Assimilated food fraction 0.7 unitless

λZ Exsudation rate of zooplankton 0.07 d−1

mZ Zooplankton mortality rate 0.12 e+6 d−1.mmolN−1.m3

p̃ Zooplankton preference for detritus 0.8 unitless

fZ Fraction of slow sinking mortality 0.5 unitless

Remineralization

λDOM Remineralization rate of DOM 0.006 d−1

fn NH4/DOM redistribution ratio 0.75 unitless

wD Detritus sedimentation speed 3 m.d−1

λD Remineralization rate of detritus 0.05 d−1
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Table 4: Equations of the different phytoplankton growth formulations. P1.0: Redfield

formulation with constant Chl:C ratio. P1.5: Redfield formulation with diagnostic Chl:C

ratio. P2.5: Cell-quota formulation with diagnostic Chl:C ratio. P3.0/GP3.0: Cell-quota

formulation with prognostic Chl:C ratio. The definition of the parameters and their default

values are presented in Tables 2 and 5. Source minus sink functions (sms) are only for

prognostic variables (in bold).

Model(s) Definition Equation

P1.0 Phytoplanktonic nitrogen sms(PN) = (1− δ).uptake−GP −mP .PN

Phytoplanktonic carbon PC = RC:N .PN

Chlorophyll PChl = RChl:C .PC

Nitrogen uptake uptake = µm.LN .LI .PN

Primary production prod = RC:N .uptake

P1.5 Phytoplanktonic nitrogen sms(PN) = (1− δ).uptake−GP −mP .PN

Phytoplanktonic carbon PC = RC:N .PN

Chlorophyll PChl =
(
RMin
Chl:C +

(RMax
Chl:C−R

Min
Chl:C).2.µm.LN

2.µm.LN+(RMax
Chl:C−R

Min
Chl:C).α.PAR

)
.PC

Nitrogen uptake uptake = µm.LN .LI .PN

Primary production prod = RC:N .uptake

P2.5 Phytoplanktonic nitrogen sms(PN) = (1− δ).uptake−GP −mP .PN

Phytoplanktonic carbon sms(PC) = prod− ζ.uptake−GP .
PC

PN
−mP .PC

Chlorophyll PChl =
(
RMin
Chl:C +

(RMax
Chl:C−R

Min
Chl:C).2.µm.LN

2.µm.LN+(RMax
Chl:C−R

Min
Chl:C).α.PAR

)
.PC

Nitrogen uptake uptake = ρm.L
N
Q .LN .PC

Primary production prod = µm.L
I
Q.LI .PC

Quota-limitation of uptake LNQ =
(
Qmax−Q
Qmax−Q0

)n
Quota-limitation of prod. LIQ = Q−Q0

Qmax−Q0

P3.0 Phytoplanktonic nitrogen sms(PN) = (1− δ).uptake−GP −mP .PN

GP3.0 Phytoplanktonic carbon sms(PC) = prod− ζ.uptake−GP .
PC

PN
−mP .PC

Chlorophyll sms sms(PChl) = prodChl −GP .
PChl

PN
−mP .PChl

Nitrogen uptake uptake = ρm.L
N
Q .LN .PC

Primary production prod = µm.L
I
Q.LI .PC

Chlorophyll production prodChl =
RMax
Chl:N .14

α.PAR.PChl
.prod.uptake

Quota-limitation of uptake LNQ =
(
Qmax−Q
Qmax−Q0

)n
Quota-limitation of prod. LIQ = Q−Q0

Qmax−Q0
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Table 5: Parameters of the different phytoplankton growth formulations and associated

default values from Geider et al. (1998).

Symbol Definition Default Unit Models

Constant ratios

RChl:C Chlorophyll:Carbon ratio 1/60 gChl.gC−1 P1.0

RC:N Phytoplankton C:N Redfield ratio 6.56 molC.molN−1 P1.0 P1.5

Diagnostic chlorophyll

RMin
Chl:C Minimum Chl:C ratio 1/200 mgChl.mmolC−1 P1.5 P2.5

RMax
Chl:C Maximum Chl:C ratio 1/30 mgChl.mmolC−1 P1.5 P2.5

Nutrient uptake

ρm Maximum uptake rate 0.2 molN.molC−1.d−1 P2.5 P3.0

(defined by ρm = µm.Qmax)

ζ Cost of nitrogen assimilation 3 mol C.mol N−1 P2.5 P3.0

Phytoplanktonic cell quotas

Q0 Minimum value of Q 1/20 mol N.mol C−1 P2.5 P3.0

Qmax Maximum value of Q 1/5 mol N.mol C−1 P2.5 P3.0

n Shape factor 1 - P2.5 P3.0

Chlorophyll synthesis

RMax
Chl:N Maximum Chl:N ratio 2 gChl.gN−1 P3.0
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Table 7: Parameter range allowed for optimization. Each parameter was binary coded on

6 bits (and had then 64 possible values).

Parameter Lower bound Upper bound Increment

α 0.3 12.9 0.2

µm 0.1 6.4 0.1

Kg 1.0e-7 32.5e-7 0.5e-7

g 0.1 6.4 0.1

ζ 1.00 4.15 0.05

RMax
Chl:N 0.1 6.4 0.1

Table 8: Optimized parameters and associated cost functions (F ).

Parameter Default values Optimized values

P1.0 P1.5 P2.5 P3.0 GP3.0

α 1.82 1.7 1.1 2.3 1.7 2.1

µm 1 0.3 0.6 1.0 1.7 0.6

Kg 10.0e-7 23.0e-7 18.0e-7 22.5e-7 23.0e-7 26.0e-7

g 0.8 5.0 4.2 5.1 5.3 5.1

ζ 3.00 - - 3.52 3.24 3.36

RMax
Chl:N 3 - - - 6.4 5.6

F after optimization 0.855 0.823 0.790 0.802 0.773

F with default value 1.118 1.217 1.1217 1.120 1.052

39



Table 9: Total productions, new production, and f-ratio (new production/total production

in nitrogen) simulated at BATS in 1998 after optimization.

Annual values

Model Total Production Total Production New Production f-ratio

(molC/m2) (molN/m2) (molN/m2)

P1.0 2.495 0.380 0.126 0.33

P1.5 2.647 0.403 0.133 0.33

P2.5 3.903 0.415 0.163 0.39

P3.0 3.728 0.421 0.134 0.32

GP3.0 3.970 0.399 0.135 0.34

Bloom period (Mars to April)

Model Total Production Total Production New Production f-ratio

(molC/m2) (molN/m2) (molN/m2)

P1.0 0.855 0.130 0.064 0.49

P1.5 1.014 0.154 0.076 0.49

P2.5 1.292 0.143 0.062 0.43

P3.0 1.309 0.153 0.073 0.48

GP3.0 1.240 0.136 0.066 0.48

Oligotrophic period (July to August)

Model Total Production Total Production New Production f-ratio

(molC/m2) (molN/m2) (molN/m2)

P1.0 0.424 0.064 0.016 0.25

P1.5 0.403 0.061 0.012 0.20

P2.5 0.678 0.069 0.017 0.25

P3.0 0.605 0.066 0.013 0.20

GP3.0 0.725 0.071 0.019 0.27
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