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Abstract

In this paper, we propose some characteristics of next-year impairments in a generic
Black & Scholes framework, with one equity security, and under IFRS rules. We
derive expression for the probability of impairment event for an equity-security rec-
ognized in the available-for-sale (AFS) category. Our decomposition of this event is
also useful to retrieve barrier options valuation methods. From there, we obtain an
explicit formula for the �rst moment of impairment value and its cumulative distribu-
tion function, as well as sensitivities. Numerical studies are carried out on concrete
securities. We also study a mean-preserving one-criterion proxy used by some in-
surance practitioners for the next-year impairment losses and discuss its relevance.
More generally, our study paves the way for applications of �nancial mathematics
techniques to accounting issues related to impairments in the IFRS framework.

1 Introduction

Most of �nancial institutions publish their �nancial reporting under the In-
ternational Financial Reporting Standards (IFRS). It is even mandatory for
companies which are listed at stock exchange or have issued bonds within the
European Union.

Due to the present standards, these companies measure �nancial assets at
fair value. As a matter of fact, even if bonds are eligible to the amortized
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cost through the Held-To-Maturity (HTM) category, the restrictions on this
category have led �nancial institutions (and especially insurance company) to
parsimoniously use this ability. As a consequence most of insurance companies
�nancial assets are categorized as Available-For-Sale (AFS) and so measured
at fair value.

In this category, �nancial assets are measured at fair value in the balance
sheet. Nevertheless paragraph 55 of IAS 39 states that a gain or loss on
an available-for-sale �nancial asset shall be recognized in other comprehen-
sive income (OCI), except for impairment losses and foreign exchange gains
and losses, until the �nancial asset is de-recognized. This constitutes the main
di�erence with the Held-For-Trading (HFT) category which consists in a mea-
surement at Fair Value through pro�t or loss. This latest category is much less
used by �nancial institutions due to the volatility it generates in the result.

Table 1 shows the preponderance of this category among insurance companies.

Table 1. Some �gures about insurance companies investments in 2011.

(Mds e) Allianz Axa CNP Assurances Generali

Balance Sheet Size 641.472 730.085 321.011 423.057

Total equity 47.253 50.932 13.217 18.120

AFS Assets 333.880 355.126 231.709 175.649

AFS (Funds and equity
securities)

26.188 20.636 27.618 20.53

N.B. Figures are extracted from the 2011 reference document of each company.

As along as a �nancial asset classi�ed as AFS belongs to a company, any
gains or losses on this asset are not recognized in pro�t or loss. Unless any
impairment losses occur. In such a case, IAS 39 states that the amount of
the cumulative loss that is reclassi�ed from equity to pro�t or loss (...) shall
be the di�erence between the acquisition cost (net of any principal repayment
and amortization) and current fair value, less any impairment loss on that
�nancial asset previously recognized in pro�t or loss.

Paragraph 59 of IAS 39 states that A �nancial asset (...) is impaired and
impairment losses are incurred if, and only if, there is objective evidence of
impairment as a result of one or more events that occurred after the initial
recognition of the asset (a "loss event") and that loss event (or events) has
an impact on the estimated future cash �ows of the �nancial asset (...) that
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can be reliably estimated. This principle is completed in paragraph 61 for
equity instruments : A signi�cant or prolonged decline in the fair value of an
investment in an equity instrument below its cost is also objective evidence of
impairment.

To resume, if for debt instruments classi�ed as AFS, the impairment crite-
rion is based on a loss event (this leads to consider the present impairment
methodology for such instruments as "incurred approach" by opposition of an
"expected approach"), IAS 39 gives a more precise double-criterion for con-
sidering impairment losses for an equity instrument. It is important to note
that the two conditions do not necessarily to be concomitantly met in order to
lead to an impairment loss (it is the case in some local accounting standards
such as the French ones). This has been con�rmed by an IFRIC 1 Update of
July 2009. Moreover for those instruments, any impairment losses shall not
be reversed through pro�t or loss (see Paragraph 69).

This situation can be resumed by Table 2 (cf. Thérond (2012)).

Table 2. Overview of IAS 39 impairment disposals.

Category HTM AFS HFT

Eligible secu-
rities

Bonds Bonds Others (stock, funds,
etc.)

Everything

Valuation Amortized cost Fair Value (through OCI) Fair Value
through
P&L

Impairment
principle

Event of proven loss Event of proven loss Signi�cant or prolonged
fall in the fair value

NA

Impairment
trigger

Objective evidence resulting from an in-
curred event (cf. IAS 39 �59)

Two critera (non-
cumulative; Cf. IFRIC
Update of July 2009)
: signi�cant or pro-
longed loss in the
FV

NA

Impairment
Value

Di�erence between
the amortized cost
and the revised
value of future �ows
discounted at the
original interest rate

In result : di�erence between reported value
(before impairment) and the FV

NA

Reversal of
the impair-
ment

Possible in speci�c
cases

Possible in speci�c
cases

Impossible NA

As a consequence with the present standard, most of impairment losses on
AFS �nancial assets come from equity instruments.

1 International Financial Reporting Standards Interpretations Committee.
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Table 3 compares, for some insurance companies, their 2011 result and the
losses from AFS funds and equity securities impairment. N.B. The �gures are
extracted from the 2011 reference document of each company.

Table 3. Some �gures about insurance companies investments in 2011 (continued).

(Me)
Allianz Axa CNP Assurances Generali

Result 2804 4516 1141 1153

Impairment losses on AFS
funds and equity securities

-2487 -860 -1600 -781

We see that these impairment losses are far from being negligible compared to
the result of these insurers. Also in this paper, we focus on equity instruments
classi�ed as available for sale.

The following questions are of interest for a company which holds equity in-
struments classi�ed as AFS: what is the probability that an impairment occurs
before the next �nancial reporting? What is the expected amount of such an
impairment loss? What is its distribution function? To which parameters is
this amount the most sensitive?

After giving an overview of practices of �nancial institutions to consider what
kind of decline leads to an impairment loss, the aim of our paper is to provide
some answers to the above questions in the Black & Scholes model 2 . The
two criteria and the form of the impairment losses are similar to those of the
(probabilistic) payo� of a sum of three �nancial options. Among them the �rst
one corresponds to a classical European put option (cf. Hull (2011)). The two
others are in the family of the barrier options: the rear-end up-and-out put
option (cf. Hui (1997)).

Using results about barrier options from Hui (1997), Chuang (1996) and Carr
and Chou (1997), we give an analytical formula of the expectation of the next-
year impairment losses for any equity security (even previously impaired) in
the Black & Scholes model. Moreover we compute the cumulative distribution
function of the next year impairment losses which enables a Chief Financial
O�cer (CFO) and a Chief Risk O�cer (CRO) to measure the risk of any
deviation in the pro�t or loss resulting from any impairment of such a security.
For each characteristic, we will give sensitivities on parameters. These results

2 Even if this model is far from being perfect, it is still widely used, sometimes with
modi�cations like stochastic volatility or stochastic interest rates. As our goal is to
study impairments and not to build a more reliable risky asset model, we believe
that this is not a big problem.
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are illustrated on real securities from the French stock market. In the �nal part
of our work, we �nd a mean-preserving relation between the parameters of the
impairment criteria and those of a simpli�ed version (using only the signi�cant
decline criterion) that is easier to compute. Some practitioners argue that such
a proxy could be used in order to get a more simple formula. We show that
such an proxy is only relevant when large impairment losses already incurred
in the previous �nancial reporting statements, because di�erences between
the results of the two methods are important when no large impairment has
occurred yet. In order to get a more readable paper, the proofs of the results
are given in the Appendix. Apart from solving this particular issue, another
goal of this paper is to demonstrate how �nancial mathematics techniques can
be applied to IFRS accounting problems, including impairment related ones.

2 Impairment of equity securities

The aim of this section is to give an overview of how �nancial institutions such
as banks and insurance companies interpret Paragraph 61 of IAS 39 in order to
determine the parameters to consider a signi�cant or prolonged decline which
leads to an impairment loss for an equity security.

A study of the auditing company Grant Thornton (2009) indicates that these
criteria have fallen within the following ranges:

• signi�cant between 20% and 30%
• prolonged between 9 and 12 months.

Nevertheless, as we can see in Table 4, these parameters are very volatile
among �nancial institutions. Moreover some of them consider a third crite-
rion which embrace both signi�cant and prolonged decline: a prolonged decline
under a signi�cant fall in fair value since the acquisition time. We can observe
that a wide range of criterion are practically used. Obviously the greater the
signi�cant (resp. the prolonged) parameter is, the later an impairment loss
occurs and the greater the potential impaired amount may be. If one posi-
tions impairment risk in a risk map (whose axes correspond to probability of
occurrence and expected severity if event occurs), it is going to lie close to
di�erent axes for di�erent insurers (for equivalent previous impairments): for
AXA it would be closer to the �rst axis, because this company tends to rec-
ognize impairments much faster (after a 20% decrease or a 6-month prolonged
decline) than Generali, who recognizes impairments only after a 50% decrease
or a 3-year prolonged decline. In Generali risk map, impairment risk would
be closer to the second axis, because the probability of impairment is much
smaller, but if this happened, the impairment amount would be much higher.
Decision makers need some quantitative analysis to complement this qualita-
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tive analysis in order to set up their trigger parameters. The computations we
present in this paper enable CFO's and CRO's to quantify impairment risk and
to choose their appropriate thresholds. In the numerical applications section,
we carry out some sensitivity analysis and also provide concrete numbers for
probability of impairment and expected severity given that event occurs for
Axa and Generali trigger parameters in di�erent stock price evolution and past
impairment scenarios. The additional criterion that some companies consider
seems like the trigger given by some local GAAP (French GAAP for example
for which a continuously fall of 20 % or 30 % during the last 6 months leads
to an impairment loss).

Table 4. Impairment parameters used by some insurance companies in 2011.

Company

Signi�cant

parameter
Prolonged parameter
(months)

Supplementary
criterion 3

Allianz 0.2 9

Axa 0.2 6

BNP Paribas 0.5 24 0.3 | 12 months

CNP 0.5 36

Crédit Agricole 0.4 ∅ 0.2 | 6 months

Generali 0.5 36

Groupama 0.5 36

ING 0.25 6

Scor 0.5 24 0.3 | 12 months

Société Générale 0.5 24

N.B. The �gures are extracted from the 2011 reference document of each
company.

3 Notation and model

The aim of this section is to give a mathematical framework in order to deal
with the properties of the (probabilistic) next-year impairment loss of an eq-

3 This supplementary criterion has to be read in the following manner: x%|y means
that there is an impairment presumption if the fair value is more than x % below the
carrying amount for more than y consecutive months before the �nancial reporting
date.
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uity security classi�ed as AFS.

3.1 Notation

Let us denote by S = (St)0≤t the stock price at time t. We denote the
acquisition date by ta ≥ 0. We assume that we want to forecast next year
impairments at some time t ≥ ta. Hereafter, we introduce all quantities that
constitute the information of the Chief Financial O�cer at time t (present).

With these notation, Sta is the acquisition cost of the stock and St is the fair
value of the stock at time t.

Let us denote by Λ(S, ta, t) the cumulative results obtained through the sum
of pro�t and loss starting at time ta until now:

Λ(S, ta, t) =
t∑

s=btac+1

λ(S, ta, s). (1)

Remark 1 The above sum starts at the �rst integer valued date after the ac-
quisition. In fact it is more general than that because times of annual accounts
are not necessary integers. This detail has no in�uence on the results.

As there will be no possible confusion, we choose to use Λt.

Let us denote by Ω(S, ta, t) the cumulative unrealized gains and losses deferred
in Other Comprehensive Incomes (OCI) since ta.

We have the balance sheet equilibrium property:

St − Sta = Ω(S, ta, t) + Λt. (2)

The unrealized gains and losses have to be reported either on past pro�t and
loss or on OCI, since the �nancial asset is measured at fair value in the balance
sheet.

To summarize, at time t, information available for the CFO corresponds to
Ft = {Sta , St,Λt}. Using this, we would like to forecast the following year
impairments. According to what the CFO knows, probabilities have to be
evaluated conditionally to information Ft at time t.
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3.2 Modeling the impairment triggers and losses

The aim of this subsection consists in modeling the impairment trigger and
the resulting losses if any. We divide each impairment process into two steps.
The �rst one deals with the (non-cumulative) couple of criteria on the fall
(signi�cant or prolonged).

The trigger for an impairment at time t+ 1 can be written as:

{
St+1 ≤ (1− α)Sta , or;

∀u ∈ ]t+ 1− s, t+ 1] , Su ≤ Sta ,
(3)

where the parameters α and s are determined by the company.

• Parameter α ∈ ]0, 1[ represents the relative level of fall in fair value since
the acquisition date corresponding to signi�cant decline.
• Parameter 0 < s < 1 represents the minimum period before the �nancial
reporting date that leads to consider that the decline is prolonged.

The second step is to determine if an impairment really occurs. For that,
we have to test the following condition: St+1 ≤ Sta − Λt. Finally, for each
t, we de�ne Jt+1 as the Bernoulli random variable that takes value 1 if some
impairment occurs at time t + 1. This occurs if both the trigger condition is
satis�ed and {St+1 ≤ Sta − Λt}.

Then, if an impairment is recognized, its value is denoted by λt+1 and is equal
to Sta−Λt−St+1. Without loss of generality, we have λt+1 = (Sta−Λt−St+1)+

or, as for a European put option, λt+1 = (Kt − St+1)+, with Kt = Sta − Λt.

3.3 Stock price evolution

Let (Wt)0≤t be a standard Brownian motion. Let (St)0≤t be the price process
of some asset in the Black-Scholes model: for 0 ≤ t, we have, under the
real-world probability,

dSt
St

= µdt+ σdWt, (4)

where (Wt)t≥0 is a standard Brownian motion. We denote the risk-free interest
rate by r.
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4 Characteristics of the next-year impairment

The aim of this section is to provide in the Black & Scholes framework the
main characteristics of the (potential) next year impairment losses. The main
results are, for the next year reporting:

• the probability that some impairment occurs,
• the expectation of impairment losses,
• the cumulative distribution function (c.d.f.) of impairment losses.

These results enable a CFO to analyze both the next year losses resulting from
holding such an investment categorized as AFS and to determine some risk
indicators in order to manage the risk of an impairment loss resulting from this
equity securities. More precisely, the two �rst indicators enable the CFO and
the CRO to position impairment risk on a risk map (chart whose coordinates
correspond to probability of occurrence and expected severity of events). The
last indicator enables them to take impairment risk into account in internal
risk models, or to deal with the multi-period case by induction. Of course, if
one knows the c.d.f., one knows everything, including the two �rst indicators.
But it is much longer to compute the c.d.f. than the two �rst quantities, and
it would be painful, and numerically complex to retrieve the expected value of
impairments by integration of the survival function. Consequently, we analyze
the three risk indicators separately and provide formulas and computation
scheme for each of them.

4.1 Impairment probability

We express the probability to recognize an impairment in one year condition-
ally to Ft, P [Jt+1|Ft] = Pt [Jt+1]. Let us start by re-writing Jt+1:

Jt+1 = (St+1 ≤ (1− α)Sta , St+1 ≤ Kt)
⋃(

max
t+1−s≤u≤t+1

Su ≤ Sta , St+1 ≤ Kt

)
.

Then, it is easy to obtain, introducing mt = min ((1− α)Sta , Kt) :

Pt [Jt+1] = Pt [St+1 ≤ mt] + Pt
[

max
t+1−s≤u≤t+1

Su ≤ Sta , St+1 ≤ Kt

]
− Pt

[
max

t+1−s≤u≤t+1
Su ≤ Sta , St+1 ≤ mt

]
.

The next step is to retrieve an expression using the drifted Brownian motion
and the joint law of its current maximum and its value. Details are provided
in Appendix A. We are then able to enunciate the following theorem:
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Theorem 1 (Impairment probability) The probability to recognize an im-
pairment at future time t+ 1, given the information Ft at time t, is given by

Pt [Jt+1] =
(
Sta
St

)k1−1

[Ψρ (C,D(Kt))−Ψρ (C,D(mt))]

+ Φ (−A(Kt)) + Ψρ (B,A(Kt))−Ψρ (B,A(mt)) ,

(5)

where, for x ∈ {mt, Kt},

• A(x) = ln(St/x)+µ
σ

− σ
2
, A′(x) = A(x) + σ,

• B = ln(St/Sta )+µ(1−s)
σ
√

(1−s)
− σ
√

(1−s)
2

, B′ = B + σ
√

(1− s),

• C = ln(Sta/St)+µ(1−s)
σ
√

(1−s)
− σ
√

(1−s)
2

, C ′ = C + σ
√

(1− s),

• D(x) =
ln(S2

ta
/Stx)+µ

σ
− σ

2
, D′(x) = D(x) + σ,

• k1 = 2µ
σ2 ,

Φ denotes the c.d.f. of a standard normal distribution, and Ψρ is the bivariate
normal distribution function: for all x, y, Ψρ(x, y) = Pt [X ≤ x, Y ≤ y] where
(X, Y ) is a Gaussian vector with standard marginals and correlation ρ.

The proof is given in the Appendix.

Remark 1 This is also the probability to have non-null impairment:

Pt [Jt+1] = Pt [λt+1 6= 0] .

Theorem 2 (Probability sensitivities) The impairment probability is de-
creasing in α, µ, Λ and s. Moreover, it is convex in α, µ and s.

Figure 1. Probability to recognize an impairment next year as a function of µ and
σ (left), and of Λ and α (right).

Remark 2 On Figure 1, we observe that the probability to recognize an im-
pairment next year is neither globally convex in σ, nor globally concave. Ac-
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tually, we observe some (local) convexity in σ when µ is close to 0, and some
(local) concavity for large values of µ. Moreover, there is an area where the
�rst derivative of the sensitivity is not monotonous.

4.2 Expectation of the next-year impairment loss

The impairment value can be seen as a payo� of some complex option. Con-
sequently, in the sequel, we decompose the payo�, in order to retrieve some
simpler and known expressions. We denote Et instead of E [.|Ft] for simplicity,
as we have done for probabilities.

Proposition 2 The payo� we are interested in is

λt+1 = (Kt − St+1)+ 1
{

max
t+1−s≤u≤t+1

Su ≤ Sta ∪ St+1 ≤ (1− α)Sta

}
, (6)

with Kt = Sta − Λt. We have

λt+1 = Xt+1 + Yt+1 − Zt+1,

with

• Xt+1 = (Kt − St+1)+ 1 {maxt+1−s≤u≤t+1 Su ≤ Sta},
• Yt+1 = (Kt − St+1)+ 1 {St+1 ≤ (1− α)Sta},
• and Zt+1 = (Kt−St+1)+ 1 {maxt+1−s≤u≤t+1 Su ≤ Sta} .1 {St+1 ≤ (1− α)Sta}.

Remark 3 These three terms can be interpreted as payo�s of options with
underlying asset S. The �rst one corresponds to a rear-end up-and-out put
option (as it appears in Hui (1997)), the second one to a classic European put
option, and the third one is a bit more complicated: Zt+1 corresponds to the
sum of the payo� of a rear-end up-and-out put option and of a compensating
quantity. All the details can be found in Appendix B.

Finally, again with mt = min ((1− α)Sta , Kt), one may obtain the expected
value of next year impairment.

Theorem 3 (Impairments expectation) The expectation of next-year im-
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pairment, given the information Ft at time t, is given by

Et [λt+1] = Ste
µ
(
Sta
St

)k1−1

[Ψ−ρ (C ′,−D′(Kt))−Ψ−ρ (C ′,−D′(mt))]

+ Ste
µ [Ψρ (−B′,−A′(mt))− Φ (−A′(mt))−Ψρ (−B′,−A′(Kt))]

+Kt [Ψρ (−B,−A(Kt)) + Φ (−A(mt))−Ψρ (−B,−A(mt))]

+ (Kt −mt)
(
Sta
St

)k1−1

[Φ (−D(mt))−Ψρ (−C,−D(mt))]

−Kt

(
Sta
St

)k1−1

Ψ−ρ (C,−D(Kt)) +mt

(
Sta
St

)k1−1

Ψ−ρ (C,−D(mt)) ,

(7)

where all constant numbers, variables and parameters are de�ned in Theorem
1 Page 10.

Corollary 4 We can interpret the impairment as a �nancial product. Conse-
quently, the "price" of this option - namely the expectation under risk neutral
probability Q (cf. Hull (2011)) of discounted value of the next-year impairment
loss - is given by :

EQ
t

[
e−rλt+1

]
= St

(
Sta
St

)k̃1−1 [
Ψ−ρ

(
C̃ ′,−D̃′(Kt)

)
−Ψ−ρ

(
C̃ ′,−D̃′(mt)

)]
+ St

[
Ψρ

(
−B̃′,−Ã′(mt)

)
− Φ

(
−Ã′(mt)

)
−Ψρ

(
−B̃′,−Ã′(Kt)

)]
+Kte

−r
[
Ψρ

(
−B̃,−Ã(Kt)

)
+ Φ

(
−Ã(mt)

)
−Ψρ

(
−B̃,−Ã(mt)

)]
+ (Kt −mt)e

−r
(
Sta
St

)k̃1−1 [
Φ
(
−D̃(mt)

)
−Ψρ

(
−C̃,−D̃(mt)

)]
−Kte

−r
(
Sta
St

)k̃1−1

Ψ−ρ
(
C̃,−D̃(Kt)

)
+mte

−r
(
Sta
St

)k̃1−1

Ψ−ρ
(
C̃,−D̃(mt)

)
,

(8)

where, for x ∈ {mt, Kt},

• Ã(x) = ln(St/x)+r
σ

− σ
2
, Ã′(x) = Ã(x) + σ,

• B̃ = ln(St/Sta )+r(1−s)
σ
√

(1−s)
− σ
√

(1−s)
2

, B̃′ = B̃ + σ
√

(1− s),

• C̃ = ln(Sta/St)+r(1−s)
σ
√

(1−s)
− σ
√

(1−s)
2

, C̃ ′ = C̃ + σ
√

(1− s),

• D̃(x) =
ln(S2

ta
/Stx)+r

σ
− σ

2
, D̃′(x) = D̃(x) + σ,

• k̃1 = 2r
σ2 ,

Φ is the c.d.f. of a standard normal distribution, ρ =
√

1− s and Ψρ is as
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above.

Theorem 5 (Expectation sensitivities) The impairment value is decreas-
ing in α, µ, Λ and s, and increasing in σ. Moreover, it is convex in α, µ, σ
and Λ, and concave in s.

Figure 2. Average impairment next year as a function of µ and σ (left), and of α
and Λ (right).

The expected next year impairment is illustrated in Figure 2 as a function
of some key parameters. One can notice that its structure is quite simple in
terms of µ and σ, but more complex in terms of Λ and α as non-linearity
comes from exotic optional-type behavior.

4.3 Distribution of the next-year impairment

In order to give a more complete panel of characteristics of the next-year im-
pairment, we have to study the law of its value. This is particularly important
for future extensions to multi-year models. In the following section, we are
able to give the cumulative distribution function of next-year impairment.

Theorem 6 (Distribution function of impairments) The cumulative dis-
tribution function of the next-year impairments, given the information Ft at
time t, is given by

Pt [λt+1 ≤ l] =



(1− Pt [Jt+1]) + Φ (A(Kt − l))− Φ (A(Kt))

+
(
Sta
St

)k1−1
[Ψρ (C,D(Kt))−Ψρ (C,D(Kt − l))]

+Ψρ (B,A(Kt))−Ψρ (B,A(Kt − l)) , 0 ≤ l ≤ Kt −mt,

Φ (A(Kt − l)) , Kt −mt < l ≤ Kt,

(9)
where all constant numbers, variables and parameters are de�ned in Theorem
1 Page 10.
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In another way, we have

Pt [λt+1 ≤ l] =


Φ (A(Kt − l)) + Ψρ (B,A(mt))−Ψρ (B,A(Kt − l))
+
(
Sta
St

)k1−1
[Ψρ (C,D(mt))−Ψρ (C,D(Kt − l))] , 0 ≤ l ≤ Kt −mt,

Φ (A(Kt − l)) , Kt −mt < l ≤ Kt.

(10)

The proof is given in the Appendix.

5 Illustration on real data

We now want to study numerically next year impairment characteristics in
concrete cases.

5.1 Data description

We have chosen stocks of French market CAC40: BNP Paribas, Bouygues,
Carrefour, Pernod Ricard and Total.

The dataset consists of daily quotations starting at the fourth of January, 2010,
and ending at the thirty-�rst of December, 2012. It almost corresponds to 3
entire years of data. These quotations are used in order to calibrate model
parameters (volatility and drift) and give initial and terminal values. This
period was impacted by the �nancial crisis. As volatilities may be higher than
in normal periods, we expect to observe more important impairments. Annual
volatilities are provided by the website Small Caps Vision. The value of µ is
obtained by adding a constant drift (3%) to the volatility: if the volatility is
σ, then µ = log(1 + 3%) + σ2/2. The buying value Sta is the quotation of the
stock at the date 01/4/2010. Those �gures are summarized in Table 5.

Table 5. Used data.

Sta (e) Annual volatility µ

BNP Paribas 57.24 48.92% 14.92%

Pernod Ricard NV 60.83 22.80% 5.56%

Bouygues 37.02 31.56% 7.94%

Carrefour 29.7016 33.80% 8.67%

Total 45.795 22.61% 5.51%
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The �rst step in this study is to study realized impairments in Table 6. Indeed,
we apply our impairment criterion on the close values of the stocks. Remark
that this is not perfect, because we are processing on discrete values and
the barrier (in the prolonged criteria of impairment) has to be continuous,
but this has minor e�ect on our results. Note that some stocks like BNP
Paribas and Carrefour feature consequent impairments, while some others
like Pernod Ricard do not feature any impairment in this particular case.
As impairments have to be recognized securities by securities, part of the
investment diversi�cation e�ect is not fully recognized in the IFRS framework.

Table 6. Past impairment losses.

Impairments for the year : 2010 2011 2012 Total

BNP Paribas 9.63 17.26 0 26.89

Pernod Ricard NV 0 0 0 0

Bouygues 4.76 7.92 1.94 14.62

Carrefour 0 12.0916 0 12.0916

Total 6.145 0.15 0.49 6.785

5.2 Next year impairment for various past impairment cases

After this step, at time t = 12/31/2012, we now compute the probability
Pt [Jt+1] to recognize an impairment next year, the expectation Et [λt+1] of
next year impairment, as well as di�erent Value-at-Risks at levels 80%, 95%
and 99.5%. For the sake of brevity we only present results for Total in Table 7.
We use standard trigger criteria, i.e. α = 0.3 and s = 0.5. We also use market
parameters given previously and the historical buying value Sta . We arti�cially
vary Λ, set to 5%, 10%, 50% and 75% of the buying value Sta (that do not
correspond to the history of realized impairment between ta and t) in order
to study next year impairments in di�erent situations. When Λt = 2.28975,
at least one small impairment occurred because of the prolonged depreciation
criterion. The current price St is now much lower than Sta and Sta − Λt, but
still above 0.7Sta . It means in particular that the stock price crossed level
Sta in the time interval [t− 0.5; t): the stock price went severely down during
the last six-month period before t. In this case, the probability to recognize
an impairment at time t + 1 is larger than 1/2, and the average impairment
Et [λt+1] is approximately equal to 4. When Λt = 22.8975, the probability
to recognize an impairment next year is very low (smaller than 80bps), and
Et [λt+1] is very small too. This is because at least one impairment has been
recognized in the past due to the signi�cant depreciation criterion. The last
impairment when the stock price was much lower (below 23) than the current
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price St. The probability that St+1 falls again below 23 is very small.

Table 7. Results for Total.

Total. Sta = 45.795

St Λ Pt [Jt+1] Et [λt+1] V aR(80%) V aR(95%) V aR(99.5%)

38.42 2.28975 0.5509 4.0699 10.7697 16.2236 21.402

4.5795 0.5075 3.3007 8.4799 13.9338 19.1123

22.8975 0.0078 0.0124 0 0 0.7943

34.34625 0 0 0 0 0

5.3 Next year impairments for di�erent acquisition dates

In Table 8, we �x t = 12/31/2008 and we vary acquisition dates of stock
Pernod Ricard (whose value is St = 49.26 at time t). We get then di�erent
values of Sta and corresponding values of Λt according to the real evolution
of stock Pernod Ricard between ta and t. For the �rst acquisition date, Sta =
41.98 and Λt = 0. The probability to recognize an impairment in that case is
below 10%, because price went up between ta and t. For the second acquisition
date, as Sta = 71.60 and Λt = 22.34, stock price has gone down and the
last impairment occurred due to the signi�cant depreciation criterion. The
probability to recognize an impairment next year is very high (above 46%).
Note that the choice of the parameters (µ and σ) estimation period is crucial,
because it strongly a�ects the probability to recognize an impairment next
year.

Table 8. Results for Pernod Ricard, with σ = 31.38% and µ = 7.88%, in di�erent
scenarios.

Pernod Ricard. St = 49.26 at t = 12/31/2008

Sta Λt Pt [Jt+1] Et [λt+1] V aR(80%) V aR(95%) V aR(99.5%)

41.98 0 0.0912 1.8944 0 10.9932 19.3704

71.60 22.34 0.4625 4.5728 10.2986 18.9791 26.6504

44.53 0 0.1349 2.3653 0 14.2491 21.9204
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5.4 Next year impairments with di�erent trigger levels

We now compare impairment probabilities and potential sizes for two insurers,
AXA and Generali, which feature very di�erent impairment triggers: for AXA,
we have α = 0.2 and s = 6 months, where for Generali we have α = 0.5 and
s = 36 months. We can see in Table 9 that the probability to recognize an
impairment is much smaller for Generali than for AXA. However, given that
an impairment is recognized, the average impairment is likely to be larger for
Generali than for AXA.

Remark 4 For the particular case studied appearing in Table 9, both com-
panies have bought assets today (time t). In this framework, the impairment
event of Generali is very easy to write, and so the probability and expectation.

Indeed, we have St = Sta, Λt = 0,

Jt+1 = (St+1 ≤ (1− α)Sta) ,

Pt [Jt+1] = Φ

(
ln(1− α)− µ

σ
+
σ

2

)
,

and

Et [λt+1] = −SteµΦ

(
ln(1− α)− µ

σ
− σ

2

)
+ StΦ

(
ln(1− α)− µ

σ
+
σ

2

)
.

Table 9. Comparison of AXA and Generali impairment triggers: impairment prob-
ability and potential severity for 5 di�erent stocks.

Axa Generali

Pt [Jt+1] Et [λt+1 | Jt+1] Pt [Jt+1] Et [λt+1 | Jt+1]

BNP Paribas 0.3331 21.3545 0.0698 33.8002

Bouygues 0.2762 10.3336 0.011 20.3283

Carrefour 0.2851 8.7095 0.0162 16.4673

Pernod Ricard 0.2374 13.1027 0.00076 32.1938

Total 0.2365 9.7935 0.00069 24.2181

Note that in some other cases, in particular when past impairments are dif-
ferent for AXA and Generali, one might get di�erent results.

17



6 A proxy method for already impaired equity securities

We have given closed formula for the probability, the expectation and the
distribution function of the next-year impairment losses for an equity secu-
rities in a particular model. However, these formulas are quite complex and
may be hard to extend to more sophisticated model, or to embed into some
risk management or investment optimization software. Some insurance prac-
titioners therefore use a simpli�cation of the approach prescribed by the IFRS
standards. In this section, we investigate the relevance of considering only the
prolonged criterion (with an updated parameter) as a proxy. To do that, we
look for a new α1, parameter of the signi�cant criteria, that gives us the same
impairment expectation (cf. Theorem 3) but without the prolonged criteria.
In other words, the new impairment expectation is

Et
[
λ̃α1
t+1

]
= Et

[
(Kt − St+1)+ 1 {St+1 ≤ (1− α1)Sta}

]
= −SteµΦ (−A′(mα1

t )) +KtΦ (−A(mα1
t )) ,

with mα1
t = min (Kt, (1− α1)Sta).

So we have to solve:

Et
[
λ̃α1
t+1

]
= Ste

µ
(
Sta
St

)k1−1

[Ψ−ρ (C ′,−D′(Kt))−Ψ−ρ (C ′,−D′(mt))]

+ Ste
µ [Ψρ (−B′,−A′(mt))− Φ (−A′(mt))−Ψρ (−B′,−A′(Kt))]

+Kt [Ψρ (−B,−A(Kt)) + Φ (−A(mt))−Ψρ (−B,−A(mt))]

+ (Kt −mt)
(
Sta
St

)k1−1

[Φ (−D(mt))−Ψρ (−C,−D(mt))]

−Kt

(
Sta
St

)k1−1

Ψ−ρ (C,−D(Kt)) +mt

(
Sta
St

)k1−1

Ψ−ρ (C,−D(mt))

(11)

Remark 5 One can note, thanks to the expression of the impairment expec-
tation, when the agent chooses α0 ≤ Λ/Sta as the initial parameter, then
mt = Kt and so the expectation Et [λt+1] does not depend on s nor α0 any-
more. It follows that the new α1 can be taken between 0 and Λ/Sta. Indeed,

∀α1 ≤ Λ/Sta then Et
[
λ̃α1
t+1

]
= Et [λt+1]. And so all those values can be solu-

tions.

As a consequence, we will impose in the sequel that if α0 ≤ Λ/Sta, α1 = α0.

Moreover, it is possible to verify that, if α0 > Λ/Sta, α1 > Λ/Sta too.

Expectation sensitivities given previously permit us to know that there is a
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unique solution.

6.1 Analytical formula

As for the implicit volatility, it is also possible to give a theoretical formula.

Theorem 7 For all sets of parameters, we have

α1 = 1− St
Sta

exp

(
(µ− σ2

2
) + σ2(Eξ − 1)

)
, (12)

with:

• Eξ = ∂|C(2)−C(1)|
∂ lnSt

;

• C(1) = ∂Et[λt+1]
∂ lnSt

;

• C(2) = ∂2Et[λt+1]
∂(lnSt)2

.

We obtain a closed-form expression for the new parameter α1, as a function
of the parameters, and of Eξ. This last quantity depends on �rst and second
derivatives of the impairment value with respect to St (in fact its logarithm),
the asset price at time t. So, if the agent owns a su�cient quantity of infor-
mation to estimate (or to know) Eξ, she can explicitly determine α1.

But this formula is very hard to use in practice, because we need the knowledge
of these derivatives. That is why we use numerical methods, as for the implicit
volatility.

6.2 Illustration

We have used the numerical MATLAB solver fzero in order to �nd α1. The
precision of the method was the default precision of the software (i.e. 10−6):
we have created a function that returns (original) impairments expectation for
a parameters set and another one that returns new impairments expectation
for a parameters set. In Figure 3, we show how this new parameter α1 depends
on values of s and (original) α0. It is of course increasing in α1 and s, without
any systematic concavity or convexity.
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Figure 3. α1 as a function of α0 when s = 0.3 (top left), s = 0.5 (top right), and
s = 0.75 (bottom left). α1 as a function of s when α0 = 0.3 (bottom right).

6.3 Quality of this proxy method

The approximation consists in making average impairments identical in both
approaches. Here we would like to investigate its quality, through comparison
of next year impairment distributions.

Quantiles of next year impairments conditioned to be positive are given in
Table 10 for the proxy and for the rigorous approach.
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Table 10. Quantiles of next year impairment (conditioned to be positive) with
classical criterion and proxy criterion, in the central scenario (St = 95, µ = ln 0.08,
σ = 0.25, Sta = 100, Λ = 5).

α0 = 0.3 s = 0.3 s = 0.5 s = 0.75

qα0,s(0.05) 2.80 3.20 3.65

qα1(0.05) 12.83 16.82 21.33

qα0,s(0.5) 16.83 18.25 20.15

qα1(0.5) 21.13 24.05 27.51

qα0,s(0.95) 36.73 37.66 38.84

qα1(0.95) 38.57 40.04 41.89

One can see that the probability that an impairment occurs is always sig-
ni�cantly smaller with the proxy than with the rigorous approach, and that
consequently, if an impairment occurs, it is likely to be larger with the proxy
that with the rigorous approach. This is in accordance with what we ob-
served in Subsection 5.4 when we compared Axa and Generali impairment
trigger levels. The di�erences are important at all interesting quantile levels
for this particular value of Λ = 5 that corresponds to one sixth of the distance
α0Sta between acquisition price Sta and the signi�cant depreciation threshold
(1− α0)Sta . We have tested many situations, not presented here for the sake
of brevity. In all cases, the conclusion is the same: the quality of the proxy
is very bad, except if past impairments are very large. We do not recommend
to use it if

Λ

α0Sta
≤ 90%.

Consequently, this proxy might be acceptable only and interesting when Λ
α0Sta

∈
(0.9; 1), which is not going to happen very often. Besides, if this condition
were true for one asset, it would be unlikely to be satis�ed for all assets, and
it would be hard to justify the use of the proxy for some assets but not for the
other ones. The conclusion of this section is that the proxy is not suitable for
this concrete impairment study, and that one cannot avoid complexity bred
by the two impairment criteria in the IFRS framework. This con�rms that
sophisticated �nancial analysis is needed to correctly analyze impairment risk.
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7 Conclusion

In this paper, we have given the probabilistic characterization of next-year
impairment loss of any equity security, in the Black & Scholes framework. We
have also studied a proxy that is often used by often practitioners, and found
that the quality of this proxy is not good, except when past impairments are
large. More generally, our work shows how �nancial engineering techniques
and complex �nancial option pricing naturally intervene in modern account-
ing problems. In future work, we plan to extend our results in three di�erent
ways: studying the sum of discounted impairments in a multi-period setting,
considering a portfolio of equity securities with dependence between stock re-
turns (see Batens (2007)), and testing whether more sophisticated stock price
models leads to an e�ective improvement in the quality of the impairment
losses prediction and probabilistic representation.
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Appendix

In the sequel, Φ denotes the c.d.f. of a standard normal distribution, and Ψρ is
the bivariate normal distribution function: for all x, y, Ψρ(x, y) = Pt [X ≤ x, Y ≤ y]
where (X,Y ) is a Gaussian vector with standard marginals and correlation ρ.

A Proof of results about the probability that an impairment occurs
next year

We would like to evaluate, for Sta , mt and Kt, this following quantity:

P = Pt [St+1 ≤ mt] + Pt
[

max
t+1−s≤u≤t+1

Su ≤ Sta , St+1 ≤ Kt

]
− Pt

[
max

t+1−s≤u≤t+1
Su ≤ Sta , St+1 ≤ mt

]
.

It is possible to quickly retrieve an expression using the drifted Brownian motion

(Bt)t =
(

ln St
S0

)
t
. Indeed, we apply the following property with the previous decom-

position and obtain Theorem 1

Proposition 6 For all real z ≤ a, for all times 0 < s < t:

Pt
[

max
t+1−s≤u≤t+1

Bu ≥ a, Bt+1 ≤ z
]

=

exp

(
2(µ− σ2

2 )a

σ2

)[
Φ

(
−2a+ z − µ

σ
+
σ

2

)
−Ψρ

(
−a− (1− s)µ
σ
√

1− s
− σ
√

1− s
2

,
−2a+ z − µ

σ
+
σ

2
)

)]
+

[
1− Φ

(
a− (1− s)µ
σ
√

1− s
+
σ
√

1− s
2

)]
−Ψρ

(
−a+ (1− s)µ
σ
√

1− s
− σ
√

1− s
2

,
−z + µ

σ
− σ

2

)
,

(A.1)

with ρ =
√

1− s.

In the following two subsections, we shall prove this property.
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A.1 Proposition 1

Let Xt = vt + σWt, t ≥ 0 be a drifted Brownian motion. For time t, for some
0 < s < 1, for all a and z, we would like to express the following quantity:

Pt
[

max
t+1−s≤u≤t+1

Xu ≥ a, Xt+1 ≤ z
]

(A.2)

The joint law of a drifted Brownian motion and its running maximum is well known.
For example it can be �nd in Hull (2011), Shreve (2004), Harrison (1985).

We use the following classical result about joint law of a drifted Brownian motion
and its running maximum in order to obtain the result:

Lemma A.1 Let Xt = vt + σWt, t ≥ 0 be a drifted Brownian motion. For all

a > 0 = X0 we have:

P
[

max
0≤u≤t

Xu ≥ a, Xt ≤ z
]

=

e
2µa

σ2 Φ
(
z−2a−vt
σ
√
t

)
, z ≤ a

Φ
(
z−vt
σ
√
t

)
− Φ

(
a−vt
σ
√
t

)
+ e

2µa

σ2 Φ
(
−a−vt
σ
√
t

)
, z > a.

(A.3)
The case a ≤ 0 is simple because X0 = 0, so, ∀z ∈ R :

P
[

max
0≤u≤t

Xu ≥ 0, Xt ≤ z
]

= P [Xt ≤ z] = Φ

(
z − vt
σ
√
t

)
. (A.4)

A.1.1 Application to our problem

In our problem, we focus on the maximum over a period ]t+ 1− s, t+ 1], for some
given s and t. To retrieve the above problem, one can take probabilities conditioned
to Xt+1−s, it is similar to shift time and space axis in order to make Xt+1−s the new
origin. Then the barrier value 0 that appears in Equation (A.4) above is from now
the value of Xt+1−s.

Remark 3 (Notations) Here above, we assume that we know the value of Xt+1−s.
For clarity, we denote:

Ps[A] = Pt [A/Xt+1−s] , A ⊂ Ω

and we shall use

Ps[A]|Xt+1−s=x = Pt [A/Xt+1−s = x] , A ⊂ Ω.

One can then easily get

• for a > Xt+1−s,
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Ps
[

max
t+1−s≤u≤t+1

Xu ≥ a, Xt+1 ≤ z
]

=



e
2µ(a−Xt+1−s)

σ2 Φ
(
z−2a+Xt+1−s−vs

σ
√
s

)
, z ≤ a

Φ
(
z−Xt+1−s−vs

σ
√
s

)
−Φ

(
a−Xt+1−s−vs

σ
√
s

)
+e

2µ(a−Xt+1−s)
σ2 Φ

(
−a+Xt+1−s−vs

σ
√
s

)
, z > a.

(A.5)

• For a ≤ Xt+1−s, ∀z ∈ R, we have

Ps
[

max
t+1−s≤u≤t+1

Xu ≥ a, Xt+1 ≤ z
]

= Ps
[

max
t+1−s≤u≤t+1

Xu ≥ Xt+1−s, Xt+1 ≤ z
]

= Φ

(
z −Xt+1−s − vs

σ
√
s

)
.

(A.6)

But we would like to get rid of this conditioning. So the next step is to take the
integral among all possible values of Xt+1−s.

A.1.2 Conditional law and integration

Explicitly, we have to evaluate, for all a ∈ R and z ≤ a :

Pt
[

max
t+1−s≤u≤t+1

Xu ≥ a, Xt+1 ≤ z
]

=

∫ +∞

x=−∞
Ps
[

max
t+1−s≤u≤t+1

Xu ≥ a, Xt+1 ≤ z
]
|Xt+1−s=x

dPt [Xt+1−s ≤ x]

=

∫ a

x=−∞
Ps
[

max
t+1−s≤u≤t+1

Xu ≥ a, Xt+1 ≤ z
]
|Xt+1−s=x

dPt [Xt+1−s ≤ x]

+

∫ +∞

x=a
Ps
[

max
t+1−s≤u≤t+1

Xu ≥ a, Xt+1 ≤ z
]
|Xt+1−s=x

dPt [Xt+1−s ≤ x]

= Ξ1(a, z) + Ξ2(a, z),

(A.7)

where the expression of dP [Xt+1−s ≤ x], x ∈ R is as follows:

dPt [Xt+1−s ≤ x] =
1

σ
√

1− s
ϕ

(
x− v(1− s)
σ
√

1− s

)
dx.

Then it is possible to use Proposition 2.1 in Chuang (1996) (p.83) to evaluate both
integrals. De�ne ρ =

√
1− s. We �rst introduce the following intermediate variables:

25



• c = −2µ/σ2,

• δ1 = v(1− s),

• η1 = σ
√

1− s,

• δ2 = 2a+ vs− z,

• and η2 = σ
√
s.

We can now recognize the result of Chuang (1996):

Ξ1(a, z) = exp

(
2va

σ2

)[
Φ

(
−v − 2a+ z

σ

)
−Ψρ

(
−a− v(1− s)
σ
√

1− s
,
−v − 2a+ z

σ

)]
.

We do the same with the following intermediate variables:

• c = 0,

• δ1 = v(1− s),

• η1 = σ
√

1− s,

• δ2 = z − vs,

• and η2 = σ
√
s.

We obtain:

Ξ2(a, z) =

[
1− Φ

(
a− v(1− s)
σ
√

1− s

)]
−Ψρ

(
−a+ v(1− s)
σ
√

1− s
,
v − z
σ

)
.

B Proof of results about expected value of next year impairment

Thanks to the decomposition introduced in the Property 2 p.11, we are able to use
results about some exotic option, the Rear-End up-and-out Put Option. This option
is studied in Carr and Chou (1997), Cox and Rubinstein (1985), Carr (1995), Hui
(1997) for example. Here after, we present some of its characteristics.
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B.1 Rear-End up-and-out Put Option

The barrier of a rear-end put option exists from an intermediate time t between
the option time start 0 and the option maturity T . The value of the option at this
intermediate time is the value of a up-and-out put option with maturity the time
that left T − t (it will be s in our study).

• Its price is given by

P2uo = Ke−rTΨρ (−B(1− s),−A(T ))− S0Ψρ

(
−B′(1− s),−A′(T )

)
−
(
b

S0

)k1−1

Ke−rTΨ−ρ (C(1− s),−D(T ))

+

(
b

S0

)k1−1

S0Ψ−ρ
(
C ′(1− s),−D′(T )

)
,

where

· A(t) = ln(S0/K)+rt

σ
√
t

− σ
√
t

2 , A′(t) = A+ σ
√
t,

· B(t) = ln(S0/b)+rt

σ
√
t
− σ

√
t

2 , B′(t) = B + σ
√
t,

· C(t) = ln(b/S0)+rt

σ
√
t
− σ

√
t

2 , C ′(t) = C + σ
√
t,

· D(t) = ln(b2/S0K)+rt

σ
√
t

− σ
√
t

2 , D′(t) = D + σ
√
t,

· k1 = 2µ
σ2 ,

and ρ =
√
t/T .

• Expectation of its payo� under P measure is

P2uo = KΨρ (−B(1− s),−A(T ))− S0e
µTΨρ

(
−B′(1− s),−A′(T )

)
−
(
b

S0

)k1−1

KΨ−ρ (C(1− s),−D(T ))

+

(
b

S0

)k1−1

S0e
µTΨ−ρ

(
C ′(1− s),−D′(T )

)
,

where

· A(t) = ln(S0/K)+µt

σ
√
t

− σ
√
t

2 , A′(t) = A+ σ
√
t,

· B(t) = ln(S0/b)+µt

σ
√
t

− σ
√
t

2 , B′(t) = B + σ
√
t,

· C(t) = ln(b/S0)+µt

σ
√
t

− σ
√
t

2 , C ′(t) = C + σ
√
t,

· D(t) = ln(b2/S0K)+µt

σ
√
t

− σ
√
t

2 , D′(t) = D + σ
√
t,

· k1 = 2µ
σ2 ,

and ρ =
√
t/T .
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B.2 Application

We can now directly derive an expression of

Et [Xt+1] = Et
[
(Kt − St+1)+

1

{
max

t+1−s≤u≤t+1
Su ≤ Sta

}]
. (B.1)

Proposition 4 We have

Et [Xt+1] = KtΨρ (−B,−A(Kt))− SteµΨρ

(
−B′,−A′(Kt)

)
−
(
Sta
St

)k1−1

KtΨ−ρ (C,−D(Kt)) +

(
Sta
St

)k1−1

Ste
µΨ−ρ

(
C ′,−D′(Kt)

)
,

where

• A(Kt) = ln(St/Kt)+µ
σ − σ

2 , A
′(Kt) = A(Kt) + σ,

• B = ln(St/Sta )+µ(1−s)
σ
√

(1−s)
− σ
√

(1−s)
2 , B′ = B + σ

√
(1− s),

• C = ln(Sta/St)+µ(1−s)
σ
√

(1−s)
− σ
√

(1−s)
2 , C ′ = C + σ

√
(1− s),

• D(Kt) =
ln(S2

ta
/StKt)+µ

σ − σ
2 , D

′(Kt) = D(Kt) + σ,

• k1 = 2µ
σ2

and ρ =
√

(1− s).

Terms Yt+1 and Zt+1 are both easy to compute. In fact we only have to get rid of the
indicator on {St ≤ (1− α)Sta} to make known expressions appear. The previously
used variable mt = min(Kt, (1− α)Sta) is involved in the next computations.

For Yt+1, ∀Kt, α, we have

Yt+1 = (Kt−St+1)+
1 {St+1 ≤ (1− α)Sta} = (mt−St+1)++(Kt−mt)1 {St+1 ≤ mt}

and we obtain the following proposition.

Proposition 5 We have

Et [Yt+1] = P (St, t+ 1,mt) + Et [(Kt −mt)1 {St+1 ≤ mt}]
= −SteµΦ

(
−A′(mt)

)
+KtΦ (−A(mt)) .

(B.2)

For the last term, we have

Zt+1 = (K − St+1)+
1

{
max

t+1−s≤u≤t+1
Su ≤ Sta

}
1 {St+1 ≤ (1− α)Sta}

= (m− St+1)+
1

{
max

t+1−s≤u≤t+1
Su ≤ Sta

}
+ (K −m)1

{
max

t+1−s≤u≤t+1
Su ≤ Sta

}
1 {St+1 ≤ m} ,
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and we obtain the following proposition.

Proposition 6 We have

Et [Zt+1] = KtΨρ (−B,−A(mt))− SteµΨρ

(
−B′,−A′(mt)

)
−
(
Sta
St

)k1−1

mtΨ−ρ (C,−D(mt)) +

(
Sta
St

)k1−1

Ste
µΨ−ρ

(
C ′,−D′(mt)

)
− (Kt −mt)

(
Sta
St

)k1−1

{Φ (−D(mt))−Ψρ (−C,−D(mt))} ,

(B.3)

where

• A(mt) = ln(St/mt)+µ
σ − σ

2 , A
′(mt) = A(mt) + σ,

• B = ln(St/Sta )+µ(1−s)
σ
√

(1−s)
− σ
√

(1−s)
2 , B′ = B + σ

√
(1− s),

• C = ln(Sta/St)+µ(1−s)
σ
√

(1−s)
− σ
√

(1−s)
2 , C ′ = C + σ

√
(1− s),

• D(mt) =
ln(S2

ta
/Stmt)+µ

σ − σ
2 , D

′(mt) = D(mt) + σ,

• k1 = 2µ
σ2 ,

and ρ =
√

(1− s).

C Sensitivities of impairment probability and expectation

The following partial derivatives can be obtained and are used in the analysis:

∂

∂x
Ψρ (x, y) = exp

(
− x2

2
√

1− ρ2

)
Φ

(
y − ρx√

1− ρ2

)
, (C.1)

∂

∂y
Ψρ (x, y) = exp

(
− y2

2
√

1− ρ2

)
Φ

(
x− ρy√

1− ρ2

)
, (C.2)

∂

∂a
Ψρ (x(a), y) = exp

(
− x(a)2

2
√

1− ρ2

)
Φ

(
y − ρx(a)√

1− ρ2

)
× x′(a), (C.3)

∂

∂a
Ψρ (x, y(a)) = exp

(
− y(a)2

2
√

1− ρ2

)
Φ

(
x− ρy(a)√

1− ρ2

)
× y′(a), (C.4)

29



∂

∂a
Ψρ (x(a), y(a)) = exp

(
− x(a)2

2
√

1− ρ2

)
Φ

(
y(a)− ρx(a)√

1− ρ2

)
× x′(a)

+ exp

(
− y(a)2

2
√

1− ρ2

)
Φ

(
x(a)− ρy(a)√

1− ρ2

)
× y′(a),

(C.5)

∂

∂ρ
Ψρ (x, y) =

ρ

1− ρ2
[Ψρ (x, y)− 1] , (C.6)

and

∂

∂ρ
Ψρ (x(ρ), y(ρ)) =

ρ

1− ρ2
[Ψρ (x(ρ), y(ρ))− 1]

+ exp

(
− x(ρ)2

2
√

1− ρ2

)
Φ

(
y(ρ)− ρx(ρ)√

1− ρ2

)
× x′(ρ)

+ exp

(
− y(ρ)2

2
√

1− ρ2

)
Φ

(
x(ρ)− ρy(ρ)√

1− ρ2

)
× y′(ρ).

(C.7)

D Proof of results about the distribution of next year impairment

We decompose the expression of the cumulative distribution function to obtain:

Pt [λt+1 ≤ l] =Pt [λt+1 ≤ l, λt+1 = 0] + Pt [λt+1 ≤ l, λt+1 6= 0]

= Pt [λt+1 = 0] + Pt [λt+1 ≤ l, λt+1 6= 0] .
(D.1)

Then, we have, for Kt − l < mt,

Pt [λt+1 ≤ l, λt+1 6= 0] = Pt [Jt+1]− Pt [St+1 ≤ Kt − l] .

Consequently, ∀Kt −mt < l ≤ Kt, we have

Pt [λt+1 ≤ l] = Φ (A(Kt − l)) . (D.2)

The second step is to study what happens when l ≤ Kt−mt. Obviously, if mt = Kt,
then l can only be equal to zero, and then Pt [λt+1 ≤ l] = 1 − Pt [Jt+1]. Else, if
mt = (1− α)Sta , then we have

{Kt − l ≤ St+1} ∩ {St+1 ≤ (1− α)Sta} = ∅
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and

Pt [λt+1 ≤ l, λt+1 6= 0] = Pt
[
Kt − l ≤ St+1 ≤ Kt, max

t+1−s≤u≤t+1
Su ≤ Sta

]
= Pt [St+1 ≤ Kt]− Pt [St+1 ≤ Kt − l]

+ Pt
[

max
t+1−s≤u≤t+1

Su > Sta , St+1 ≤ Kt − l
]

− Pt
[

max
t+1−s≤u≤t+1

Su > Sta , St+1 ≤ Kt

]
.

We then use previous results about exotic options to conclude:

Pt [λt+1 ≤ l, λt+1 6= 0] =Φ (A(Kt − l))− Φ (A(Kt))

+

(
Sta
St

)k1−1

[Ψρ (C,D(Kt))−Ψρ (C,D(Kt − l))]

+ Ψρ (B,A(Kt))−Ψρ (B,A(Kt − l)) .
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