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Abstract

This article addresses the problem of supervised classification of Cox
process trajectories, whose random intensity is driven by some exoge-
nous random covariable. The classification task is achieved through
a regularized convex empirical risk minimization procedure, and a
nonasymptotic oracle inequality is derived. We show that the algo-
rithm provides a Bayes-risk consistent classifier. Furthermore, it is
proved that the classifier converges at a rate which adapts to the un-
known regularity of the intensity process. Our results are obtained
by taking advantage of martingale and stochastic calculus arguments,
which are natural in this context and fully exploit the functional na-
ture of the problem.

Index Terms — Cox process, supervised classification, oracle inequal-
ity, consistency, regularization, stochastic calculus.

2010 Mathematics Subject Classification: 62G05, 62G20.

1 Introduction

1.1 The model

This article deals with the supervised classification problem of Cox process
trajectories. Let us first recall that a random process N = (Nt)t∈[0,T ] (T >
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0) is a counting process if its trajectories are, with probability one, right-
continuous and piecewise constant, if it starts at 0, and if the jump size
of N at time t is, with probability one, either 0 or 1. In more pedestrian
terms, the process N starts at N0 = 0 and stays at level 0 until some random
time T1 when it jumps to NT1 = 1. It then stays at level 1 until another
random time T2 when it jumps to the value NT2 = 2, and so on. The
random times T1, T2, . . . are referred to as the jump times of N . In point
process theory and its applications, such as for example in neuronal potential
generation (Krumin and Shoham, 2009) and credit risk theory (Lando, 1998),
an important role is played by a particular class of counting processes known
as Cox processes (or doubly stochastic Poisson processes). In a word, we say
that N is a Cox process with (random) intensity process λ = (λt)t∈[0,T ] if λ
is predictable (roughly, this means that λ is a left-continuous and adapted
process), if λ has summable trajectories, and if the conditional distribution of
N given λ is that of a Poisson process with intensity function λ. Thus, a Cox
process is a generalization of a Poisson process where the time-dependent
intensity λ is itself a stochastic process. The process is named after the
statistician David Cox, who first published the model in 1955 (Cox, 1955).
For details, the reader is referred to Grimmett and Stirzaker (2001); Jacod
and Shiryaev (2003); Durrett (2010) or any other standard textbook on the
subject.

Going back to our supervised classification problem, we consider a prototype
random triplet (X,Z, Y ), where Y is a binary label taking the values ±1
with respective positive probabilities p+ and p− (p+ + p− = 1). In this
model, Z = (Zt)t∈[0,T ] plays the role of a d-dimensional random covariable
(process), whereas X = (Xt)t∈[0,T ] is a mixture of two Cox processes. More
specifically, it is assumed that Z is independent of Y and that, conditionally
on Y = 1 (resp., Y = −1), X is a Cox process with intensity (λ+(t, Zt))t∈[0,T ]

(resp., (λ−(t, Zt))t∈[0,T ]). A typical example is when the hazard rate processes
are expressed as

λ+(t, Zt) = λ1(t) exp
(

θT1 Zt

)

and λ−(t, Zt) = λ2(t) exp
(

θT2 Zt

)

(vectors are in column format and T denotes a transpose). In this model, θ1
and θ2 are unknown regression coefficients, and λ1(t) and λ2(t), the under-
lying baseline hazards, are unknown and unspecified nonnegative functions.
This is the celebrated Cox (1972) proportional hazard model, which is widely
used in modern survival analysis.

However, in the sequel, apart from some minimal smoothness assumptions,
we do not impose any particular parametric or semi-parametric model for
the functions λ+ and λ−. On the other hand, it will be assumed that the
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observation of the trajectories of X is stopped after its u-th jump, where u is
some known, prespecified, positive integer. Thus, formally, we are to replace
X and Z by Xτ and Zτ , where τ = inf{t ∈ [0, T ] : Xt = u} (stopping time),
Xτ

t = Xt∧τ and Zτ
t = Zt∧τ . (Notation t1 ∧ t2 means the minimum of t1 and

t2 and, by convention, inf ∅ = 0.) Stopping the observation of X after its
u-th jump is essentially a technical requirement, with no practical incidence
insofar u may be chosen arbitrarily large. However, it should be stressed
that with this assumption, Xτ is, with probability one, nicely bounded from
above by u. Additionally, to keep things simple, we suppose that each Zt

takes its values in [0, 1]d.

Our objective is to learn the relation between (Xτ , Zτ ) and Y within the
framework of supervised classification (see, e.g., Devroye et al., 1996). To this
aim, denote by X (resp., Z) the space of real-valued, positive, nondecreasing,
piecewise constant, and right-continuous functions on [0, T ] with jumps of
size 1 (resp., the state space of Z). Given a training dataset of n i.i.d.
observation/label pairs Dn = (Xτ1

1 , Z
τ1
1 , Y1), . . . , (X

τn
n , Z

τn
n , Yn), distributed

as (and independent of) the prototype triplet (Xτ , Zτ , Y ), the problem is to
design a decision rule gn : X × Z → {−1, 1}, based on Dn, whose role is
to assign a label to each possible new instance of the observation (Xτ , Zτ ).
The classification strategy that we propose is based on empirical convex risk
minimization. It is described in the next subsection.

We have had several motivations for undertaking this study. First of all,
much effort has been spent in recent years in deriving models for functional
data analysis, a branch of statistics that analyzes data providing informa-
tion about curves, surfaces or anything else varying over a continuum (the
monograph by Ramsay and Silverman, 2005, offers a comprehensive intro-
duction to the domain). Curiously, despite a huge research activity in this
area, few attempts have been made to connect the rich theory of stochastic
processes with functional data analysis (interesting references towards this
direction are Bouzas et al., 2006; Illian et al., 2006; Shuang et al., 2013; Zhu
et al., 2011; Cadre, 2012; Denis, 2012). We found that the martingale and
stochastic calculus theory—which emerges naturally from the formulation of
our classification problem—could be used very efficiently to give proofs whose
basic ideas are simple and may serve as a starting point for more dialogue
among these parties. Secondly, we found it useful to know how the mod-
ern aspects of statistical learning theory could be adapted to the context of
point processes. With this respect, our point of view differs from more clas-
sical approaches, which are mainly devoted to the statistical inference in Cox
(1972) proportional hazard model (e.g., Cox, 1975; Andersen and Gill, 1982;
O’Sullivan, 1993, and the references therein). Finally, even if our approach
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is of theoretical nature and we have no data to show, we believe that there
are a number of practical examples where our model and procedure could be
used. Just think, for example, to cancer patients regularly admitted to hos-
pital (process Xt), followed by their personal data files (process Zt), and for
which doctors want to make a diagnostic (−1=aggravation, +1=remission,
for example).

1.2 Classification strategy

In order to describe our classification procedure, some more notation is re-
quired. The performance of a classifier gn : X × Z → {−1, 1} is measured
by the probability of error

L(gn) = P (gn(X
τ , Zτ ) 6= Y | Dn) ,

and the minimal possible probability of error is the Bayes risk, denoted by

L⋆ = inf
g
L(g) = Emin [η(Xτ , Zτ ), 1− η(Xτ , Zτ )] .

In the identity above, the infimum is taken over all measurable classifiers g :
X ×Z → {−1, 1}, and η(Xτ , Zτ ) = P(Y = 1 |Xτ , Zτ ) denotes the posterior
probability function. The infimum is achieved by the Bayes classifier

g⋆(Xτ , Zτ ) = sign(2η(Xτ , Zτ )− 1),

where sign(t) = 1 for t > 0 and −1 otherwise. Our first result (Theorem 2.1)
shows that

η(Xτ , Zτ ) =
p+

p−e−ξ + p+
,

where ξ is the σ(Xτ , Zτ )-measurable random variable defined by

ξ =

∫ T∧τ

0

(λ− − λ+) (s, Zs)ds+

∫ T∧τ

0

ln
λ+
λ−

(s, Zs)dXs

(For all x ∈ X and any function g, the notation
∫

g(s)dxs refers to the integral
of g with respect to the Stieltjes measure associated with the nondecreasing
function x. We refer the reader to Chapter 0 in Revuz and Yor, 2005, for
more details.) An important consequence is that the Bayes rule associated
with our decision problem takes the simple form

g⋆(Xτ , Zτ ) = sign

(

ξ − ln
p−
p+

)

.
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Next, let (ϕj)j≥1 be a countable dictionary of measurable functions defined

on [0, T ]× [0, 1]d. Assuming that both λ− −λ+ and ln λ+

λ
−

belong to the span
of the dictionary, we see that

ξ =
∑

j≥1

[

a⋆j

∫ T∧τ

0

ϕj(s, Zs)ds+ b⋆j

∫ T∧τ

0

ϕj(s, Zs)dXs

]

,

where (a⋆j)j≥1 and (b⋆j)j≥1 are two sequences of unknown real coefficients.
Thus, for each positive integer B, it is quite natural to introduce the class
FB of real-valued functions f : X × Z → R, defined by

FB =

{

f =
B
∑

j=1

[ajΦj + bjΨj] + c : max

(

B
∑

j=1

|aj|,
B
∑

j=1

|bj|, |c|
)

≤ B

}

,

where

Φj(x, z) =

∫ T∧τ(x)

0

ϕj(s, zs)ds, Ψj(x, z) =

∫ T∧τ(x)

0

ϕj(s, zs)dxs,

and, by definition, τ(x) = inf{t ∈ [0, T ] : xt = u}.
Each f ∈ FB defines a classifier gf by gf = sign(f). To simplify notation,
we write L(f) = L(gf ) = P(gf (X

τ , Zτ ) 6= Y ), and note that

E1[−Y f(Xτ ,Zτ )>0] ≤ L(f) ≤ E1[−Y f(Xτ ,Zτ )≥0].

Therefore, the minimization of the probability of error L(f) over f ∈ FB is
approximately equivalent to the minimization of the expected 0-1 loss 1[.≥0] of
−Y f(Xτ , Zτ ). The parameter B may be regarded as an L1-type smoothing
parameter. Large values of B improve the approximation properties of the
class FB at the price of making the estimation problem more difficult. Now,
given the sample Dn, it is reasonable to consider an estimation procedure
based on minimizing the sample mean

1

n

n
∑

i=1

1[−Yif(X
τi
i ,Z

τi
i )≥0],

of the 0-1 loss.

It is now well established, however, that such a procedure is computationally
intractable as soon as the class FB is nontrivial, since the 0-1 loss function
1[.≥0] is nonconvex. A genuine attempt to circumvent this difficulty is to
base the minimization procedure on a convex surrogate φ of the loss 1[.≥0].
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Such convexity-based methods, inspired by the pioneering works on boosting
(Freund, 1995; Schapire, 1990; Freund and Schapire, 1997), have now largely
displaced earlier nonconvex approaches in the machine learning literature
(see, e.g., Blanchard et al., 2003; Lugosi and Vayatis, 2004; Zhang, 2004;
Bartlett et al., 2006, and the references therein).

It turns out that in our Cox process context, the choice of the logit surrogate
loss φ(t) = ln2(1+e

t) is the most natural one. This will be clarified in Section
2 by connecting the empirical risk minimization procedure and the maximum
likelihood principle. Thus, with this choice, the corresponding risk functional
and empirical risk functional are defined by

A(f) = Eφ (−Y f(Xτ , Zτ )) and An(f) =
1

n

n
∑

i=1

φ (−Yif(Xτi
i , Z

τi
i )) .

Given a nondecreasing sequence (Bk)k≥1 of integer-valued smoothing param-
eters, the primal estimates we consider take the form

f̂k ∈ argmin
f∈FBk

An(f).

(Note that the minimum may not be achieved in FBk
. However, to simplify

the arguments, we implicitly assume that the minimum indeed exists. All
proofs may be adjusted, in a straightforward way, to handle approximate
minimizers of the empirical risk functional). Starting from the collection
(f̂k)k≥1, the final estimate uses a value of k chosen empirically, by minimizing

a penalized version of the empirical risk An(f̂k). To achieve this goal, consider
a penalty (or regularization) function pen : N⋆ → R+ to be precised later on.
Then the resulting penalized estimate f̂n = f̂k̂ has

k̂ ∈ argmin
k≥1

[

An(f̂k) + pen(k)
]

.

The role of the penalty is to compensate for overfitting and helps finding
an adequate value of k. For larger values of k, the class FBk

is larger, and
therefore pen(k) should be larger as well.

By a careful choice of the regularization term, specified in Theorem 2.2,
one may find a close-to-optimal balance between estimation and approxima-
tion errors and investigate the probability of error L(f̂n) of the classifier gf̂n
induced by the penalized estimate. Our conclusion asserts that f̂n adapts
nicely to the unknown smoothness of the problem, in the sense that with
probability at least 1− 1/n2,

L(f̂n)− L⋆ = O

(

lnn

n

)
β

2β+16

,
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where β is some Sobolev-type regularity measure pertaining to λ+ and λ−.
For the sake of clarity, proofs are postponed to Section 3. An appendix at the
end of the paper recalls some important results by Blanchard et al. (2008) and
Koltchinskii (2011) on model selection and suprema of Rademacher processes,
together with more technical stochastic calculus material.

2 Results

As outlined in the introduction, our first result shows that the posterior
probabilities P(Y = ±1|Xτ , Zτ ) have a simple form. The crucial result that
is needed here is Lemma A.1 which uses martingale and stochastic calculus
arguments. For more clarity, this lemma has been postponed to the Appendix
section. Recall that both p+ and p− are (strictly) positive and satisfy p+ +
p− = 1.

Theorem 2.1 Let ξ be the σ(Xτ , Zτ )-measurable random variable defined
by

ξ =

∫ T∧τ

0

(λ− − λ+)(s, Zs)ds+

∫ T∧τ

0

ln
λ+
λ−

(s, Zs)dXs.

Then

P(Y = 1|Xτ , Zτ ) =
p+

p−e−ξ + p+
and P(Y = −1|Xτ , Zτ ) =

p−
p+eξ + p−

.

This result, which is interesting by itself, sheds an interesting light on the
Cox process classification problem. To see this, fix Y1 = y1, . . . , Yn = yn, and
observe that the conditional likelihood of the model is

Ln =
n
∏

i=1

P(Yi = yi|Xτi
i , Z

τi
i )

=
n
∏

i=1

(

p+
p−e−yiξi + p+

)

1[yi=1]
(

p−
p+e−yiξi + p−

)

1[yi=−1]

,

where of course

ξi =

∫ T∧τ

0

(λ− − λ+)(s, Zi,s)ds+

∫ T∧τ

0

ln
λ+
λ−

(s, Zi,s)dXi,s.
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Therefore, the log-likelihood takes the form

lnLn =
n
∑

i=1

[

ln

(

p+
p−e−yiξi + p+

)

1[yi=1] + ln

(

p−
p+e−yiξi + p−

)

1[yi=−1]

]

= −
n
∑

i=1

[

ln

(

1 +
p−
p+
e−yiξi

)

1[yi=1] + ln

(

1 +
p+
p−
e−yiξi

)

1[yi=−1]

]

= −
n
∑

i=1

ln

(

1 +

(

p−
p+

)yi

e−yiξi

)

= −
n
∑

i=1

ln

(

1 + exp

[

−yi
(

ξi − ln
p−
p+

)])

.

Thus, letting φ(t) = ln2(1 + et), we obtain

lnLn = − ln 2
n
∑

i=1

φ

(

−yi
(

ξi − ln
p−
p+

))

. (2.1)

Since the ξi’s, p+ and p− are unknown, the natural idea, already alluded to
in the introduction, is to expand λ−−λ+ and ln λ+

λ
−

on the dictionary (ϕj)j≥1.
To this end, we introduce the class FB of real-valued functions

FB =

{

f =
B
∑

j=1

[ajΦj + bjΨj] + c : max

(

B
∑

j=1

|aj|,
B
∑

j=1

|bj|, |c|
)

≤ B

}

,

where B is a positive integer,

Φj(x, z) =

∫ T∧τ(x)

0

ϕj(s, zs)ds, and Ψj(x, z) =

∫ T∧τ(x)

0

ϕj(s, zs)dxs.

For a nondecreasing sequence (Bk)k≥1 of integer-valued smoothing parame-

ters and for each k ≥ 1, we finally select f̂k ∈ FBk
for which the log-likelihood

(2.1) is maximal. Clearly, such a maximization strategy is strictly equivalent
to minimizing over f ∈ FBk

the empirical risk

An(f) =
1

n

n
∑

i=1

φ (−Yif(Xτi
i , Z

τi
i )) .

This remark reveals the deep connection between our Cox process learning
model and the maximum likelihood principle. In turn, it justifies the logit
loss φ(t) = ln2(1 + et) as the natural surrogate candidate to the nonconvex
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0-1 classification loss. (Note that the ln 2 term is introduced for technical
reasons only and plays no role in the analysis).

As for now, denoting by ‖.‖∞ the functional supremum norm, we assume
that there exists a positive constant L such that, for each j ≥ 1, ‖ϕj‖∞ ≤ L.
It immediately follows that for all integers B ≥ 1, the class FB is uniformly
bounded by UB, where U = 1 + (T + u)L. We are now ready to state our
main theorem, which offers a bound on the difference A(f̂n)− A(f ⋆).

Theorem 2.2 Let (Bk)k≥1 be a nondecreasing sequence of positive integers
such that

∑

k≥1B
−α
k ≤ 1 for some α > 0. For all k ≥ 1, let

Rk = A2
kBkCk +

√
Ak

Ck

,

where
Ak = UBkφ

′(UBk) and Ck = 2(φ(UBk) + 1− ln 2).

Then there exists a universal constant C > 0 such that if the penalty pen :
N⋆ → R+ satisfies

pen(k) ≥ C

[

Rk
lnn

n
+
Ck(α lnBk + δ + ln 2)

n

]

for some δ > 0, one has, with probability at least 1− e−δ,

A(f̂n)− A(f ⋆) ≤ 2 inf
k≥1

{

inf
f∈FBk

(A(f)− A(f ⋆)) + pen(k)

}

. (2.2)

Some remarks are in order. At first, we note that Theorem 2.2 provides
us with an oracle inequality which shows that, for each Bk, the penalized
estimate does almost as well as the best possible classifier in the class FBk

,
up to a term of the order lnn/n. It is stressed that this remainder term
tends to 0 at a much faster rate than the standard (1/

√
n)-term suggested

by a standard uniform convergence argument (see, e.g., Lugosi and Vayatis,
2004). This is a regularization effect which is due to the convex loss φ. In
fact, proof of Theorem 2.2 relies on the powerful model selection machinery
presented in Blanchard et al. (2008) coupled with modern empirical process
theory arguments developed in Koltchinskii (2011). We also emphasize that
a concrete but suboptimal value of the constant C may be deduced from the
proof, but that no attempt has been made to optimize this constant. Next,
observing that, for the logit loss,

φ′(t) =
1

ln 2(e−t + 1)
,
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we notice that a penalty behaving as B4
k is sufficient for the oracle inequality

of Theorem 2.2 to hold. This corresponds to a regularization function pro-
portional to the fourth power of the L1-norm of the collection of coefficients
defining the base class functions. Such regularizations have been explored by
a number of authors in recent years, specifically in the context of sparsity and
variable selection (see, e.g., Tibshirani, 1996; Candès and Tao, 2005; Bunea
et al., 2007; Bickel et al., 2009). With this respect, our approach is close
to the view of Massart and Meynet (2011), who provide information about
the Lasso as an L1-regularization procedure per se, together with sharp L1-
oracle inequalities. Let us finally mention that the result of Theorem 2.2 can
be generalized, with more technicalities, to other convex loss functions by
following, for example, the arguments presented in Bartlett et al. (2006).

If we are able to control the approximation term inff∈FBk
(A(f)− A(f ⋆)) in

inequality (2.2), then it is possible to give an explicit rate of convergence to 0
for the quantity A(f̂n)−A(f ⋆). This can be easily achieved by assuming, for
example, that (ϕj)j≥1 is an orthonormal basis and that both combinations

λ− − λ+ and ln λ+

λ
−

enjoy some Sobolev-type regularity with respect to this
basis. Also, the following additional assumption will be needed:

Assumption A. There exists a measure µ on [0, 1]d and a constant D > 0
such that, for all t ∈ [0, T ], the distribution of Zt has a density with respect
to µ which is uniformly bounded by D. In addition, λ− and λ+ are both
[ε,D]-valued for some ε > 0.

Proposition 2.1 Assume that Assumption A holds. Assume, in addition,
that (ϕj)j≥1 is an orthonormal basis of L2(ds ⊗ µ), where ds stands for the

Lebesgue measure on [0, T ], and that both λ− − λ+ and ln λ+

λ
−

belong to the
ellipsöıd

W(β,M) =

{

f =
∞
∑

j=1

ajϕj :
∞
∑

j=1

j2βa2j ≤M2

}

,

for some fixed β ∈ N⋆ and M > 0. Then, letting

λ− − λ+ =
∞
∑

j=1

a⋆jϕj and ln
λ+
λ−

=
∞
∑

j=1

b⋆jϕj,

we have, for all B ≥ max(M2, ln p+
p
−

),

inf
f∈FB

(A(f)− A(f ⋆)) ≤ 2D

√

M‖a⋆‖2
Tµ ([0, 1]d)Bβ

+ 4D

√

M‖b⋆‖2
Bβ

,

where ‖a⋆‖22 =
∑∞

j=1 a
⋆2
j and ‖b⋆‖22 =

∑∞
j=1 b

⋆2
j .
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A careful inspection of Theorem 2.2 and Proposition 2.1 reveals that for the
choice Bk = ⌊k2/α⌋, δ = 2 lnn, and some constant C ′ > 0 depending on T ,
u, L, α, M , µ, D, a⋆ and b⋆ we have, provided n is large enough,

A(f̂n)− A(f ⋆) ≤ C ′

(

lnn

n

)
β

β+8

,

with probability at least 1− 1/n2.

Of course, our main concern is not the behavior of the expected risk A(f̂n)
but the probability of error L(f̂n) of the corresponding classifier. Fortunately,
the difference L(f̂n)−L⋆ may directly be related to A(f̂n)−A(f ⋆). Applying
for example Lemma 2.1 in Zhang (2004), we conclude that with probability
at least 1− 1/n2,

L(f̂n)− L⋆ ≤ 2
√
2C ′

(

lnn

n

)
β

2β+16

.

To understand the significance of this inequality, just recall that what we are
after in this article is the supervised classification of (infinite-dimensional)
stochastic processes. As enlightened in the proofs, this makes the analysis dif-
ferent from the standard context, where one seeks to learn finite-dimensional
quantities. The bridge between the two worlds is crossed via martingale and
stochastic calculus arguments. Lastly, it should be noted that the regularity
parameter β is assumed to be unknown, so that our results are adaptive as
well.

3 Proofs

Throughout this section, if P is a probability measure and f a function, the
notation Pf stands for the integral of f with respect to P . By L2(P ) we
mean the space of square integrable real functions with respect to P . Also,
for a class F of functions in L2(P ) and ε > 0, we denote by N(ε,F ,L2(P ))
the ε-covering number of F in L2(P ), i.e., the minimal number of metric
balls of radius ε in L2(P ) that are needed to cover F (see, e.g., Definition
2.1.5 in van der Vaart and Wellner, 1996).

3.1 Proof of Theorem 2.1

For any stochastic processes M1 and M2, the notation QM2|M1 and QM2 re-
spectively mean the distribution under Q of M2 given M1, and the distribu-
tion under Q of M2.
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We start the proof by observing that

P(Y = +1 |Xτ = x, Z = z) = p+
dPXτ ,Z|Y=+1

dPXτ ,Z

(x, z). (3.1)

Thus, to prove the theorem, we need to evaluate the above Radon-Nikodym
density. To this aim, we introduce the conditional probabilities P± = P(.|Y =
±1). For any path z of Z, the conditional distributions P+

X|Z=z and P−
X|Z=z are

those of Poisson processes with intensity λ+(., z) and λ−(., z), respectively.
Consequently, according to Lemma A.1, the stopped process Xτ satisfies

D+(x, z)P
+
Xτ |Z=z(dx) = D−(x, z)P

−
Xτ |Z=z(dx),

where

D±(x, z) = exp

(

−
∫ T∧τ

0

(1− λ±(s, zs)) ds−
∫ T∧τ

0

lnλ±(s, zs)dxs

)

.

Therefore,

D+(x, z)P
+
Xτ |Z=z ⊗ PZ(dx, dz) = D−(x, z)P

−
Xτ |Z=z ⊗ PZ(dx, dz).

But, by independence of Y and Z, one has PZ = P+
Z = P−

Z . Thus,

PXτ ,Z|Y=±1(dx, dz) = P±
Xτ |Z=z ⊗ PZ(dx, dz),

whence

D+(x, z)PXτ ,Z|Y=+1(dx, dz) = D−(x, z)PXτ ,Z|Y=−1(dx, dz).

On the other hand,

PXτ ,Z(x, z) = p+PXτ ,Z|Y=+1(x, z) + p−PXτ ,Z|Y=−1(x, z),

so that
dPXτ ,Z|Y=+1

dPXτ ,Z

(x, z) =
1

p−
D+(x,z)
D

−
(x,z)

+ p+
.

Using identity (3.1), we obtain

P(Y = +1 |Xτ , Z) =
p+

p−e−ξ + p+
,

where

ξ =

∫ T∧τ

0

(λ− − λ+)(s, Zs)ds+

∫ T∧τ

0

ln
λ+
λ−

(s, Zs)dXs

=

∫ T∧τ

0

(λ− − λ+)(s, Z
τ
s )ds+

∫ T∧τ

0

ln
λ+
λ−

(s, Zτ
s )dX

τ
s .
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Clearly, the random variable ξ is σ(τ,Xτ , Zτ )-measurable. Since σ(τ) ⊂
σ(Xτ ), it is also σ(Xτ , Zτ )-measurable. This observation, combined with
the inclusion σ(Xτ , Zτ ) ⊂ σ(Xτ , Z), leads to

P(Y = +1 |Xτ , Zτ ) = E
(

P(Y = +1 |Xτ , Z)
∣

∣Xτ , Zτ
)

= P(Y = +1 |Xτ , Z).

This shows the desired result.�

3.2 Proof of Theorem 2.2

Theorem 2.2 is mainly a consequence of a general model selection result due
to Blanchard et al. (2008), which is recalled in the Appendix for the sake
of completeness (Theorem A.1). Throughout the proof, the letter C denotes
a generic universal positive constant, whose value may change from line to
line. We let ℓ(f) be a shorthand notation for the function

(x, z, y) ∈ X × Z × {−1, 1} 7→ φ(−yf(x, z)),

and let P be the distribution of the prototype triplet (Xτ , Zτ , Y ).

To frame our problem in the vocabulary of Theorem A.1, we consider the
family of models (FBk

)k≥1 and start by verifying that assumptions (i) to (iv)
are satisfied. If we define

d2(f, f ′) = P (ℓ(f)− ℓ(f ′))
2
,

then assumption (i) is immediately satisfied. A minor modification of the
proof of Lemma 19 in Blanchard et al. (2003) reveals that, for all integers
B > 0 and all f ∈ FB,

P (ℓ(f)− ℓ(f ⋆))2 ≤ (φ(UB) + φ(−UB) + 2− 2 ln 2)P (ℓ(f)− ℓ(f ⋆)) .

This shows that assumption (ii) is satisfied with Ck = 2(φ(UBk) + 1− ln 2).
Moreover, it can be easily verified that assumption (iii) holds with bk =
φ(UBk).

The rest of the proof is devoted to the verification of assumption (iv). To
this aim, for all B > 0 and all f0 ∈ FB, we need to bound the expression

FB(r) = E sup
{

|(Pn − P ) (ℓ(f)− ℓ(f0))| : f ∈ FB,d
2(f, f0) ≤ r

}

,

where

Pn =
1

n

n
∑

i=1

δ(Xτi
i ,Z

τi
i ,Yi)

13



is the empirical distribution associated to the sample. Let

GB,f0 =
{

ℓ(f)− ℓ(f0) : f ∈ FB

}

.

Then
FB(r) = E sup

{

|(Pn − P )g| : g ∈ GB,f0 , Pg
2 ≤ r

}

.

Using the symmetrization inequality presented in Theorem 2.1 of Koltchinskii
(2011), it is easy to see that

FB(r) ≤ 2E sup

{

1

n

n
∑

i=1

σig (X
τi
i , Z

τi
i , Yi) : g ∈ GB,f0 , Pg

2 ≤ r

}

, (3.2)

where σ1, . . . , σn are independent Rademacher random variables (that is,
P(σi = ±1) = 1/2), independent from the (Xτi

i , Z
τi
i , Yi)’s. Now, since the

functions in FB take their values in [−UB,UB], and since φ is Lipschitz on
this interval with constant φ′(UB), we have, for all f, f ′ ∈ FB,

√

Pn (ℓ(f)− ℓ(f ′))2 ≤ φ′(UB)

√

Pn (f − f ′)2.

Consequently, for all ε > 0,

N
(

2εUBφ′(UB),GB,f0 ,L
2 (Pn)

)

≤ N
(

2εUB,FB,L
2 (Pn)

)

.

Since FB is included in a linear space of dimension at most 2B + 1, Lemma
2.6.15 in van der Vaart and Wellner (1996) indicates that it is a VC-subgraph
class of VC-dimension at most 2B+3. Observing that the function constantly
equal to 2UB is a measurable envelope for FB, we conclude from Theorem
9.3 in Kosorok (2008) that, for all ε > 0,

N
(

2εUB,FB,L
2 (Pn)

)

≤ C (2B + 3) (4e)2B+3

(

1

ε

)4(B+1)

.

Therefore,

N
(

2εUBφ′(UB),GB,f0 ,L
2 (Pn)

)

≤ C (2B + 3) (4e)2B+3

(

1

ε

)4(B+1)

.

Now, notice that the constant function equal to 2UBφ′(UB) is a measurable
envelope for GB,f0 . Thus, applying Lemma A.2 yields

FB(r) ≤ ψB(r),

14



where ψB is defined for all r > 0 by

ψB(r) =
C
√
r√
n

√

B ln

(

A′
B√
r

)

∨ CBAB

n
ln

(

A′
B√
r

)

∨ CAB

n

√

B ln

(

A′
B√
r

)

,

with AB = UBφ′(UB) and A′
B = AB((2B + 3)(4e)2B+3)1/4(B+1). (Notation

t1 ∨ t2 means the maximum of t1 and t2.)

Attention shows that ψB is a sub-root function and assumption (iv) is there-
fore satisfied. It is routine to verify that the solution r⋆k of ψBk

(r) = r/Ck

satisfies, for all k ≥ 1 and all n ≥ 1,

r⋆k ≤ C
(

A2
Bk
BkC

2
k +

√

A′
Bk

) lnn

n
.

Furthermore, observing that the function B 7→ ((2B + 3)(4e)2B+3)1/4(B+1) is
bounded from above, we obtain

r⋆k ≤ C
(

A2
Bk
BkC

2
k +

√

ABk

) lnn

n
.

Hence, taking xk = α lnλk and K = 11/5 in Theorem A.1, and letting

Rk = A2
Bk
BkCk +

√

ABk

Ck

,

we conclude that there exists a universal constant C > 0 such that, if the
penalty pen : N⋆ → R+ satisfies

pen(k) ≥ C

{

Rk
lnn

n
+
Ck (α lnBk + δ + ln 2)

n

}

for some δ > 0, then, with probability at least 1− e−δ,

A(f̂n)− A(f ⋆) ≤ 2 inf
k≥1

{

inf
f∈FBk

(A(f)− A(f ⋆)) + pen(k)

}

.

This completes the proof. �

3.3 Proof of Proposition 2.1

Proof of Proposition 2.1 relies on the following intermediary lemma, which
is proved in the next subsection.
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Lemma 3.1 Assume that Assumption A holds. Then, for all positive inte-
gers B ≥ 1,

inf
f∈FB

(A(f)− A(f ⋆)) ≤ 2Dmin

∥

∥

∥

∥

∥

B
∑

j=1

αjϕj − (λ− − λ+)

∥

∥

∥

∥

∥

L1(ds⊗µ)

+ 4Dmin

∥

∥

∥

∥

∥

B
∑

j=1

αjϕj − ln
λ+
λ−

∥

∥

∥

∥

∥

L2(ds⊗µ)

+ 2 min
|x|≤B

∣

∣

∣

∣

x− ln
p+
p−

∣

∣

∣

∣

,

where the first two minima are taken over all α = (α1, . . . , αB) ∈ RB with
∑B

j=1 |αj| ≤ B.

Proof of Proposition 2.1 – It can be easily verified that, for all f ∈
L2(ds⊗ µ), one has

‖f‖L1(ds⊗µ) ≤
‖f‖L2(ds⊗µ)
√

Tµ ([0, 1]d)
.

Consequently, for all B ≥ 1,

min







∥

∥

∥

∥

∥

B
∑

j=1

αjϕj − (λ− − λ+)

∥

∥

∥

∥

∥

L1(ds⊗µ)

:
B
∑

j=1

|αj| ≤ B







≤ min







1
√

Tµ ([0, 1]d)

∥

∥

∥

∥

∥

B
∑

j=1

αjϕj − (λ− − λ+)

∥

∥

∥

∥

∥

L2(ds⊗µ)

:
B
∑

j=1

|αj| ≤ B







≤ min







1
√

Tµ ([0, 1]d)

∥

∥

∥

∥

∥

B
∑

j=1

αjϕj − (λ− − λ+)

∥

∥

∥

∥

∥

L2(ds⊗µ)

:
B
∑

j=1

α2
j ≤ B







.

(3.3)

Since λ− − λ+ ∈ W(β,M) and B ≥M2, we have

B
∑

j=1

a⋆2j ≤
∞
∑

j=1

j2βa⋆2j ≤M2 ≤ B. (3.4)
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Thus, combining (3.3) and (3.4) yields, for B ≥M2,

min







∥

∥

∥

∥

∥

B
∑

j=1

αjϕj − (λ− − λ+)

∥

∥

∥

∥

∥

L1(ds⊗µ)

:
B
∑

j=1

|αj| ≤ B







≤ 1
√

Tµ ([0, 1]d)

∥

∥

∥

∥

∥

B
∑

j=1

a⋆jϕj − (λ− − λ+)

∥

∥

∥

∥

∥

L2(ds⊗µ)

=
1

√

Tµ ([0, 1]d)

∥

∥

∥

∥

∥

∞
∑

j=B+1

a⋆jϕj

∥

∥

∥

∥

∥

L2(ds⊗µ)

. (3.5)

It follows from the properties of an orthonormal basis and the definition of
W(β,M) that

∥

∥

∥

∥

∥

∞
∑

j=B+1

a⋆jϕj

∥

∥

∥

∥

∥

2

L2(ds⊗µ)

=
∞
∑

j=B+1

a⋆2j

≤

√

√

√

√

∞
∑

j=B+1

j2βa⋆2j

√

√

√

√

∞
∑

j=B+1

a⋆2j
j2β

≤M

√

√

√

√

∞
∑

j=B+1

a⋆2j
j2β

≤ M‖a⋆‖2
Bβ

. (3.6)

Inequalities (3.5) and (3.6) show that, for all B ≥M2,

min







∥

∥

∥

∥

∥

B
∑

j=1

αjϕj − (λ− − λ+)

∥

∥

∥

∥

∥

L1(ds⊗µ)

:
B
∑

j=1

|αj| ≤ B







≤
√

M‖a⋆‖2
Tµ ([0, 1]d)Bβ

.

Similarly, it may be proved that, for all B ≥M2,

min







∥

∥

∥

∥

∥

B
∑

j=1

αjϕj − ln
λ+
λ−

∥

∥

∥

∥

∥

L2(ds⊗µ)

:
B
∑

j=1

|αj| ≤ B







≤
√

M‖b⋆‖2
Bβ

.

Applying Lemma 3.1 we conclude that, whenever B ≥ max(M2, ln p+
p
−

),

inf
f∈FB

(A(f)− A(f ⋆)) ≤ 2D

√

M‖a⋆‖2
Tµ ([0, 1]d)Bβ

+ 4D

√

M‖b⋆‖2
Bβ

. �
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3.4 Proof of Lemma 3.1

We start with a technical lemma.

Lemma 3.2 Let φ(t) = ln2(1 + et) be the logit loss. Then

argmin
f

Eφ (−Y f(Xτ , Zτ ) |Xτ , Zτ ) = ξ − ln
p−
p+
,

where the minimum is taken over all measurable functions f : X × Z → R.

Proof – According to the results of Section 2.2 in Bartlett et al. (2006), one
has

argmin
f

Eφ (−Y f(Xτ , Zτ ) |Xτ , Zτ ) = α⋆ (η(Xτ , Zτ )) ,

where, for all 0 ≤ η ≤ 1,

α⋆(η) = argmin
α∈R

(ηφ(−α) + (1− η)φ(α)) .

With our choice for φ, it is straightforward to check that, for all 0 ≤ η < 1,

α⋆(η) = ln

(

η

1− η

)

.

Since, by assumption, p− > 0, we have

η(Xτ , Zτ ) =
p+

p−e−ξ + p+
< 1.

Thus
α⋆ (η(Xτ , Zτ )) = ξ − ln

p−
p+
,

which is the desired result. �

Proof of Lemma 3.1 – Let B > 0 be fixed. Let a1, . . . , aB and b1, . . . , bB
be real numbers such that
∥

∥

∥

∥

∥

B
∑

j=1

ajϕj − (λ− − λ+)

∥

∥

∥

∥

∥

L1(ds⊗µ)

= min

∥

∥

∥

∥

∥

B
∑

j=1

αjϕj − (λ− − λ+)

∥

∥

∥

∥

∥

L1(ds⊗µ)

and
∥

∥

∥

∥

∥

B
∑

j=1

bjϕj − ln
λ+
λ−

∥

∥

∥

∥

∥

L2(ds⊗µ)

= min

∥

∥

∥

∥

∥

B
∑

j=1

αjϕj − ln
λ+
λ−

∥

∥

∥

∥

∥

L2(ds⊗µ)

,
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where, in each case, the minimum is taken over all α = (α1, . . . , αB) ∈ RB

with
∑B

j=1 |αj| ≤ B. Let also c ∈ R be such that

∣

∣

∣

∣

c− ln
p+
p−

∣

∣

∣

∣

= min
|x|≤B

∣

∣

∣

∣

x− ln
p+
p−

∣

∣

∣

∣

.

Introduce fB, the function in FB defined by

fB =
B
∑

j=1

[ajΦj + bjΨj] + c

=

∫ T∧τ

0

B
∑

j=1

ajϕj(s, Zs)ds+

∫ T∧τ

0

B
∑

j=1

bjϕj(s, Zs)dXs + c.

Clearly,
inf

f∈FB

(A(f)− A(f ⋆)) ≤ A(fB)− A(f ⋆).

Since φ is Lipschitz with constant φ′(UB) = (ln 2(1 + e−UB))−1 ≤ 2 on the
interval [−UB,UB], we have

|A(fB)− A(f ⋆)| ≤ 2E |fB(Xτ , Zτ )− f ⋆(Xτ , Zτ )| . (3.7)

But, by Lemma 3.2,

f ⋆(Xτ , Zτ ) =

∫ T∧τ

0

(λ− − λ+) (s, Zs)ds+

∫ T∧τ

0

ln
λ+
λ−

(s, Zs)dXs + ln
p+
p−
.

Thus, letting,

ϑ1 =
B
∑

j=1

ajϕj − (λ− − λ+) and ϑ2 =
B
∑

j=1

bjϕj − ln
λ+
λ−
,

it follows

E |fB(Xτ , Zτ )− f ⋆(Xτ , Zτ )| ≤ E

∣

∣

∣

∣

∫ T∧τ

0

ϑ1(s, Zs)ds

∣

∣

∣

∣

+ E

∣

∣

∣

∣

∫ T∧τ

0

ϑ2(s, Zs)dXs

∣

∣

∣

∣

+

∣

∣

∣

∣

c− ln
p+
p−

∣

∣

∣

∣

. (3.8)

19



Since the distribution PZs
of Zs has a density hs with respect to µ, and since

this density is uniformly bounded by D, we obtain

E

∣

∣

∣

∣

∫ T∧τ

0

ϑ1(s, Zs)ds

∣

∣

∣

∣

≤
∫ T

0

∫

[0,1]d
|ϑ1(s, z)|PZs

(dz)ds

=

∫ T

0

∫

[0,1]d
|ϑ1(s, z)|hs(z)µ(dz)ds

≤ D‖ϑ1‖L1(ds⊗µ). (3.9)

With a slight abuse of notation, set λY = λ±, depending on whether Y = ±1,
and

ΛY,Z(t) =

∫ t

0

λY (s, Zs)ds, t ∈ [0, T ].

With this notation,

E

∣

∣

∣

∣

∫ T∧τ

0

ϑ2(s, Zs)dXs

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

∫ T∧τ

0

ϑ2(s, Zs)d (Xs − ΛY,Z(s))

∣

∣

∣

∣

+ E

∣

∣

∣

∣

∫ T∧τ

0

ϑ2(s, Zs)dΛY,Z(s)

∣

∣

∣

∣

= E

∣

∣

∣

∣

∫ T∧τ

0

ϑ2(s, Zs)d (Xs − ΛY,Z(s))

∣

∣

∣

∣

+ E

∣

∣

∣

∣

∫ T∧τ

0

ϑ2(s, Zs)λY (s)ds

∣

∣

∣

∣

. (3.10)

Since X − ΛY,Z is a martingale conditionally to Y and Z, the Ito isometry
(see Theorem I.4.40 in Jacod and Shiryaev, 2003) yields

E

[

(
∫ T∧τ

0

ϑ2(s, Zs)d (Xs − ΛY,Z(s))

)2
∣

∣

∣
Y, Z

]

= E

[
∫ T∧τ

0

ϑ2
2(s, Zs)d〈Xs − ΛY,Z(s)〉

∣

∣

∣
Y, Z

]

, (3.11)

where 〈M〉 stands for the predictable compensator of the martingaleM . Ob-
serving thatX is a Poisson process with intensity s 7→ λY (s, Zs) conditionally
to Y and Z, we deduce that 〈X − ΛY,Z〉 = 〈X〉 = ΛY,Z conditionally to Y
and Z. As a result,

E

[
∫ T∧τ

0

ϑ2
2(s, Zs)d〈Xs − ΛY,Z(s)〉

∣

∣

∣
Y, Z

]

= E

[
∫ T∧τ

0

ϑ2
2(s, Zs)λY (s, Zs)ds

∣

∣

∣
Y, Z

]

. (3.12)
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Combining (3.10)-(3.12) we deduce that

E

∣

∣

∣

∣

∫ T∧τ

0

ϑ2(s, Zs)dXs

∣

∣

∣

∣

≤ 2D‖ϑ2‖L2(ds⊗µ). (3.13)

Putting together identities (3.7), (3.8), (3.9) and (3.13) yields

inf
f∈FB

(A(f)− A(f ⋆))

≤ 2D‖ϑ1‖L1(ds⊗µ) + 4D‖ϑ2‖L2(ds⊗µ) + 2 min
|x|≤B

∣

∣

∣

∣

x− ln
p+
p−

∣

∣

∣

∣

,

which concludes the proof by definition of ϑ1 and ϑ2. �

A Appendix

A.1 A general theorem for model selection

The objective of this section is to recall a general model selection result due
to Blanchard et al. (2008).

Let X be a measurable space and let ℓ : R×{−1, 1} → R be a loss function.
Given a function g : X → R, we let ℓ(g) be a shorthand notation for the
function (x, y) ∈ R× {−1, 1} 7→ ℓ(g(x), y). Let P be a probability distribu-
tion on X × {−1, 1} and let G be a set of extended-real valued functions on
X such that, for all g ∈ G, ℓ(g) ∈ L2(P ). The target function g⋆ is defined
as

g⋆ ∈ argmin
g∈G

Pℓ(g).

Let (Gk)k≥1 be a countable family of models such that, for all k ≥ 1, Gk ⊂ G.
For each k ≥ 1, we define the empirical risk minimizer ĝk as

ĝk ∈ argmin
g∈Gk

Pnℓ(g).

If pen denotes a real-valued function on N⋆, we let the penalized empirical
risk minimizer ĝ be defined by ĝk̂, where

k̂ ∈ argmin
k≥1

[Pnℓ(ĝk) + pen(k)] .

Recall that a function d : G×G → R+ is a pseudo-distance if (i) d(g, g) = 0,
(ii) d(g, g′) = d(g′, g), and (iii) d(g, g′) ≤ d(g, g′′) +d(g′′, g′) for all g, g′, g′′

in G. Also, a function ψ : R+ → R+ is said to be a sub-root function if (i) it
is nondecreasing and (ii) the function r ∈ R+ 7→ ψ(r)/

√
r is nonincreasing.
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Theorem A.1 (Blanchard et al., 2008) Assume that there exist a pseu-
do-distance d on G, a sequence of sub-root functions (ψk)k≥1, and two non-
decreasing sequences (bk)k≥1 and (Ck)k≥1 of real numbers such that

(i) ∀g, g′ ∈ G : P (ℓ(g)− ℓ(g′))2 ≤ d2(g, g′);

(ii) ∀k ≥ 1, ∀g ∈ Gk : d
2(g, g⋆) ≤ CkP (ℓ(g)− ℓ(g⋆));

(iii) ∀k ≥ 1, ∀g ∈ Gk, ∀(x, y) ∈ X × {−1, 1} : |ℓ(g(x), y)| ≤ bk;

and, if r⋆k denotes the solution of ψk(r) = r/Ck,

(iv) ∀k ≥ 1, ∀g0 ∈ Gk, ∀r ≥ r⋆k :

E sup
{

|(Pn − P ) (ℓ(g)− ℓ(g0))| : g ∈ Gk,d
2(g, g0) ≤ r

}

≤ ψk(r).

Let (xk)k≥1 be a nonincreasing sequence such that
∑

k≥1 e
−xk ≤ 1. Let δ > 0

and K > 1 be two fixed real numbers. If pen(k) denotes a penalty term
satisfying

∀k ≥ 1, pen(k) ≥ 250K
r⋆k
Ck

+
(65KCk + 56bk) (xk + δ + ln 2)

3n
,

then, with probability at least 1− e−δ, one has

P (ℓ(ĝ)− ℓ(g⋆)) ≤ K + 1
5

K − 1
inf
k≥1

{

inf
g∈Gk

P (ℓ(g)− ℓ(g⋆)) + 2pen(k)

}

.

A.2 Expected supremum of Rademacher processes

Let S be a measurable space and let P be a probability measure on S. Let
G be a class of functions g : S → R. The Rademacher process (Rn(g))g∈G
associated with P and indexed by G is defined by

Rn(g) =
1

n

n
∑

i=1

σig(Zi),

where σ1, . . . , σn are i.i.d. Rademacher random variables, and Z1, . . . , Zn is
a sequence of i.i.d. random variables, with distribution P and independent
of the σi’s.

We recall in this subsection a bound for the supremum of the Rademacher
process defined by

‖Rn‖G = sup
g∈G

|Rn(g)| ,
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which follows from the results of Giné and Koltchinskii (2006). Let G be a
measurable envelope for G, i.e., a measurable function G : S → R+ such that

sup
x∈S

|g(x)| ≤ G(x).

Define ‖G‖ =
√
PG2 and ‖G‖n =

√
PnG2, where Pn = n−1

∑n
i=1 δZi

stands
for the empirical measure associated to Z1, . . . , Zn. Finally, let σ2 > 0 be a
real number satisfying

sup
g∈G

Pg2 ≤ σ2 ≤ ‖G‖2.

Theorem A.2 (Giné and Koltchinskii, 2006) Assume that the functi-
ons in G are uniformly bounded by a constant U > 0. Assume, in addition,
that there exist two constants C and V > 0 such that, for all n ≥ 1 and all
0 < ǫ ≤ 2,

N
(

ε‖G‖n,G,L2 (Pn)
)

≤
(

C

ε

)V

.

Then, for all n ≥ 1,

E‖Rn‖G ≤ cσ√
n

√

V ln

(

c′‖G‖
σ

)

∨ 8c2UV

n
ln

(

c′‖G‖
σ

)

∨ cU

9n

√

V ln

(

c′‖G‖
σ

)

,

where c = 432 and c′ = 2e ∨ C.

A.3 Some stochastic calculus results

Lemma A.1 Let µ (resp., ν) be the distribution of a Poisson process on
[0, T ] with intensity λ : [0, T ] → R⋆

+ (resp., with intensity 1) stopped after its
u-th jump. Then, µ and ν are equivalent. Moreover,

ν(dx) = exp

(

−
∫ T∧τ(x)

0

(1− λ(s)) ds−
∫ T∧τ(x)

0

lnλ(s)dxs

)

µ(dx),

where, for all x ∈ X , τ(x) = inf{t ∈ [0, T ] : xt = u}.

Proof. Consider the canonical Poisson process N = (Nt)t∈[0,T ] with inten-
sity λ on the filtered space (X , (At)t∈[0,T ],P), where At = σ(Ns : s ∈ [0, t]),
and let, for all t ∈ [0, T ],

Λ(t) =

∫ t

0

λ(s)ds and h(t) =
1

λ(t)
− 1.
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Recall that the process M = (Mt)t∈[0,T ] defined by Mt = Nt − Λ(t) is a
martingale. The Doléans-Dade exponential E = (Et)t∈[0,T ] of the martingale
h.M (see, e.g., Theorem I.4.61 in Jacod and Shiryaev, 2003) is defined for all
t ∈ [0, T ] by

Et = eh.Mt

∏

s≤t

(1 + ∆h.Ms)e
−∆h.Ms

= exp

(

−
∫ t

0

h(s)λ(s)ds+

∫ t

0

ln (1 + h(s)) dNs

)

= exp

(

−
∫ t

0

(1− λ(s)) ds−
∫ t

0

lnλ(s)dNs

)

, (A.1)

where ∆h.Ms = h.Ms−h.Ms− = h.Ns−h.Ns− . Equivalently, E is the solution
to the stochastic equation

E = 1 + E−.(h.M) = 1 + (E−h).M,

where E− stands for the process defined by E−
t = Et− . In particular, E is a

martingale. Observe also, since N is a counting process, that the quadratic
covariation between M and E is

[M, E ] = (E−h).[N,N ] = (E−h).N.

Consequently,
[M, E ]− (E−h).Λ = (E−h).M

is a martingale. Since (E−h).Λ is a continuous and adapted process, it is a
predictable process and the predictable compensator of [M, E ] takes the form
〈M, E〉 = (E−h).Λ. Now let Q be the measure defined by

dQ = ETdP.

Since the process E is a martingale, Q is a probability and in addition, for
all t ∈ [0, T ],

dQt = EtdPt, (A.2)

where Qt and Pt are the respective restrictions of Q and P to At. Thus,
according to the Girsanov theorem (see, e.g., Theorem III.3.11 in Jacod and
Shiryaev, 2003), the stochastic processM−(E−)−1.〈M, E〉 is a Q-martingale.
But, for all t ∈ [0, T ],

Mt − (E−)−1.〈M, E〉t = Nt − Λ(t)− h.Λ(t)

= Nt − (1 + h).Λ(t)

= Nt − t.
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Thus, the counting process N is such that (Nt−t)t∈[0,T ] is a Q-martingale. By
the Watanabe theorem (e.g., Theorem IV.4.5 in Jacod and Shiryaev, 2003),
this implies that the distribution of N under Q is that of a Poisson process
with unit intensity. So, ν = QT∧τ , where QT∧τ is the restriction of Q to the
stopped σ-field AT∧τ . Moreover, by Theorem III.3.4 in Jacod and Shiryaev
(2003) and identity (A.2), we have

dQT∧τ = ET∧τdPT∧τ ,

where the definition of PT∧τ is clear. Since µ = PT∧τ , the result is a conse-
quence of identity (A.1). �
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