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Topological insulators represent unique phases of matter with
insulating bulk and conducting edge or surface states, im-
mune to small perturbations such as backscattering due to
disorder. This stems from their peculiar band structure, which
provides topological protections. While conventional tools
(pressure, doping etc.) to modify the band structure are avail-
able, time periodic perturbations can provide tunability by
adding time as an extra dimension enhanced to the problem.
In this short review, we outline the recent research on topo-

1 Introduction Topological phases, including topo-
logical insulators (TIs) [1-5] and Chern insulators (CIs) [6—
10], represent unique states of matter owing to the robust,
topological protection of their conducting edge or surface
states. Cls (also called quantum anomalous Hall phases) ap-
pear in lattice models with bands carrying a finite Chern
number, thereby realizing a charge quantum Hall effect in
the absence of net magnetic flux [6, 7]. The two-dimensional
TI, namely the quantum spin Hall (QSH) state, has been
predicted for a variety of systems including graphene [1, 2],
inverted HgTe/CdTe quantum wells [3], exotic lattice mod-
els [11-13] and multi-component ultracold fermionic atoms
in appropriate optical lattices [14-16]. In all proposals for
ClIs, the chiral edge state(s) originate(s) from a non-trivial
background gauge field [6-10]. The gapless helical edge
state requires a subtle band inversion driven by spin—orbit
coupling [4, 17]. Such topologically non-trivial band struc-
tures are rather scarce since they require careful Bloch band
structure engineering [6—10, 1-3] and a high degree of sam-
ple control [18, 19].

Bloch states and energy bands arise from spatially
periodic Hamiltonians in condensed matter systems. Ex-

logical insulators in non-equilibrium situations. Firstly, we in-
troduce briefly the Floquet formalism that allows to describe
steady states of the electronic system with an effective time-
independent Hamiltonian. Secondly, we summarize recent
theoretical work on how light irradiation drives semi-metallic
graphene or a trivial semiconducting system into a topologi-
cal phase. Finally, we show how photons can be used to
probe topological edge or surface states.

tending the periodicity in the time domain by applying a
time-periodic perturbation increases the tunability of the
Hamiltonian since the temporal analogue of Bloch states
(the Floquet states) can be manipulated via the polarization,
periodicity and amplitude of the external perturbation. Re-
cently, topological phases of periodically driven quantum
systems have been characterized [20] using Floquet theory,
thereby extending the general classification of topological
phases at equilibrium [21-23]. Interestingly, novel to-
pological edge states can be induced by shining electro-
magnetic radiation on a topologically trivial insulator, like
a non-inverted HgTe/CdTe quantum well with no edge
state in the static limit [24], or a 3D trivial insulator [25]. It
is also possible to open gaps at the Dirac point of gra-
phene and even drive graphene into the topological
Haldane phase by simple irradiation with suitably chosen
parameters [20, 26-29]. Therefore, DC transport is ex-
pected to be drastically modified under such irradiation
[28, 30].

Finally, we also note the possibility to control the
Berry curvature distribution by an optical field yielding
controlled spin and charge currents [53].



Besides, a time-dependent perturbation may also be
harmful to the coherence of the edge/surface states of TIs
by introducing dissipation and breaking time-reversal
symmetry (maintaining the latter being an essential condi-
tion for the existence of helical edge states of TIs). It is
therefore natural to investigate to what extent the steady
state of a T remains robust against time-dependent pertur-
bations and how its electrical and magnetic properties are
altered. For weak amplitudes, the external time-dependent
field can also be used as a probe of the topological charac-
ter of the edge state.

Here, we consider only the effect of a classical time-
periodic perturbation, for instance the electromagnetic
wave generated by a laser or a RF-source. We first review
the Floquet formalism in the context of CIs and TIs and
introduce the corresponding topological invariants (Sec-
tion 2). Then in Section 3 we describe how non-trivial
topological phases can be created by shining light on a
trivial insulator or on semi-metallic graphene. Section 4
describes our work on the photocurrent generated by shin-
ing an electromagnetic wave onto the helical edge states of
a QSH insulator [31]. Finally, Section 5 reviews related
works on the photocurrent generation in the surface states
of 3D topological insulators [32, 33].

2 Floquet formalism Here we review the aspects
of Floquet formalism that are useful to grasp the physics
of topological insulators in presence of external periodic
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driving. More general presentations of the Floquet formal-
ism are available [34, 35].

2.1 Effective Hamiltonian We start from the time-
independent Bloch Hamiltonian of a two-band insulator:

Hy (k) = &y(k) L, +d(k) o, ()

which describes the system in the absence of irradiation.
The vector of Pauli matrix ¢ =(o,, 0, 0,) represents an
isospin degree of freedom that can be the real electronic
spin, sublattice index, orbital index etc., and that couples
with the orbital motion. In the following, this Hamiltonian
can be either the full Hamiltonian (see Section 3.1), or al-
ternatively it can be considered as one block of a 4-band
time-reversal invariant insulator, the other block then being
‘H *(—k) (see Section 3.2).
We now consider the time-dependent perturbation

V(k,t)=V(k)-ocos (wt), 2)
which describes coupling to a linearly polarized mono-
chromatic electromagnetic wave, V(k) being a time-
independent vector. Other polarizations are also possible
and may lead to different behaviors in terms of gap open-
ings and/or topological properties. For instance, the cou-
pling to a classical circularly polarized monochromatic
wave can be written as

V(k,t) =V (k) (o_exp (iot) + o, exp (iar)), 3)
where o, =0, + io, and V' (k) is a time-independent real
number.

Under irradiation, the quantum states evolve as
Y(@)=U(t,t,) ¥(,), where the evolution operator is
given by

U (t,1,) =T, exp [—i | dt’H(k,t’)] . @)

fo

7, being the time-ordering operator and H(k,t)=
'H,(k)+V(k,t) the full time-dependent Hamiltonian. The
Floquet Hamiltonian of the crystal is defined as the sta-
tionary Bloch Hamiltonian that would yield the same uni-

tary evolution after one period (7)) of the driving field

e OT = Y (T +1,,1,) . (%)
Hence the Floquet Hamiltonian . is a stationary effective
Hamiltonian that describes the “stroboscopic” evolution of
the system after each period of the driving field. This ef-
fective Floquet approach is valid as long as the period 7 of
the driving field is the shortest time scale in the system, a
condition that might be easier to realize in cold atom sys-
tems than in solid state electronic systems. The Floquet
Hamiltonian, however, does not contain all information
about the topological properties of our system, for example
it cannot reveal the Z x Z or Z, % Z, topological invariants,
as shown in Refs. [14, 36].



2.2 Floquet Chern number Being also a 2 x 2 ma-
trix the effective Floquet Hamiltonian can be parametrized
as

Ho(k) = &, (k) L, +n(k)-o, ©)
where the new functions (k) and n(k) are computed
from Eq. (5). This Hamiltonian can be studied using the
methods suitable to classify insulators at equilibrium
[7, 37]. In particular, a Chern number can be defined as the
winding number of the mapping k — n(k) = n(k)/|n(k)|
from the torus 7~ towards the unit sphere S°:

~ dn(k) (k) .
o= g fo] P 0

provided one has |n(k)| # 0 in the whole Brillouin zone,
namely the Floquet effective Hamiltonian has a gapped
spectrum. The number C; can be different from the Chern
number,

_ ad(k) dd (k)
“= 47:J ¢ k( ok, Ok,

O]

j dek), ®)

which describes the topology of the Bloch wave functions
for the non-irradiated insulator. Recently it has been dem-
onstrated that the Floquet Chern number may be non-zero
(Cr #0) even if the non-irradiated system is an ordinary
band insulator with no edge states and zero Chern number
(C, =0). This means that the effective Floquet Hamilto-
nian also has a chiral edge state, as we discuss next.

3 Creating new topological phases by light
Here we start from semi-metallic graphene (C, not defined)
or from an insulator with trivial topology (C; =0). The
general idea is to investigate whether a non-equilibrium
perturbation can drive such systems into some topological
phase, characterized by a non-zero topological invariant
(C; # 0) and whether there are transport signatures to such
a light-induced topological phase transition. Using Floquet
theory, different groups have answered positively to these
questions. We shall consider separately the cases of gra-
phene and other semiconducting systems (HgTe/CdTe or
Rashba coupled two-dimensional electron gas) for clarity.

3.1 Graphene Opening gaps in graphene is a very
important issue both for transistor applications (realization
of a non-conducting off-state, confinement of Dirac carri-
ers into narrow channels etc.) and for fundamental physics
(realization of Haldane phase). Unfortunately (or fortu-
nately), the Dirac points are very robust since they are pro-
tected by fundamental symmetries like space-inversion and
time-reversal, while spin—orbit coupling, which is allowed
by symmetry to open a gap, is too weak.

Photoinduced gaps. In spite of this robustness, it has
been predicted that circularly polarized light can open
a gap at the Dirac points [26]. Graphene is described by the

time-dependent Bloch Hamiltonian
H(k,1) = v, (0,7.(q, +e4, () +0,(q, +e4, (1)), ©)

now including the coupling to the electromagnetic field.
The two-dimensional momentum ¢ =k—-$K =g e.+q e,
is measured from the Dirac points locations £K (& = =£1).
The Pauli matrices o, and z, correspond to the sublattice
isospin and the valley index, respectively. On the sample,
the vector potential A(¢) = (A4, (¢), 4,(?)) is taken to be

A=—4,(sin (o1) e, +sin (0t —p) e,), (10)
where the angle ¢ allows to tune the polarization of the
wave and E, = 4, is the field amplitude. We assume that
the sample is smaller than the wavelength of light or that it
is irradiated at normal incidence by a plane wave so there
is no spatial dependence of the driving field.

For small laser power, i.e. e4,v; < ho, the effec-

tive Hamiltonian is well-approximated by H; (k)
=H,+[H_,, H, ]/hw, namely,
H, (k) ="H, — ( AO F) sin po.7, , (11)
where
1 T
H, = H, (k)= [dte" H(k,1), (12)
0

is the m-th Fourier harmonic of the time-periodic Hamil-
tonian H (¢). Interestingly, the generated mass term is of
the Haldane type o7, namely it changes sign from one
valley to the other [6]. This gap opening originates in
(off-resonant) virtual photon absorption processes that give
a mass to Dirac fermions [28], as shown in Fig. 1. The
amplitude of the photoinduced gap/mass at the Dirac
points,

2

A=A G (13)
ho

depends drastically upon the polarization, being maximal
for circular polarization (¢ = £n/2) while cancelling out
for linear polarization of light (¢ =0,m) as shown in
Ref. [27]. This can be understood in the following way.
The circular polarization provides the chirality which is
mandatory for the Haldane phase to occur. In contrast, a
linear polarization, made of equal superposition of clock-
wise and anticlockwise circular polarizations, does not
break time-reversal symmetry and cannot lead to a
Haldane mass term. Finally, the gap is given by the for-
mula

2

I .
A:16na‘;)%smgo, (14)
where [ is the laser intensity (W/m?®) and a =1/137 is the
fine structure constant.



Figure 1 (online colour at: www.pss-rapid.com) Energy spec-
trum of Dirac electrons near one of the Dirac points is shown for
A, =0 (upper part) and the spectrum of H for the system under
the application of light with 4, # 0 (lower part), opening a finite
gap at the Dirac point. J is the hopping amplitude and a the lat-
tice parameter of the graphene honeycomb lattice. Picture taken
from Ref. [28].

DC electrical transport through irradiated graphene.
In the static case, the Haldane mass is associated with a fi-
nite Chern number for the occupied band and therefore a
quantized Hall conductance e’/h. For graphene under
circularly polarized light, it was pointed out that such
photoinduced topological mass term should also manifest
itself in transport through a Hall effect [26, 28]. Neverthe-
less, an appropriate formalism needs to be used to compute
DC Hall response functions in presence of steady states de-
scribed as Floquet states [28, 30].

Finally, the Haldane model (starting with a topological
mass in the absence of irradiation) has also been studied in
presence of time-periodic driving which allows to tune the
parameters of the Haldane model [38].

3.2 HgTe/CdTe heterostructures The HgTe/CdTe
quantum well is an important system as it is the first one
where the QSH state and its edge states have been reported
experimentally. Nevertheless, the transition between the
trivial insulating state (non-inverted regime) and the QSH
state (inverted regime) requires to change the width of the
well (central layer) of HgTe at the nanoscale. It is clearly
desirable to be able to trigger this transition by some exter-
nal knob like a gate voltage or irradiation with light. Al-
though a system has been proposed and tested that allows
control of the band inversion by operating a gate voltage
[39, 40], the idea of using light seems promising, espe-
cially in view of the potential applications for optronics.

Transition. We start from a non-inverted HgTe/CdTe
quantum well described by the Hamiltonian

H, (k) 0 )

15
0 HF(h) (13)

7—l4><4 (k) = (

R - 0 *

/2 T

Figure 2 (online colour at: www.pss-rapid.com) Energy spec-
trum of a non-inverted HgTe/CdTe quantum well (inset) and the
Floquet quasi-energies in the presence of a linearly polarized per-
turbation (main panel) with 2 chiral edge modes, traversing the
gap. Pictures taken from Ref. [24].

where

H,(k)=¢,(k) I, +d(k) o, (16)
and the vector

d(k)=(AkX,Aky,M—Bk2), (17)

parametrizes an effective spin—orbit coupling near the cen-
ter of the first Brillouin zone (FBZ).

Starting from the trivial phase (M /B < 0), and adding a
linearly polarized perturbation V(k,t) =V (k)- o cos (wt),
the authors of Ref. [24] demonstrated that the effective
bands are reshuffled (by resonant absorption processes) in
such a way that the effective Hamiltonian is characterized
by inverted effective bands, as shown in Fig. 2. Therefore,
the mechanism of band inversion, which is instrumental to
the realization of both Chern and topological insulators
[4, 5], can be realized by a suitable electromagnetic driving
field in a broad range of photon energies and polarizations.

4 Probing helical edge states by light We have
seen that topological non-trivial band structures can in
principle be created by shining light on a semi-metal or on
a trivial band insulator. Besides, it is natural to use photons
to probe topological phases and their edge/surface states.
We have studied a QSH state and its one-dimensional heli-
cal edge state in a circularly polarized radiation field [31].
Using Floquet theory, we have demonstrated that the
photocurrent and the magnetization are ruled by the very
same unit vector, whose winding number determines a
topological invariant for the system. When increasing the
radiation frequency, the edge state switches between a dis-
sipationless quantized charge pumping behavior to a dissi-
pative regime without quantization. This loss of quantiza-
tion is caused by the Floquet band crossing which results



in a “mixing” of the topological invariants of individual
bands. Our predictions could in principle be tested by
experiments similar to those in graphene [41] and
HgTe/CdTe quantum wells [42].

4.1 Zeeman vs. orbital coupling We consider a
QSH insulator located in the xy plane and irradiated by a
circularly polarized electromagnetic field with frequency @
(Fig. 3). The general Hamiltonian of the QSH edge reads
in this setting:

H(t)=vio™ (p—ed () +g[o" exp (-iwt) +hc.],  (18)
where the Pauli matrix o, represents the physical spin of
the electron, p the momentum along the one-dimensional
channel and v, the Fermi velocity. It is assumed that the
quantization axis of the QSH edge state is perpendicular to
the plane xy. The circularly polarized radiation now acts on
both the orbital motion through the vector potential
A (t)=—A,sinwt and on the electron spin through
the Zeeman coupling g = g1 B,, g being the effective
g-factor and u; the Bohr magneton. Nevertheless, at high
frequency, the orbital effect can be safely neglected ac-
cording to a simple semi-classical argument: an electron
travelling at speed v; in an electric field £, = 4,0 = ¢B,
during a time 1/®@ picks up an energy vi.eE,/w from the
vector potential which has to be compared to the smallest
energy quantum it can absorb, 7iw. Hence in the regime
veeE, /o < ho, only the time-dependent Zeeman effect is
effective and not the orbital effect. In contrast, in 2D sys-
tems the orbital effect is the dominant one [26, 27, 32, 38,
43-45].

4.2 Topological invariant and photocurrent
We now analyse the topological invariant describing
the steady state of the QSH edge state in terms of the map-
ping, (p,t) > d, ,(t) = D, (p,1) SP,(p, 1) = a(gcos (o1),
gsin (wt), vp p —w/2)/1 between the 1+ 1 dimensional
(p,t) space and the unit sphere. Here, o = £1 distinguishes
between the Floquet bands, A= \/ g +(vp—w/2)* and
@, (p,t) is the Floquet wavefunction. The sub-band Chern

Figure 3 (online colour at: www.pss-rapid.com) Quantum
spin-Hall insulator (light yellow rectangle) with its helical edge
state (counterpropagating red/blue arrows) in a circularly
polarized electromagnetic field with frequency @ and wave
vector k. In the plane z=0 the rotating vector potential
A(t) = A,(—sin wt, cos o) is perpendicular to the S° direction
(vertical green arrows). Picture taken from Ref. [31].

number,

I od, (1) ad,, ()

counts the number of times the unit vector ﬁa, ,(2) wraps
around the unit sphere [4, 24], the summation being taken
over occupied bands. In principle the integral (as the map-
ping) goes over a compact manifold like the Brillouin zone.
However, it is enough to calculate the integral of the Berry
curvature for an individual Dirac cone, living not on a Bril-
louin zone but on the infinite plane of momenta to get the
topological invariant, since high energy states usually do
not contribute much to topological invariants, see e.g. Ref.
[1]. The closely related photocurrent reads as

(y= lalC.. (20)
T

The behavior of this topological invariant (and photo-
current) can be investigated as a function of the frequency
of the driving field. At low frequency, |@| < 4g, and half
filling, the @ =—1 band is occupied. Indeed we have
checked numerically that such an initial state below the
Fermi level (before irradiation) will evolve to one of the
negative energy Floquet states upon smoothly branching
the time-dependent driving field. Then accordingly the
Chern number

jd

is quantized (Fig.4, dashed line). By contrast, when
|o|>4g, the two bands cross, and C_is no longer quan-
tized (Fig. 4), in analogy to the transfer of Chern numbers
between equilibrium bands which touch:

a sign (@) vFg

YE —a sign (o) ,

e2))

(22)

C, =—asign(a))(l—z uZa)a)]

s=*1

(j>/.j'm.cm:, -

-1 . : ; . . |
-12 -8 -4 0 4 8 12

Figure 4 (online colour at: www.pss-rapid.com) Induced photo-
current (blue solid line) and the C_ Chern number (black dashed
line) are shown as a function of w/g. The latter becomes non-
quantized when band touching occurs at 4g =|w|.



where 4w, = @+’ —16g°. The Chern number C, van-
ishes as C, = —a2g/w for g <« |w|. The quantized pumping
rate is lost due to the crossing of Floquet subbands carry-
ing opposite Chern number. It is remarkable that the pump-
ing rate is quantized over a broad range of frequencies,
|| < 4g, that exceeds the strict adiabatic limit. The robust-
ness of the quantization for |@| < 4g is a feature specific to
our model. It is related to the fact that the gap of the instan-
taneous Hamiltonian H(¢) never closes for Zeeman cou-
pling and circular polarization. In particular, this quantiza-
tion still survives for elliptic polarization, upon addition of
an inversion symmetry breaking term and/or in presence of
orbital effects, see supplementary material of Ref. [31]. Fi-
nally, this quantization is fairly general in the adiabatic
limit where it can be deduced [46] from the Goldstone—
Wilczek formula [47].

To estimate the typical induced photocurrent, we recall
that the g < |w| regime is realized usually (and note that
larger values of w are beneficial for neglecting the vector
potential), and for a radiation field with magnetic field
strength of the order of 107 =107 T, this translates to a
photocurrent of the order of 0.1-10 pA, depending also on
the effective g-factor values. These can be significantly
enhanced (g, =20-50) for certain materials such as
HgTe/CdTe, HgSe or Bi,Ses.

The induced current can be detected in a contactless
measurement. The photoinduced “rectified current” being
of the order (j)=1pA, the corresponding magnetic field
B, =1pT (for a I micron perimeter) is within the detect-
ability limit of an ac SQUID [31].

The topological properties of the edge state are re-
flected in the induced magnetization and photocurrent
(Fig. 4). In the |w| < 4g regime, the current is obtained
(upon restoring original units) as () = sign (w) e/T, which
tells us that the charge pumped within one cycle (7) is ex-
actly the unit charge. The integer charge pumped across a
1D insulator in one period of an (adiabatic) cycle is a topo-
logical invariant that characterizes the cycle. This specific
quantization of charge stems directly from the quantized

vp p/w

Figure 5 (online colour at: www.pss-rapid.com) Floquet quasi-
energies are shown in the Floquet Brillouin zone for g/w =0.2
(blue solid lines) and 0.6 (red dashed lines).

C_=sign (o) in this regime, as was identified by Thouless
[48]. The current is dissipationless, protected by a photoin-
duced gap. Though the current still satisfies (j)=eC_ /T
for |w| > 4g, it is dissipative and no longer quantized due to
the band touching, in analogy with the photovoltaic Hall
effect [26] in graphene.

We also emphasize that using (neutral) atoms in optical
traps, one can introduce a Zeeman term without the orbital
counterpart or fabricate chiral edge states with spin quan-
tized parallel to the momentum [16]. Then the vector po-
tential would also be absent and the full transition from
dissipationless to dissipative charge pumping can be fol-
lowed.

Finally, the gap closing at @ = +4g and the two differ-
ent regimes described above are further illustrated by the
plot of Floquet spectrum (Fig. 5).

5 Photocurrent induced within a 2D surface
state We now discuss the potentialities of using circularly
polarized light to probe the surface state (SS) of a three-
dimensional (3D) topological insulator, like Bi,Ses, BiyTes,
or strained HgTe [32, 33].

Detection of Berry curvature. In contrast to the previ-
ous section on 1D helical edge states, the orbital effect is
the dominant coupling between light and electrons in a SS
of a 3D TI. In its simplest version, the SS of 3D topologi-
cal insulator consists in a single Dirac cone. Moreover,
each momentum state k has a unique spin state (fixed by k).
This spin-locking property allows a circularly polarized
light to generate a DC rectified current at the surface of the
insulator. Recently, Pavan Hosur pointed out that this so-
called circular photogalvanic effect (CPE) can be used as a
detection of a finite Berry curvature [32]. Indeed, in pres-
ence of the latter there is a contribution to the photocurrent
that grows linearly in time before being cut-off (by a scat-
tering event) after some relaxation time. Since carrier re-
laxation times are expected to be quite large in the SS of a
3D TI, this current can overwhelm other contributions that
are insensitive to the Berry curvature. An experimentally
measurable DC current is predicted if the rotational sym-
metry of the SS state is broken by a strain or a static mag-
netic field.

The CPE allows to detect the presence of hexagonal
warping and spin tilting out-of the SS plane [49, 50]. A
linearly dispersing Dirac cone with the spin winding in the
plane will not give such a dominant current. In contrast, in
presence of hexagonal warping, the spin is tilting out of the
plane and the photocurrent will develop a current growing
linearly in time. Besides, the CPE could also be used to
probe the relaxation times in the SS of 3D TIs [32].

Pumping by the magnetization precession. Ueda et al.
have investigated the current dynamics within a SS of a 3D
TI driven by the precession of the magnetization of an at-
tached ferromagnet [33]. Here the coupling mechanism be-
tween the oscillating magnetization and the SS carriers is
the spin exchange coupling. A rectified DC current can be
generated when the precession axis is within the SS plane.



6 Summary Recently it was shown that circularly
polarized light might be used to open gaps in the electronic
spectrum of graphene, in particular at the Dirac points.
Furthermore, such gaps would correspond to a topological
mass of the Haldane type which can be detected through
the associated Hall response. More generally, a trivial insu-
lator can be driven into a topological phase of matter
by applying a proper time-periodic perturbation. When
the static (non-irradiated) system is already topological,
photons are also useful to probe the properties and the ro-
bustness of the chiral/helical edge modes. Finally, cold
atomic vapors trapped in optical lattices provide very
interesting routes to design synthetic gauge fields and in-
duce topological phases [51], either by using Raman reso-
nances or by using periodic driving (shaking) of the lattice
[52].
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