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Abstract

In this work, we first propose an original anéfieient computational framework to model continuouidiion MRI (dMRI)
signals and analytically recover importanffdsion features such as the Ensemble Average Propagato)) @#Rhe Orientation
Distribution Function (ODF). Then, we develop dfi@ent parametric dictionary learning algorithm and exitloé sparse property
of awell-designed dictionary to recover théfdsion signal and its features with a reduced number of measemts. The properties
and potentials of the technique are demonstrated usingussimulations on synthetic data and on human brain dataraddrom
7-T and 3-T scanners. Itis shown that the technique canlglesmover the dMRI signal and its features with a much betteuracy
compared to state-of-the-art approaches, even with a smdlieduced number of measurements. In particular, we camately
recover the ODF in regions of multiple fiber crossing, whiokild open new perspectives for some dMRI applications sadiar
tractography.

Keywords: Dictionary Learning, Sparse Reconstruction, Compressarnsing, Compressed Sensing, MRIffision MRI,
Orientation Distribution Function, Ensemble Average Rggitor, White Matter.

1. Introduction fiber tractography. Recently, more complex models appeared
to overcome this limitation. Nevertheless, these tectesqf-
Diffusion MRI (dMRI) assesses the integrity of brain ten require many acquisitions in particular when High Aragul
anatomical connectivity and is very useful for examiningl an Resolution Difusion Imaging (HARDI) [44, 4, 43, 15, 20, 1]
quantifying white matter (WM) microstructure and organiza or Diffusion Spectrum Imaging (DSI) [46] are used. HARDI
tion not available with other imaging modalities. dMRI de- techniques allow the estimation of the Orientation Distibn
termines the WM structure by exploiting the way the waterFunction (ODF) [44, 4, 43, 15, 1], which gives the probafilit
molecules diuse. The first diusion images were obtained in that a water molecule fluses in a given direction. Several au-
the mid-1980s [23], and was based on the pioneering work ofors (Aganj et al., Tristan-Vega et al., Wedeen et al.) esgr

[38], who introduced the pulsed gradient spin-echo (PG8E) s the ODF(r) as the integration of the EAP over a solid angle,
quence. It allows the quantification of the wateffasion by e,

estimating the displacement of water particles from thespha
change that occurs during the acquisition process. M_ore im- T(r) = f P(Rr)R%R @)
portantly, under the so called narrow pulse assumption, we 0

can show that the normalized signal attenuakig) is written |5 [40, 3], the authors propose to estimate the fiber orienta-
as the Fourier transform of the Ensemble Average Propagat@pn distribution called the fiber ODF (fODF). The fODF is abl
(EAP)P(R) to resolve up to 30 degrees crossings consistently [41]chwhi
makes this model a promising ressource to estimate fiber ori-
E(q) = f P(R) exp(-2riq - R)dR, (1)  entation. In our work, we reconstruct the ODF as described in
Rer? Eqg. 2 and we do not aim to compare our approach with the fam-
whereq andR are both 3D-vectors that respectively represenily of method estimating the fODF. A review of method recon-
the dfective gradient direction and the displacement directionstructing the ODF and the fODF can be found in [21]. Another
We can decompose them@s- qu andR = Rr, whereu andr HARDI technique has been proposed in [20], where the authors
are 3D unit vectors. characterize the ffusion signal by a Wishart distribution. Jian
Diffusion Tensor Imaging (DTI) [7, 6] method characterizeset al. shows improvements over the classical DTI techniqae a
the difusion by a Gaussian distribution, and is known to be gpresent an estimation scheme for the fiber orientation ariél EA
limited model. In particular DTI is not able to resolve cross Among the HARDI techniques, [48] introduces Neurite Orien-
ing fibers. Resolving crossing fibers helps to disambiguatéation Dispersion and Density Imaging (NODDI), which alw
between several possible tracts in regions of crossingsfibeithe estimation of the microstructural complexity of detebi
and reconstruct more accurate anatomical connectiviputiit =~ and axons. Dtusion Spectrum Imaging (DSI) was developed
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in parallel to the HARDI techniques [46]. In DSI, the EAPR) nary much sparser if we adequately combine several SH func-
is directly obtained by taking the inverse Fourier transfaf  tions instead of only one.
the normalized signdt(q) measured in the g-space (see Eq. 1). In this work, we present a method, which exploits the sparse
However, the high resolution EAP obtained with DSI requiresproperty of a well designed dictionary based on a computa-
many measurements. HARDI and DSI are impractical for clin-tional dMRI framework, in order to recover thefidision sig-
ical use in MRI systems commonly found in hospital. Accel-nal with a reduced number of measurements. This framework
erated acquisitions, relying on a smaller number of sargplin enables a continuous modeling of th&dision signal and leads
points, are thus very welcome tdfieiently estimate the com- to analytical formulae to estimate importanttdsion features,
plex features of the éfusion process. namely the ODF and the EAP. To improve our previous work in
Sparse reconstruction approaches were found to sucdgssfu[26], we modify the parametric function, describing therasp
reduce the number of acquisitions in dMRI [29, 24, 33, 36, 42to0 learn both the radial and the angular part, which provide a
9, 19, 26, 30, 47]. These techniques are usually based onwery sparse representation offdsion signals and further re-
I1 minimization of the ditusion signal with respect to a sparse duce the number of measurements (15 measurements are found
representation. Merlet and Deriche, Menzel et al. [29, 24)<  to be siificient to start recovering the EAP and some derived
bine the Compressive Sensing (CS) theory and DSI to accelediffusion features whereas 50 measurements are used in [26]).
ate the acquisition. Merlet and Deriche [30] use orthondrmaFurthermore, we extend the experimental part of [26] byrlear
bases to sparsely describe théuBion signal. In [33] and in ing and validating our approach on the synthetic data pregos
[42], the authors elegantly design dictionaries for spansel-  in the HARDI contest at ISBI 2012, and on real data acquired
eling in dMRI. They provide an overcomplete dictionary com-from both 3T and 7T scanners. A preliminary work [27] re-
puted from a discretized version of predefined functiores, i. garding the learning of both the radial part and the angudar p
the Spherical Ridgelets in [33] (see [36] for the multiplelh  of the difusion signal was published in the proceedings of the
version) and the Spherical Wavelets in [42]. Learning aig@ict HARDI contest at ISBI 2012 and we obtained the best results
nary provides an alternative way to design sparse dictiesar in our category. Our approach presented in this paper itetica

[9, 19, 26, 47]. an increase in terms of reconstruction accuracy compaitbeto
Some approaches have been recently proposed in order tesults presented in [27].
design dictionaries that enable sparse representatioge¢a The article is structured as follows : we start by introduc-

overview can be found in [2]). For instance, Bilgic etal.a@r  ing the dMRI framework together with the proposed dictignar
fort et al. [9, 19] learn dictionaries from DSI like acquisits  then we focus on the parametric dictionary learning alganit
and use it to either denoise full DSI data or to perform underand finally we conclude with an experimental part illustrgti
sampled DSI acquisitions and reconstructions. In padigul the added-value of our approach with promising results show
Gramfort et al. nicely exploit the symmetry of the signal in 0 ing how our approach allows the accurate reconstructioheof t
der to assess free parameters of the dictionary learningesmo  diffusion signal and some of its features. This experimental par
However, these two latter works lead to non-parametrigadict is completed by a comparison with state of the art approaches
naries, which does not provide continuous representatibns and is performed on synthetic and real data from 3T and 7T
the difusion signal nor allow the determination of analytical scanners.

formulae for difusion features. The strength of the paramet-

ric dictionary learning approach, as the one we proposeisn th

article, lies in its ability to address these weaknesses.of&kw 2. A computational framework for therecovery of the com-
regarding parametric dictionary learning was publisheld i, plete diffusion MRI process

in which the dictionary atoms are formed by a weighted com-

bination of 3¢ order B-splines. It proved that the method is ef-  |n this section, we introduce a new dMRI framework for
ficient on synthetic data simulated with 81 gradient di@wti  modeling the diusion signal. From this continuous represen-
The work of [47] appears promising in reconstructing thudi  tation, we derive analytical formulae that enable the estim
sion signals, and further enhancement could be done regardition of important difusion features such as the Ensemble Av-
the development of analytical formulae to estimate othBudi  erage Propagator (EAP), the Orientation Distribution Fiamc
sion features. This would make this work a good resourcesin th(ODF). We give full derivations for these formulae in the ap-
context of dictionary learning. More recently, we proposed pendixes.

[26] to learn a dictionary where each atom is constrainecta b
parametric function. In [26], this parametric function is@m-
bination of a radial part and an angular part representetidy t
symmetric and real Spherical Harmonics (SH) [15]. The dadia

partis a polynomial weighted by an exponential._SO measure- \We propose to design an overcomplete dictionsry =
ments were sfiicient to reconstruct very good qualityfidision (g1, o, such that the diusion signalE is expressed as a

,,,,,

signals, ODFs and EAPs. However, this approach essentiallyuncated linear combination &f 3D atoms¥y, i.e
handles the learning of the radial part, i.e. the polynomdal

efficients and a scale parameter in the exponential, whereas we
observed (see [27]) that the angular part could make thadict  httpy/hardi.epfl.ch
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2.1. Continuous diusion modeling with a constrained dictio-
nary
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E(qu) = ), acPi(au), (3) o=y
k=0

[
=0 i=0 j=0

2 YkijYki j . 3
Z—r(5<1>+5), (5)

2(vi + v ) )¥3/2

with ¢, the transform cocients,q the norm of the fective
gradient andi an unitary vector. with I" the gamma function. We derive eq. 5 in Appendix A.

In diffusion multiple shells imaging [5, 34, 17], previous If we consider the simple case where all the fticents
works have proposed the modeling of théfuion signal in ~ Y«ij and v are zero butywo and vio, We get'¥(qu) =
bases where each atdH is a combination of a radial part and \/%2”—% expvoq?). This mono-exponential representation of
an angular part. These works primarily handle the question athe atom¥y does not depend on the angular directioand is,
the radial part. Forinstance, Descoteaux et al. [17] dessithe  for instance, appropriate to describe isotropitugion config-
radial part of the atom as a combination of two rational func-uration.
tions coming from the total solution of the Laplace equation Note that in [27] each atom is described by a combination of
whereas Ozarslan et al., Assemlal et al. [34, 5] use polynomiSHORE basis functions [34] with a predefined scale parameter
als weighted by an exponential. Merlet et al. [26] increabed The main advantage of the atom description in Eq. 4 lies in the
sparsity of the representation in [34] by designing a didiy  possibility to learn the scale parametegs which provides a
where the polynomial cdgcients and the scale parameters insparser signal estimation than in [27]. We see in the exerim
the exponentials are learned from a training data set [26]. A part that this new framework leads to an increase in terms of
though the radial attenuation of thefdision signal is more or reconstruction accuracy compared to the results presemted
less well fitted with these bagdgtionaries, the accurate and [27], which were already the best in their category.
sparse estimation of the full flision signal is still limited by

the angular part described by the real and symmetric Srzﬂeric2 2 Cl -
. . . .2. Closed formulae for glusion features
Harmonic basis functions (SH). The SH have been proved use- n fusi .

directional features of the flfusion process [32]. However, our vious section to reconstruct theffdision signal (see Eqg. 4), we
preliminary work published in [27] shows that a well-chosenderive important and analytical closed formulae for estintp
combination of SH could sparsely represent the angular parthe EAP and the ODF. We describe these formulae in the fol-
Therefore, we propose to model this angular part with such fowing.

combination of SH. As for the radial part, we model it with a
combination of exponential functions weighted by a mondmia
in order to ensure the continuity of the function at zero [11]
The complete description of each atdifp of the dictionary is
given by :

2.2.1. The Ensemble Average Propagator

The EAP, denote®(Rr), represents the full 3D displacement
probability function of water molecules in every voxel ant u
derlies the derivation of the ODF. It is the inverse Fourians-
form of the normalized diusion signal, denoted(qu),

Yi(q) = Pr(qu) =

-

- 1
o

J
awi exp(-vad?) ) B d V()
— o
, ' P(Rr) = f f E(qu) exp(+2riqRu.r)dug?da.  (6)
2\ () =0 JueS?
7iij exp(-viad’) dVY; ()
0

- 5i-

K 4

o

= g andR are, respectively, the norm of th&ective gradient
= Y (y«k, vk, qQu), (4) and the radius of the 3D location in every voxelandr are
unit vectors. From eq. 3 and 6, we derive in Appendix B the

with q the 3D dfective gradientu an unitary vector and following expression for the EAP :

the norm of the ffective gradient such that = qu. | and
J are, respectively, the radial order and the angular order of

the dictionary. J also corresponds the total number of SH Kl o _ 7 \[0+3/2
taken into account in the modeling not to be confused with P(Rr) = Z T Zzykij(—l)l(])/z(I)

the maximal SH ordeL. Indeed,J is directly related to the ko VXK 120 .

maximal SH ordei. asJ = (L + 1)(L + 2)/2. Yj(u) is the G ~-(7R)?

SH of orderl(j) = Ofor j = 1,1(j) = 2 forj € {2,....6), RY EXP(—VM )Yi(f) (7)
I(j) = 4forj e {7,...,15 ... . ¥k = {yujliz0..1j=0..7 and

vk = {ndli-0.1 are two vectors of parameters, which will be If we consider the special case of the mono-

set during the learning process. The teffi ensures the con- exponential representation of the ator¥,, we get

tinuity of Py at zero. yx is a constant, which ensures the nor- _ vK o oo (x)3? “R?\ ; -
PR = Zio% (”) exp( e ) i.e an isotropic

. . . . 2\/7_r Vko
malization of¥y for the £, norm, i.e |/ [, WZ(g)dq = 1, andis  propagator described by an mono-exponential decay siinilar

expressed as every direction.



2.2.2. Solid angle ODF to reconstruct any diusion signal using the dictionary previ-
The ODF represents the full angular distributionR{Rr).  ously learned.
One relies on the ODF to perform fiber tractography [16], then
an accurate and fast computation of thi§usion feature is very  3.1. Dictionary learning algorithm
appreciated. From Eq. 2, we derive in Appendix C the follow- Notation : Suppose the training data set consists in M obser-
ing closed form for the ODF : vations{s}, (i.e. M voxels). For each observatisnwe have
ms samples in the g-space, i®. v € R™. We represens }i"ﬂl
in matrix formS € R™*M wheres is thei" column. The al-

()= gorithm searches for the dictionadye R™*K, that enables the
Kl w o Wzl T O j) + )1 sparsest representation for every columrBofThe dictionary

Z ﬁ Z Z Yiij(=1) (;) a2 ' r consists inK atoms{dk}l'f:l with dy € R™ a column ofD. We
k=0 =0 j=0 I Z(VT.) constraird, to be an instance of the 3D functidifx(y, vk, qu)

(8) in Eq. 4. Here, we do not try to directly estimadg but the
vectors of parametens, andvy, that characterize the atodq.
or each observatios, we define a caicient vectorg; € RX,
which forms thé™ column of the cofficient matrixC € R¥*M,
Problem statement: Given a training data s&, we search
for the dictionaryD that gives the sparsest representation of this
3. A parametricdictionary learning for sparse dMRI set (i.e. for each colums of S). Mathematically, the problem

] S . is to find the dictionaryd and the vectors; in C by solving :
Here, we introduce a parametric dictionary learning (PDL)

method that enables a sparse representation of afysidin

Considering the precedent example, the ODF is represent

by a scalar, i.e.T(r) = ZEZO %g;gfz, meaning that the ODF

has the same value for every direction.

signal from continuous and parametric functions. There are argmin||S— DC||§} subject toVillcilly < € 9)
four advantages to consider a parametric approach forodicti @b
nary learning: with € a small real defining the degree of sparsity of the dictio-

e A parametric dictionary is defined by a set of parametergiarz' IThﬁnr]nltr;lrgzcattlor; ?Tf]t?ne f||rst tfrThlnthi]ﬁig ega?lv;sé:he
(y« andvy in Sec. 2), which gives a continuous repres;enta-s gd ?h es at 0! i ore a}[h close .(: ? ah g ala
tion of each atom and, thus, enables a continuous modelin i ? cqt?]s rain ITFOtShesd' et_spar5| yT?] eac thSI?jnta selpfe
of the ditusion signal. This is suitable for data interpola- long; with respect o the dic !onang). € method 1o solve
. . Eq. 9 is described in the following and a summary of the algo-
tion and extrapolation. . S ) . . . .

rithm is given in Alg. 1. This algorithm iteratively altertes

¢ Analytical formulae can be derived to estimate importantbetween sparse signal estimations (i{.e}i'\ﬁl) and updates of

diffusion features as the EAP and the ODF. the dictionary (i.e.D) so to better fit the training data set (i.e.

. o . . S).

e PDL is acquisition mdependent, i.e. the sampling scheme’ g, 4 step (Sparse signal estimation): In the first step, the
used for learning the dictionary does not have to be thegiimation of the column vectar is performed separately for
same as the sampling scheme used for reconstructing the,ch, signas;, i.e for each column o8. Sparse estimation is
signals. achieved by solving the LASSO (Least Absolute Shrinkage and

o PDL enables one to reduce the dimensionality of the dicS€lection Operator) problem [39]. It consists in minimgthe
tionary atoms. following objective function

These four advantages, together with the quality of theinbta
results (see Sec. 4), makes our parametric dictionary appro mqinIIS — Dcilf5 + Al[cil]a. (10)
very attractive compared to non parametric methods [9, 19].

Concerning the development of our algorithm, we started by A is a constant that controls the degree of sparsity of the coef
considering the K-SVD algorithm [2] as a model for our own ficients estimated. Note that we relax the constraint in Bxy 9
method. Although the K-SVD method appears powerful in de-using a Lagrangian multiplienlj. There exist numerous itera-
signing sparse dictionaries, this technique as describgd]i tive algorithms for éiciently solving such kind of constrained
designs only non-parametric dictionaries, which do nosené  problems. These include coordinate descent, least-aegies-
the advantages described above. Hence, we developed our osion (LARS) [18], fast iterative thresholding shrinkagga!
algorithm, which overcomes the limitation of the K-SVD al- rithm (FISTA) [8], etc. A number of these methods are avail-
gorithm. Our algorithm alternates between 2 steps: a sparsable under the PythdlM library Scikit-learn [35]. We use a
coding step and a dictionary update step, where the vectors ®ythorT™ implementation [35] of coordinate descent to solve
parameteryy andyy (see Sec. 2) are estimated for every atomEq. 10.
dk of the dictionary, using the non linear Levenberg-Marqtiard Second step (Dictionary update): In the second step, we
(LM) algorithm. The section 3.1 presents our dictionarytea update the dictionaryp. For this purpose, we compute an
ing algorithm and the section 3.2 describes the method we usssolute averaged cfiieient vectorc € R"™, such thatt =

4



1/M ¥ Icil (.| denotes the absolute value of each vector compoAlgorithm 1 Semi-parametric dictionary learning
nent), and find the atoms associated with the non zeros values1, Initialize the dictionary by fixing its dimensidg and the
of . It gives a rough idea of which atoms are used for modeling vectors of parametess, andv, for k = 1...K as random.
the signal and enables one to discard some unnecessary atomg, Sparse estimation of the observatiQas;l“jl. We use
and, thus, to enforce sparsity. Then, in this set of atoms, we the coordinate descent algorithm to solve fprassociated
update one atom at a time, while fixing all the others. This pro to each observation :
cess is repeated for all the atoms associated with the nan-ze
codficients ofC.

The in-update atom is denoteg,. To update this atom, we min||s — D5 + AllGilla.
begin by decomposing the error termin eq. 9 asin [2], i.e. ¢

3. Updating the dictionary. Compute the absolute aver-

K 2 aged cofficients vecto€ = 1/M Y;|ci|. Repeat until all the
IS - DCII?Z _ HS_ Z dicl 2::(;?11;0; t[he dictionary, with non zeros valueirhave been
k=1 2 ’
2 e Let note the current atom, thé'.
_ _ rl_ r
- H[S deck] Ao, ¢ Define the group of observation that use this atom :
k#ko 2 . . .
5 Wi, =1{i,1 <1< M,c(i) # 0.
= [|Eie = dioCi [, - (11)

e Compute the error matri&w, = Su,— 2k, dkc(i),i e
wherec], is thek™ row of C. The error matrix, denotef,, Wi, Sy, cONtains the observatiag i € W,.

contains the error between each observagigithe i column

of S) and its respective estimation with the dictionary where . .
the kI' atom is removed. We could directly use the LM al- the vectors_of parameteys, andyi;, which constrain
gorithm in order to fit the atond, to the error matrixEy,. dy, to best fitEw,

However, because it takes into account all the observations o Updated,, according toyy, andvy,.

this dictionary update would not impose sparsity. Insteea,
enforce the sparsity by constraining the atdgn to fit only a
subset of observations and not the entire data set. Foruhis p
pose, we define the group of observations that use the atom
di,, lew,, = {i,1 < i < M,ci(ko) # 0}. In other words,
they are the observations whose fiméents, associated with
the atomdy,, are non zeros. Then, we compute the error ma

trix By, € R™C2%o). It corresponds to the estimation eror ;- ion ' were not satisfactory since the correspondingtissis
between the observation vectSilicw, that forms the columns o6 100 diferent between several attempts to build the dictio-
of Sy, € R™“ ) and the signal estimated for the group of nary. After many experiments, we finally selected eachahiti
observatiomw, (Theko™ atom is still removed from the dictio- atom as a random combination of several training signalis Th
nary), i.eSw, = Yk, dkG (i), 1 € Wi,. Mathematically speak- gave us the best satisfactory results, with the smallesttagty
ing, we haveEy, = Sy, — Xk dkC(i),1 € Wi,. Finally, we  to the initialization.

estimate the vector of parametgfisandyy by constrainingly,

to fit the error matrixE., . This part is performed via the non 3.2. Signal estimation via the learned dictionary

linear Levenberg-Marquardt algorithm (LMA) . The atom up-  The purpose of section 3.1 was to design a parametric dictio-
date procedure is repeated for every atnassociated with  naryD. Now, we are able to recover any sparse representation

the non zeros cdgcients ofC. c of diffusion signak regarding the dictionari by solving the
The method is given in Algorithm 1 as a whole. LASSO problem:

Convergence : The sparse coding step (Eq. 10) is well
known to be convex and the coordinate descent algorithm al-
lows one to converge to the unique solution specific to the cur mcin lIs— Dc||§ + Al|cl]1. (12)
rent dictionaryD. The dictionary update step, wherg andy
are estimated using the LMA may converges to a local minimayVe use the same algorithm as in the learning step to solve
depending on the initial solutions. Then, Eq. 9 is convex forEQ. 10, i.e. the coordinate descent algorithm.
¢ and converge foD, which do not ensure a convergence to a
global_minimum. Nevertheless, in our experiments, a_smatio 4. Experiments on synthetic data
ary point has been reached after few iterations and thetirggul
dictionaries were proved very good experimentally. We first train and validate our parametric dictionary on syn-
Initialization : The problem in Eq. 9 admits local minima, thetic data. We assume the normalizefiiidiion signaE(q) is
and the solution may vary depending on the initial paranseter generated from the multi-tensor model foffibers,

5

e Apply the Levenberg - Marquardt algorithm to estimate

4. Go back to the step 2 unless the overall error does not vary
anymore

We tried several ways to initialize the algorithm among whic
random initialization and initialization from signals seted at
random in the training data set.. However, these kinds télni



Nmse between the ground truth odf and the estimated odf with SH

cE
8

F
E(qu) = ), pr exp4r°rgPu’ Tru), (13)
f=1

where a fibref is defined by a tensor matrik; and weight
ps, such thaty; ps = 1. q denotes the norm of thefective
gradient andl is a unitary vector in Cartesian coordinate.

The analytical ground truth of the EAP for any radius R is
then given by

10 12
SH order

F -1
1 —RrTT Ly
P(Rr) = Z o exp(
=1 V(4r7)3Tyl 47
Figure 1: NMSE between the ground truth ODFs and the estim@teFs in
with r a unitary vector in Cartesian coordinate. terms of SH. The arrow indicates the SH order correspondirgNMSE con-

We can also derive the ODF feature using the solid ang|§'dered as siiciently close to zero.
closed form expression [1, 43],

), (14)

ordersl = 1,2,3, using the Levenberg-Marquardt algorithm

F 1 (The angular orded is set to zero). Fig. 2 indicates that we

w(r) = Z of - - (15)  need a radial orddr = 3 to accurately estimate radial attenua-
= AnTel2(rT T )z tion characterized by three crossing fibers.

In the remainder of this section, we describe the steps reg 5 Training phase
quired to correctly design our parametric dictionary, ithe
choice of the dictionary radial and angular orders and tamle
ing phase, then we validate the learned dictionary on syiothe
data using the analytical formulae we have just described.

We train the dictionary on multi-Gaussian signals, used for
the HARDI contest at ISBI 2012 The contest was organized
with the aim to provide a way for fferent groups to propose
their own reconstruction algorithms and to fairly compéuesirt
methods against the others on a common set of ground-truth
ata.

Our training data se&4in is composed of the firg?l = 5000
) L i . instances of diusion signal contained in the filestingl\V/
We begin by defining the dictionary angular ordemwhich in which the multi-Gaussian synthetic signals are gendrate

Is related to the SH torder 313‘1' :O(IISE DL +E.2)/21.5For this \g;th parameters taken at random (number of fibers, fractiona
purpose, we generate synthetic s (see Eq. 15) correspon isotropy related to a fiber and crossing angle betwee thes

ing to two fibers crossing at filerent degrees : °Q040°, 60°, fi s ;
. ) . : . Th I I
9C°. Then, we fit each ODF with the Spherical Harmonic ba't:\ljglr;)set to‘]effg(;?ﬂy:ag ?:ezrsa:ancd ;ald)lawc;rtdaeh: frforonSpeC

SIS ofiorderL =0,2,4,6,8,10,12 using a least squares fitting -space samples for each instance of signal spread between
technique, and we compute the Normalized Mean Square Err% = 0 andbyay = 10000$mMIT?
max — .

.. . . min —
(NMSE) between the original synthetic ODFg) @nd the esti- One dificulty in dictionary learning is the choice of the reg-

2

mated ODFs in terms of SH), i.e. NMSE = ”Wﬁg“z- The  ylarization parametet in Eq. 9. In order to assess we use
resulting NMSEs are shown in Fig. 1. Regarding this figure, wea cross validation (CV) procedure. For this purpose, we con-
find that a SH order of = 8 is suficient to correctly estimate sider another set of signa%,, called the validation data set,
an ODF (In particular for fibers crossing at°4@r more). This and composed of 1000 signals, which have not been used for
leads to set the dictionary angular ordedte 45. training, and we repeat the following procedure for a range o

The radial order is related to the number of fiber crossing im,
the voxel of interest. We assume a maximum of three CrOSSing 1. Design a dictionarpﬂ using A|g0r|thm 1 with regu|ariza-
fibers in each voxel. This is the case in the region where the tjon parameten and the training data s&ain.
corticospinal, corpus callosum and superior longitudfaati- 2. UsingD,, solve the LASSO problem far (see Eq. 12)
culus fiber bundles are crossing. Voxel with more than three with S,, as entry, and compute the validation ereqy =
fibers are considered as part of the noisy background. Conse-|s , — Dcl2/lISvall2
quently, setting the radial order at three appears to beg¢be b 4 keepA that minimizeseq. This procedure is repeated
choice and was found experimentally satisfactory. We S"'DWiafter adding Rician noise, with SNRO, 20 and 30, to the

Fig. 2 some examples of radial attenuation in arbitray Chosevalidation set. Rician noise is added in the following way
directions simulated using a multi-Gaussian model minmgki

three crossing fibers (plain line). We fit each of these raatial
tenuation with the radial part of the model in Eq. 4 and radial 2http;/hardi.epfl.ch
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4.1. Which radial and angular order for the dictionary ?

We need to fix the angular and radial order, respectively de(—j
notedJ andl in Eq. 4, for the dictionary generation.




radial order I1=1 radial order 1=2 radial order 1=3

Figure 2: Examples of radial attenuation in arbitray chadieections simulated using a multi-Gaussian model minmigkhree crossing fibers (plain line). We fit
each of these radial attenuation with the radial part of tbeehin Eq. 4 and radial ordets= 1, 2, 3, using the Levenberg-Marquardt algorithm (The anguldeor
Jis set to zero).

© Svahes, = [(Sval + €1)2 + €2, whereey, &2 ~ N(0,0) with to more complex fiber configurations.
o = 1/S NR ValidatingA on noisy data enables one to prevent

from overfitting. 4.3. Validation

We show in Fig. 3g. for 4 in the range [t 10°5,1- 1074, We validate the dictionary on the reconstruction of noisy
in case of noisy and noiseless validation data. We also shoWUltiéGaUSSia” signals, used for the HARDI contest at ISBI
the training error (blue curve in Fig. 3), i.&yain = [ISyan —  2012°

D.cll3/|ISwanl? wherec is the solution of the LASSO prob- ~ We consider 1000 signals, which have not been used for
lem with Syain @s entry. We observe, in Fig. 3, fourfidirent ~ training the dictionary. Our preliminary and promisinguks
1(29-10°5,4.4.10°,4.8-105,5.8- 10°°) that minimize the ~ ON parametric dictionary learning (PDL) were publishedhe t
validation error depending on the amount of noise we add t®roceedings of this event [27]. At this stage, we obtained th
the validation data set. Because the noiseless case is not diest results in our category. Here, we enrich these previous
served in practice, we discard the corresponding valueasfd ~ results with a comparison of threefigirent sampling schemes
consider the average value 0f4410°5,4.8-10°5,58-10%), (displayedin Fig.5):

which givesi = 5-107°. This value is used to generate a new

dictionary. e A single shell sampling scheme with 64 measurements

uniformly spread on one shell at a b-valbe= 3000 s
training error mm—2 (Flg 5a)
validation error (noiseless)

validation error (SNR=30) e A multiple shells sampling scheme with 15 measurements

validation error (SNR=20)

validation error (SNR=10) spread on 2 shells at b-valubs= 150Q 2500 s- mm2
(Fig. 5b).

Cross validation in learning the dictionary

e A multiple shells sampling scheme with 64 measurements
spread on 2 shells at b-valubs= 150Q 2500 s- mn2
(Fig. 5¢).

To obtain the single shell (SS) sampling scheme, we use
the algorithm given in [22, 14] to uniformly distribute pdsn
on a sphere. For the multiple shells (MS) sampling schemes,
we use the algorithm given in [10] by setting the parame-
ters in such a way that the the number of points on each
shell is proportional tay. These particular parameters have
Figure 3: Training and validation erroggin, and 6,5)) computed ford in the been proved facient in [10 25]_ An important advantage of
range [1- 1075,1- 107%]. The blue curve represents the training error and theth. lqorithm is that th T ts f h shell h ¢
other curves represent the validation error in a noiselass ¢purple curve), IS a g?” m IS tha € points from gac S .e aV.e S ag-
after adding Rician noise to the validation data set with SB®R(green curve), ~gered directions and follow a near-optimal uniform distrib
SNR=20 (red curve), SNR10 (black curve). The arrows indicate the minimum tjon. You can generate and download sampling schemes
of each curve corresponding to the validation error. for multiple Q-shell difusion MRI with this web application

. http; -sop.inria.fimember&Emmanuel. Caruydy-space-
We obtain a dictionary containing 659 atoms. Fig. 4 showss pi/ww-Sop fm & yer-sp

) d’;\mpling.php
the first 200 ODFs of these atoms. The atom ODFs are sorte
in decreasing energy order from left to right and top to batto
We observe various shape ranging from single fiber strusture 3http;/hardi.epfl.ch
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Figure 4: First 200 ODFs of the dictionary atoms. The atoressarted in decreasing energy order from left to right andadmttom.

(b)

Figure 5: Sampling schemes used for validation. (a) A sisflell sampling scheme with 64 measurements uniformly sposaone shell at a b-value =
3000 s mm2. (b) A multiple shells sampling scheme with 15 measuremsmitsad on 2 shells at b-values= 150Q 2500 s mm2. (c) A multiple shells sampling
scheme with 64 measurements spread on 2 shells at b-takid$0Q 2500 s mm 2.



We perform the experiments with two metrics used in theto provide proper dfusion directions. The DNC mean value
contest, i.e. the weighted féérence in the number of fiber is higher than 0.5 meaning that, in average, more than half of
compartments (DNC) and the mean angular error (AE) at eactihe maxima in each voxel are not detected. The results regard
voxel. For these two metrics we extract the maxima on the esting our PDL approach give more accuratusion directions
mated ODFs and compare them to the ground truth maximat every SNR.

Then, the DNC becomes thefidirence between the number Besides the good directional information given by the ODFs
of maxima extracted on the estimated OD¥Ws and the true estimated with our PDL approach, we can also estimate the
number of maximavig, weighted by the true number of max- EAP and interpolafextrapolate the diusion signal on the en-

ima at each voxel, i.e., DNG “V'M;;\t"gt‘ The AE is the mean tire g-space, whereas QBI only estimates the ODFs. More re-

angular error between the maxima extracted on the estimatetlts regarding the estimation of the latter features arergin
ODFs and the respective maxima within the ground truth. Wel @b 4, and we will discuss these results in Sec. 4.3.3.

also enrich the results with a comparison of two other festur ) , !

which have not been used in the contest validation, i.e. thé'3'2' Multiple shells sampling scheme with 15 measuremer?t
diffusion signal and the Ensemble Average Propagator (EAP). N these experiments, we compare a SHORE reconstruction
To compare these features, we compute the Normalized Meaffing @ sparse priof{-SHORE) to our dictionary reconstruc-
Square Error (NMSE) between the ground truth featuesd tion. The SHORE basis has been introduced by [34] and was

. L . Xl used in [28, 31, 26] in the context of sparse recovery. ke
its estimationx, given byNMS E = X The DNC, AE SHORE method consists in solving the LASSO problem (see

and NMSE are, then, averaged on all the voxels. We add Rigq. 12) using coordinate descent while replacing the dietip
cian noise to the normalizedftlision signal in the following p by the SHORE basis [34]. In order to provide a fair com-
way : Enoisy = 1/(E +€1)? + 622, whereeg, e, ~ N(0,0) with parison a SH order df = 8 is used for the generation of the
o =1/SNR SHORE basis. In both method&{SHORE and our PDL ap-
The three following sections present the results for thegthr Proach) we use cross validation [45] to assess the regatamie
proposed sampling schemes, i.e. the SS sampling scheme wRgrametenin Eq. 12. [34] and [12] respectively provide closed
64 measurements, the MS sampling scheme with 15 measur@rmulae to estimate the ODF and the EAP when tfiigion
ments, and the MS sampling scheme with 64 measuremeng@gnal is modeled in the SHORE basis.
We also compare with state of the art techniques such that QB Ve see in Tab. 2 that our PDL approach outperformsihe
using the solid angle ODF [1], and the SHORE reconstructiorHORE reconstruction in terms of angular erroffeence in
using a sparse priof{-SHORE) [34, 12, 28, 31, 26]. We show the number of compartments (DNC), signal NMSE and EAP
quantitative results in Tab. 1, 2, 3 and 4, and qualitatigeilts NMSE.

in Fig. 6, 7 and 8. In each table, we write in blue letters thetbe ~_Fig. 7 shows the ODFs estimated via our dictionary approach
score for a given SNR and metric. (D-ODF) and the ODFs estimated via the SHORE method

(SHORE-ODF). It qualitatively indicates an improvement of
) ] ) the angular information given by the D-ODFs over the SHORE-
4.3.1. Single shell sampling scheme with 64 measurements opfrs.
In these experiments, we first use the SS sampling scheme, Regarding the PDL approach proposed at the ISBI contest,
i.e. 64 measurements uniformly spread on a shell at a b-valuge obtained an angular error equal ta34at SNR=10, equal
b = 3000 s mm2, and we compare our dictionary based ODFto 11° at SNR=20, equal to &° at SNR=30. The results based
estimation (D-ODF) to the solid angle ODF via QBI (SA-ODF) on our new proposed framework, shown in Tab. 2, indicates an
developed in [1]. For the SA-ODF, we set a SH order equalmprovement on the accuracy of the maxima estimation com-
to the one used for the dictionary construction, ile.= 8.  pared to the results obtained in the contest. Note that tHe PD

We adjust the Laplace-Beltrami regularization paramet8; [ approach proposed in the contest was already the best mtits ¢
1] using the generalized cross validation algorithm [13br F egory.

our PDL approach, because we deal witnorm and no;  In the following we show the impact of an increase of the
norm, we use a simple cross validation procedure [45] to fincthumber of samples while keeping the two shells-ailuesb =
the regularization parameteiin Eq. 12. 150Q 2500 s mm2.

Overall, in Fig. 6 the D-ODFs are sharper than the SA-ODFs.
Furthermore, the SA-ODFs appear more sensitive to noise that.3.3. Multiple shells sampling scheme with 64 measuresnent
the ODFs based on our PDL estimation. Indeed, we observe Now, we use the MS sampling scheme with 64 measure-
than the D-ODFs are very robust to noise, even at SNR  ments and we compare once again fpSHORE method to
where they are still correctly aligned with the underlyitiis-  our PDL approach. Our dictionary approach still outperferm
ture shown by the ground truth (On the right of Fig. 6), wherea the SHORE reconstruction in terms of angular error, DNG, sig
the maxima extracted from the SA-ODFs mostly give corruptechal NMSE and EAP NMSE. Fig. 8 shows the ODFs estimated
or completely false fiber orientation estimation even farge  via our PDL approach (D-ODF) and the ODFs estimated via
configuration as single fibers. the£,-SHORE method (SHORE-ODF). We observe that the D-

The quantitative results, in Tab. 1, confirms our previous re ODFs give a very accurate estimation of the underlying fiber
marks. In particular, at SNRLO, the SA-ODFs are not able structure where the SHORE-ODFs fail to provide coherent fibe
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Single shell sampling Angular error DNC
scheme with 64 measurements | D-ODF | SA-ODF | D-ODF | SA-ODF
SNR 30 49398 | 6.6509 | 0.2068 | 0.2329
SNR 20 5.6386 | 7.1436 | 0.2102| 0.2524
SNR 10 8.2530 | 12.419 | 0.2500| 0.5993

Table 1: Dictionary based ODF estimation (D-ODF) versugisagle ODF via QBI (SA-ODF) using a single shell samplingesoe with 64 measurements. We
added rician noise from SNRLO to 30. Two metrics are shown : the angular error and tfierdnce in the number of compartiments (DNC).
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Figure 6: Dictionary based ODF estimation (D-ODF,top) usrsolid angle ODF via QBI (SA-ODF,bottom). We added riciaisa from SNR-10 to 30 (left to
right). We also show the maxima extracted from the ODFs. @nitiht, we show the ground ODFs and their respective maxima.

M S sampling scheme Angular error DNC Signal NMSE EAP NMSE

with 15 measurements | Dictionary | ¢1-SHORE | Dictionary | ¢1-SHORE | Dictionary | {1-SHORE | Dictionary | £;-SHORE
SNR 30 8.6066 14.670 0.2472 0.4010 0.0104 0.0433 0.0176 0.1040
SNR 20 9.7626 16.313 0.2540 0.4463 0.0170 0.0578 0.0251 0.1122
SNR 10 13.344 22.354 0.2734 0.4836 0.0343 0.1027 0.0422 0.1350

Table 2: Dictionary based reconstruction versu$SHORE based reconstruction using a multiple shells samgicheme with 15 measurements. We added rician
noise from SNR:10 to 30. Four metrics are shown : the angular error, tifer@ince in the number of compartiments (DNC), the signal NM&iEthe EAP NMSE.

M S sampling scheme Angular error DNC Signal NMSE EAP NMSE

with 64 measurements | Dictionary | ¢1-SHORE | Dictionary | ¢1-SHORE | Dictionary | ¢1-SHORE | Dictionary | ¢{;-SHORE
SNR 30 5.6233 8.8950 0.2187 0.3106 0.0035 0.0368 0.0066 0.0732
SNR 20 6.3080 9.6641 0.2309 0.3401 0.0054 0.0386 0.0104 0.0746
SNR 10 8.3224 13.126 0.2511 0.3995 0.0144 0.0752 0.0222 0.0825

Table 3: Dictionary based reconstruction versg#$$SHORE based reconstruction. We added rician noise from=80Ro 30. Four metrics are shown : the angular
error, the diference in the number of compartiments (DNC), the signal NMS&Ethe EAP NMSE.
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with 64 measurements. We added rician noise from SNRto 30 (left to right). We also show the maxima extractednftbe ODFs. On the right, we show the

Figure 8: Dictionary based ODF estimation (D-ODF,
ground ODFs and their respective maxima.



direction estimation, especially at SNMR0. We confirm this by
the quantitative results shown in Tab. 3.

We also compare the results of our PDL approach using
this MS sampling scheme , i.e. 2 shells at b-valbes-
150Q 2500 s- mm~2 with 64 measurements, to our PDL ap-
proach using the SS sampling scheme studied in Sec. 468.1, .
one shell at b-valub = 3000 s mm~2 with 64 measurements.
All the results are given in Tab. 4. Regarding the directiona
results (angular error and DNC), we observe a slight adgenta
with the SS sampling scheme. Moreover, if we want to recon
struct the full difusion signal and the EAP , we notice thata MS
sampling scheme is more adequate. This is because the rad
information of the difusion process is better considered when
using 2 shells instead of only one shell.

4.4, Discussion on experiments with synthetic data

We studied the choice of the free parameters in the learnin
process, i.e. the dictionary angular and radial orderg,(4rtd
Ain Eg. 9 (4.1). Our study led to a very good estimation of
the difusion direction (via the computation of the ODF), the
diffusion signal and the EAP.

In particular, our PDL approach was shown to better estimat:
the difusion directions than the solid angle ODF via QBI does
and to compute the flusion signal and the EAP in a more ac-
curate way than a SHORE reconstruction (using a sparse prio
does.

Regarding the sampling scheme, we observe a slight ac
vantage for the SS sampling scheme considering the diret
tional features, but we found that the MS samplingp-aalues
b = 150Q2500 s- mm2 is more appropriate, because it en-
ables one to deal with the radial information in additiontte t
angular information. In Sec. 4.3.3 the dictionary recamsion
combined with a multiple shells sampling scheme was prove:
to eficiently approximate the tfusion signal, the EAP and the
ODF.

Regarding the minimal number of measurements require
before a large decrease of the reconstruction accuracylsee a
perform a last experiment on synthetic data, in which weystud
the impact of the number of samplen the error metrics pre-
sented in this experiment part with synthetic data. Forghis
pose, we still consider the same set of signalffédént from
the training data set) and add Rician noise W#NR = 20.
We use the MS sampling scheme with 2 shells at b-value
b = 15002500 s- mm~2 and vary the number of samples be-
tweenN = 5 andN = 100. Fig. 9 shows the resulting values.
In this figure, we also plot a vertical line, which represehts

crease of their values (which means that the estimationsare
correct anymore). Overall, we define this bound\ig, ~ 15.
In Fig. 9, we also represent the variance of each metric.error
We observe from the variance, that the estimation of the dif-
fusion signal and the EAP are robust to noise. However, the
estimation of the dfusion direction is more sensitive to noise
when we reduce the number of samples.

In conclusion, these synthetic experiments show that our
PDL approach can sparsely model multi-fiber compartments
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Angular error DNC Signal NMSE EAP NMSE
MS-SC | SS-SC| MS-SC | SS-SC| MS-SC | SS-SC| MS-SC | SS-SC
SNR 30| 5.6233 | 4.9398| 0.2187 | 0.2068| 0.0035| 0.0207| 0.0066 | 0.0298
SNR 20| 6.3080 | 5.6386| 0.2309 | 0.2102| 0.0054 | 0.0239| 0.0104 | 0.0321
SNR 10| 8.3224 | 8.2530| 0.2511 | 0.2500| 0.0144 | 0.0433| 0.0222 | 0.0526

Table 4: Comparison between the multiple shells samplihgse (MS-SC) with 64 measurements and the single shell sagrgtheme (SS-SC) with 64 mea-
surements, on reconstruction using the PDL approach. Fetrias are shown: the angular error, th&etience in the number of compartments (DNC), the signal
NMSE, the EAP NMSE. The simulations are performed with Rigiaise at SNR10, 20 and 30.

signals with the assumption of mono-exponential signahgec the samples between the two b-values, we use the algorithm
with b-value. In addition, it overcomes the preliminary PBf-  givenin [10] by setting the parameters in such a way thatibe t
proach presented at the HARDI contest at ISBI 2012, alreadpumber of samples on each shell is proportionaj'tfl0, 25].
ranked first in its category. We choose a region of interest and show the estimated ODFs
(see Fig. 10) along with the extracted maxima. This region co
tains several crossing configurations withfelient degree of
crossing, and thus is appropriate for ODF validation. In E@

In this section, we propose to validate our parametricaticti the middle corresponds to the D-ODFs and the bottom to the
nary learning (PDL) method on real data from human brainsSHORE-ODFs. From the left to the right, we see the results
For this purpose, we acquired three distinct sets of data : for N=15, 30 and 60 samples. We consider the ground truth as

the estimated signal using tlie SHORE method when all the

e A first set of measurements coming from a 7T scannermeasurements are taken into account, i.e. 70x8 measurement

used both to learn the dictionary and to validate it. The corresponding ground truth ODF are shown at the top of
e A second set of measurements coming from a 3T scanne'?lg' 10. .
used for the learning process " Overall, the SHQRE—ODFS lead t_o more fa_lse maxima than
' the D-ODFs. For instance, &t = 60 in the region A (in red),
e A third set of measurements coming from a 3T Scanner'ghe SHORE-ODFs are not able to Correctly resolve the cross-

used to validate the dictionary learned on the previous 31nd fiber configuration (erroneous number of detected makima

5. Experimentson real data

scanner data. This phenomenon is emphasized when the number of measure-
ments decreases, whereas our dictionary estimation st p
5.1. Learning and reconstruction on a 7T scanner data vides a coherent map of ODFs.

Training data was acquired on a 7T whole-body MR ] )
scanner (MAGNETOM, Siemens Healthcare) equipped withp-2- Learning and reconstruction on a 3T scanner data
Siemens-AC072 whole body gradient coils, and an 24 chan- We also train our dictionary on data from a 3T Verio
nel phased array coil (Nova Medical). 12 axial slices(MAGNETOM, Siemens Healthcare) scanner equipped with
were acquired with a 2D single shot DW-STEAM-EPI a 32-channel head coil. The data were acquired at a spa-
(TR/TE/A/6 = 300Q58/12Q'15 ms) sequence giving 2 mm tial resolution of 2 mra isotropic, for 6 diferent b-values
isotropic resolution. The echo time (TE) fidlision time (), b=500/'200¢2000300050007000 gmn?, 70 orientations at
and gradient durations] were optimized to provide max- each b-value, and an imaging matrix of 128x128x60. The dic-
imum SNR for a maximum b-factor. 8 fiiérentb-values tionary is learned from all the measurements on the axizsli
b=500/1200¢200¢300040005000600Q7000 gmn¥ are con- 25 to 35, for the voxels witlF A > 0.20. The FA is computed
sidered with 70 orientations at each b-value, and an imaginfrom the difusion tensor estimated with the whole set of mea-
matrix of 96x96x12. The measurementlocations are digtbu surements.
using the algorithm given in [10] by setting the parametarsi  For the reconstruction, we use data from a 3T scanner
such way that there are a constant number of measurements gehilips Achieva) equipped with a 8-channel SENSE coil. The
b-value. We use 11 slices as training data set, in which omly thdata were acquired at a spatial resolution of 23isutropic, for
voxels corresponding to a Fractional Anisotropy (FA) sigrer 6 different b-values£50('10002000400¢60008000 g mn?,
to 0.20 are taken into account. The FA is computed from the7O orientations at each b-value, and an imaging matrix of
diffusion tensor estimated with the whole set of measurement428x128x60. We consider three sampling schemes with3\l

We validate the reconstruction, based on the previoush30 and 60 samples and distribute them proportionally‘ton
learned dictionary, on the twelfth slice. We compare the ©®DF two b-values 510002000 §mn¥ [10, 25].
estimated via our PDL approach (D-ODF) to the ODFs esti- InFig. 11, the top corresponds to the D-ODFs and the bottom
mated with the’;-SHORE method (SHORE-ODF) on three dif- to the SHORE-ODFs, on a selected region of interest. From the
ferent sampling schemes. The three sampling schemes eonsideft to the right, we see the results foe=llI5, 30 and 60 sam-
measurements at b-values100Q2000 gmn?, and we change ples. We also consider the ground truth as the estimatedlsign
the number of measurements as1$, 30 and 60. To distribute using the/;-SHORE method when all the measurements are
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taken into account, i.e. 70x6 measurements. The corresponaihere
ing ground truth ODFs are shown at the top of Fig. 11. 6i.i(q- u) = yi ;e gDV (u). (A.3)
We obtain sharper ODFs estimation with our PDL approach The normalization in Eq. A.1 rewrites as
on the selected region of interest. Again, we see that otipdic
nary is still able to model the fiber crossing configuratiothwi 2
only 15 samples, and provide less noisy ODFs than the ODFs 1= f {Z gi,j(Q)] dq
estimated with SHORE. BT
| J | J
]

. R v P L o
6. Conclusion = ZZZZ%J?’V.J"[O e e g Vg gfdg

i=1 j=1i=1j=1
We have proposed an original antfieient computational "

framework to model continuousflision MRI (dMRI) signal fsz YiYpdu - (A4)

and to recover its important features such as the ODF and the | ) ) )

EAP with a reduced number of measurements. The idea. warovided that the spherical harmonics functions form an or-

implemented, has been to use a parametric dictionary fegrni thonormal basis, we have

algorithm and to exploit the sparse property of a well desin "

dictionary to recover the ffusion signal and its features. Nu- fsz Yi(W)Yy (Wdu = 6j. (A.5)

merous experimental results have been carried out forasalid ) . ,

tion on synthetic and human brain data acquired from 7-T and N€réfore, the normality constraint rewrites as

3-T scanners. We have shown that we can clearly recover the N1 o L

diffusion signals and its features with a much better accuracy 1= Z Z Zyi,m,j f g (it)a g2l+2gq, (A.6)

compared to state-of-the-art approaches and can acguretel i=1 j=1i=1 0

cover ODF in regions of multiple fiber crossing, even with a , I . .

small and reduced number of measurements. This opens newl‘etS use the substitution = (ui+uy)q” in the above integral,

perspectives for some dMRI applications, including forraxa we have

ple tractography, where the improved characterizatiorhef t LJ YijYij R,

fiber orientations is likely to greatly and quickly help tkirng 1= Z Z Z 201 + vy )72 j; eXx i 2dx (A7)

through regions with aridr without crossing fibers i=1 j=1ir=1

Yi,iYij
20 + vy )()+372

M
M_

.3
Acknowledgments — = F(é’(]) " E) (A9)

T
=

We would like to express our thanks and gratitude to A. An-
wander and D. Bibeck for the 7T whole-body MR scanner datapppendix B. Derivation of the Ensemble Average Propa-
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Appendix A. Derivation of the normalization constant (8-2)

whereJ,./2 is the standard bessel function of the first kind and

' - . 3
We define a dictionary df functionsf,, fromR°to R. We order¢ + 1/2. Then we get

want to normalize the atoms of the dictionary, for the cleasi
> norm:

|| frnll3 = fR . fm(0)dq = 1. (A.1) P(Rr) =

0 K
The functionsf,, are constructed from elementary functions f f qZchi
gi(’? (in what follows, we drop the indem for the sake of clar- 4=0 Jues?
ity):

R
. a2 afty.
Ykij €XPl—vkiq™ ) q Y](U)
o VXkim ; ( )

(e

@) i (2aR)Y; (W)Y (1)

2n
il dudg, (B.3)
\| qR ]":O

J
EEDIPN-HCE (A-2)

|
i=1 j=1
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We shorten this expression using the orthonormal property

of the spherical harmonic basis, i.ﬁ

2.2 Yj(U)Yy(u)du =6
Then formula (B.3) becomes

K | J
P(RT) =) o \/2%— 2. 2 DR ()

k=0 i=0 j:O

=

‘f exp(-ni?) 0320, ),1/(27qR G, (B.4)

lij (R)

We use the formula from
00 v _p2
Jmo X eXPEaX?) 3, (BX) = iy €XP(G)

(37],

|kij(R):f exp(-vaa?) g D2y, /2(27qRdg  (B.5)
g=0

(+1/2 _ 2
- EZE))M/Z p( (j:k?) ) (B.6)
Finally, we get a closed form for the propagator :
P(R-r) = IR ol 1T ez
RO exp(#:z)z) Y;(r) (B.7)

Appendix C. Derivation of the Orientation Distribution
Function

The ODF is given by

T(r) = fom P(R-r)R?dR (C.1)

We insert (7) in (C.1) and gather all tiiedependant terms

within the integral to get

32 1 J ) o(j)+3/2
'Y’(”—ch(zjr) IPICHLL C3 M0

i=0 j=0
f " Ri+2 exp( R)Z)
0

1 (7i-£(1))

(C.2)

We use the formula from [37], i.eﬁ)oo X2 exppx2)dx =

- [z
TR \/;. Then,
£(]) + 1)! Vki
O 1)) = % Y (€3)
(Vk\ )
And,

17

i.e.

T(r) =
K I o(j)+1 .
Ck ™ (¢(j) + M
— Yij(—1) — — a1 Vi)
é Vi Z: % i) p(z) e
(C.4)
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