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SUMMARY

The modelization of bending plates with through-the-thickness cracks is investigated. We consider the
Kirchhoff–Love plate model, which is valid for very thin plates. Reduced Hsieh–Clough–Tocher triangles
and reduced Fraejis de Veubeke–Sanders quadrilaterals are used for the numerical discretization. We apply
the eXtended Finite Element Method strategy: enrichment of the finite element space with the asymptotic
bending singularities and with the discontinuity across the crack. The main point, addressed in this paper, is
the numerical computation of stress intensity factors. For this, two strategies, direct estimate and J-integral,
are described and tested. Some practical rules, dealing with the choice of some numerical parameters, are
underlined.

KEY WORDS: stress intensity factor; J-integral; extended finite element method; plates; Kirchhoff–Love;
fracture

1. INTRODUCTION

In the framework of linear elastic fracture mechanics, the computation of stress intensity factors
(SIF) is one of the most important problems. Although some analytical solutions can be found in
literature, they always correspond to simple geometries and loads. For general geometry and loading
conditions, numerical methods have to be employed. So the goal of this paper is to investigate effi-
cient numerical tools for very thin cracked plates, such as those that are widely used, for instance,
in aircraft structures. Let us also remark that only through-the-thickness cracks will be considered
here and that the material the plate is made of is homogeneous and isotropic.

So the first tool we use is eXtended Finite Element Method (XFEM). This is a strategy initially
developed for plane elasticity cracked problems [1, 2], and it is now the subject of a wide literature
(among many others, see [3–9] and references therein). It mainly consists in the introduction of the
discontinuity across the crack and of the asymptotic displacements into the finite element space.

At the moment, there are few previous works devoted to the adaptation of XFEM to plate or shell
models. In [10–12], shell models are used: because the near-tip asymptotic displacement in this
model is unknown, no near-tip enrichment is used but only the discontinuous one. In particular, in
[12, 13], the crack tip is always on an element edge: it means the crack spans entire elements of
the mesh. Moreover, the Mindlin–Reissner theory is used, and the crack propagation is investigated,
which is not the case of our work. In [14], which deals with cracked shells, the cracked part of the
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domain is modelized by a three-dimensional XFEM formulation. It is matched with the rest of the
domain and formulated with a classical finite element shell model. In this paper, a plate model is
kept on the entire domain, and we consider singular enrichment. In [15], the plate model used is
the Mindlin–Reissner one. However, in this reference, an important locking effect for thin plates
has been detected despite the use of some classical locking-free elements. This suggests that this
locking effect is due to the XFEM enrichment.

Even though most of the finite element codes are based on the Mindlin–Reissner plate model,
the so-called Kirchhoff–Love model provides also a realistic description of the displacement for a
thin plate because it is the limit model of the three-dimensional elasticity model when the thickness
vanishes [16]. For instance, the panels used in aeronautic structures can be about a few millimeters
thin, for several meters long. On this kind of plates, the shear effect can generally be neglected;
consequently, the Kirchhoff–Love model is mechanically appropriate. It has already been used
for the purpose of fracture mechanics (for instance, see [17]). Moreover, for through-thickness
cracks, the limit of the energy release rate of the three-dimensional model can be expressed with the
Kirchhoff–Love model solution [18, 19].

Because the Kirchhoff–Love model corresponds to a fourth-order partial differential equation,
a conformal finite element method (FEM) needs the use of C1 (continuously differentiable) ele-
ments. We consider the reduced Hsieh–Clough–Tocher (HCT) triangle and the reduced Fraejis de
Veubeke–Sanders (FVS) quadrilateral because they are the less costly conformal C1 elements [20].
In the XFEM framework, the knowledge of the asymptotic crack tip displacement is required. It is
the case for a Kirchhoff–Love isotropic plate as it corresponds to the bi-Laplacian singularities [21].
Thanks to all this material, it was possible to derive an efficient XFEM for thin cracked plates with
Kirchhoff–Love theory. It is detailed in [22], and some of its features, used in this paper, are recalled
in the following.

Then, it is possible to introduce the second tool that deals with SIF computation. For this, two
different strategies are suggested. The first one consists in a direct estimate. It follows an idea intro-
duced in [23], for two-dimensional elasticity problem. And we have adapted it to our bending plate
problem and our XFEM formulation. Let us remark that this approach lies on the SIF definition as
the limit, when the distance, say r , to the crack tip tends to 0, of some stress multiplied by

p
r ,

up to a mutiplicative coefficient. In classical FEM, the stress is numerically evaluated and strongly
depends on the mesh refinement. In [12], for plates, an alternative approach that uses the knowledge
of the asymptotic singular displacements and the numerical evaluation of the displacements through
what is called a displacement extrapolation technique is suggested. It will be explained later that we
can directly use the singular displacements we have introduced in the numerical formulation. The
second is more classical and uses J-integral. This is the way chosen in [15] for Mindlin–Reissner
plates. In our case, we had to derive this approach for Kirchhoff–Love model.

The paper is organized as follows. Section 2 describes the model problem. Section 3 is devoted to
the extended finite element discretization of the Kirchhoff–Love model. In Section 4, two strategies
for SIF computation are detailed. In Section 5, numerical results, which illustrate the capabilities of
these methods and enable the derivation of some practical rules for the choice of some numerical
parameters, are presented and discussed. Finally, Section 6 provides concluding remarks.

2. THE MODEL PROBLEM

2.1. Notations and variational formulation

Let us consider a thin plate, that is a plane structure for which one dimension, called the thickness,
is very small compared with the others. For this kind of structures, starting from a priori hypotheses
on the expression of the displacement fields, a two-dimensional problem is usually derived
from the three-dimensional elasticity formulation by means of integration along the thickness.
Then, the unknown variables are set down on the midplane of the plate, denoted here by !.

This midplane ! is an open subset of R
2. In the three-dimensional Cartesian referential, the plate

(Figure 1) occupies space
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Figure 1. The cracked thin plate (the thickness is oversized for the sake of clarity).
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So, the x3 coordinate corresponds to the transverse direction, and all the midplane points have their
third coordinate equal to 0. The thickness is 2". Finally, we assume that the plate has a through-the
-thickness crack and that the material is homogeneous and isotropic and of Young’s modulus E and
Poisson’s ratio �.

In plate theory, the following approximation of the three-dimensional displacements is
usually considered

8

<̂

:̂

u1.x1, x2, x3/D u1.x1, x2/C x3 �1.x1, x2/,

u2.x1, x2, x3/D u2.x1, x2/C x3 �2.x1, x2/,

u3.x1, x2, x3/D u3.x1, x2/.

(1)

In these expressions, u1 and u2 are the membrane displacements of the midplane points, u3 is the
deflection, and �1 and �2 are the section rotations. In the case of an isotropic material, the vari-
ational formulation splits into two independent problems: the first, called the membrane problem,
deals only with membrane displacements, whereas the second, called the bending problem, con-
cerns deflection and rotations. The membrane problem corresponds to the classical plane elasticity
problem and has been already treated in many references (see, for instance, [4,5]). So, here, we only
consider the bending problem.

In industrial finite element codes, the most widely used plate model is the Mindlin–Reissner one,
for which the displacement is given by (1). Nevertheless, for reasons mentioned in Section 1, we
choose here to work with the Kirchhoff–Love model, which can be seen as a particular case of (1),
as it is obtained by introducing the so-called Kirchhoff–Love assumptions, which read

ru3 C � D 0 i.e.

²
�1 D @1 u3,

�2 D @2 u3,
(2)

where the notation @˛ stands for the partial derivative with respect to x˛ . A first consequence of
this relation is that the transverse shear strain is identically zero, which avoids the shear locking
problem. A second consequence of (2) is that the section rotation only depends on the transverse
displacement. It means that this displacement is the only unknown function for the bending problem.
For convenience, it will be denoted by u in the following. So, in the Kirchhoff–Love framework and
for a pure bending problem, the three-dimensional displacement reads

8

<̂

:̂

u1.x1, x2, x3/D x3 @1u.x1, x2/,

u2.x1, x2, x3/D x3 @2u.x1, x2/,

u3.x1, x2, x3/D u.x1, x2/.

For the sake of simplicity, we assume the plate is clamped on its boundary and the crack faces
are traction free. Then, the plate is subjected to a volume force, say f of coordinates .f1,f2,f3/,



and two surface forces, say gC and g , applied on the top and bottom surfaces. The variational
formulation (or virtual work formulation) of the Kirchhoff–Love model reads as

8

<̂

:̂

Find u 2H 2
0 .!/ such that for any v 2H 2

0 .!/,
Z

!

2E"3

3.1 �2/

h

.1 �/ @2
˛ˇ uC � �u ı˛ˇ

i

@2
˛ˇ v dx D

Z

!

ŒF v  M˛ @˛v� dx.
(3)

where

 F D
Z "

 "

f3 dx3 C gC3 C g 3 , which is the resulting transverse loading,

 M˛ D
Z "

 "

x3 f˛ dx3 C ".gC˛  g ˛ /, which is the resulting moment loading.

Moreover, ı˛ˇ stands for the Kronecker’s symbol, and the summation convention over repeated
indices is adopted, with Greek indices varying in ¹1, 2º. Finally, H 2

0 .!/ is the classical Sobolev
space of square integrable functions whose first and second derivatives in the distribution sense
are square integrable and which vanish on the boundary, like their normal derivative (see [24],
for instance).

2.2. Asymptotic displacement near the crack tip and fracture modes

In the Kirchhoff–Love plate model, there are two fracture modes. Applying a symmetric bending
leads to the first fracture one, whereas applying an antisymmetric bending or a transverse shear leads
to the second fracture mode (Figure 2).

To characterize them, let us recall that the governing equation related to the bending variational
problem (3) reads

2E"3

3.1 �2/
�2uD F C @˛M˛ , (4)

on the midplane !. It is a bi-Laplacian problem for which the singularities are well known [21]. So,
close to the crack tip, the displacement may be written as u D ur C us , where ur stands for the
regular part of the transverse displacement and belongs to H 3.!/. The singular part us reads

us.r , �/DAKL r3=2

�

K1

�
�C 7

3.�  1/
cos

3

2
� C cos

�

2

�

CK2

�
3�C 5

3.�  1/
sin

3

2
� C sin

�

2

��

(5)

in polar coordinates relatively to the crack tip (Figure 3), with

AKL D
p

2

2

1 �2

E".3C �/
. (6)

This singular displacement belongs to H 5=2 �.!/ for any � > 0. In addition, the scalar coefficients
K1 and K2 are the so-called stress intensity factors, which are widely used in fracture mechanics
for crack propagation.

Mode I Mode II

Γ Γ

Figure 2. Fracture modes for Kirchhoff–Love bending model (�C is the crack). Left: a symmetric bending
leads to mode I. Right: a shear bending leads to mode II.
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Figure 3. System of polar coordinates relative to the crack tip (the crack is in bold line).

To conclude, we recall that the Kirchhoff–Love plate theory corresponds to the limit of the three-
dimensional elasticity theory when the thickness vanishes. However, the singularities we present
here are deduced from the Kirchhoff–Love theory and not from the three-dimensional elasticity
theory. The reader interested by the link between the singularities of these two theories is referred
to [25].

3. EXTENDED FINITE ELEMENT APPROXIMATION OF THE KIRCHHOFF–LOVE
MODEL

3.1. Classical finite element approximation

Let us introduce now the finite element discretization of the variational formulation (3). In order to
have a conformal method, the finite element space V h has to satisfy V h � H 2

0 .!/. This leads to
the use of C1 finite elements. Among the available elements having this regularity, the reduced HCT
triangles [20, p. 356–357] and FVS quadrangles [20, p. 359–360] are of particular interest. For both
elements, the triangle (respectively quadrangle) is divided into three (respectively four) subtriangles
(Figure 4). The basis functions are P3 polynomials on each subtriangle and matched C1 across each
internal edge. In addition, to decrease the number of degrees of freedom (dof), the normal derivative
is assumed to vary linearly along the external edges of the elements (this assumption does not hold
on the internal edges). At the end, there are only three dof on each node for both elements: the value
of the function and its first derivatives. So, these elements have the two following advantages:

� The computational cost is limited to three dof for each node of the mesh, like a classical
Mindlin–Reissner element (the deflection and the two section rotations).

external edges

internal edges

external edges

internal edges

Figure 4. Hsieh–Clough–Tocher triangle and Fraejis de Veubeke–Sanders quadrangle. Location of degrees
of freedom and subtriangles.



� The theoretical error is in O.h/ and O.h2/ for the H 2 and L2 norm (respectively), on regular
problems (h stands for the mesh parameter). The minimum regularity assumption for this error
estimate to hold is that the exact solution belongs to H 3.!/ [26].

So, the reduced HCT or FVS elements and standard Mindlin elements have the same features as
far as numerical cost and accuracy are concerned.

3.2. Extended finite element method enrichment

To define our XFEM enrichment strategy, we follow ideas presented in previous papers [4, 5]. As
usual, the discontinuity of the displacement across the crack is represented using Heaviside-like
function, which is multiplied by the finite element shape functions. For the nonsmooth enrichment
close to the crack tip, an enrichment area of fixed size is defined, and the nonsmooth functions are
added inside all this area. The strategy that is used in this paper is inspired by the so-called XFEM
dof gathering with pointwise matching, introduced in [4] and developed for plates in [22].

As noticed in [9], such function enrichment scheme does not satisfy a local partition of unity
because enriched basis functions do not vanish at the edges of enriched elements. To solve this
problem, the authors introduced the so-called shifted Heaviside function, which is of particular
interest when the so-called branch functions, which reads

p
r cos.�=2/ in their case, is not used for

the enrichment, as they did in their paper. However, here, we use the branch functions. So we do not
use the ‘shifted’ Heaviside function because, first, optimal convergence results for our finite element
scheme were already obtained numerically [22] and, second, Nicaise et al. [27] have theoretically
proven that an approach such as [4] is optimal.

Let us now describe more precisely the enrichment. So, let � be the boundary of the enrichment
area (Figure 5). It cuts ! into two subdomains: the enrichment area, say !1, and the rest of the
domain, say !2. Then, the support of the added singular functions is the whole enrichment area, but
they are not multiplied by the finite element basis functions. So, instead of six additional dof per
node inside the enrichment area, there are only two singular dof for the whole system. Consequently,
if the unknowns defined on each subdomain !i are denoted by uh

i , their expressions read

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

uh
1 D

X

i2N1

ai 'i C
X

i2J1

bi H 'i C
2

X

iD1

ci Fi ,

uh
2 D

X

i2N2

ai 'i C
X

i2J2

bi H 'i ,

(7)

where 'i are the basis functions of the reduced HCT/FVS elements. The jump of H function is
located on the crack; the set J denotes the dof whose shape function support is completely crossed
by the crack (Figure 6). Furthermore, N1 and N2 are the sets of dof that are located in !1 and !2

(N1 \N2 is not empty and corresponds to the set of nodes that is on the boundary �). In the same

2ω

Γ : boundary

between each domain

1ω

Figure 5. Set of elements that represents the support of the nonsmooth functions.



Figure 6. Set of nodes to be enriched along the crack.

way, Ji is the set of dof of J that is located in !i , and J1 \ J2 is not empty for the same reason.
Finally, the singular enrichment functions, derived from (5), are

8

ˆ̂

<̂

ˆ̂

:̂

F1 D r3=2

�
�C 7

3.�  1/
cos

3

2
� C cos

�

2

�

,

F2 D r3=2

�
3�C 5

3.�  1/
sin

3

2
� C sin

�

2

�

.

Naturally, a matching condition is needed at the interface between the enrichment area and the
rest of the domain, in order to insure the continuity of the function and its derivatives. The following
relations were chosen at this aim:

8

ˆ̂
<

ˆ̂
:

Z

�

uh
1 �D

Z

�

uh
2 � , 8� 2ƒ,

Z

�

@nuh
1 �D

Z

�

 @nuh
2 � , 8� 2M ,

where ƒ and M are appropriate multiplier spaces. Here, ƒ is the space of piecewise polynomials
of degree 2, and M is the space of the piecewise polynomials of degree 1, and we have checked in
[22] that this choice keeps an optimal rate of convergence for the finite element scheme. Finally, let
us observe the change of sign in front of the normal derivative @nui is because the outside normal
vector has an opposite sign whether it is used in @nuh

1 or @nuh
2 .

4. COMPUTATION OF STRESS INTENSITY FACTORS

In industrial applications dealing with cracked structures, the plate displacement is not straightfor-
wardly meaningful in terms of crack propagation. The SIF are linked to the energy release rate
G, and they provide such an information (we have K2

1 C K2
2 proportional to G). However, the

calculation of SIF usually needs the use of some specific post-treatments, such as computation
of J-integral.

4.1. First method: direct estimate

An interesting feature of the previously described methodology is that it can lead to a direct esti-
mate of SIF. Comparing expressions of the asymptotic displacement (5) with that of the numerical
displacement (7), it appears that, if the method is convergent, the finite element coefficients .ci /i

should be close to .Ki /i , up to a multiplicative constant, which we shall calculate now.



Actually, in the expression of the singular displacement of Kirchhoff–Love theory (5), it appears
as two singular modes. However, in the aforementioned XFEM formulation, the singular enrich-
ments F1 and F2 are exactly these two singular functions. In particular, in the subdomain !1

containing the crack tip, the numerical solution reads

uh
1 D

X

i2N1

ai 'i C
X

i2J1

bi H 'i C
2

X

iD1

ci Fi .

To show how coefficients ci can be good approximations of SIF, up to a multiplicative constant to
be determined, let us go back to the mathematical definitions of the SIF, in Kirchhoff–Love theory,
which are

K1 D lim
r!0

p
2r �22.r , � D 0, x3 D "/,

K2 D lim
r!0

3C �

1C �

p
2r �12.r , � D 0, x3 D "/.

(8)

The singular stresses are in O.1=
p

r/ in the vicinity of the crack tip. However, if we calculate the
components �12 and �22 resulting from numerical displacement uh

1 , multiply the result by
p

r , and
make r tend to 0, all the regular terms are canceled and only the coefficients ci remain, up to a mul-
tiplicative constant. So these coefficients fit well with the SIF definitions. We only have to evaluate
the multiplicative constant.

Now, let us give the calculation in details for K1, the same procedure being convenient for
K2. Under the assumption of isotropic and homogeneous material, we recall the link between �22

and u:

�22 D x3

E

1 �2

�

�@2
11uC @2

22u
�

.

Replacing u by uh
1 in this expression and reporting it in (8) leads to

Kh
1 D 

E "
p

2

1 �2

0

B
B
B
@

� lim
r!0

p
r @2

11uh
1

„ ƒ‚ …

l1

C lim
r!0

p
r @2

22uh
1

„ ƒ‚ …

l2

1

C
C
C
A

.

These two limits l1 and l2 exist. Because the most singular part of uh
1 is in O.r3=2/, we have

@2
˛ˇ

u D O.r 1=2/. Apart from the crack, the element edges, and the internal boundaries of the

HCT/FVS elements, the basis functions of uh
1 are C2, so @2

˛ˇ
uh

1 exists, and we have

lim
r!0

p
r @2

˛ˇ uh
1 D lim

r!0

X

i

ci

p
r @2

˛ˇ Fi ,

as

lim
r!0

p
r @2

˛ˇ 'i D 0I lim
r!0

p
r @2

˛ˇ 'i H D 0.

The calculation of the second derivatives of Fi functions is not difficult and gives

lim
r!0

p
r @2

11F1.r , 0/D �C 1

�  1
, lim

r!0

p
r @2

22F1.r , 0/D �  3

�  1
,

lim
r!0

p
r @2

11F2.r , 0/D 0, lim
r!0

p
r @2

22F2.r , 0/D 0.

These expressions show that F2 is not involved in the estimation of Kh
1 . We deduce that

l1 D c1Œ.�C 1/=.�  1/� and l2 D c1Œ.�  3/=.�  1/�, and finally,

Kh
1 D 

p
2 E " .3C �/

1 �2
c1.



The calculation for K2 can be carried out the same way. The definition (8) involves �12, which is
proportional to @2

12u. So, here, we have to calculate the cross derivatives of functions Fi and obtain

lim
r!0

p
r @2

12F1.r , 0/D 0, lim
r!0

p
r @2

12F2.r , 0/D �C 1

�  1
,

which gives

Kh
2 D 

p
2 E " .3C �/

1 �2
c2.

As the numerical values of coefficients ci result directly from the solving of the linear system asso-
ciated with the calculation of uh

1 , no post-treatment is necessary to obtain approximations Kh
1 and

Kh
2 of the SIF.
To conclude this section, let us remark that a similar idea has already been described and tested

in [23]. In this paper, a numerical method, close to the one we propose here, is applied on a
two-dimensional elasticity problem. This method uses the XFEM formulation named ‘geometri-
cal enrichment’ in [5] and ‘XFEM with fixed enrichment area’ in [4], except that an enrichment
zone of fixed area is not defined. The authors preferred to select from one to three layers of nodes
surrounding the crack tip. Three meshes are used, the mesh parameter being divided by two at each
refinement. With a single layer of enriched nodes, the error on the SIF is around 15%, and the mesh
refinement does not improve significantly the accuracy. Adding a second layer of enriched nodes
makes the error fall to globally 1% and, with the third layer, under 1%. However, this paper shows
clearly that the mesh refinement does not lead to a strict decrease of the error. Finally, let us mention
a recent work by Nicaise et al. [27] that shows a rather slow theoretical convergence of order

p
h

for bi-dimensional elasticity with XFEM.

4.2. Second method: J-integral computation

4.2.1. Method description and formulation. For Kirchhoff–Love theory, the expression of the
J-integral has already been established in [17]. Its expression is

J D 1

2

Z

�

m˛ˇ @˛ˇ u b1 dl C
Z

�

m˛ˇ bˇ @1˛u dl  
Z

�

@˛ m˛ˇ bˇ @1u dl ,

where m˛ˇ stands for the bending moment and b˛ for the outward unit vector normal to the contour
of integration � . However, this expression is not the one used in numerical computations, because
it does not allow separating the contributions of each SIF in the energy release rate. In addition, it
needs to carry out integrations on contours, which is not well suited for finite element computations.
The usual technique allowing to do accurate SIF calculations via J-integral is described in [1]. It is
based upon works of Destuynder, described in details, for instance, in [19].

Now, the formulation adapted to the case of Kirchhoff–Love plate theory is presented. It follows
quite closely the one described in [1], which deals with the case of two-dimensional elasticity. So,
J-integral can be rewritten as

J D
Z

�

m˛ˇ

�

@1˛u bˇ  
1

2
@˛ˇ u b1

�

dl  
Z

�

@˛ m˛ˇ bˇ @1u dl .

Following [1], we introduce two states. State (1)
�

m
.1/

˛ˇ
, u.1/

�

matches the numerical solution of

SIF that we want to evaluate. State (2)
�

m
.2/

˛ˇ
, u.2/

�

is an auxiliary state corresponding to the

asymptotic displacement of mode I or II, depending on the SIF we want to calculate. The J-integral
for the sum of these two states reads
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It is developed as

J .1C2/ D J .1/ C J .2/ C I .1,2/, (9)

where I .1,2/ is the so-called interaction integral:
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We introduce now the formula, established in [17], which links J-integral to SIF:

J D 2"�.1C �/
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1 CK2
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.

We rewrite it in the case of the sum of the two states and find
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Because the right-hand sides of (9) and (11) are equal, we deduce

I .1,2/ D 4"�.1C �/
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1 K
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So if, in this relation, state (2) is mode I (with K
.2/
1 D 1 and K

.2/
2 D 0), the value of the SIF K1 is

obtained with the value of the interaction integral, because the previous equation becomes

I .1,2/ D 4"�.1C �/

3E.3C �/
K

.1/
1 . (12)

K2 can be calculated in the same way.

4.2.2. Transformation of the interaction integral into a domain integral. The previous section
shows that calculating interaction integral (10) with singular crack fields enables deducing the
values of the SIF with (12). However, for numerical purpose, the interaction integral is transformed
into a domain integral. Here again, we follow [1].

First, let us rewrite the interaction integral (10) in a more compact form:
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The value of I .1,2/ remains unchanged if the integrand is multiplied by a regular function, say q,
whose value is 1 on the area defined by � and 0 on another contour C0 that encloses � . So, if we
assume there is no surface force applied on disc A defined by contour C0 ,I .1,2/ also reads

I .1,2/ D
Z

�

 

Aˇ Bˇ CB B1

�

q dl ,

where C is defined by C D � [ CC [ C [ C0, whereas B denotes the outward normal to C

(Figure 7). Then, using divergence theorem and taking the limit of contour � , when � tends to the
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Figure 7. Integration contours for I .1,2/ calculation.

point .0, 0/, the contour integral becomes a surface one, and domain A becomes the complete disc
that contains the crack tip and that is bounded by C0. Thus, we have
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A direct calculation shows easily that @ˇAˇ C @1B D 0. Hence, we obtain
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Finally, setting D D 2E"3=3.1 �2/, we can observe that
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Hence, the final expression of interaction integral reads
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4.2.3. Numerical calculation of the interaction integral. Now, our purpose is to calculate the inter-
action integral I .1,2/ given by (13), in the case of Kirchhoff–Love model, treated with reduced
HCT/FVS elements. Expression (13) contains three terms. There is no difficulty for the two ones that

contain the bending moments m
.i/

˛ˇ
without derivatives. But the third term, which includes @˛m

.i/

˛ˇ
,

is harder to handle, as it involves third-order derivatives of the displacements. On the one hand, the
functions we integrate are surely not in H 3.�/. On the other hand, it cannot be expected that the
third derivatives of a function may be correctly approximated by reduced HCT/FVS elements: for
these elements, error estimates are only obtained up to the second derivatives. So we will transform
(13) in order to avoid these third derivatives.



The expression we want to modify reads

X D 
Z

A

�

@˛m
.1/

˛ˇ
@1u.2/ C @˛m

.2/

˛ˇ
@1u.1/

�

@ˇ q dA.

It is split into two terms:
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X2 can be computed without any particular difficulty, as it depends only on the crack tip singu-
lar functions. It only needs computation of third derivatives of these singularities. X1 is integrated
by parts:
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There is no problem concerning X11. As far as X12 is concerned, in the case where u.2/ is the exact
mode I, it can be checked that @1u.2/ cancels along the crack (this term cancels when � D �) and
then X12 D 0. But in the case of mode II, X12 calculation is more difficult: this term differs from
0 but only along the crack where @ˇ q is not 0. It is along the intersection between the crack and
the boundary of the ring of integration. Nevertheless, in our numerical tests, for mode II, we shall
neglect this term. Despite this simplification, computations of K2 were not less precise than those
of K1.

To conclude this section, let us present briefly some features of numerical implementation. The
calculation of interaction integral I .1,2/ needs to define explicitly function q. Let us recall that this
function is identically equal to 1 inside an area containing the crack tip and 0 outside a zone enclos-
ing the first one, and q matches regularly from one zone to the other. Because only derivatives of
q are needed in (13), those functions differ from 0 on a ring between the two zones. In practice,
we define a ring of elements around the crack tip on which the J-integral is evaluated (Figure 8). In
our numerical tests, this ring is made of elements located at a certain distance RJ from the crack
tip. Furthermore, the function q is represented on the reduced HCT/FVS basis. The nodal values
are set to 1 on the internal boundary of the ring and to 0 on the external boundary, whereas the dof
associated to the derivatives are set to 0 on both boundaries.

Figure 8. Ring of elements enclosing the crack tip.



5. NUMERICAL RESULTS

5.1. Description of the numerical study

The numerical experiments presented in this section were performed with the open-source finite
element library GetfemCC [28].

5.1.1. Test cases. Two test cases with a straight-through crack are considered in this paper. The
solution of the first one is the sum of the two singular modes:

uex D F1 CF2.

The sides of the crack follow a free edge condition. On the rest of the domain boundary, a nonho-
mogeneous Dirichlet condition, whose value corresponds to uex , is given. Consequently, the exact
values of K1 and K2 are 1=AKL, where AKL is defined by (6). Finally, the plate we took is the
square Œ 0.5, 0.5�� Œ 0.5, 0.5�, with the crack tip at the origin.

The second test case is more classical and comes from [29]. It consists in a square plate with
a central straight-through crack of length 2a, and a constant moment M0 is applied on the edges
parallel to the crack (Figure 9). The dimensions of the plate are said to be ‘infinite’, which means
that reference SIF values are correct only if the crack is small compared with the dimensions of the
plate. These reference values are

K1 D
3 M0

p
a

2 "2
I K2 D 0.

For the numerical tests, we took a plate of edge 1, with a crack of size 2a D 0.22. This remains
significant compared with that in [30], where calculations are carried out with 2a D 0.18. Because
the problem is symmetric, only half of the domain is considered.

5.1.2. Goals of the study. The aim of the numerical experiments is to study the error made by our
SIF calculation methods, with respect to the following parameters:

� mesh parameter h;
� enrichment radius R, which corresponds to the ‘size’ of !1 (Figure 5);

2a

M

M 0

0

Figure 9. Second test case. Plate with central crack subjected to moments applied on two edges.



� integration ring radius RJ , for J-integral method only; and
� structured or nonstructured meshes.

In addition, for J-integral, results are compared with that of nonenriched FEM.
Another goal of these numerical experiments is to bring elements of answer to the question of the

influence of parameters R and RJ and to propose eventually some practical rules for the choice of
these parameters, depending on the mesh size h. Indeed, in [5] and [4], the enrichment area is a disc,
of radii 0.05 and 0.1, respectively. In [22], we took RD 0.15. However, in a more general manner,
we think the choice of R depends on the result we try to set. For example, to show the conver-
gence of an enriched FEM in L2 or H 2 norm, taking a fixed value independent of h is convenient.
Nevertheless, on the most refined meshes, the choice of fixed R leads to enrich numerous layers
of elements, which may be not necessary if we use only one mesh. So, in our study, we introduce
two strategies for the choice of the size R of enriched domain !1. First, we consider several fixed
values of R. Second, R depends on h, in such a way that the enrichment area covers several layers
of elements around the crack tip. It means R is equal to kh, where k is an integer we have taken
between 1 and 5. Let us remark also that taking RD h is very close to the first XFEM formulation
[1,15], where only the element containing the crack tip is enriched by singular functions. Finally, as
the results with the fixed value of R were not more accurate than those with R depending on h, we
only present results with RD kh in this paper. For more details, the reader is referred to [31].

5.2. Direct estimate

This first method was tested on the two aforementioned test cases, with triangular and quadrangular,
structured and nonstructured meshes, for several values of the mesh parameter h. Moreover, we have
tested RD kh, where k goes from 1 to 5.
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Figure 10. Stress intensity factors calculations—Direct estimate—First test case—Triangular meshes.



The results for the first test case are given in Figures 10 and 11. They show that the method
provides very good estimates of SIF. The relative error is always lower than 5% and often lower
than 1%. Let us remark that an error of 5% is precise enough for many industrial applications.
Nevertheless, the convergence can be very slow on nonstructured meshes. Maybe it is due to high
conditioning of the method, which reaches 1012 on such meshes.

For the second test case, the size of the crack is a D 0.11 on half domain, which is the rectangle
Œ0, 0.5� � Œ 0.5, 0.5�. So the crack is smaller than in the first test case. Moreover, the enrichment
area must not touch the boundary 0 � Œ 0.5, 0.5�, because it corresponds to a symmetry condition.
Indeed, singular enrichment does not satisfy this condition. Here, we use meshes, of which the level
of refinement is equivalent to those of the first test case. It leads to a more drastic constraint on the
choice of R. We also tested the same values of k, but a high value of k needs a more important
initial level of refinement. For example, for k D 5, the less refined mesh, in structured quadrangular
meshes, needs around 60 elements on the longest edge of the domain. This explains why some
curves are not complete. However, when this level of refinement is reached, the error is lower than
5%. The results are presented in Figure 12.

Despite its slow convergence, the ‘direct estimate’ method is simple and efficient and provides
SIF values close to the exact ones. According to the tests, increasing R improves the results. So,
because of the slow convergence, it may be more interesting to increase R than to refine the mesh.
We observe also thatRD 5h enables reaching always a satisfactory accuracy. It leads us to propose
the following practical rule. Given a crack of length a, the domain has to be meshed with a minimum
h around a=5, and the radius of the enrichment area is taken equal to 5h. Let us remark that this rule
indicates that the smaller the crack is, the more the mesh has to be refined in order to take care of
the crack. This is in accordance with intuition: the smaller a crack is compared with element size,
the less it has influence on global solution. A very refined mesh is then necessary in order to ‘catch’
its effect.
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Figure 11. Stress intensity factors calculations—Direct estimate—First test case—Quadrangular meshes.
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Figure 12. Stress intensity factors calculations—Direct estimate—Second test case.

5.3. J-integral

The same numerical experiments as with the previous section were carried out. But, here, the radius
of the ring of integration RJ has also been investigated.

5.3.1. First test case. We have observed that, even if the results are accurate, from one mesh to
another, the error is not strictly decreasing, as the value provided by J-integral oscillates around the
exact value. Hence, a mesh can give an error slightly greater than a coarser one. That is why we give
convergence curves only on the first test case and on structured meshes, for which less oscillatory
results are obtained.
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Figure 13. Stress intensity factors convergence curves—J-integral—First test case—Triangular meshes.



So Figures 13 and 14 present convergence curves for structured meshes, both triangular and
quadrangular. For this particular purpose, the radius of the enrichment area R must be fixed, and it
is equal to 0.15 here. The comparison with a nonenriched FEM shows that XFEM improves the SIF
values and that the rate of convergence may be slightly better.
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Figure 14. Stress intensity factors convergence curves—J-integral—First test case—Quadrangular meshes.
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Now, let us present a more global study in which the numerical values of SIF are investigated,
with respect to h, R, and RJ . Figure 15 gives results for R D kh on nonstructured triangular
and quadrangular meshes. Moreover, only results on K1 were shown, with curves for K2 being
very similar [31]. For brevity, we do not present structured meshes’ results. In fact, they do not
bring additional information, and they have already been presented in the case of direct estimate
(Figures 13 and 14).

So, our results show that the error often remains lower than 5%. On structured meshes, this error
is generally less than 1% [31]. On nonstructured meshes, taking R D 3h is enough to obtain an
error lower than 5% on all meshes. Such a value for R seems to be minimal. Besides, on coarser
meshes, with RD h, the error is often greater than 10%.

All in all, results are relatively stable with respect to ring radius RJ . To conclude, it can be
observed that Figure 15 shows oscillations. Let us notice that it is not the case for regular meshes
[31]. That is why we explain it by the fact that, in our calculations, the ring of integration is only
a one-element width, which may be too irregular on nonstructured meshes to have stable results.
Naturally, this explanation should be numerically tested. However, the error level on SIF appears to
be good enough to avoid a more complex estimate.
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5.3.2. Second test case. We recall that the crack is smaller here, which limits the choice of R and
RJ . Again, we take R D 3h for k D 1, : : : , 5. In all cases, the radius of the ring of integration RJ

varies from 0.05 to 0.11, so that this ring can touch the boundary. Our results tend to show that the
precision depends mainly on RJ . When RJ increases, the approximate SIF is closer to the exact
one, and the best values are obtained for the greatest. Finally, except with coarser meshes, the best
value is always lower than 5%, whereas the meshes with less than two elements on the crack induces
significant errors. Numerical results are brought together in Figure 16 for nonstructured meshes.

To conclude on this second test case, we observe that a ring of integration having a great value as
possible must be chosen, in order to have the most accurate SIF. Then, the rule of construction, we
propose, is still to take hD a=5 (for a crack of length a) and RD 5h.

6. CONCLUDING REMARKS

This paper addresses the modelization of bending plates with through-the-thickness cracks in
the framework of linear elastic fracture mechanics. As very thin plates are considered, the
Kirchhoff–Love plate model is used. The main point, studied in this paper, is the numerical
computation of SIF. For that purpose, two strategies are described and evaluated on two test cases.

First, the ‘direct estimate’ method is simple and efficient and provides SIF values close to the
exact ones. According to the tests, increasing the radius R of the enrichment area improves the
results. Moreover, it seems more interesting to increase R than to refine the mesh. Second, a
‘J-integral’ approach, which gives also good results, is derived. Furthermore, the comparison with a
classical FEM shows that XFEM improves the SIF values.

Finally, a practical rule may be emphasized. In all our tests, a radius R D 5h enables reaching
always a satisfactory accuracy, for both SIF computation strategies. To make it possible, it leads to
the following mesh rule. Given a crack of length a, the domain has to be meshed with a minimum h

around a=5, and the radius of the enrichment area will be taken equal to 5h.
Naturally, some developments and applications of this work have to be done. The first one deals

with crack propagation as in [7, 12, 13]. The second one, which is more challenging, concerns
cohesive models and shells, for which ideas developed in [9, 12, 13], among others, are a good
starting point.
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