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Abstract. In this paper, we present local and nonlocal algorithms for video de-
noising and simplification based on discrete regularization on graphs. The main
difference between video and image denoising is the temporal redundancy in
video sequences. Recent works in the literature showed that motion compensa-
tion is counter-productive for video denoising. Our algorithms do not require any
motion estimation. In this paper, we consider a video sequence as a volume and
not as a sequence of frames. Hence, we combine the contribution of temporal and
spatial redundancies in order to obtain high quality results for videos. To enhance
the denoising quality, we develop a robust method that benefits from local and
nonlocal regularities within the video. We propose an optimized method that is
faster than the nonlocal approach, while producing equally attractive results. The
experimental results show the efficiency of our algorithms in terms of both Peak
Signal to Noise Ratio and subjective visual quality.

1 Introduction

The last decade has witnessed an overwhelming proliferation of video sequences due
to technological progress. These sequences are often of poor quality, because of the ac-
quisition system, the compression algorithm or the transmission process that may have
been utilized. For instance, low quality videos that have been captured with webcams
or mobile phones are now ubiquitous. Video denoising aims at enhancing the quality of
the video by reducing as much as possible the noise. The main challenge is to achieve
the best trade-off between reducing noise and preserving significant structural elements.

Many methods have been proposed to denoise video sequences, and may be clas-
sified primarily based on the importance of motion estimation. Indeed, motion consti-
tutes the fundamental challenge in video denoising. In this perspective, some methods
involve a preliminary phase for motion estimation that is followed by the denoising
scheme, whereas other approaches incorporate the motion estimation into the denois-
ing algorithm with or without smoothing constraints.

However, recent works have shown that resolving the motion estimation not only
is useless for the denoising problem but it also induces negative effects. Among these
works, Protter et al. [1] based their approach on the diffusion of a dictionary. Also, Buades
et al. [2] worked on nonlocal filtering and demonstrated how the aperture problem can
be taken advantage of. A variant of nonlocal filtering was presented by Boulanger et al.
[3] using patches of variable sizes.
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These nonlocal filters can be viewed as a regularization based on nonlocal function-
als. Kindermann et al. [4] were the first to interpret nonlocal means and neighborhood
filters as regularization based on nonlocal functionals. Later, Gilboa and Osher have
proposed a quadratic functional of weighted differences for image regularization and
semi-supervised segmentation. Elmoataz et al. [5] recently introduced a nonlocal dis-
crete regularization framework, which is the discrete analogue of the continuous Eu-
clidean nonlocal regularization functionals by Gilboa and Osher [6]. This method is
applicable to the images, meshes, manifold and data processing using weighted graphs
of arbitrary topologies.

In this paper, we extend the nonlocal discrete regularization framework of Elmoataz
et al. to the arena of video denoising.

In Section 2, we state the denoising problem in terms of regularization on graphs.
Thereafter, the adaptation to videos is detailed in Section 3 where we propose a lo-
cal / nonlocal algorithm and its optimized variant. We report and discuss in Section 4
the empirical results for our proposed methods for video denoising and simplification.
In addition to the visual quality of our results, we utilize the Peak Signal to Noise Ratio
(PSNR) as a performance measure.

2 Regularization on Weighted Graphs

2.1 Graph Derivatives

Let G = (V, E) be an undirected graph, where V = {v1, v2, . . . , vn} is a finite set
of vertices and E ⊆ V × V is a finite set of edges. Two vertices u and v are said to
be adjacent if the edge (u, v) ∈ E. A graph is weighted if we associate to it a weight
function w : V × V → R

+, that satisfies the following conditions:

∀u, v ∈ E, w(u, v) = w(v, u), w(u, v) > 0, if u �= v, w(u, u) = 0, otherwise.

We consider now the derivative operators on graphs we need for regularization. Let
H(V ) be a Hilbert space of real-valued functions on vertices. A function f : V → R

in H(V ) assigns a vector fv to each vertex v in V . The local variation of the weighted
gradient operator ‖�‖ of a function f ∈ H(V ) at a vertex v is defined by:

‖�f (v)‖ =
√∑

u∼v

w(u, v)(f(v) − f(u))2.

This can be viewed as a measure of the regularity of a function around a vertex.
The weighted p-Laplace operator, with p ∈ ]0, +∞[, at a vertex v is defined on

H(V ) by:

(Δpf)(v) =
1
p

∑
u∼v

γ(u, v) (f(v) − f(u)) , where,

γ(u, v) = w(u, v)
(
‖�f(v)‖p−2 + ‖�f (u)‖p−2)
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2.2 p-Laplace Regularization on Weighted Graphs

Consider a function f0 that could be an image, a video or any discrete data set. This
function is defined over the vertices V of a weighted graph Gw = (V, E, w) by
f0 : V → R. f0 is an observation of an original function f corrupted by a noise
n :f0 = f + n.

The discrete regularization of f0 ∈ H(V ) using the weighted p-Laplace operator
consists in seeking a function f∗ ∈ H(V ) that is not only smooth enough on Gw, but
also close enough to f0. It can be formalized by the minimization of two energy terms:

f∗ = min
f∈H(V )

{
1
p

∑
v∈V

‖�f(v)‖p +
λ

2
‖f − f0‖2

H(V )

}
(1)

where p ∈]0, +∞[ is the smoothness degree, λ is the fidelity parameter, called the La-
grange multiplier, which specifies the trade-off between the two competing terms, and
�f represents the weighted gradient of the function f over the graph. The solution of
problem (1) leads to a family of nonlinear filters, parameterized by the weight function,
the degree of smoothness, and the fidelity parameter.

The first energy in (1) is the smoothness term or regularizer, whereas the second is the
fitting term. Both energy functions in Ep are strictly convex functions of f . In particular,
by standard arguments in convex analysis, Problem (1) has a unique solution, for p ≥ 1,
which satisfies:

(Δpf(v)) + λ(f(v) − f0(v)) = 0, ∀v ∈ V .

3 Video Processing Based on Video Regularization

To denoise video sequences, one can consider a video sequence as a simple sequence
of independent frames and process each frame separately. Evidently, this would yield
poor results from viewpoints of performance and denoising quality. A video sequence
mainly differs from a sequence of images in that the consecutive frames of a video are
usually related due to the temporal redundancy from one frame to another. Therefore,
the temporal dimension is an essential feature that should be integrated in the denoising
algorithm itself. The extension to video sequences is based on the integration of time
into the regularization process. We will take advantage of the high temporal redundancy
of the data due to the high frame rates, which enhances the quality of our regularization.
Hence, we develop a spatiotemporal regularization on weighted graphs.

3.1 Proposed Algorithm

We consider the video sequence as a function f defined over the vertices of a weighted
graph Gk1,k2,k3 = (V, E, w), where k1, k2, k3 ∈ N

3. A vertex u is defined by a triplet
(i, j, t) where (i, j) indicates the spatial position of the vertex and t, which is a frame
number, indicates the temporal position of the vertex within the video sequence. We
denote by u ∼ v a vertex u that belongs to the neighborhood of v which is defined as
follows:

Nk1,k2,k3(v) =
{
u = (i′, j′, t′) ∈ V : |i − i′| ≤ k1, |j − j′| ≤ k2, |t − t′| ≤ k3

}
.
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Similarly, we extend the definition of the patch to videos to obtain 3D patches. A patch
around a vertex v is a box of size rx × ry × rt, denoted by B(v). Then, we associate to
this patch a feature vector defined by:

F (f0, v) = f0(u), u ∈ B(v).

The weight function w associated to Gk1,k2,k3 provides a measure of the distance
between its vertices that can simply incorporate local, semi-local or nonlocal features
according to the topology of the graph and the image.
We consider the following two general weight functions:

wL(u, v) = exp

(
−|f(u) − f(v)|2

2σ2
d

)

wNL(u, v) = wL(u, v).exp

(
−‖F (f0, u) − F (f0, v)‖2

h2

)
,

where σ2
d depends on the variations of |f(u)− f(v)| over the graph. h can be estimated

using the standard deviation depending on the variations of ‖F (f0, u)−F (f0, v)‖ over
the graph.

wL(u, v) is a measure of the difference between f(u) and f(v) values, and is used in
the local approach of denoising. In addition to the difference between values, wNL(u, v)
includes a similarity estimation of the compared features by measuring a L2 distance
between the patches around u and v. It is the nonlocal approach.

To denoise video sequences, we use the Gauss-Jacobi iterative algorithm presented
in [5]. For all (u, v) in E:

f (0) = f0

γ(k)(u, v) = w(u, v)
(
‖ � f (k)(v)‖p−2 + ‖ � f (k)(u)‖p−2

)

f (k+1)(v) =
pλf0(v) +

∑
u∼v γ(k)(u, v)f (k)(u)

pλ +
∑

u∼v γ(k)(u, v)

(2)

where γ(k) is the function γ at the step k. The weights w(u, v) are computed from f0,
or can be given as an input.

At each iteration, the new value f (k+1), at a vertex v, depends on two quantities, the
original value f0(v) and a weighted average of the existing values in a neighborhood of
v. This shows that the proposed filter, obtained by iterating, is a low-pass filter which
can accommodate many graph structures and weight functions. For more details on the
Gauss-Jacobi iterative algorithm, the reader is referred to [5].

Observe that for the specific parameters p = 2, λ = 0 and after one iteration we
retrieve the nonlocal means solution of Buades et al. [2].

3.2 Algorithm Optimization

The nonlocal method compares all the patches within a volume of size k1×k2×k3 with
the central patch of this volume, and is observed to be slow. In the sequel, we reduced
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the processed data to X% and made an optimized nonlocal version. In our work, for
each vertex v, we randomly select vertices within the 3D window, W (v), centered in v.
Hence, the optimized nonlocal algorithm is as follows:

Algorithm. For each vertex v of the graph:

1. Construct NW (v), the nonlocal neighborhood of v: Select randomly X% of the
vertices in W (v) and out of the patch B(v).

2. Compute the patch similarity between B(v) and B(u) for all u ∈ NW . All the
patches B(u) must be included in W (v).

3. Update the value f(v) according to (2)

The procedure described above is iterated N times. Alternatively, we utilize a termi-
nation criterion and the algorithm converges in fewer iterations. As a consequence, we
accelerate the nonlocal method, and obtain equally attractive results as demonstrated in
Section 4.

4 Experimental Results

To test our algorithms, we considered the following parameters : 3 × 3 × 3 patches,
7 × 7 × 3 windows, p = 2, and λ = 0. We corrupted sequences with a synthetic
zero-mean additive white Gaussian noise n having a variance σ2.

4.1 Video Denoising

As shown in Figure 1, the nonlocal method provides the best visual result. Noise is
highly reduced while thin structures such as textures and fine details are well preserved.

(a) Original (b) Noisy, σ = 10

(c) Frame N

Fig. 1. Illustration of our three denoising methods with parameters p = 2, λ = 0 and h = 80
after ten iterations. (a) original image; (b) noisy image; (c), (d) and (e) : from left to right: local,
nonlocal and optimized nonlocal results.
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(d) Frame N + 4

(e) Frame N + 8

Fig. 1. (continued)

Table 1. Comparison of the PSNR, expressed in dB, of noisy sequences (noise level σ = 10)
denoised by our methods after one iteration

Sequence Size Input Local Nonlocal Optimized nonlocal

Flower 180 × 144 × 126 22.96 23.82 25.15 25.87
Tennis 216 × 172 × 126 24.68 27.12 28.65 28.18
Football 180 × 144 × 105 24.68 25.14 26.02 26.68
Mobile 180 × 144 × 251 21.24 24.31 27.08 26.22

(a) Original (b) Noisy, σ = 10

Fig. 2. Illustration of our three denoising methods with parameters p = 2, λ = 0 and h = 30
after ten iterations. (a) original image; (b) noisy image; from left to right: local, nonlocal and
optimized nonlocal results.
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Fig. 3. PSNR comparison between video and image denoising results

(a) Flower Sequence (b) Mobile Sequence

(c) Tennis Sequence (d) Football Sequence

Fig. 4. PSNR comparison between our different denoising results and the input PSNR

The local method produces somewhat good results but some details are lost. Particu-
larly, mobile objects such as the table tennis ball become very blurry with the local
method whereas they are clear-cut in the results of the non local method. This test un-
derlines the relevance of the nonlocal approach for denoising objects in motion. The
optimized nonlocal method is very appealing as it preserves details and is faster than
the nonlocal one.

The visual observations are further confirmed by the PSNR measures reported in
Table 1. Although these results are slightly in favor of the nonlocal method, the pro-
posed optimized variant produces very competitive results, using only 30% of the data,
thereby achieving a faster computational performance. In fact, computational time is re-
duced by 70%. Neverthesless, to reduce the little quality loss, we work on ordering the
patches within a window and selecting the best patches instead of a random selection.
The first results are encouraging.
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(a) Original (b) Noisy, σ = 10

(c) Frame N

(d) Frame N + 4

(e) Frame N + 8

Fig. 5. Video simplification with the optimized nonlocal method, λ = 0 and h = 80 after ten
iterations. From left to right: p = 2, p = 0.5 and p = 0.1.

To evaluate the quality of our video algorithm, we implemented a 2D version of our
approach which corresponds to the algorithm by Elmoataz et al. [5], and applied it to
denoise the frames of a video as single images.

Then we applied our video algorithm to the same video considered this time as a
volume. We compared the 2D and 3D results. The PSNR of the video results are con-
sistently higher than the PSNR of the 2D results as shown in Figure 3. It is observed
that video processing with the optimized nonlocal method provides a higher quality de-
noising than image processing. This experiment evaluates and confirms the important
contribution of temporal redundancy for video denoising. It is also interesting to eval-
uate the efficiency of our methods for different noise levels. We run a bunch of tests
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on sequences corrupted by noises having σ from 5 to 50. The results are regrouped in
Figure 4. These results show how the input PSNR decreases significantly when the
noise level increases, contrary to the results of our three methods. The higher the noise
level is the biggest the difference is between the input PSNR and our results’ PSNR.

These measures also confirm that the optimized nonlocal method gives a similar
PSNR and even a higher PSNR than the nonlocal one. In consequence, we consider that
the optimized nonlocal method is a good trade-off between the fully nonlocal method
and the local one from performance and quality viewpoints.

4.2 Video Simplification

Video simplification can be interpreted as a particular case of our algorithm for p < 1.
We obtain homogeneous partitions of the video content. Figure 5 displays the results of
the smoothing with p = 0.5 and p = 0.1. In comparison with the result with p = 2,
we observe that similar regions join together and form bigger blocks. Moreover, we
obtain a coarser simplification of the video when parameter p decreases as we can see
for p = 0.1 and p = 0.5 (see Fig. 5). These results can be taken advantage of for video
segmentation and visual object detection.

5 Conclusion

In this paper, a new algorithm has been introduced for the denoising and simplification
of video sequences. The algorithm does not require any motion estimation and is based
on discrete regularization on graphs. We view a video sequence as a volume to benefit
from temporal redundancy, which enhances the denoising results as demonstrated by
our experiments.

We take advantage of local and nonlocal regularities in our methods to reduce noise
while preserving significant features and details in the video. As the nonlocal method
is time-consuming, we reduced the amount of processed data (by 70% in our tests)
without compromising the denoising quality.

Our future research will investigate the ordering of patches within a window in or-
der to choose the most similar patches in lieu of randomly selected ones. As a direct
application of our algorithm, we shall also employ this work for inpainting purposes.
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