
Hierarchical Matching Using Combinatorial
Pyramid Framework

Luc Brun and Jean-Hugues Pruvot

Université de Caen Basse-Normandie, GREYC CNRS UMR 6072, Image Team
6, Boulevard Maréchal Juin – 14050 Caen Cedex France

{luc.brun,jhpruvot}@greyc.ensicaen.fr

Abstract. A string matching approach is proposed to find a region cor-
respondance between two images. Regions and their spatial relationships
are represented by two combinatorial pyramids encoding two segmenta-
tion hierarchies. Our matching algorithm is decomposed in two steps:
We first require that the features of the two matched regions be similar.
This threshold on the similarity of the regions to be matched is used as
a pruning step. We secondly require that at least one cut may be de-
termined in each hierarchy such that the cyclic sequence of neighbors of
the two matched regions have similar features. This distance is based on
a cicular string matching algorithm which uses both the orientability of
the plane and the hierarchical encoding of the two regions to reduce the
computational cost of the matching and enforce its robustness.

1 Introduction

Image correspondence plays a major role in many applications like image index-
ation, tracking or 3D reconstruction. The correspondence between both images
is achieved by matching various primitives of dimension 0 (point), 1 (edge) or
2 (region). The detection of point and edge [1] primitives depends on local in-
formation and is thus sensible to noise and missing data. Moreover, the features
attached to these primitives only provide local information. On the other hand,
segmentation algorithms provide a partition of the image into regions, each re-
gion being associated to an area of the image on which complex photometric,
geometrical and topological features may be computed.

Feature based region matching algorithms associate to each region a vector
based on its photometric or geometric [2] features. Such algorithms neglect the
neighbourhood of the two regions which encodes the context of the two regions
being matched. These neighbourhoods may be taken into account by using in-
exact graph matching algorithms [3,4] on the graphs encoding the adjacency
relationships between regions in both partitions. However, the application of
these algorithms have been limited by the following two reasons:

1. An image, considered as a part of a plane, is an oriented surface. Moreover,
the adjacency relationships between the regions of the partition define a pla-
nar graph. Most of graph matching algorithms neglect these two properties
of a partition which constraint the matching and reduce its time complexity.

A. Elmoataz et al. (Eds.): ICISP 2008, LNCS 5099, pp. 346–356, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Hierarchical Matching Using Combinatorial Pyramid Framework 347

2. Any object within an image may be described at different scales. A matching
algorithm may thus have to match one region of one image with several
regions of the other image, both sets of regions describing a same object.

Wang [3] takes into account the planar structure of a partition by formulat-
ing the region correspondence into an inexact matching of two attributed planar
graphs. He uses some properties of the planar graph and the topological relation-
ships between regions to find a maximal inexact subgraph matching. However,
this method doesn’t take advantage of the plane orientation.

The orientation is used by Neuhauss [5] and Llados [4] which cast the problem
of region correspondence between two images into a problem of circular string
matching. The two strings being matched encode the boundaries of the matched
regions. This explicit use of the orientation drastically reduces the combinato-
rial complexity of the match. However, both algorithms are sensible to an over
segmentation of one of the two images which may split one of the region being
matched or one of its neighbor into several sub regions.

This last drawback is addressed by the method proposed by Glantz [6]. This
method builds an irregular pyramid from each image and creates one graph from
the higher levels of each hierarchy. Each graph is built by connecting the planar
graphs encoding the higher levels of the hierarchies by vertical edges. These
edges encode the topological relationships between each vertex of one pyramid
and its child in the level bellow. The use of hierarchical segmentation algorithms
reduces the influence of the over/under segmentation problem and thus increases
the number and the quality of the matches. However, the vertical links between
the planar graphs destroy the planar structure of the two graphs being matched
and thus forbids any use of the good properties of planar graphs. Moreover, the
graphs deduced from each pyramid are defined from the connection of several
planar graphs and are thus usually large.

The basic idea of our method is to combine the approaches of Glantz and
Neuhauss or Llados. Following the method of Glantz, we first build two irregular
pyramids on the two images to be matched. However, instead of building a large
graph from each pyramid, we initiate a match by searching in the two hierarchies
the couple of regions whose features are similar up to a threshold. Following
the method of Neuhauss and Llados, the boundaries of two candidate regions
are matched using a circular string matching algorithm. We take into account
both hierarchies by considering the different rewritings of the boundary of each
region in its hierarchy. The resulting algorithm is thus a circular string matching
algorithm with rewriting rules. The two regions whose features are similar up to
the threshold and whose boundary’s distance is minimal are considered as good
candidates for a larger match.

This paper describes the first step of this matching process which consists
to select the two candidate regions for a global match. We first present the
combinatorial pyramid framework used to encode both hierarchies in Section 2.
The selection of the candidate regions based on their features and our circular
string matching algorithm are presented in Section 3. Finally, experiments and
results are discussed in Section 4.

348 L. Brun and J.-H. Pruvot

2 The Combinatorial Pyramid Framework

A 2D combinatorial map may be understood as a particular encoding of a planar
graph where each edge is split into two half-edges called darts. Since each edge
of a graph connects two vertices, each dart belongs to only one edge and one
vertex. A 2D combinatorial map is formally defined by the triplet G = (D, σ, α)
where D represents the set of darts and σ is a permutation on D whose cycles
correspond to the sequence of darts encountered when turning counter-clockwise
around each vertex. Finally α is an involution on D which maps each of the two
darts of one edge to the other one. Given a combinatorial map G = (D, σ, α),
its dual is defined by G = (D, ϕ, α) with ϕ = σ ◦ α. The cycles of permutation
ϕ encode the faces of the combinatorial map. In what follows, the cycles of α,
σ and ϕ containing a dart d will be respectively denoted by α∗(d), σ∗(d) and
ϕ∗(d).

If a combinatorial map G = (D, σ, α) is used to encode a 2D partition, each
boundary between two regions is encoded by an edge. Such an edge (say α∗(d) =
(d, α(d))) encodes an adjacency relationship between σ∗(d) and σ∗(α(d)). The
two darts d and α(d) encode the two opposite orientations along the boundary
of α∗(d). A σ-cycle σ∗(d) = (d1, . . . , dn) may thus be understood in two different
ways:

– Firstly, since each dart encodes an adjacency relationship, the sequence
(di)i∈{1,...,n} determines the cyclic sequence (σ∗(α(d1), . . . , σ∗(α(dn)))) of
vertices encountered when turning counter-clockwise around σ∗(d). Within
a segmentation scheme, this sequence of vertices corresponds to the sequence
of regions encountered when turning counter-clockwise around the central
region defined by σ∗(d).

– Secondly, if we consider that each dart encodes an oriented boundary be-
tween two regions, the sequence σ∗(d) = (d1, . . . , dn) may be considered
as the concatenation of the oriented boundaries associated to the darts
(di)i∈{1,...,n}. This concatenation encodes a counter-clockwise traversal of
the boundary of the region encoded by σ∗(d).

For example, the two darts of the edge α∗
2(5) = (5, −9) in Fig. 1 (c) encode

two opposite orientations of the boundary between the regions R1 and R2 re-
spectively encoded by the vertices σ∗

2(5) = (5, 16) and σ∗
2(−9) = (−9, 20). We

may associate to the vertex σ∗
2(5) the sequence (σ∗

2(9), σ∗
2(−21)) encoding the se-

quence of regions encountered when turning counter-clockwise around R1. Note
that in this example, σ∗

2(−21) encodes the background of the image.
A combinatorial pyramid is defined by an initial combinatorial map succes-

sively reduced by a sequence of contraction or removal operations. Contraction
operations are encoded by contraction kernels. A contraction kernel is defined
as a forest of the current combinatorial map, each tree of this forest encodes
the contraction of a connected set of vertices into a single vertex of the re-
duced combinatorial map. Contraction kernels may create redundant edges such
as empty-self loops and double edges. These redundant edges are removed by

Hierarchical Matching Using Combinatorial Pyramid Framework 349

7�

10�
8�

11�
9�

12�

1� 2�

3� 4�

5� 6�

13� 14� 15�
16�

17�

18�
21� 20� 19�

24
�

23
�

22
�

(a) G0

7� 8�

5�

16�-24�

20�

23
� -7�

-21�

-9�
-3

�
-17
�

(b) G1

5�

16�

-21�

-9�

20�

-17
�

R1

R2

(c) G2

Fig. 1. The first three dual combinatorial map G0, G1, G2 of a combinatorial pyramid.
The initial map G0 encodes a 3 × 3 grid of pixels. Contracted darts are represented by
bold lines in (a) and (b).

using respectively empty self loop and double edge removal kernels [7]. These
removal kernels are applied successively and are defined as a forest of the dual
current combinatorial map. Further details about the construction scheme of a
combinatorial pyramid may be found in [7].

A combinatorial pyramid may thus be encoded by a sequence of succes-
sively reduced combinatorial maps P = (G0, . . . , Gn) where G0 encodes the
4 connected grid of pixels or any other initial partition. Let us consider a level
Gi = (Di, σi, αi) of the pyramid P and a dart d belonging to Di. The receptive
field of the dart d in G0 is called the connecting dart sequence of d. Intuitively,
this sequence encodes the darts of G0 combined between levels 0 and i to form
the dart d at level i. Since d encodes an oriented boundary between two regions
at level i, the embedding of this boundary within G0 may be retrieved from the
connecting dart sequence of d. This sequence called the sequence of boundary
darts of d at level i and denoted SBDi(d) = d1dp is defined by:

d1 = d , dj+1 = ϕ
mj

0 (α0(dj)) and α0(dp) = αi(d). (1)

where G0 = (D0, ϕ0, α0) is the dual of the initial combinatorial map and mj

is the minimal integer q such that ϕq
0(α0(dj)) survives at level i or belongs to

a double edge kernel. This last condition is tested in constant time using the
implicit encoding of combinatorial pyramids [7].

The sequence of boundary darts of the dart 20 at level 2 in Fig. 1 (c), is for
example equal to SBD2(20) = 20.19.18.17 (Fig. 1 (a)). The whole boundary of
the vertex σ∗

2(20) = (20, −9), encoding the four bottom-right pixels of the 3 × 3
grid at level 2, is defined as SBD2(20)SBD2(−9) = 20.19.18.17.−9.−8.−3.−5.

3 Hierarchical Matching

Let us consider two pyramids P = (G0, . . . , GN) and P ′ = (G′
0, . . . , G

′
N ′). Each

combinatorial map Gi of P contains a set of vertices. We denote by VP the union
of all the vertices of P defined between levels 0 and N . In the same way, the
set of vertices of P ′ is denoted VP ′ . As mentioned in Section 1, our hierarchical
matching algorithm aims at finding two vertices in VP and VP ′ encoding regions

350 L. Brun and J.-H. Pruvot

with close features and a minimal distance between their neighbourhoods. We
thus want to determine the couple of vertices (v, v′) ∈ VP × VP ′ such that:

(v, v′) = argmin
(w,w′)∈C

ΔN (w, w′) with (2)

C = {(w, w′) ∈ VP × VP ′ |F (w, w′) = true} (3)

where ΔN (v, v′) represents the distances between the neighbourhoods of v and
v′, and F (w, w′) is a boolean condition on w and w′.

The set C represents our set of candidates for the match. Within our frame-
work Equation 3 is used as a filtering step. The advantages of this filtering
step are twofold: Firstly, our criterion F insures that two matched vertices have
similar features independently of the distance between their neighbourhoods.
Secondly, this filtering reduces the number of couples of vertices on which Equa-
tion 2 will be evaluated. Our filtering step and our neighbourhood’s distance are
respectively described in Section 3.1 and Section 3.2.

3.1 Filtering

Let us associate to each vertex v of VP a vector Feat(v) of M features. Let
us suppose that v is defined at level i ≥ 1 in P and let us consider the set of
vertices RWi(v) = {v1, . . . , vp} whose contraction in Gi−1 defines v at level i.
The set RWi(v), called the reduction window of v, is defined as the set of vertices
incident to one of the trees of the contraction kernel which builds Gi from Gi−1
(Section 2). The function Father is defined on VP as Father(w) = v for any
w ∈ RWi(v). By convention any vertex of the top level combinatorial map is its
own father. We say that one coordinate j of our vector of feature is increasing
iff for any vertex v ∈ VP defined at level i ≥ 1 in P we have:

∀w ∈ RWi(v), F eatj(v) ≥ Featj(w)

Note that any cumulative moment defines an increasing feature along the
pyramid.

Let us suppose that the first coordinate Feat1(v) of our vector of features is
increasing. We first reduce the number of candidates for the match by selecting
the set of couples (v, v′) ∈ VP VP ′ such that:

ΔF1(v, v′) = |1 − Feat1(v′)
Feat1(v)

| ≤ ε1 (4)

where ε1 is an user defined threshold.
For each vertex v ∈ VP this first filtering step is equivalent to select all

vertices v′ of VP ′ such that Feat1(v′) ∈ [(1 − ε1)Feat1(v), (1 + ε1)Feat1(v)].
This filtering step may be achieved efficiently using the increasing property of
the first feature’s coordinate and the hierarchical relationships of P ′ encoded by
the reduction window and father functions.

The first filtering step defined by equation 4 reduces the number of potential
candidates for the match based on only one feature. We refine this first filtering

Hierarchical Matching Using Combinatorial Pyramid Framework 351

by using the remaining features of each vertex. However, since the different fea-
tures associated to a vertex vary within different intervals, a normalisation step
is required before computing the distance between the features of two vertices.
Given two vertices v and v′ we define the distance between Feat(v) and Feat(v′)
as the infinite norm of a vector f defined as:

∀i ∈ {1, . . . , M} fi(v, v′) = 1 − min(Feati(v), F eati(v′))
max(Feati(v), F eati(v′))

(5)

Our final boolean criterion encoding the set C of filtered couple of vertices (equa-
tion 3) is thus equal to:

F (w, w′) = ΔF1(v, v′) ≤ ε1 and ‖f‖∞ ≤ ε1.

Both tests being applied sequentially.
Note that if the first feature Feat1(v) is positive then: ΔF1(v, v′) ≤ ε1 implies

that f1(v, v′) ≤ ε1. Our first filtering step (ΔF1(v, v′) ≤ ε1) may in this case be
interpreted as a restriction of our second test (‖f‖∞ ≤ ε1) to the first coordinate
of f . Such an interpretation is loss if we use the Euclidean norm rather than the
infinite one. The Euclidean norm may however be preferred if one wants to allow
a phenomenon of compensation between the feature’s distances fi.

3.2 Distance between Hierarchical Neighbourhoods

Given a pyramid P , let us consider a vertex v ∈ VP which survives up to
level lv. Let us denote by σ∗

lv
(d) = (d1, . . . , dq) the σ-cycle of Glv associated

to v. The embedding of the boundary of v within G0, denoted Bv is defined
as the concatenation of the sequence of boundary darts (SBDlv (dj))j∈{1,...,q}
(Section 2). Since all the darts of a sequence of boundary darts belong to G0 =
(D0, σ0, α0), any vertex of the hierarchy may be considered as a word built on
the alphabet D0. The neighbourhood of v in G0 is defined as the set of vertices
of G0 adjacent to the eventual over-segmentation of v. This set, denoted N0(v)
may be formally defined by: N0(v) = {σ∗

0(α0(d)), d ∈ Bv}.
Let us consider two pyramids P , P ′ and two vertices (v, v′) ∈ VP × VP ′

with Bv = d1. . . . , dn and Bv′ = d′1.d
′
n′ . Using the orientation of N0(v) and

N0(v′) in G0 and G′
0, the neighbourhood’s distance between v and v′ at level

0 is defined as the edit distance between Bv and Bv′ . If q denotes the number
of symbols matched between Bv and Bv′ , the total cost of the match between v
and v′ is defined as:

Δ(Bv, Bv′) =
q∑

i=0

δ(dφ1(i), d
′
φ2(i)) + (n + n′ − 2q)K (6)

where δ(,) is a distance function between darts and K is the default cost for
a removal operation within either Bv or Bv′ . The values of φ1(i) and φ2(i)
correspond to the indexes within Bv and Bv′ of the two ith darts being matched.

352 L. Brun and J.-H. Pruvot

As mentioned in Section 2, each dart of a combinatorial map may be in-
terpreted both as an encoding of the adjacency between two regions and as a
boundary between the same two regions. Therefore, if we consider two darts
d ∈ Gi and d′ ∈ G′

j of P and P ′, the distance δ(d, d′) between these two darts
may incorporate features of the vertices {σ∗

i (d), σ∗
i (αi(d)), σ′

j
∗(d′), σ′

j
∗(αj(d′))}

and geometrical features of the boundaries associated to the darts d and d′ at
levels i and j. Within our framework, since the distance between the features
of v and v′ has been tested during the filtering step we define δ(d, d′) from
the features of the vertices σ∗

i (αi(d)), σ′
j
∗(αj(d′)) and the features of the two

boundaries encoded by d and d′ at level i and j (Section 4).
All the darts of the sequences Bv and Bv′ are defined in G0. Therefore, the

distances δ(., .) in Equation 6 are evaluated at level 0 and the whole comparison
of the neighbourhoods of v and v′ is made in G0 and G′

0. As mentioned in
Section 1, the neighbourhoods of v and v′ may not correspond within the two
initial partitions encoded by G0 and G′

0. However, given the two pyramids P
and P ′ respectively built on G0 and G′

0, we may consider the set of cuts of P
(resp. P ′) which pass below v (resp. v′), i.e. such that v (resp. v′) is either a
single region or is over-segmented within the cut. The basic assumption of this
paper is that if v and v′ correspond to a same “ideal” region there should be at
least one such cut for each pyramid in which the neighbourhoods of v and v′ are
similar.

Let us consider a sub sequence dldm of Bv such that the set of
vertices {σ∗

0(α0(dl)), . . . , σ∗
0(α0(dm))} is merged into a single vertex at a

level l1 ≤ lv. All the darts encoding the adjacency relationships between
{σ∗

0(α0(dl)), . . . , σ∗
0(α0(dm))} should thus be either contracted or removed as

empty self loop at level l1. Moreover, the set of vertices {σ∗
0(dl), . . . , σ∗

0(dm)}
defines an over-segmentation of v and should be merged into a single vertex at
a level l2 ≤ lv. If we consider the sequence dldm at the level L = max(l1, l2),
the darts dldm encode a contiguous sequence of boundaries between two re-
gions and may thus be interpreted as double edges [8]. These darts should thus
belong to the sequence of boundary dart SBDL(dk) of a dart dk ∈ Bv. Con-
versely, a sequence of boundary darts SBDL(dk) = dldm with L ≤ lv and
dk ∈ Bv encodes a sequence of double edge darts which may be produced only by
the merge of the vertices {σ∗

0(dl), . . . , σ∗
0(dm)} and {σ∗

0(α0(dl)), . . . , σ∗
0(α0(dm))}.

The sequence of boundary darts allows thus to retrieve all the merge operations
between the vertices of N0(v) defined before the level lv. Since two cuts produc-
ing the same merge operations on N0(v) produce the same local configuration
in the neighbourhood of v, the sequence of boundary darts SBDi(d) with i ≤ lv
and d ∈ Bv allows us to retrieve all the neighbourhoods of v produced by the
different cuts of P .

For any sequence of boundary dart SBDi(dj) = djdk with i ≤ lv and
dj ∈ Bv let us consider the rewriting rule ψi

j,k : djdk �→ dj which replaces in
Bv, the sequence of darts dj . . . , dk defined in G0 by the single dart dj considered
as a dart of Gi. In order to avoid confusions between the dart dj considered in G0
and in Gi, we use the same notation for the name of the rule ψi

j,k and its result dj

Hierarchical Matching Using Combinatorial Pyramid Framework 353

in Gi. We have thus: ψi
j,k : djdk �→ ψi

j,k. From a geometrical point of view,
the oriented boundary encoded by the dart ψi

j,k is defined as the concatenation
of the oriented boundaries encoded by dj . . . , dk at level 0. Let us consider the
set Σ of such rules defined on Bv and Σ(Bv) the set of rewritings of Bv. In the
same way, let us consider the set of rewritings of Bv′ denoted as Σ′(Bv′). Both
Σ(Bv) and Σ′(Bv′) encode the neighbourhoods of v and v′ among the different
cuts of P and P ′. The neighbourhood’s distance between v and v′ is thus defined
as:

ΔN (v, v′) = min
(m,m′)∈Rot(Σ(Bv))×Σ′(Bv′)

Δ(m, m′)

where Δ is defined according to Equation 6 and Rot(Σ(Bv)) represents all the
circular permutations of the strings contained in Σ(Bv).

Given a rotation, such a distance may be computed efficiently [9] using the
following recursive equation:

Δ(0, 0) = 0, and Δ(i, j) = min

�
�����

Δ(i − 1, j − 1) + δ(di, dj),
min

ψl
k,i

∈Σ,ψ′l′
k′,j

∈Σ′
Δ(k − 1, k′ − 1) + δ(ψl

k,i, ψ
′l′
k′,i),

Δ(i − 1, j) + K,
Δ(i, j − 1) + K

�
�����

where ψl
k,i and ψ′l′

k′,j denote two rewriting rules of Σ and Σ′. The indexes k and
k′ are respectively lower than i and j and the levels l and l′ must be respectively
lower than lv and lv′ . Note that the distance δ(di, dj) in the above equation is
evaluated at level 0.

4 Experiments

Given a pyramid P and a vertex v ∈ VP , let us denote by Rv the geometrical
region associated to v and by ∂Rv the boundary of Rv. The vector of features
Feat(v) (Section 3.1) used in our experiments is composed of M = 6 features.

(a) (b)

(c) (d)

(e)

(f)

Fig. 2. Two matched boundaries (e) and (f) determined from two pyramids obtained
from the initial partitions (c) and (d) and the images (a) and (b).

354 L. Brun and J.-H. Pruvot

Feat1(v) encodes the size of Rv while Feat2(v) to Feat4(v) encode the three
colour channels of the mean colour of Rv. The two last features Feat5(v) and
Feat6(v) respectively encode the size of ∂Rv and the mean value of the colour
gradient computed along it.

Given a dart d defined at level i, we characterise the shape of the oriented
boundary associated to d by a function which maps each discrete point of the
boundary to the curvature [10] of the boundary at this point. We obtain thus a
vector of curvature points that we compress into 8 features using the Legendre’s
moments [11]. We add to these 8 geometrical features 3 colour features corre-
sponding to the mean colour of the vertex σ∗

i (αi(d)) (Section 3.2). The distance
function δ (Section 3.2) between two darts is then defined as the Euclidean norm
of a vector f using a normalisation step equivalent to the one used in Equation 5
but applied on the features of the two darts.

One result of our algorithm on a couple of real images representing a same
scene with different view points is presented in Fig. 2. The base level combinato-
rial maps of the two pyramids P = (G0, . . . , Gn) and P ′ = (G′

0, . . . , G
′
n′) encode

a watershed of the input images [12]. The construction scheme of the remaining
levels of the pyramids is described in [13]. The two matched vertices v and v′

encode the upper left part of the book in both images. Using our rewriting rules,
the sequences Bv and Bv′ encoding the shape of the book in the base level com-
binatorial maps (Fig. 2 (c), (d)) have been grouped into only 3 darts (Fig. 2 (e),
(f)): The darts, separating the book and the wall (1 ↔ a), the white and the red
part of the book (2 ↔ b) and the book and the table (3 ↔ c). All these darts
are matched at different levels in the pyramids P and P ′. For example, the dart
1 belongs to the 838th level of P while a belong to the 961th level of P ′.

Fig. 3 illustrates the behavior of our algorithm on a more complex example.
The sequences Bv and Bv′ encoding the shape of the cars in the base level
combinatorial maps (Fig. 3 (c), (d)) have been grouped into 4 darts (Fig. 3 (e),
(f)). We used the same covention for the matches than in Figure 2: (a,1),(b,2). . . .

(a) (b)

(c) (d)

(e)

(f)

Fig. 3. Two matched boundaries (e) and (f) determined from two pyramids obtained
from the initial partitions (c) and (d) and the images (a) and (b).

Hierarchical Matching Using Combinatorial Pyramid Framework 355

5 Conclusion

We have presented in this paper a method which matches two similar regions R
and R′ in two hierarchies P and P ′. This method uses the features of R and R′

and their oriented neighbourhoods. The distance between the oriented neighbour-
hoods of R and R′ is defined as the minimal distance between the neighbourhoods
of R and R′ in all the cuts of P and P ′ which include them. The result of this new
notion of similarity is a match between two regions together with a grouping of
their boundary’s basic elements into larger groups. The resulting boundaries are
finally aligned. This last features should allows us to expand the match in order
to find the largest common sub-map, within two hierarchies.

References

1. Kumar, S., Sallam, M., Goldgof, D.: Matching point features under small nonrigid
motion. Pattern Recognition 34, 2353–2365 (2001)

2. Kaygin, S., Bulut, M.M.: Shape recognition using attributed string matching with
polygons vertices as the primitives. Pattern Recognition Letters 23, 287–294 (2002)

3. Caihua, W., Keiichi, A.: Region correspondence by inexact attributed planar graph
matching. In: 5th International Conference on Computer Vision, June 1995, pp.
440–447 (1995)

4. Llados, J., Marti, E., Villanueva, J.: Symbol recognition by error-tolerant subgraph
matching between region adjacency graphs. IEEE Transactions on Pattern Analysis
and Machine Intelligence 23, 1137–1143 (2001)

5. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for
attributed planar graphs and its application to fingerprint classification. In: Fred,
A., Caelli, L.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR
2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)

6. Glantz, R., Pelillo, M., Kropatsch, W.G.: Hierarchical matching of panoramic im-
ages. In: ICIAP 2003, p. 328. IEEE Computer Society, Los Alamitos (2003)

7. Brun, L., Kropatsch, W.: Construction of combinatorial pyramids. In: Hancock, E.,
Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 1–12. Springer, Heidelberg
(2003)

8. Brun, L.: Traitement d’images couleur et pyramides combinatoires. Habilitation à
diriger des recherches, Université de Reims (2002)

9. Gdalyahu, Y., Weinshall, D.: Flexible syntactic matching of curves and its appli-
cation to automatic hierarchical classification of silhouettes. IEEE Transactions on
Pattern Analysis and Machine Intelligence 21, 1312–1328 (1999)

10. Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives es-
timation from noisy discretizations. In: Coeurjolly, D. (ed.) Proceedings of DGCI
2008. LNCS, vol. 4992, Springer, Heidelberg (2008)

11. Shen, J., Shen, D.: Orthogonal legendre moments and their calculation. In: ICPR
1996, vol. 2, p. 241 (1996)

12. Brun, L., Mokhtari, M., Meyer, F.: Hierarchical watersheds within the combinato-
rial pyramid framework. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI
2005. LNCS, vol. 3429, pp. 34–44. Springer, Heidelberg (2005)

13. Pruvot, J.H., Brun, L.: Scale set representation for image segmentation. In: Es-
colano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 126–137. Springer,
Heidelberg (2007)

	Hierarchical Matching Using Combinatorial Pyramid Framework
	Introduction
	The Combinatorial Pyramid Framework
	Hierarchical Matching
	Filtering
	Distance between Hierarchical Neighbourhoods

	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

