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Abstract. The medial axis being an homotopic transformation, the
skeleton of a 2D shape corresponds to a planar graph having one face
for each hole of the shape and one node for each junction or extremity
of the branches. This graph is non simple since it can be composed of
loops and multiple-edges. Within the shape comparison framework, such
a graph is usually transformed into a simpler structure such as a tree
or a simple graph hereby loosing major information about the shape. In
this paper, we propose a graph kernel combining a kernel between bags
of trails and a kernel between faces. The trails are defined within the
original complex graph and the kernel between trails is enforced by an
edition process. The kernel between bags of faces allows to put an em-
phasis on the holes of the shapes and hence on their genre. The resulting
graph kernel is positive semi-definite on the graph domain.
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1 Introduction

The medial axis being an homotopic transformation, the skeleton of a 2D shape
is a 2D structure with as many holes as the shape. A natural way to encode
such a structure by a graph consists in creating an edge for each branch of
the skeleton and a node for each junction of branches or branch’s extremity.
The resulting graph is a non simple planar graph which may be enriched us-
ing information from the radius of the osculating circle along branches [1-5].
The shape comparison is thus transformed into a graph comparison problem.
However, graph comparison methods robust against structural noise such as the
maximal common sub-graph method or the related graph edit distance prob-
lem [6] have an exponential complexity on general graphs. Many authors use
thus a simpler encoding of the skeleton leading to a comparison function with a
reduced complexity.

Siddiqi [1] and Sebastian [7] transform the graph into a tree and apply a
tree comparison scheme. Another method, introduced by Pelillo [8], transforms
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graphs into trees and then models the tree matching problem as a maximal
clique problem within a specific association graph. A last method proposed by
Bai and Latecki [4] matches end points (vertices with a degree one) and then
compares paths between the end-points. Contrary to the previous approaches,
this last method can deal with closed structures and thus takes the holes of the
shape into account.

Although these methods have been developed for indexation and classifica-
tion tasks, they can not be readily used within the kernel machine framework.
This limitation is related to the lack of mathematical tools inside the graph
domain. Neuhaus and Bunke [9] proposed an elegant framework for the con-
struction of graph kernels based on edit distances. Another solution consists in
using graph kernels such as random walk or marginalized graph kernel [10] which
are positive semi-definite on the graph domain. Though, these kernels are easier
to use, they lack the flexibility and the noise robustness provided by the kernels
based on graph edit distances.

This paper follows a first contribution [11] where we defined the notion of path
rewriting within the graph kernel framework. However this method is defined
on trees and thus does not encode properly the holes of the shapes. First, we
recall some definitions and then extend our graph kernel framework to trails
(Section 2). Second, we propose to extend the rewriting process, initially defined
on trees, to graphs (Section 3). Then, we propose to combine our graph kernel
with a closed paths kernel which compares graphs’ faces (Section 4). Finally, an
experiment with a multi-class classifier is proposed to highlight the relevance of
holes inside holed shapes (Section 5).

2 Bag of trails kernel

Let us consider a graph G = (V, E) where V denotes the set of vertices and
E C V x V the set of edges. We define a simple-graph as a graph with no
multiple edges between two vertices and no loop (an edge linking a vertex with
itself). We define a trail as an alternating sequence of vertices and edges with
distinct edges and a path as a trail with distinct vertices. A closed path is a path
whose first vertex is equal to the last one. A bag of trails T associated to G is
defined as a set of trails of G whose cardinality is denoted by |T'|. We finally
denote by Ki-qi1 a generic trail kernel.

2.1 Mean kernels

By considering bags as sets, Suard [3] has proposed several kernels for bags of
paths which are extensible to trails. Amongst these kernels, the mean kernel is
proposed as a convolution kernel [12] between trails: let 77 and T denote two
bags of trails, the mean kernel between these two bags is defined as:

1 1
Kmean(leTZ) =TT E E Ktrail(t,tl). (1)
BTl &,
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This kernel is positive definite on the bag of trails domain if and only if Kj.q4
is positive definite on the trail domain.

The major drawback of this kernel is the information averaging when bags
are composed of many trails. Such a loss of information may be avoided using a
weighted mean kernel [13]. The design of this kernel assumes that most of the
relevant information of a bag is located near its mean trail. Let T7 and 75 denote
two bags of trails, then the wez’ghed mean kernel is defined as:

Z Z <Ktra1l t m) Ktrazl(t m)

teTy t'€Ts (2)
wv([;) wih )Ktrazl(t t)

Kwezghted(T1>T2 |T1| | 2|

where d € R*, m and m’ denote the mean trails of T} and Ts, w(t) (resp. w(t'))
denotes the sum of the edge’s weights of ¢ (resp. t') and W (resp. W’) the whole
weight of the graph containing ¢ (resp. t). The trail kernel between a trail ¢
and the mean trail m is defined as: Kipqi(t,m) = ﬁ ZtieT Kirai(t,t;). The
weighted mean kernel is a convolution kernel based on a scalar product (the
distances to the mean trail) and the trail kernel Ky,.q;. So it is positive definite
if and only if Kj,.qi is positive definite.

2.2 A first trail kernel

For its marginalized kernel, Kashima proposed a walk kernel based on a tensor
product [14]. As trails are particular walks, the walk kernel remains available.
Let ¢t and ¢’ denote two trails, the trail kernel denoted K jqssic is defined as 0 if
[t] # |t'| and as follows otherwise:

Ketassic(t,t') = Ko(p(02), o) [ [Ee(blen, o) lers_ o)) Kolp(0:) (), (3)
where ¢(v) and ¥(e) denote respectively the vectors of features associated to the
vertex v and the edge e. The terms K, and K. denote two kernels for respectively
vertex’s and edge’s features. K qssic 1S a tensor product kernel and so is positive
definite if and only if K, and K, are two positive definite kernels. For the sake
of flexibility and simplicity, we use Gaussian RBF kernels based on the distance
between the attributes.

3 Edition kernel on trails

The main issue with skeleton based graphs is that two different graphs may
encode similar shapes. Two different kind of structural noise may appear inside a
skeleton: ligatures produced by noise on the boundary and elongations produced
by a general deformation of the shape. Usually, this structural noise is tackled
using edition operations on graphs. However, within a bag of trails framework
we must consider edition operations on trails. The effect of the structural noise
on a trail is twice: addition of edges and addition of vertices.
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We suppose that the edges of our graph are associated to a weight which
encodes their relevance. Torsello [15] has proposed such a relevancy measure: for
each edge this measure approximates the length of the boundary associated to
the skeleton’s branch encoded by this edge. Using this weight, we compute the
relevance of each vertex and edge inside a trail: the relevance of an edge corre-
sponds to its weight and the relevance of a vertex corresponds to the weight of
the sub-graph (e.g. the sum of the weight of all the sub-graph’s edges) connected
to the trail by this vertex. When graphs are trees [11], the sub-graphs correspond
to sub-trees and the computation of the relevancy measure of vertices is unam-
biguous. Fig. la shows for example a path within a tree, where the sub-trees
related to the two vertices of the path are clearly defined and so their weight.

However, with holed shapes, graphs are not trees and the definition of the
relevancy of vertices is not straightforward. Indeed, sub-graphs may connect sev-
eral vertices of the considered trail. We propose to solve this difficulty by using
the random walker diffusion algorithm [16] where normalized edge’s weights are
considered as transition probabilities. For each vertex v; of the trail, this dif-
fusion algorithm associates to each vertex v; of the graph the probability p; ;
that a random walker starting at v; first reach v;. Each vertex of the graph
is then associated with the vertex of the trail with the maximal probability.
The sub graph induced by this set of vertices is called the influence zone of the
trail’s vertex. However, the random walker is designed for simple-graphs. We
thus transform our non-simple graph into a simple one by defining the transi-
tion probabilities between vertices as follows: loops are removed and multi-edges
between two vertices are transformed into a single edge whose weight is the sum
of edges’ weights. Single edges between vertices are kept unchanged. Note that
this transformation is only used for the random walker algorithm. Our trails and
the sub-graphs encoding the influence zones are both defined within the initial
non simple graph.

The weight of the influence zone of a vertex v is defined as the sum of 1)
the weight of the edges within the influence zone and 2) a ratio of the weight of
the edges shared with another influence zone (i.e. edges whose vertices belong
to two influence zones). For example, the dash-dotted edges within Fig. 1b are
shared by the two influence zones. Let v; and vy be the two incident vertices
of an edge of weight w, v1 (resp. v2) is associated to its influence zone by a
probability p; (resp. p2) then we define as pl’j:pz w (resp. plﬁfpz w) the part of the
weight associated to the influence zone related to vy (resp. v2). Fig. 1b shows
an example of influence zone of trail vertices (the trail is defined by the dashed
line): remark the importance of the influence zone of vertex 1 compared to the
influence zone of vertex 2.

Given a relevancy measure of each vertex and edge of a trail we introduce
two edition operations: vertex suppression followed by edge merging and edge
contraction ( or suppression for loops). The cost of an operation is defined as
the relevancy measure of the removed edge or vertex. Finally, we defined an
edition function x which applies the cheapest edition. Then %(t) denotes the
trail ¢ after ¢ editions. In addition, we denote by cost;(¢) the cumulative cost of
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a) The weighted graph b) The influence of the vertices inside the graph

(a) A path within a tree (b) The random walker algorithm

Fig. 1. Influence zones: (a) Example of tree with a selected path (dotted edge) (b)
The influence of the vertices of the dashed trail between the vertices 1 and 2 using the
random walker.

operations leading to x*(t). Finally, we construct the edition kernel as a weighted
convolution kernel between the trails and their rewritings:

, LD
Keqin(t,t') = Dr1 exp (
k=0 1=0

costy(t) + cost (t')

2
2acost

) K assic ("Qk (t)a k! (t/)),
(4)

where D is the maximal number of editions and o.,s; the RBF parameter of the
cost kernel which penalizes edition. This kernel is a convolution kernel [12] and
is positive definite if and only if Ky, is positive definite.

4 Closed paths kernel

The faces of a skeletal graph encode the holes of a shape and represent as such
important information about the shape. When using the previously defined ker-
nels, faces are just encoded as trails. So when constructing a bag of trails, these
particular trails may not appear in the bag or may be drowned with many other
trails. Thus it is relevant to put an emphasis on faces when dealing with holed
shapes.

Several kernels based on cycles have been proposed for graphs [17]. However
these kernels are not designed for shape classification for two main reasons:
they don’t consider the orientation of faces and they are not restricted to cycles
encoding faces.

An efficient comparison of faces within a shape recognition framework re-
quires a kernel robust against structural noise. We propose to encode each hole
by a unique closed path which describes the corresponding face. This path begins
at the closest vertex to the gravity center of the shape and crosses the edges using
a counter-clockwise orientation. For example, the hole of the padlock in Fig. 2b
is described by the closed path 74 e3 3 el 4”. Finally, two closed paths encoding
faces are simply compared using a trail kernel such as K jqssic (section 2.2) or
Keaqir (section 3).

However, while comparing two closed paths, we may have to face to alignment
errors due to the selection of the initial vertex. In order to enforce the robustness
of our kernel, shifted versions of the closed paths are also compared. For example,
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a) Holed shapes databases b) Computation of the closed path of a padlock shape.
Fig. 2. Holed shapes and closed paths computation.

the face in Fig. 2b presents two vertices at an equal distance to the gravity center
and the closed path ”3 el 4 e3 3”7 is thus an acceptable path which corresponds
to a shifted version of the previous path. We define the function p;(¢) which
performs a circular shift of i edges of the path ¢ clockwise if ¢ is positive and
counter-clockwise ¢ is negative.

The shift kernel is then defined as the weighted convolution between paths
and their shifted versions using a trail kernel denoted Ky.q4:

Kanpt1) = oy 30 e (~ 52} Kol 5. )

i=—pj=—p O closed

where p is the maximal number of shifts. This kernel is positive definite if and
only if Ki,qq is positive definite. Finally, the closed paths kernel is defined as
the mean kernel between all the closed paths surrounding the faces of two planar
graphs G and Ga:

1
Kclosed a hs(Gla GQ) Kéhl t t ) (6)
& TG 2 2y

where C(G7) (resp. C(G2)) denotes the set of closed paths encoding the faces
of Gy (resp. G3) and |C(G1)| (resp. |C(G2)|) denotes the size of the set C'(Gy)
(resp. C(Gz2)). This kernel is positive definite if and only if Kyp, . is positive
definite.

Finally, a kernel denoted K ompined is built using the two proposed kernels:

Kcombined(Gla GQ) = (1 - W)Kweighted(Th T2) + ’chlosed paths(Gh GZ)» (7)

where T} (resp. T5) is the bag of trails associated to Gy (resp. Ga), v € [0,1] is
a tuning variable, Kyeignted(2) denotes our bag of trails kernel and K josed paths
our closed paths kernel (6). This kernel is positive definite on the union of the
bag of trails and bag of faces domains as it is defined as the addition of two
positive definite kernels multiplied by positive coefficients [18].
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Kcombined Kuyeighted Random Walk
Classes|| (]2)] 3)] ]G @G OB D[ B @])
M [8[2]1L 711 106 1
@) 11 11 2181
3) 11 219 01
@) 11 11 11
G) |1 o[T(3(2] |5 2 18

Table 1. Confusion matrix on 5 classes of shapes: (1) Cups, (2) Keys, (3) Scissors, (4)
Dudes and (5) Tools.

5 Experiments

We propose an experiment using a multi-class classifier [19]. The test database is
built by adding shapes with holes (Fig. 2a) to the Kimia 99 shapes database [20].
Three kernels are used: the combination of the weighted mean kernel with the
closed paths kernel denoted K ompined(7) , the weighted mean kernel alone de-
noted Kyeighted and the random walk kernel [10]. The trail kernel used within
the weighted mean and the shift kernels (Section 4) is the edition kernel K4
(Section 3).

For this experiment, the bags of trails (Section 2) were composed of 2 percent
of the heaviest paths amongst all the trails with up to 9 edges. The maximal
number of editions (Section 3) was set to 9 and the number of shifts (Section 4)
to 5. For efficiency reason, the random walk [10] is performed on an augmented
version of the maximal spanning tree: while considering an edge which is implied
in the formation of a cycle or a loop, we change one of its incident vertices into a
new vertex (of degree 1) with the same characteristics in order to break the cycle
or loop. Using this trick, the graph may be encoded by an adjacency matrix and
efficient random walk kernels [10] based on such an encoding may be used.

The experiment consists in the classification of the whole database into 5
classes (2 classes from the Kimia databases and 3 classes of holed shapes). The
training set was composed of 5 shapes of each class taken arbitrarily. The clas-
sifier algorithm [19] is based on kernel principal analysis and quadratic discrim-
inant analysis and so considers both inter-classes and intra-classes properties.
Tab. 1 shows the confusions matrices of the three kernels. The K ompined kernel
shows very good results with some confusion on the cups. The Kyeigntea kernel
shows good results, but is very confused on tools. This confusion comes from the
few trails contained inside the bag of trails which are not sufficient for a proper
class separation. The random walk kernel shows good results too with confusion
on tools and on cups. The confusion on the cups is due to the maximal spanning
tree which conducts to a loss in the description of the faces of the graph.

6 Conclusion

We have defined in this paper a positive semi-definite kernel for shape classifi-
cation which holds several properties: it is robust to noise and takes holes into
account. The experiment shows the importance of a correct description of the
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graph and the underlying shape within the shape classification framework. In
the future, we plan to further improve the bag of trails kernel on two points:
the selection of the trails and the combination of the trail kernel results. These
two points are indeed crucial as they directly influence the efficiency and the
properties of the kernel.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and
shape matching. Int. J. Comput. Vision 35(1) (1999) 13-32

Ruberto, C.D.: Recognition of shapes by attributed skeletal graphs. Pattern Recog-
nition 37(1) (2004) 21-31

Suard, F., Rakotomamonjy, A., Bensrhair, A.: Kernel on bag of paths for measur-
ing similarity of shapes. In: European Symposium on Artificial Neural Networks,
Bruges-Belgique (April 2007)

Bai, X., Latecki, J.: Path Similarity Skeleton Graph Matching. IEEE PAMI 30(7)
(2008)

Goh, W.B.: Strategies for shape matching using skeletons. Computer Vision and
Image Understanding 110 (2008) 326-345

Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18(8) (1997) 689-694

Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock
graphs. IEEE Trans. on PAMI 26(5) (2004) 550-571

Pelillo, M., Siddiqi, K., Zucker, S.: Matching hierarchical structures using associ-
ation graphs. IEEE Trans. on PAMI 21(11) (Nov 1999) 1105-1120

Neuhaus, M., Bunke, H.: Edit-distance based kernel for structural pattern classi-
fication. Pattern Recognition 39 (2006) 1852-1863

Vishwanathan, S., Borgwardt, K.M., Kondor, I.R., Schraudolph, N.N.: Graph
kernels. Journal of Machine Learning Research 9 (2008) 1-37

Dupé, F.X., Brun, L.: Edition within a graph kernel framework for shape recogni-
tion. In: GBR 2009. (2009) accepted.

Haussler, D.: Convolution kernels on discrete structures. Technical report, Depart-
ment of Computer Science, University of California at Santa Cruz (1999)

Dupé, F.X., Brun, L.: Tree covering within a graph kernel framework for shape
classification. In: ICTIAP 2009. (2009) submitted.

Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernel between labeled graphs.
In: In Proc. of the Twentieth International conference on machine Learning. (2003)
Torsello, A., Hancock, E.R.: A skeletal measure of 2d shape similarity. CVIU 95
(2004) 1-29

Grady, L.: Random Walks for Image Segmentation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 28(11) (2006) 1768-1783

Horvéth, T.: Cyclic pattern kernels revisited. In: PAKDD, Springer (2005) 791-801
Berg, C., Christensen, J.P.R., Ressel, P.. Harmonic Analysis on Semigroups.
Springer-Verlag (1984)

Wang, J., Plataniotis, K., Lu, J., Venetsanopoulos, A.: Kernel quadratic discrimi-
nant for small sample size problem. Pattern Recognition 41(5) (2008) 1528-1538
LEMS: shapes databases. http://www.lems.brown.edu/vision/software/



