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Introduction

Shape matching is a challenging problem in computer vision with many applications: indexing, classification, clustering. . . Many frameworks have been developed based on different point of views. Two types of methods can be distinguished: model-based methods [START_REF] Pope | Model-based object recognition: A survey of recent research[END_REF] where each shape is compared to models or prototypes and shape-based methods where shapes are compared one to one. These last methods, are often based on the skeletons [START_REF] Siddiqi | Hamilton-jacobi skeletons[END_REF][START_REF] Goh | Strategies for shape matching using skeletons[END_REF].

Usually, skeletons are transformed into graphs, translating the shape matching problem into the more general graph matching problem. Different works have been developed in order to tackle this last problem. For example Siddiqi [START_REF] Siddiqi | Shock graphs and shape matching[END_REF] extracts shock graphs from shapes and then uses a greedy algorithm for the comparison task. Pelillo [START_REF] Pelillo | Matching hierarchical structures using association graphs[END_REF] transforms graphs into trees and models the problem as a maximal clique problem. Goh [START_REF] Goh | Strategies for shape matching using skeletons[END_REF] splits the graph into linear parts using heuristics and then directly compares their features. These methods operate directly inside the graph space which lacks many common mathematical tools.

One way to avoid this issue is to map graphs into a richer space. This is the purpose of graph kernels whose development is growing with the great interest in kernel machines for the last ten years. The most famous graph kernels are the random walk kernel [START_REF] Vishwanathan | Graph kernels[END_REF], the marginalized graph kernel [START_REF] Vishwanathan | Graph kernels[END_REF] and the geometric kernel [START_REF] Vishwanathan | Graph kernels[END_REF]. As the skeletonization process is not continuous, two graphs representing similar shapes can show severe structural differences. Since the above graph kernels implicitly reduce graphs comparison into paths comparison, graph perturbations modify the paths and thus lead to inaccurate comparison.

Suard [START_REF] Suard | Kernel on bag of paths for measuring similarity of shapes[END_REF] introduced a new graph kernel framework based on an explicit encoding of bags of paths. This framework offers 3 degrees of liberty for the design of a graph kernel: 1) construction scheme of the bag of paths of a graph, 2) definition of a kernel between bags of paths and 3) definition of a kernel between paths. The contribution of this paper lies in two of these three points: we propose 1) a new algorithm for the construction of the bag of path based on an edge-covering algorithm and 2) a new bag of paths kernel based on the mean kernel. This bag of path kernel is combined with the edition path kernel [START_REF] Dupé | Hierarchical bag of paths for kernel based shape classification[END_REF][START_REF] Dupé | Edition within a graph kernel framework for shape recognition[END_REF]. This paper is structured as follows: first we present our graph construction scheme from a skeleton (Section 2). Then, a construction algorithm for bag of paths based on a tree-covering algorithm is proposed and analysed from a shape point of view (Section 3). Following that, we propose a new bag of paths kernel based on the mean kernel (Section 4). Then, we rapidly present the edition path kernel [START_REF] Dupé | Hierarchical bag of paths for kernel based shape classification[END_REF][START_REF] Dupé | Edition within a graph kernel framework for shape recognition[END_REF] which is based on a hierarchical comparison of paths. Finally, the performance of the resulting graph kernel are measured through experiments in Section 6.

Skeleton-based graph

The skeleton of a shape is usually constructed from the medial axis which is defined as the centers of the circles of maximal radius [START_REF] Siddiqi | Hamilton-jacobi skeletons[END_REF]. Many graphs may be associated to the skeleton of a shape. Our graph construction scheme follows the approach proposed by Siddiqi [START_REF] Siddiqi | Shock graphs and shape matching[END_REF]. It considers the enriched translation of the skeleton structure to a graph structure: the terminal points, the junction points and any point encoding an important change of slope of the radius function along the medial axis define the nodes of the graph. The edges of the graph correspond to skeleton's branches between two nodes. The slopes can be obtained using regression methods based on first order splines [START_REF] Dupé | Edition within a graph kernel framework for shape recognition[END_REF][START_REF] Dimatteo | Bayesian curve fitting with free-knot splines[END_REF]. Finally, for the sake of simplicity, we consider the maximal spanning tree of such graphs. Note that, as skeletonization is an homotopic transform, a shape with no hole leads directly to a tree.

The graph associated to a shape only provides information about its structural properties. Additional geometrical properties of the shape must be encoded using node and edge attributes in order to keep most of the shape properties. From a structural point of view, a node represents a particular point inside the shape skeleton and an edge a skeleton's branch. However, a branch also represents the set of points which are closer to the branch than any other branch. This set of points is defined as the influence zone of the branch and can be computed using a SKIZ transform [START_REF] Meyer | Topographic distance and watershed lines[END_REF].

We have thus selected a set of attributes which provides a good approximation of the shape. Torsello [START_REF] Torsello | A skeletal measure of 2d shape similarity[END_REF] proposes as edge attribute an approximation of the perimeter of the boundary which contributes to the formation of the edge, normalized by the approximated perimeter of the whole shape. This feature presents the double advantage of being additive and of encoding the relevance of edges inside graphs. Suard [START_REF] Suard | Mining shock graphs with kernels[END_REF] proposes as node attribute the distance between the node position and the gravity center of the shape divided by the square of the shape area.

Two descriptors describing a branch of the skeleton and the evolution of the radius of the maximal circle along it are also considered. For each point (x(t), y(t)) of a branch, t ∈ [0, 1], we consider the radius R(t) of its maximal circle. In order to normalize the data, the radius is divided by the square root of the area of the influence zone of the branch. We also introduce α(t), the angle formed by the tangent vector at (x(t), y(t)) and the x-axis. Then the two considered descriptors are (a k ) k∈N and (b k ) k∈N the coefficients of two regression polynomials that fit respectively R(t) and α(t) in the least square sense. If both polynomials are of sufficient orders, the skeleton can be reconstructed from the graph and so the shape.

Within Suard [START_REF] Suard | Kernel on bag of paths for measuring similarity of shapes[END_REF] framework, the comparison of 2 graphs requires to build their associated bags of paths. The construction of such bags remains problematic, if we want to keep the link between the graph and the represented shape. In the next section, we propose a method based on this link between the structure of the graph and its semantics.

Covering the graph

The heuristic used to build a bag of paths from a graph constitutes a major step in the design of a graph kernel within the explicit bag of path framework. Paths extracted from a graph describe skeleton parts of the shape. So if a bag of path contains all the paths of a graph (or all the paths up to a fixed length), it will describe several times the same part of the shape. This redundancy may be inaccurate since it artificially enforces the importance of some parts of the shape.

This last remark tends to prove that selecting paths for the bag opens a door to a more efficient comparison. One example of selection process is to keep only a fixed percentage of the path amongst the weightier, however such a scheme induces a loss of some parts of the shape, since many edges may not be present inside such a bag of paths.

A proper solution would be to cut the shape into several parts and only consider one path for each part. From a graph point of view, this algorithm is related to the tree covering [START_REF] Guo | Two fixed-parameter algorithms for vertex covering by paths on trees[END_REF] problem. More precisely, we would like to have the minimal sub-set of heaviest paths from a given set of paths which covers the set of edges of the graph. It is equivalent to the edge covering problem using a given set of paths with the constraints of minimal cardinality and maximum weight. Such a problem is NP-hard even for trees [START_REF] Guo | Two fixed-parameter algorithms for vertex covering by paths on trees[END_REF]. The exact algorithm proposed by Guo [START_REF] Guo | Two fixed-parameter algorithms for vertex covering by paths on trees[END_REF] is based on dynamic programming and computes the whole set of covering solution from a given set of paths. This algorithm computes a vertex covering, but can be easily converted into an edge covering algorithm. We rapidly present the principle of this method: first, the authors root the tree using an arbitrary node and then apply an ascendant algorithm. At each step, a node is considered with all the paths which cover the node, then for each combination of paths, the weight of the covering of the sub-tree rooted on the node is computed using information from children. The algorithm finishes at the root node and the result is given by taking only the solution of maximal weight (using a top-down approach). The final complexity of the algorithm is O(2 C C |V |) where |V | is the number of vertices and C the maximal number of paths covering one node. The edge-covering version of this algorithm is built by 1) considering at each node the paths which cover the node and its parent and 2) adding a fictive path which links the root node to a fictive node, this fictive node does not appear in the covering but its presence is needed for the computation of the final covering.

Though the complexity of the algorithm is exponential according to the measure of redundancy C, the optimal solution is computable in reasonable time using a proper choice of the initial set of paths. In order to avoid the complexity issue, we use a simple heuristic in order to reduce the redundancy while constructing the input set of paths: first, we compute all the paths up to a fixed length (Fig 1a), then the redundant paths with the smallest weight are removed until C is lower than a given threshold (Fig 1b). By redundant paths, we mean paths which can be removed without breaking the covering clause i.e. all edges must remain covered by at least one path. Finally, we run the covering algorithm on this last set of paths which produces the final bag of paths covering the whole graph (Fig 1c).

For the sake of completeness, the symmetric of each path belonging to the bag is added to it. Note, that the resulting bag of paths offers a complete representation of the shape as no edge is forgotten. The next section considers the construction of a bag of paths kernels.

Bag of paths kernel

Let us consider a graph G = (V, E) where V denotes the set of vertices and E ⊂ V × V the set of edges. Let us additionally consider a bag of paths P associated to G, we denote by |P | the number of paths inside P . We suppose that a definite-positive path kernel, denoted K path , is available.

By considering two bags of paths P 1 , associated to a graph G 1 and P 2 , associated to a graph G 2 , as sets, we construct a bag of paths kernel by averaging the path kernel results between all couples of paths from each bag:

K mean (P 1 , P 2 ) = 1 |P 1 | 1 |P 2 | h∈P1 h ′ ∈P2 K path (h, h ′ ). (1) 
This kernel defines a definite-positive kernel in the bag of paths domain [START_REF] Haussler | Convolution kernels on discrete structures[END_REF]. However if the bags contains lots of paths, the kernel tends to average the information and so looses its efficiency. If the data follow a Gaussian law, a one-class SVM can be used to estimate the characteristics of the law. This leads to a kernel [START_REF] Dupé | Hierarchical bag of paths for kernel based shape classification[END_REF] based on the angle between the mean vectors which reduces the two bags of paths to their main characteristic, but is hence only semi definite-positive on the bags of paths. We propose to control the average effect of the mean kernel by enforcing the weight of the paths near the mean path. This trick assumes that the distribution of the paths inside the bag almost follows a Gaussian law. Our kernel is thus constructed from the mean kernel with two additional control terms: first, we weight the paths by their relevance inside the graphs and second, we weight the paths by their distance to the center of their set. These two weights lead to the following kernel:

K weighted (P 1 , P 2 ) = 1 |P 1 | 1 |P 2 | h∈P1 h ′ ∈P2 < K path (h, m), K path (h ′ , m ′ ) > d ω(h) W ω(h ′ ) W ′ K path (h, h ′ ). ( 2 
)
where d ∈ R + , m and m ′ denote the mean paths of P 1 and P 2 , ω(h) (resp. ω(h ′ )) denotes the sum of the edge's weights of h (resp. h ′ ) and W (resp. W ′ ) the whole weight of the graph containing h (resp. h ′ ). The value of the path kernel between a path and the mean path of its bag P is defined as:

K path (h, w) = 1 |P | hi∈P K path (h, h i ).
The kernel K weighted is definite-positive [START_REF] Haussler | Convolution kernels on discrete structures[END_REF] and so defines a metric between bags of paths.

We directly use this last kernel, as graph kernel i.e. K(G 1 , G 2 ) = K weighted (P 1 , P 2 ) where P 1 (resp. P 2 ) is the bag of paths associated to G 1 (resp. G 2 ). Obviously, this graph kernel is only semi-definite positive as two similar bags of paths can be defined from two different graphs. However, the semi positivedefinitiveness is not a real issue since shape graphs are closely characterized by their features attributed to edges and nodes. So equality between two bags of paths would mean that the two shapes share common sub-parts and are therefore almost similar. Fig. 2. Effect of the edition process

Hierarchical kernel

Bag of paths kernel are built upon a path kernel. This kernel can be viewed as a similarity measure for paths. Kashima [START_REF] Kashima | Marginalized kernel between labeled graphs[END_REF] proposes the following path kernel:

K path (h, h ′ ) = Kv(ϕ(v1), ϕ(v ′ 1 )) |h| Y i=2 Ke(ψ(ev i-1 v i ), ψ(e v ′ i-1 v ′ i ))Kv(ϕ(vi), ϕ(v ′ i )), ( 3 
)
where ϕ(v) and ψ(e) denote respectively the vectors of features associated to the node v and the edge e and K v and K e denote respectively vertices and edges kernels. This kernel is positive-definite, if K v and K e are positive-definite. Edges and vertices kernels are usually built using Gaussian radial basis kernel on the difference of feature vectors. However, since graphs are constructed from shape skeletons, they are sensitive to shape perturbations. On complex shapes, severe shape modifications may lead to inaccurate comparison while working on paths. In order, to deal with this problem, we introduce an edition process inside the path kernel.

From a path point of view, the perturbation result in addition of nodes and edges. Using this observation, we construct two elementary operations on paths: node suppression and edge contraction. The edition process is described in [START_REF] Dupé | Edition within a graph kernel framework for shape recognition[END_REF] and briefly recall bellow for completeness.

Each edition corresponds to a deformation of the shape. Fig. 2 shows the effect of each edition operation on a simple shape (Fig. 2a): the contraction of an edge results in the contraction of the shape (Fig. 2b) and the suppression of a node results in the partial lost of the shape (Fig. 2c). As these operations change the shape, all the attributes are updated using the new shape information. Finally, we construct a path kernel by comparing paths and their rewritings.

Edition path kernel

Let us denote by κ the function which applies the cheapest operation on a path [START_REF] Dupé | Hierarchical bag of paths for kernel based shape classification[END_REF][START_REF] Dupé | Edition within a graph kernel framework for shape recognition[END_REF] and D the maximal number of reductions. The successive applications of the function κ associates to each path h a sequence of reduced paths (h, κ(h), . . . , κ D (h)). A cost cost k (h) is associated to each reduced path κ k (h). This cost is defined as the sum of the costs of the k operations needed to obtain κ k (h) [START_REF] Dupé | Edition within a graph kernel framework for shape recognition[END_REF]. Using K path as path kernel, the idea is to construct another path kernel with a control on the edition process. The kernel K edit is defined as a sum of kernels between reduced paths thus leading to a hierarchical comparison of paths. Given two paths h and h ′ , the kernel K edit (h, h ′ ) is defined as:

K edit (h, h ′ ) = 1 D + 1 D X k=0 D X l=0 exp " -cost k (h)+cost l (h ′ ) 2σ 2 cost " K path (κ k (h), κ l (h ′ )), ( 4 
)
where σ cost is a tuning variable. This kernel is composed of two parts: a scalar product of the edition costs in a particular space and a path kernel. For a small value of σ cost the behavior of the kernel will be close to K path as only low editions cost will contribute. For a high value every editions will contribute with an approximately equal importance. This kernel is definite-positive on the domain of paths as it is a kernel between the hierarchies of paths (see [START_REF] Haussler | Convolution kernels on discrete structures[END_REF][START_REF] Dupé | Edition within a graph kernel framework for shape recognition[END_REF] for more details).

Results

We perform in the following two experiments which compare the performances of 1) the mean kernels with the random walk kernel and 2) kernels based on different kind of bags of paths. For all the experiments, we used the following RBF coefficients (Section 2): for the perimeter: σ perimeter = 0.1, for the distance of the coefficients of the order 2 polynomials describing the radius evolution: σ radius = 5.0, for the distance between the coefficients of the order 5 polynomials describing the orientation evolution: σ orientation = 2000 and for the distance to the gravity center: σ gravity center = 0.5.

Kernel

Times Random walk 12min40 Kunw combined with covering algorithm 3min50 Kw combined with covering algorithm 6min40 Kw using all the paths 153min50 Kw using 1 percent of the heaviest paths 10s Kw using 10 percent of the heaviest paths 3min40 Table 1. Classification times: training and prediction When building the different bags of paths, we only consider paths up to a length of three edges. For the edition process, we perform up to 3 editions on each paths [START_REF] Dupé | Edition within a graph kernel framework for shape recognition[END_REF] and fix the coefficient of the kernel over the edition cost as σ cost = 0.5 (Eq. ( 4)). The weighted mean kernel is built using K weighted with d = 5 and is denoted by K w and the unweighted mean kernel is built using K weighted with d = 0 and is denoted by K unw .

For the following two experiments, we use the 216 shapes of the LEMS database [START_REF]LEMS: shapes databases[END_REF] and consider the one-class classification of birds against all the shapes of this database. This classification is performed using the kernel PCA approach proposed by Hoffmann [START_REF] Hoffmann | Kernel PCA for novelty detection[END_REF] and the results are used to built the ROC curves. The training set contains only three birds (Fig. 3c). The classification times for the different kernels are given in Tab 1.

Experiment I: the difference between the mean kernels and random walk kernel

Fig. 3a shows the ROC curves obtained using the random walk kernel and the K w and K unw kernels combined with the covering algorithm for the construction of the bag of paths. K unw shows the worst performance as the information is lost by the average. The random walk kernel shows an improvement compared to the latter kernel, however since it consider all the paths of the graphs, it is sensitive to the structural noise. The best results is given by K w , as expected the average drawbacks are attenuated by the weighting.

Experiment II: the bag of paths kernels

Fig. 3b shows the ROC curves obtained using different bags of paths: one with all the paths, one with only 1 percent of the heaviest paths and the last with 10 percent of the paths. All these bags of paths have been used with the weighted mean kernel K w . The results prove that considering all the paths is not the best idea and the resulting kernel preforms like the K unw combined with the covering algorithm, but requires more times to classify (Tab. 1). Using one percent of the heaviest paths or ten percent lead to similar results. This last result prove that most of the information is hold by the heaviest paths, however using the covering algorithm leads to better results as the description of shapes is more complete.

Conclusion

In this paper, we have defined a graph kernel based on an edition process and a selection of paths. Since the whole shape is covered by a set of paths with a minimal redundancy, the covering algorithm leads to accurate comparisons. Our results prove that removing redundancy inside the bag of paths lead to more efficient and faster kernel. In the future, we would like to improve the bag of paths kernel using more specialized set kernels.

Fig. 1 .

 1 Fig. 1. Computation of the tree covering by paths: (a) Extraction of paths, (b) Reduction of redundancy, (c) Edge-covering

Fig. 3 .

 3 Fig.3. ROC curves: (a) using Kw (the curve with circles) and Kunw (the curve with squares) compared to the random walk kernel (the curves with the stars), (b) using Kw with all the paths (the curve with crosses), with only one percent of the heaviest paths (the solid curve) and only ten percent of the heaviest path (the dashed curve). (c) The three birds of the training set.
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