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Abstract. Shape classification using graphs and skeletons usually in-
volves edition processes in order to reduce the influence of structural
noise. However, edition distances can not be readily used within the ker-
nel machine framework as they generally lead to indefinite kernels. In
this paper, we propose a graph kernel based on bags of paths and edit
operations which remains positive-definite according to the bags. The
robustness of this kernel is based on a selection of the paths according
to their relevance in the graph. Several experiments prove the efficiency
of this approach compared to alternative kernel.

Key words: Shape, Skeleton, Graph Kernel, Kernel Machine

1 Introduction

Shape matching is a challenging problem in computer vision with many ap-
plications: indexing, classification, clustering. . . Many frameworks have been
developed based on different point of views. Two types of methods can be dis-
tinguished: model-based methods [1] where each shape is compared to models
or prototypes and shape-based methods where shapes are compared one to one.
These last methods, are often based on the skeletons [2, 3].

Usually, skeletons are transformed into graphs, translating the shape match-
ing problem into the more general graph matching problem. Different works
have been developed in order to tackle this last problem. For example Siddiqi [4]
extracts shock graphs from shapes and then uses a greedy algorithm for the com-
parison task. Pelillo [5] transforms graphs into trees and models the problem as
a maximal clique problem. Goh [3] splits the graph into linear parts using heuris-
tics and then directly compares their features. These methods operate directly
inside the graph space which lacks many common mathematical tools.

One way to avoid this issue is to map graphs into a richer space. This is the
purpose of graph kernels whose development is growing with the great interest

⋆ This work is performed in close collaboration with the laboratory Cycéron and is
supported by the CNRS and the région Basse-Normandie.
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in kernel machines for the last ten years. The most famous graph kernels are
the random walk kernel [6], the marginalized graph kernel [6] and the geometric
kernel [6]. As the skeletonization process is not continuous, two graphs repre-
senting similar shapes can show severe structural differences. Since the above
graph kernels implicitly reduce graphs comparison into paths comparison, graph
perturbations modify the paths and thus lead to inaccurate comparison.

Suard [7] introduced a new graph kernel framework based on an explicit
encoding of bags of paths. This framework offers 3 degrees of liberty for the
design of a graph kernel: 1) construction scheme of the bag of paths of a graph,
2) definition of a kernel between bags of paths and 3) definition of a kernel
between paths. The contribution of this paper lies in two of these three points:
we propose 1) a new algorithm for the construction of the bag of path based on
an edge-covering algorithm and 2) a new bag of paths kernel based on the mean
kernel. This bag of path kernel is combined with the edition path kernel [8, 9].

This paper is structured as follows: first we present our graph construction
scheme from a skeleton (Section 2). Then, a construction algorithm for bag of
paths based on a tree-covering algorithm is proposed and analysed from a shape
point of view (Section 3). Following that, we propose a new bag of paths kernel
based on the mean kernel (Section 4). Then, we rapidly present the edition path
kernel [8, 9] which is based on a hierarchical comparison of paths. Finally, the
performance of the resulting graph kernel are measured through experiments in
Section 6.

2 Skeleton-based graph

The skeleton of a shape is usually constructed from the medial axis which is
defined as the centers of the circles of maximal radius [2]. Many graphs may be
associated to the skeleton of a shape. Our graph construction scheme follows the
approach proposed by Siddiqi [4]. It considers the enriched translation of the
skeleton structure to a graph structure: the terminal points, the junction points
and any point encoding an important change of slope of the radius function along
the medial axis define the nodes of the graph. The edges of the graph correspond
to skeleton’s branches between two nodes. The slopes can be obtained using
regression methods based on first order splines [9, 10]. Finally, for the sake of
simplicity, we consider the maximal spanning tree of such graphs. Note that, as
skeletonization is an homotopic transform, a shape with no hole leads directly
to a tree.

The graph associated to a shape only provides information about its struc-
tural properties. Additional geometrical properties of the shape must be encoded
using node and edge attributes in order to keep most of the shape properties.
From a structural point of view, a node represents a particular point inside the
shape skeleton and an edge a skeleton’s branch. However, a branch also repre-
sents the set of points which are closer to the branch than any other branch. This
set of points is defined as the influence zone of the branch and can be computed
using a SKIZ transform [11].
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We have thus selected a set of attributes which provides a good approxima-
tion of the shape. Torsello [12] proposes as edge attribute an approximation of
the perimeter of the boundary which contributes to the formation of the edge,
normalized by the approximated perimeter of the whole shape. This feature
presents the double advantage of being additive and of encoding the relevance of
edges inside graphs. Suard [13] proposes as node attribute the distance between
the node position and the gravity center of the shape divided by the square of
the shape area.

Two descriptors describing a branch of the skeleton and the evolution of
the radius of the maximal circle along it are also considered. For each point
(x(t), y(t)) of a branch, t ∈ [0, 1], we consider the radius R(t) of its maximal
circle. In order to normalize the data, the radius is divided by the square root
of the area of the influence zone of the branch. We also introduce α(t), the
angle formed by the tangent vector at (x(t), y(t)) and the x-axis. Then the two
considered descriptors are (ak)k∈N and (bk)k∈N the coefficients of two regression
polynomials that fit respectively R(t) and α(t) in the least square sense. If both
polynomials are of sufficient orders, the skeleton can be reconstructed from the
graph and so the shape.

Within Suard [7] framework, the comparison of 2 graphs requires to build
their associated bags of paths. The construction of such bags remains problem-
atic, if we want to keep the link between the graph and the represented shape. In
the next section, we propose a method based on this link between the structure
of the graph and its semantics.

3 Covering the graph

The heuristic used to build a bag of paths from a graph constitutes a major
step in the design of a graph kernel within the explicit bag of path framework.
Paths extracted from a graph describe skeleton parts of the shape. So if a bag
of path contains all the paths of a graph (or all the paths up to a fixed length),
it will describe several times the same part of the shape. This redundancy may
be inaccurate since it artificially enforces the importance of some parts of the
shape.

This last remark tends to prove that selecting paths for the bag opens a door
to a more efficient comparison. One example of selection process is to keep only
a fixed percentage of the path amongst the weightier, however such a scheme
induces a loss of some parts of the shape, since many edges may not be present
inside such a bag of paths.

A proper solution would be to cut the shape into several parts and only
consider one path for each part. From a graph point of view, this algorithm is
related to the tree covering [14] problem. More precisely, we would like to have
the minimal sub-set of heaviest paths from a given set of paths which covers the
set of edges of the graph. It is equivalent to the edge covering problem using
a given set of paths with the constraints of minimal cardinality and maximum
weight. Such a problem is NP-hard even for trees [14].
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Fig. 1. Computation of the tree covering by paths: (a) Extraction of paths, (b) Reduc-
tion of redundancy, (c) Edge-covering

The exact algorithm proposed by Guo [14] is based on dynamic programming
and computes the whole set of covering solution from a given set of paths. This
algorithm computes a vertex covering, but can be easily converted into an edge
covering algorithm. We rapidly present the principle of this method: first, the
authors root the tree using an arbitrary node and then apply an ascendant
algorithm. At each step, a node is considered with all the paths which cover
the node, then for each combination of paths, the weight of the covering of the
sub-tree rooted on the node is computed using information from children. The
algorithm finishes at the root node and the result is given by taking only the
solution of maximal weight (using a top-down approach). The final complexity
of the algorithm is O(2CC |V |) where |V | is the number of vertices and C the
maximal number of paths covering one node. The edge-covering version of this
algorithm is built by 1) considering at each node the paths which cover the node
and its parent and 2) adding a fictive path which links the root node to a fictive
node, this fictive node does not appear in the covering but its presence is needed
for the computation of the final covering.

Though the complexity of the algorithm is exponential according to the mea-
sure of redundancy C, the optimal solution is computable in reasonable time
using a proper choice of the initial set of paths. In order to avoid the complexity
issue, we use a simple heuristic in order to reduce the redundancy while con-
structing the input set of paths: first, we compute all the paths up to a fixed
length (Fig 1a), then the redundant paths with the smallest weight are removed
until C is lower than a given threshold (Fig 1b). By redundant paths, we mean
paths which can be removed without breaking the covering clause i.e. all edges
must remain covered by at least one path. Finally, we run the covering algorithm
on this last set of paths which produces the final bag of paths covering the whole
graph (Fig 1c).

For the sake of completeness, the symmetric of each path belonging to the
bag is added to it. Note, that the resulting bag of paths offers a complete rep-
resentation of the shape as no edge is forgotten. The next section considers the
construction of a bag of paths kernels.
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4 Bag of paths kernel

Let us consider a graph G = (V,E) where V denotes the set of vertices and
E ⊂ V × V the set of edges. Let us additionally consider a bag of paths P
associated to G, we denote by |P | the number of paths inside P . We suppose
that a definite-positive path kernel, denoted Kpath, is available.

By considering two bags of paths P1, associated to a graph G1 and P2,
associated to a graph G2, as sets, we construct a bag of paths kernel by averaging
the path kernel results between all couples of paths from each bag:

Kmean(P1, P2) =
1

|P1|

1

|P2|

∑

h∈P1

∑

h′∈P2

Kpath(h, h′). (1)

This kernel defines a definite-positive kernel in the bag of paths domain [15].
However if the bags contains lots of paths, the kernel tends to average the infor-
mation and so looses its efficiency. If the data follow a Gaussian law, a one-class
SVM can be used to estimate the characteristics of the law. This leads to a ker-
nel [8] based on the angle between the mean vectors which reduces the two bags
of paths to their main characteristic, but is hence only semi definite-positive on
the bags of paths.

We propose to control the average effect of the mean kernel by enforcing the
weight of the paths near the mean path. This trick assumes that the distribution
of the paths inside the bag almost follows a Gaussian law. Our kernel is thus
constructed from the mean kernel with two additional control terms: first, we
weight the paths by their relevance inside the graphs and second, we weight the
paths by their distance to the center of their set. These two weights lead to the
following kernel:

Kweighted(P1, P2) =
1

|P1|

1

|P2|

∑

h∈P1

∑

h′∈P2

<Kpath(h,m),Kpath(h′,m′)>d

ω(h)
W

ω(h′)
W ′

Kpath(h, h′).

(2)

where d ∈ R
+, m and m′ denote the mean paths of P1 and P2, ω(h) (resp.

ω(h′)) denotes the sum of the edge’s weights of h (resp. h′) and W (resp. W ′)
the whole weight of the graph containing h (resp. h′). The value of the path ker-
nel between a path and the mean path of its bag P is defined as: Kpath(h,w) =
1
|P |

∑
hi∈P Kpath(h, hi). The kernel Kweighted is definite-positive [15] and so de-

fines a metric between bags of paths.
We directly use this last kernel, as graph kernel i.e. K(G1, G2) =

Kweighted(P1, P2) where P1 (resp. P2) is the bag of paths associated to G1 (resp.
G2). Obviously, this graph kernel is only semi-definite positive as two similar bags
of paths can be defined from two different graphs. However, the semi positive-
definitiveness is not a real issue since shape graphs are closely characterized by
their features attributed to edges and nodes. So equality between two bags of
paths would mean that the two shapes share common sub-parts and are therefore
almost similar.
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Fig. 2. Effect of the edition process

5 Hierarchical kernel

Bag of paths kernel are built upon a path kernel. This kernel can be viewed as
a similarity measure for paths. Kashima [16] proposes the following path kernel:

Kpath(h, h′) = Kv(ϕ(v1), ϕ(v′1))

|h|
Y

i=2

Ke(ψ(evi−1vi
), ψ(ev′

i−1
v′

i
))Kv(ϕ(vi), ϕ(v′i)), (3)

where ϕ(v) and ψ(e) denote respectively the vectors of features associated to
the node v and the edge e and Kv and Ke denote respectively vertices and edges
kernels. This kernel is positive-definite, if Kv and Ke are positive-definite. Edges
and vertices kernels are usually built using Gaussian radial basis kernel on the
difference of feature vectors.

However, since graphs are constructed from shape skeletons, they are sensi-
tive to shape perturbations. On complex shapes, severe shape modifications may
lead to inaccurate comparison while working on paths. In order, to deal with this
problem, we introduce an edition process inside the path kernel.

From a path point of view, the perturbation result in addition of nodes and
edges. Using this observation, we construct two elementary operations on paths:
node suppression and edge contraction. The edition process is described in [9]
and briefly recall bellow for completeness.

Each edition corresponds to a deformation of the shape. Fig. 2 shows the
effect of each edition operation on a simple shape (Fig. 2a): the contraction of
an edge results in the contraction of the shape (Fig. 2b) and the suppression
of a node results in the partial lost of the shape (Fig. 2c). As these operations
change the shape, all the attributes are updated using the new shape information.
Finally, we construct a path kernel by comparing paths and their rewritings.

5.1 Edition path kernel

Let us denote by κ the function which applies the cheapest operation on a path [8,
9] and D the maximal number of reductions. The successive applications of the
function κ associates to each path h a sequence of reduced paths (h, κ(h), . . . ,
κD(h)). A cost costk(h) is associated to each reduced path κk(h). This cost is
defined as the sum of the costs of the k operations needed to obtain κk(h) [9].
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Fig. 3. ROC curves: (a) using Kw (the curve with circles) and Kunw (the curve with
squares) compared to the random walk kernel (the curves with the stars), (b) using
Kw with all the paths (the curve with crosses), with only one percent of the heaviest
paths (the solid curve) and only ten percent of the heaviest path (the dashed curve).
(c) The three birds of the training set.

Using Kpath as path kernel, the idea is to construct another path kernel with
a control on the edition process. The kernel Kedit is defined as a sum of kernels
between reduced paths thus leading to a hierarchical comparison of paths. Given
two paths h and h′, the kernel Kedit(h, h

′) is defined as:

Kedit(h, h
′) =

1

D + 1

D
X

k=0

D
X

l=0

exp
“

−

costk(h)+costl(h
′)

2σ2

cost

”

Kpath(κk(h), κl(h′)), (4)

where σcost is a tuning variable.
This kernel is composed of two parts: a scalar product of the edition costs in a

particular space and a path kernel. For a small value of σcost the behavior of the
kernel will be close to Kpath as only low editions cost will contribute. For a high
value every editions will contribute with an approximately equal importance.
This kernel is definite-positive on the domain of paths as it is a kernel between
the hierarchies of paths (see [15, 9] for more details).

6 Results

We perform in the following two experiments which compare the performances
of 1) the mean kernels with the random walk kernel and 2) kernels based on
different kind of bags of paths. For all the experiments, we used the following
RBF coefficients (Section 2): for the perimeter: σperimeter = 0.1, for the distance
of the coefficients of the order 2 polynomials describing the radius evolution:
σradius = 5.0, for the distance between the coefficients of the order 5 polynomials
describing the orientation evolution: σorientation = 2000 and for the distance to
the gravity center: σgravity center = 0.5.
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Kernel Times

Random walk 12min40

Kunw combined with covering algorithm 3min50

Kw combined with covering algorithm 6min40

Kw using all the paths 153min50

Kw using 1 percent of the heaviest paths 10s

Kw using 10 percent of the heaviest paths 3min40
Table 1. Classification times: training and prediction

When building the different bags of paths, we only consider paths up to a
length of three edges. For the edition process, we perform up to 3 editions on each
paths [9] and fix the coefficient of the kernel over the edition cost as σcost = 0.5
(Eq. (4)). The weighted mean kernel is built using Kweighted with d = 5 and is
denoted by Kw and the unweighted mean kernel is built using Kweighted with
d = 0 and is denoted by Kunw.

For the following two experiments, we use the 216 shapes of the LEMS
database [17] and consider the one-class classification of birds against all the
shapes of this database. This classification is performed using the kernel PCA
approach proposed by Hoffmann [18] and the results are used to built the ROC
curves. The training set contains only three birds (Fig.3c). The classification
times for the different kernels are given in Tab 1.

6.1 Experiment I: the difference between the mean kernels and

random walk kernel

Fig. 3a shows the ROC curves obtained using the random walk kernel and the
Kw and Kunw kernels combined with the covering algorithm for the construction
of the bag of paths. Kunw shows the worst performance as the information is
lost by the average. The random walk kernel shows an improvement compared
to the latter kernel, however since it consider all the paths of the graphs, it is
sensitive to the structural noise. The best results is given by Kw, as expected
the average drawbacks are attenuated by the weighting.

6.2 Experiment II: the bag of paths kernels

Fig. 3b shows the ROC curves obtained using different bags of paths: one with
all the paths, one with only 1 percent of the heaviest paths and the last with 10
percent of the paths. All these bags of paths have been used with the weighted
mean kernel Kw. The results prove that considering all the paths is not the best
idea and the resulting kernel preforms like the Kunw combined with the covering
algorithm, but requires more times to classify (Tab. 1). Using one percent of the
heaviest paths or ten percent lead to similar results. This last result prove that
most of the information is hold by the heaviest paths, however using the covering
algorithm leads to better results as the description of shapes is more complete.
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7 Conclusion

In this paper, we have defined a graph kernel based on an edition process and
a selection of paths. Since the whole shape is covered by a set of paths with a
minimal redundancy, the covering algorithm leads to accurate comparisons. Our
results prove that removing redundancy inside the bag of paths lead to more
efficient and faster kernel. In the future, we would like to improve the bag of
paths kernel using more specialized set kernels.
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9. Dupé, F.X., Brun, L.: Edition within a graph kernel framework for shape recogni-
tion. In: GBR. (2009) submitted.

10. DiMatteo, I., Genovese, C., Kass, R.: Bayesian curve fitting with free-knot splines.
Biometrika 88 (2001) 1055–1071

11. Meyer, F.: Topographic distance and watershed lines. Signal Proc. 38(1) (1994)
12. Torsello, A., Handcock, E.R.: A skeletal measure of 2d shape similarity. CVIU 95

(2004) 1–29
13. Suard, F., Rakotomamonjy, A., Bensrhair, A.: Mining shock graphs with kernels.

Technical report, LITIS (2006) http://hal.archives-ouvertes.fr/hal-00121988/en/.
14. Guo, J., Niedermeier, R., Uhlmann, J.: Two fixed-parameter algorithms for vertex

covering by paths on trees. Information Processing Letters 106 (2008) 81–86
15. Haussler, D.: Convolution kernels on discrete structures. Technical report, Depart-

ment of Computer Science, University of California at Santa Cruz (1999)
16. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernel between labeled graphs.

In: In Proc. of the Twentieth International conference on machine Learning. (2003)
17. LEMS: shapes databases. http://www.lems.brown.edu/vision/software/
18. Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recognition 40 (2007)

863–874


