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IMAGING FROM MONOSTATIC SCATTERED INTENSITIESJEAN-BAPTISTE BELLET AND GÉRARD BERGINCAbstrat. This paper is about inverse-sattering from monostati intensity-only measurements.We �rst formally rederive the geometrial optis approximation for a penetrable onvex target. Wethen derive two diret imaging methods. The �rst one �nds the point whih best maps measure-ments over one irle onto a seond one, due to amplitude deay of the sattered wave. The seondone is a linearization of the problem, based on estimating the urvature of the objet as a funtionof the measurements, due to the geometrial optis approximation. The �rst method aims at esti-mating the position of the target, whereas the seond one aims at reonstruting the shape. Thepaper �nishes with numerial tests showing the relevane and the limits of the proposed methods.1. IntrodutionThis paper in the lass of papers about the determination of the position, the shape and theeletromagneti parameters of a dieletri target using wave propagation. For suh problems, signalsare usually emitted by soures, and for eah soure, a set of reeivers measures the sattered �eld.Several imaging algorithms have been developed for suh purposes. Some of the most famous onesare the Kirhho� migration [7℄, or the MUltiple Signal Classi�ation [1℄. The more reent works [2�5℄are also on this subjet. Both of these methods are based on the full sattered �eld, i.e. they needboth amplitude and phase measurements in the reords (in the frequeny domain). However it isommonly admitted that measuring the phase may be di�ult or impossible in some situations.So formulating the problem with phaseless data is an interesting problem from a pratial point ofview. In this paper, we will assume that the reeivers reord only intensities, i.e. the phase is notmeasured.Let us add some omments about the mathematial e�et of the loss of phase. One way to derivethe Kirhho� migration is to linearize the forward sattering problem using the Born approximation;then the linearized model leads to a onvex minimization problem whose solution an be omputed.Here, deleting the phase from the measurements breaks the linearity! Another point of view onsistsin looking at sattering data as some Fourier-type transform, and thus the inverse sattering problemis some Fourier inversion problem. Here, loosing the phase means reovering a funtion from itsFourier amplitude only.Several imaging methods have been tested for intensity-only measurements. Some of them arebased on phase-retrieval algorithms suh as [10, 12℄. The other ones use the intensity withoutreovering the phase, suh as [9,14℄. Nonetheless, none of them is onerned with imaging from thesattered intensity by a penetrable target, in a monostati on�guration, i.e. with only one reeiverper soure, loated at the soure plae. This is preisely the subjet of this paper.To design inversion methods, a standard approah is to study anonial models. They anindeed develop the intuition about the problem, and adapted inversion methods an easier beguessed. Eventually these methods an then be used for more general ases, either by rigorousextensions, either as heuristis. For sattering problems, a ommon anonial model is a highfrequeny asymptotis for perfetly onduting onvex bodies, using a method developed in [11℄.It is the so-alled geometrial optis approximation. Suh a model an link the monostati radarross-setion with the urvature of the objet. This is the basis of some reonstrution methods [15℄formulated as the Minkowski problem: reonstruting a shape from its urvature. In the samespirit, an asymptotis is rigorously derived in [13℄ for a onvex body with a Dirihlet, Neumann, orimpedane ondition, on its boundary. It is then used to analyse the inverse problem.This leads us to study our problem with suh ideas. As a anonial ase, we study a highfrequeny asymptotis for a onvex body, but with transmission onditions on its boundary. WeDate: May 6, 2013: V2.2.2000 Mathematis Subjet Classi�ation. 78A46; 78A05.Key words and phrases. Inverse sattering; eletromagnetis; phaseless data; geometrial optis.1



2 JEAN-BAPTISTE BELLET AND GÉRARD BERGINCwill also assume that the sene is small ompared to the distane of observation, and so is thedistane from the objet to the origin. Our derivation will be formal and will use the Kirhho�approximation. This presentation is quite lassial and is essentially derived from [7℄. This leads toa formula expressing the monostati sattered intensity as a funtion of two essential fators. Oneof them is a deay fator essentially due to the distane from the observation point to the objet.The other one is the ratio of some (squared) re�etion oe�ient depending on the ontrasts of theeletromagneti parameters, over the urvature of the objet. We propose two imaging methodsbased on these fators. These methods have the advantage to be diret methods (to be ontrastedwith iterative methods of optimization).The �rst one takes advantage of the intensity deay to get an original robust method wihestimates the position of the objet. We have introdued in [6℄ an idea to reonstrut the positionof an objet, using monostati sattering amplitudes over two sets of measurements. The idea isusing the transport equation to map measurements of the �rst set onto those on the seond set,using rays emanating from a small (arbitrary) disk. Then we laim that the small disk is lose tothe objet when the mapped amplitude is lose to the measured amplitude on the seond set. Here,we propose the same idea, using only the order 0 (with respet to the size of the small disk) ofthe mapped amplitude. In fat the relevant mapping is just some intensity orretion due to theintensity deay. We test the imaging funtion of this method under the anonial model assumption.To �nd a seond inversion method, we take advantage of the fator involving the urvature,by assuming that the re�etion oe�ient is known. We dedue a (rough) approximation of theurvature from the intensity data. This allows to formulate the problem as a di�erential equationwhose unknown is the boundary of the objet and the seond member depends on the (estimated)urvature. The disrete version of this linear problem will be a linear system whose operator is a(periodi) �nite di�erenes matrix. Sine the position of the objet is unknown and the urvatureis only roughly known, this problem is ill-posed. It is then solved using a Tikhonov-Phillips regu-larization [1℄ wih needs some a priori information, suh as the position. The linear system whihis �nally inverted has an interesting struture: the matrix is symmetri, sparse, and irulant. Tothe authors' knowledge, this is an original way of formulating and solving the inverse problem ofinterest.After the theoritial onsiderations, we test numerially the di�erent methods. First, we test thegeometrial optis approximation: we ompare the sattered wave using this model with the resultsfrom the boundary element method. We test the method for di�erent re�etion oe�ients and fordi�erent sizes of objets. Even if we observe results of poor quality for some parameters, we alsoobserve that results are quite nie for a large objet with a re�etion oe�ient lose to −1, whihis lose to the perfetly re�eting ase (Neumann ondition on the boundary of the objet). So,even if the numerial results do not ompletely validate the forward asymptoti model, they givesome meaning to the inversion methods, at least for some lass of parameters.Then we ombine the imaging methods on several sets of parameters. We test more partiularlythe e�et of the re�etion oe�ient, the size of the objet, and the shape of the objet, inludingnon-onvex objets. We observe that the �rst inversion method is not sensitive to the di�erent pa-rameters. It reovers robustly the position of the objet. The seond inversion method reonstrutssome smooth onvex urve. It is more or less lose to the true objet, depending essentially on thequality of the geometrial optis model.The paper is organized as follows. We �rst write mathematially the imaging problem that wewant to solve. Then we derive formally the geometrial optis model assoiated with the forwardsattering model. In the next setion, we interpret monostati intensity data using this asymptotimodel, and we derive the two inversion methods: the method of mapping data from one irle toanother one, and the method of reonstrution from urvatures. We �nish by some numerial testsabout the anonial model and the inversion methods.2. Problem settingWe assume that the free spae R
2 is a dieletri medium whose eletromagneti parameters arethe permittivity ε0 > 0 and the permeability µ0 > 0. Using harmoni waves whose frequenyis ω > 0, the wave number in free spae is then k0 := ω

√
ε0µ0, and the assoiated wavelength
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Figure 1. Aquisition on�guration: a soure at xS on the irle C(Mλ) illuminatesthe onvex objet D ; a reeptor at xS measures the sattered intensity.is λ := 2π
k0
. A soure loated at some position y would emit the usual outgoing Green funtion

G(x, y) = − i
4H

(1)
0 (k0 |x− y|).We now assume that some dieletri objet D is inluded in the medium. Its permittivity is

ε∗ > 0 ans its permeability is µ∗ > 0. D is supposed to be some smooth (onnex) domain. Itsboundary ∂D an be desribed by a urve γ(s), s denoting the ar length, satisfying the followingproperties. The unit tangent vetor to ∂D at γ(s) is γ′(s) and the exterior unit normal vetor is
νγ(s) = R−π/2γ

′(s), with R−π/2 =

[

0 1
−1 0

]. See Figure 1. The (signed) urvature κ(s) is suhthat γ′′ = −κν. Exept for some numerial tests, we will assume that D is onvex and that theurvature satis�es κ > minκ > 0. Also we assume that the objet D is extended or large, i.e. itssize is a few or many wavelengths.Let us introdue a soure loated at some point xS in far �eld. It illuminates the objet Dby emitting the inident �eld uI(x, xS) = G(x, xS). The resulting total �eld an be deomposedinto the form u[D](x, xS) =

{

uI(x, xS) + u+[D](x, xS), x ∈ R
2 \D,

u−[D](x, xS), x ∈ D.
The sattered �eld u+ =

u+[D](x, xS) and the internal �eld u− = u−[D](x, xS) satisfy homogeneous Helmholtz equations,with transmission onditions on the boundary ∂D, and with an outgoing radiation ondition:
(∆ + ω2ε0µ0)u+ = 0, in R

2 \D, (2.1)
(∆ + ω2ε∗µ∗)u− = 0, in D, (2.2)

uI + u+ = u−, on ∂D, (2.3)
1

µ0
∂ν(uI + u+) =

1

µ∗
∂νu−, on ∂D, (2.4)+ outgoing radiation ondition on u+. (2.5)We assume that a reeptor loated at the soure position xS measures the sattered intensity

I[D](xS) = |u+[D](xS, xS)|2. In omparison, standard imaging methods suh as Kirhho� migrationwould use u+[D](xS, xS) as input, instead of its module.We do this experiment for a point xS traveling along the irle C(Mλ) of enter 0, and of radius is
Mλ. Then the data are the monostati sattered intensities I[D](xS), xS ∈ C(Mλ). We will assumethat the radius Mλ is large omparing with the wavelength, i.e. M >> 1 is a large dimensionlessnumber. We will also assume that the radius is large omparing with |γ|. This has two onsequenes:ompared with an observation position xS , the position ŷ = 1

∂D

∫

∂D ydσ(y) of the objet is near theorigin (i.e. |ŷ| << |xS|), and the sene is small (i.e. |γ − ŷ| << |xS − ŷ|).The aim of this paper is to study some aspets of the reonstrution of the objet D from themeasurements I[D](x). We would like tho reonstrut the shape γ of D. Also, we would like toknow if we an guess the eletromagneti parameters ε∗, µ∗.



4 JEAN-BAPTISTE BELLET AND GÉRARD BERGINC3. Asymptoti model3.1. Eikonal and transport equations. Let us onsider a general homogeneous Helmholtz prob-lem in a homogeneous medium :
(∆ + ω2εµ)u = 0, (3.1)where ω is the frequeny, √εµ > 0 is a onstant representing the slowness of the medium. In orderto derive the eikonal and transport equation in high frequeny regime, let us write formally theWKBJ expansion of u:

u(x) ∼ ωβeiωϕ(x)
∞
∑

j=0

Aj(x)

(iω)j
. (3.2)This expression is some harmoni version of a progressive wave F (t − ϕ(x)) propagating in thediretion of inreasing ϕ(x) (in time domain). So the phase funtion ϕ(x) orresponds to a traveltime. The onstant power β depends on some kind of initial onditions imposed on u, suh asthe soure signature. The terms of the sum involve amplitude terms Aj(x) whih do not dependon ω. They are smoother and smoother, sine a division by iω represents an integration in timedomain; thus the sharpest part, or somehow the highest frequeny part, omes from the �rst termsof the expansion. We will use in the sequel leading order approximations for suh expansions:

u(x) ∼ ωβeiωϕ(x)A0(x).Insertion of the WKBJ expansion (3.2) in the Helmholtz equation (3.1) yields:
ωβeiωϕ

∞
∑

j=0

1

(iω)j

[

ω2
(

εµ − |∇ϕ|2
)

Aj + iω (2∇ϕ · ∇Aj +Aj∆ϕ) + ∆Aj

]

= 0.Let us identify formally powers of ω. The highest power β + 2 yields the eikonal equation whihlaims that the slowness is the norm of the gradient of the phase; The power β yields the transportequation, whih links the amplitude A0 with the phase:
|∇ϕ|2 − εµ = 0, 2∇ϕ · ∇A0 +A0∆ϕ = 0. (3.3)For our purpose, we won't need to solve neither the eikonal equation nor the transport equation.We only need to fous on what suh high frequeny asymptotis implies at an interfae betweentwo media.3.2. Re�etion and transmission at an interfae. In this subsetion, we onsider an interfae

Γ separating two homogeneous medium. The eletromagneti parameters are ε0, µ0 above theinterfae and ε∗, µ∗ below the interfae. We assume that a downward inident wave uI in the upperpart generates at the boundary an upward re�eted wave uR in the upper part, and a downwardtransmitted wave uT in the lower medium. Of ourse, uI, uR satisfy a Helmholtz equation suhas (3.1) with εµ = ε0µ0, and uT satis�es suh an equation with εµ = ε∗µ∗. So we an write theWKBJ expansions (3.2) of uI,R,T, and we apply the results of the previous subsetion (we replae β,
ϕ and Aj by βI,R,T, ϕI,R,T and AI,R,T

j ). Furthermore, uI, uR and uT must satisfy the two followingtransmission onditions on the interfae:
uI + uR = uT,

1

µ0
∂ν(uI + uR) =

1

µ∗
∂νuT, on Γ. (3.4)Our main goal in this subsetion is to express the re�eted �eld uR and its normal derivative ∂νuRon the interfae as a funtion of the inident �eld uI and its normal derivative ∂νuI. We obtainthese results at the leading order, using the transmission onditions.The �rst transmission ondition in (3.4) beomes:

ωβIeiωϕI

∞
∑

j=0

AI
j

(iω)j
+ ωβReiωϕR

∞
∑

j=0

AR
j

(iω)j
= ωβTeiωϕT

∞
∑

j=0

AT
j

(iω)j
, on Γ.In general, terms of di�erent order in ω annot be equal, so βI = βR = βT. We must also have

ϕI = ϕR = ϕT on Γ to be able to math term of like power in ω. This determines the phasefor the �elds uR and uT on the interfae. As phases are equal on the interfae, their tangentialderivatives are also equal: ∂τϕI = ∂τϕR = ∂τϕT. By the way, the eikonal equation in (3.3) impliesthat |∇ϕI|2 = |∇ϕR|2 = ε0µ0, and |∇ϕT|2 = ε∗µ∗. First, substrating the seond equality to the



IMAGING FROM MONOSTATIC SCATTERED INTENSITIES 5�rst one yields: (∂νϕT)
2 = ε∗µ∗ − ε0µ0 + (∂νϕI)

2. But uI and uT are both downward waves, so
∂νϕI and ∂νϕT have the same sign, and thus

∂νϕT = sign(∂νϕI)
√

ε∗µ∗ − ε0µ0 + (∂νϕI)2. (3.5)Seondly, as ∇ϕI and ∇ϕR have the same norm and the same tangential omponent, their normalomponent are equal, up to the sign. As uI is a downward wave and uR is an upward wave, theyare opposite:
∂νϕR = −∂νϕI. (3.6)At this step, we know the phase and its gradient, for the re�eted and transmitted �elds on theinterfae, as a funtion of the inident �eld. Let us determine now the amplitude. Sine the powers

β are the same, and so are the phases ϕ, the WKBJ expansions inserted into the transmissiononditions (3.4) yield:
∞
∑

j=0

AI
j

(iω)j
+

∞
∑

j=0

AR
j

(iω)j
=

∞
∑

j=0

AT
j

(iω)j
,

∞
∑

j=0

[ 1

(iω)j−1

(

1

µ0
AI

j∂νϕI +
1

µ0
AR

j ∂νϕR − 1

µ∗
AT

j ∂νϕT

)

+

1

(iω)j

(

1

µ0
∂νA

I
j +

1

µ0
∂νA

R
j − 1

µ∗
∂νA

T
j

)

]

= 0, on Γ.By formally identifying like power in iω : the power 0 in the �rst line above yields AI
0+AR

0 = AT
0 , andthe power −1 in the seond line yields 1

µ0
AI

0∂νϕI +
1
µ0
AR

0 ∂νϕR − 1
µ∗

AT
0 ∂νϕT = 0. If we introduethe Fresnel oe�ients R and T suh that: AR

0 = RAI
0 and AT

0 = TAI
0, and using (3.6), thesetwo transmission onditions are given by: 1 + R = T, 1

µ0
(1 − R)∂νϕI = 1

µ∗

T∂νϕT, i.e. R =
1

µ0
∂νϕI− 1

µ∗
∂νϕT

1

µ0
∂νϕI+

1

µ∗
∂νϕT

, T =
2

µ0
∂νϕI

1

µ0
∂νϕI+

1

µ∗
∂νϕT

. If the opposite of the inident diretion −∇ϕI makes an auteangle θ with the normal diretion ν, we an write ∂νϕI = −√
ε0µ0 cos θ < 0. Then, we get the Fresneloe�ients from (3.5); in partiular, for normal inidene (θ = 0), we get oe�ients dependingonly on the permeability and the slowness ontrasts:

Rθ =

µ∗

µ0
cos θ −

√

ε∗µ∗

ε0µ0
− sin2 θ

µ∗

µ0
cos θ +

√

ε∗µ∗

ε0µ0
− sin2 θ

, Tθ =
2µ∗

µ0
cos θ

µ∗

µ0
cos θ +

√

ε∗µ∗

ε0µ0
− sin2 θ

,and for θ = 0 : R0 =

µ∗

µ0
−

√
ε∗µ∗√
ε0µ0

µ∗

µ0
+

√
ε∗µ∗√
ε0µ0

, T0 =
2µ∗

µ0

µ∗

µ0
+

√
ε∗µ∗√
ε0µ0

. (3.7)To onlude this setion, let us have a look at some leading order terms that we got on theinterfae Γ. For the inident wave, we have uI ∼ ωβIeiωϕIAI
0. The re�eted wave uR has a similarexpression with βR = βI, ϕR = ϕI and AR

0 = RAI
0, with R given by (3.7). On the other hand, atthe leading order, ∂νu ∼ iωu∂νϕ, for u = uR and for u = uI. Realling (3.6), we �nally get whatwill be a key step in the Kirhho� approximation:

uR ∼ RuI, ∂νuR ∼ −R∂νuI. (3.8)3.3. Kirhho� approximation. Let us ome bak to the original problem de�ned by (2.1), (2.2),(2.3), (2.4), (2.5). The sattered �eld u+ satis�es the Helmholtz equation (2.1) with the radiationondition (2.5). So it has the following Green representation [1℄:
u+(x) =

∫

∂D

(

G(x, y)∂νyu+(y)− u+(y)∂νyG(x, y)
)

dσ(y). (3.9)The idea of Kirhho� approximation is to onsider only the ontributions from primary re�etionson the visible part Γ = {y ∈ ∂D : (y− xS) · νy < 0}, and to approximate them at the leading order.



6 JEAN-BAPTISTE BELLET AND GÉRARD BERGINCThe well known leading order term of the Green funtion is thus of interest:
G(x, y) ∼ ωβeiωϕ(x,y)A0(x, y), with β = −0.5, ϕ(x, y) =

√
ε0µ0 |x− y| ,

A0(x, y) =
−eiπ/4

√

8π
√
ε0µ0

1
√

|x− y|
. (3.10)This result gives the leading order term for the inident wave uI(x, xS) = G(x, xS) and the gradientof its phase: ∇ϕ(x, xS) =

√
ε0µ0

x−xS

|x−xS| . On a visible point y ∈ Γ, we approximate the sattered�eld u+(y) by the re�eted �eld uR resulting from the interation of the inident �eld uI with theinterfae Γ. Sine the inident wave is downgoing: ∂νyϕ =
√
ε0µ0

y−xS

|y−xS| · νy < 0, then following theapproximation (3.8), we get:
u+ ∼ RuI, ∂νu+ ∼ −R∂νuI, on Γ. (3.11)By the way, for a point y in the shadow part {y ∈ ∂D : (y−xS)·νy > 0}, we assume that the sattered�eld and its normal derivative are very small; so we remove these ontributions from the integral (3.9)whih beomes an integral over the lit part Γ. Finally, inserting the approximation (3.11) in theGreen representation (3.9) yields:

u+(x) = −
∫

Γ
R
(

G(x, y)∂νyuI(y, xS) + uI(y, xS)∂νyG(x, y)
)

dσ(y)

= −
∫

Γ
R∂νy (G(x, y)uI(y, xS)) dσ(y).The leading order terms now yield:

u+(x) = −i

∫

Γ
R∂νy(ϕ(y, xS) + ϕ(x, y))A0(y, xS)A0(x, y)e

iω(ϕ(y,xS )+ϕ(x,y))dσ(y).In the monostati ase, x = xS, and so we get with the leading order of the Green funtion (3.10):
u+(x) =

∫

Γ
f(s)eiΛΦ(s)ds, with f(s) =

1

4π
R(γ(s))

γ(s)− x

|γ(s)− x| · ν(γ(s))
1

|γ(s)− x| ,

Φ(s) =

∣

∣

∣

∣

γ(s)

ρ
− x

ρ

∣

∣

∣

∣

,Λ = 2ωρ
√
ε0µ0.We have used the parametrization γ to write the integral; the parameter ρ = 1

|∂D|
∫

∂D |y − ŷ| dσ(y)is the average distane of the points of the boundary ∂D to the loation of the objet. The funtion
Φ and the parameter Λ are dimensionless. We now perform a stationary phase analysis wih revealsthat in fat there is only one visible point whih ontributes to this integral. If Λ is large, thestationary phase formula yields [8℄:

u+(x) ∼
√

2π

|Λ| |Φ′′(s0)|
f(s0)e

iΛΦ(s0)+iπ/4 sign(Λ) sign(Φ′′(s0)),where s0 is the stationary point of Φ : Φ′(s0) =
γ(s0)−x
|γ(s0)−x| ·

1
ργ

′(s0) = 0 ; the speular point y0 = γ(s0)is the visible point on ∂D suh that the inidene is normal on y0: y0−x
|y0−x| = −νy0 . So f(s0) =

R0

4π
−1

|y0−x| with R0 given by (3.7). Let us now ompute Φ′′(s0). We have Φ′(s) = γ(s)−x
|γ(s)−x| ·

1
ργ

′(s),so Φ′′(s0) = (DZ
Z
|Z|)|z=y0−xγ

′(s0) · γ′(s0)
ρ + y0−x

|y0−x| ·
γ′′(s0)

ρ = Ψ1 + Ψ2. The �rst term is Ψ1 =

1
ρ|y0−x|3

∣

∣

∣(y0 − x) · RT
−π/2γ

′(s0)
∣

∣

∣

2. But y0−x
|y0−x| = −νy0 = −R−π/2γ

′(s0), so Ψ1 =
1

ρ|y0−x| . By the way
γ′′(s0) = −κ0νy0 where κ0 denotes the urvature of ∂D at speular point y0 ; thus Ψ2 = κ0

ρ . Thenfor x large enough, Ψ1 is negligible ompared to Ψ2. As a result:
u+(x) ∼

1
√

πω
√
ε0µ0κ0

R0

4

−1

|y0 − x|e
2iω

√
ε0µ0|y0−x|+iπ/4. (3.12)More partiularly, this �nally implies the following model for the monostati sattered intensity:

I[D](x) ∼ 1

42πω
√
ε0µ0

1

|y0 − x|2
R2

0

κ0
, x ∈ C(Mλ). (3.13)



IMAGING FROM MONOSTATIC SCATTERED INTENSITIES 7To onlude this setion, let us add several omments about the limits of the asymptoti-kindmodel that we have just derived. First, it is based on the Kirhho� approximation. This approx-imation takes into aount only the primary re�etions on the visible part of the objet. Someother ontributions are negleted: the objet is penetrable, so there might be also internal multiplesoming bak to the reeiver; by the way, there may be reeping waves generated at the interfaelight/shadow. Conerning the visible part, alulus are approximated using a geometrial optismodel followed by a stationary phase analysis. For both of these asymptotis, we need to speifywhat �large� means. The Rayleigh riterion ommonly admitted is that a length L is large if thedimensionless quantity L
λ = kL

2π is greater than 1
4 , where λ is the wavelength and k is the wavenum-ber. For the geometrial optis approximation, we thus require that 1

κλ >
1
4 ; for the stationaryphase method, the seond derivative |Φ′′(s0)| annot be too small, i.e. |Λ| |Φ′′(s0)| = 2kκ0 > π.These two onditions an be summarized on a ondition on the radius of urvature: λ

4 6
1
κ 6

4
λ .By the way, the stationary phase analysis should eventually take into aount the ontributionsfrom other eventual ritial points suh as the end points of integration. Here, we have negletedthem. For all these reasons, the intensity model (3.13) ould be not exat, both qualitatively andquantitatively. Nonetheless it is of interest to us: it an be used as a anoni model to desribemonostati sattered intensity data; we shall just keep in mind that it is not ompletely exat.4. Inversion methods4.1. Consequenes of the asymptoti model. Before designing inversion methods to reon-strut the objet, let us analyse the anonial model (3.13) that desribes intensity measurementsas a produt of three fators. Suh an analysis should give an understanding of the data as afuntion of the unknonwn objet. This should also emphasise what kind of informations about theobjet is reonstrutable or not, and this should lead to inversion methods.The �rst fator 1

42πω
√
ε0µ0

depends only on the slowness of free spae and the frequeny wih areboth assumed to be �xed. So it is a onstant. The use of multi-frequeny data ould be eventuallysubjet to further studies.The seond fator 1
|y0−x|2 is a deay fator in 1

r2
. Beause of the assumption: |y0| << |x| = Mλ,we have roughly the following approximation: |y0 − x|2 ∼ (Mλ)2. So the amplitude deay fatoran be almost onsidered as a onstant when x moves on C(Mλ), this onstant does not dependon the objet. The advantage is that it simpli�es analysis, sine informations are then only in thethird fator.The third fator R2

0

κ0
is the one whih ontains diretly the informations about the objet: it isthe ratio of the (squared) re�etion oe�ient R2

0 and the urvature κ0 at speular point. The �rstonlusion is that we annot hope to reonstrut both the re�etion oe�ient and the size of theobjet: multiplying κ by a positive onstant and R0 by a square root of this onstant would yieldsimilar measurements! By the way, if κ0 is supposed to be known then R2
0 an be expressed asknown quantities multiplied by the measurements ; next, averaging over θ estimates R2

0. If on theontrary we know R2
0, then the new information in the measurements is the urvature κ. Thus theinverse problem beomes: reonstruting a urve from its urvature. This will be one of the imagingmethod that we study below.Unfortunately, none of these three fators depend sensitively on the position of the objet; soroughly speaking, the given data do not ontain the position of the objet and thus it annot bereovered! More data are needed. If we now have a loser look at the amplitude deay fator underour small sene assumption, we an see it as 1

|ŷ−x|2 . The position information ŷ is somehow hiddenhere. If we assume that the measurements are taken on two onentri irles (and not only one),then the data from the �rst irles an be mapped onto the data from the seond one. The mappingis diretly related to the position ŷ due to the amplitude deay, and so this may help to reover ŷ.This is the basis of the �rst imaging method.4.2. Mapping intensities from one irle to another one. In this subsetion, we assume thatwe know the monostati intensity I[D] on two large irles C(M1λ) and C(M2λ) withM = M1 < M2.We denote I1,2 the intensities that we measure. We try to reonstrut the position ŷ of the objet
D by �nding a map whih transforms I1 onto I2.
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Figure 2. Con�guration to map intensities: D is the objet, x1 is a soure/reeiveron the �rst irle C(M1λ) of measurements, z is a test point, x2(z, x1) is on the seondirle C(M2λ) and on the ray [z, x1), y1 and y2(z, x1) are the assoiated speularpoints.For a test point z in the smallest disk, we �transport� I1 along rays emanating from z by applyingthem a orretion due to the 1/r2 deay. See Figure 2. If x1 is a point on the �rst irle C(M1λ), weompute the intersetion of the ray [z, x1) with the seond irle C(M2λ): x2(z, x1) = z + (−z · v+

[(M2λ)
2−|z|2+(z ·v)2]1/2)v, with v = x1−z

|x1−z| . The intensity I1(x1) is mapped onto |x1−z|2
|x2(z,x1)−z|2 I1(x1)and we ompared it with the measurement at x2 by omputing

δ(z, x1) = I2(x2(z, x1))−
|x1 − z|2

|x2(z, x1)− z|2
I1(x1).We then ompute the L2 error (with respet to x1) over the full irle:

‖δ(z, ·)‖ =

(∫

|δ(z, x1)|2 dx1
)1/2

.The idea is that the test point z is lose to the objet D when its assoiated mapping yields a smallerror ‖δ(z, ·)‖. As a result, we plot the map of
H(z) = 1/ ‖δ(z, ·)‖and we selet a high level set of H to get an estimate of D, and more partiularly of its position ŷ.Let us have a look at what happens using the asymptoti model (3.13). The model yieldsdiretly: I1(x1)/I2(x2) = κ2

κ1

|x2−y2|2
|x1−y1|2

. Here, x2 = x2(z, x1), y1,2 is the speular point assoiatedwith x1,2, and κ1,2 is the assoiated urvature. If z is lose to D, the speular point y2 is loseto the speular point y1, and so are the urvatures κ1 and κ2. By the way, by the small seneassumption, |x2−y2|2
|x1−y1|2

∼ |x2−ŷ|2
|x1−ŷ|2 and sine z is lose to both y1 and y2, we have |x2−ŷ|2

|x1−ŷ|2 ∼ |x2−z|2
|x1−z|2 .Finally I1(x1)/I2(x2) ∼ |x2−z|2

|x1−z|2 and so δ(z, x1) should be small. On the ontrary, when the testpoint z moves away from the objet D, the ratio |x2−z|2
|x1−z|2 moves away from |x2−y2|2

|x1−y1|2
, or y2 moves awayfrom y1 and so the urvature κ2 moves away from κ1 ; in any ase there is generially no reason tohave δ(z, x1) small. These qualitative omments using the asymptoti model tend to on�rm that

H is a good imaging funtion to �nd the position.4.3. Reonstrution from urvatures. In this subsetion, we ome bak to the original problemwhose data are reorded on the unique irle C(Mλ), and we suppose that we know the (squared)re�etion oe�ient R2
0. The starting point is the asymptoti formula (3.13) wih links the intensity

I(θ) measured at x(θ) = Mλθ ((cos θ, sin θ) ≡ θ ∈ [0, 2π]) with the urvature κ0(θ) at the assoiatedspeular point y0(θ): I(θ) ∼ 1
πω

√
ε0µ0κ0(θ)

R2
0

42
1

|y0(θ)−x(θ)|2 . Using the assumption |γ| << Mλ, wehave the following approximations: |x(θ)− y0(θ)| νy0(θ) = x(θ) − y0(θ) = Mλ(θ − |y0(θ)|
Mλ ) ∼ Mλθ.More partiularly, the normal vetor at speular point is assimilated to the measurement angle θ:

νy0(θ) ∼ θ ; also we have |y0(θ)− x(θ)|2 ∼ (Mλ)2. Then the asymptotis above provides the (radiusof) urvature as a funtion of the measurements, parametrized by the normal θ:
1

κ0(θ)
∼ πω

√
ε0µ0M

2 4
2

R2
0

I(θ).



IMAGING FROM MONOSTATIC SCATTERED INTENSITIES 9Thus, the inverse problem is equivalent to reonstruting the boundary ∂D (or γ), from its radiusof urvature 1
κ0(θ)

, parametrized by the exterior normal vetor θ. Here we insist on the lak ofknowledge of the position of the objet: the urvature ontains only derivatives; so the position ismissing, and it annot be reonstruted here.We an formulate the problem as an ODE. Indeed, by the hain rule:
dγ

dθ
=

ds

dθ

dγ

ds
=

1

κ0(θ)
(− sin θ, cos θ),and so we would like to �nd a solution to the following ODE:

dγ

dθ
=

1

κ0(θ)
(− sin θ, cos θ) =: f(θ), γ(θ) is 2π-periodi.Before we an hope to �nd suh a periodi funtion, the right member f(θ) must be of zero mean.Here the urvature κ0(θ) is only roughly known, so unfortunately this may be unsatis�ed. By theway, even if we authorize non-periodi solutions, the onstant of integration annot be determineby this method beause we annot determine the position of the objet. Beause of these fats ofnon-existene or non-uniqueness, a regularization is needed.Let us now write the disrete version of the ODE problem that we have to solve. The measurementangle θ lives in the disrete set: {θi := ih, 0 6 i 6 n} with h = 2π

n+1 . These angles orrespond alsoto the normal vetors at speular points. The boundary γ evaluated on those speular points isthe (n + 1) × 2 unknown Y = (γ(θi))i. The disretized right member is the (n + 1) × 2 matrix
F = (f(θi))i. And the disrete operator assoiated with the (periodi) ODE is a irulant matrixof size (n+ 1)× (n+ 1), orresponding to a �nite di�erenes disretization:

K =
1

2h











0 1 −1

−1 0
. . .. . . . . . 1

1 −1 0











(4.1)With these notations, the disrete problem is the linear system: �nd the (n+1)× 2 matrix Y suhthat
KY = F.If n + 1 is odd, then the onstant vetor (1, . . . , 1) spans the kernel of K. Else, the kernel of K isspanned by the family {(1, . . . , 1), (1, 0, 1, 0, . . . , 1, 0)}. In both ases, the matrix is not of full rank,and then there annot be a unique solution!We then propose a Tikhonov-Phillips regularization. We have to assume that we have alreadydetermined some estimate Y0 of Y by another method ; Y0 ould eventually be a onstant repre-senting the position, eventually determined by the mapping method presented above. We use thisa priori information in an optimization problem: �nd the (n+1)× 2 matrix Yσ wih minimizes theost funtion:

Jσ(Y ) :=
1

2
‖KY − F‖2 + σ

2
‖Y − Y0‖2 .Here, σ > 0 is a �xed parameter, and for a (n + 1) × 2 matrix X = (X1,X2), we have de�ned

‖X‖2 := |X1|2 + |X2|2. The �rst term of this funtionnal tends to impose Y to reprodue theobserved data, whereas the seond term tends to fore Y to be near Y0. The parameter σ an behosen to make some ompromise between the two terms. A point Y is a minimizer over the fullspae of suh a onvex funtionnal if, and only if, it satis�es the Euler equation J ′
σ(Y ) = 0, wihredues here to the linear system:

(K∗K + σI)Y = K∗F + σY0,where K∗ is the adjoint matrix of K. Sine the matrix K∗K+σI is positive de�nite, then the linearsystem is invertible. The matrix K∗K+σI is a sparse symetri irulant matrix, whose �rst line is:
( 1
2h2 + σ, 0, −1

4h2 , 0, . . . , 0,
−1
4h2 , 0). Thus the system an be e�iently solved, eventually by using thefast fourier transform. Its solution Yσ is �nally the unique solution to the minimization problemand an be used to estimate the boundary ∂D.



10 JEAN-BAPTISTE BELLET AND GÉRARD BERGINC5. Numerial results5.1. Boundary element method versus geometrial optis. We hek numerially the rele-vane (or the limits) of the asymptoti model (3.12). So we ompute the sattered wave u+ on theirle C(Mλ) using this model and another referene method. The referene result uMoM is omputedby the boundary element method, and is parametrized by the angular position θ of the point x(θ)on the irle. Conerning the asymptoti result uCurvature, we ompute it by using �nite di�erenesto evaluate the urvature κ =
∣

∣R−π/2ẏ · ÿ
∣

∣ / |ẏ|3, where y(t), 0 6 t 6 2π is a parametrization of ∂D,and the dot is the derivative with respet to t. ∂D is �rst disretized by Y = (y(ti))06i6N , with
ti = ih, h = 2π

N+1 . Then let K be the (N +1)× (N +1) derivation matrix of the form (4.1), and let
∆ be the (N+1)× (N+1) matrix of the seond derivative operator: ∆ = 1

h2











−2 1 1

1 −2
. . .. . . . . . 1

1 1 −2











.Then, (ẏ(ti))i = KY + O(h2), and (ÿ(ti))i = ∆Y + O(h2). This immediately gives (κ(ti))i, andthen we get the asymptotis uCurvature, parametrized by ti. (NB : we dedue the normal vetor at
y(ti) from ẏ(ti) ; so we get the angle θ whose assoiated speular point is y(ti), and thus uCurvaturean be parametrized by θ too.)We start by observing the e�et of the re�etion oe�ient R0, wih is losely related to thepermeability ontrast µ∗

µ0
and the slowness ontrast k∗

k0
=

√
ε∗µ∗√
ε0µ0

. We hoose the parameters asfollows. The wavelength is λ = 0.5. The permeability of free spae is µ0 = 1. The ontrast ofslowness is k∗
k0

= 2. The objet is an ellipsoid whose diameter is the large axis a1 = 10λ. Thesmall axis is of size a2 = 0.7a1. The large axis makes an angle of 1 with the x axis, and the enterof the ellipsoid is (10λ,−3λ). The objet is disretized with about 12 points per wavelength (andat least 50 points). The sattered wave is omputed on the irle C(Mλ) whose radius divided bythe wavelength is M = 1000. This irle of measurements is uniformly disretized with 360 points.As a quantitative riterion to ompare the methods, we ompute the relative error between thereferene result uMoM and the asymptoti result uCurvature: |uMoM − uCurvature| / |uMoM| (ratio of L2norms on C(Mλ)). Here, we try several re�etion oe�ients by hanging the ontrast µ∗

µ0
. We getapproximately the following results:

µ∗

µ0
1.5 0.8 0.2 0.02

R0 −0.14 −0.43 −0.82 −0.98

|uMoM − uCurvature| / |uMoM| 0.96 0.74 0.43 0.15We have also plotted uMoM and uCurvature on the Figure 3, for the ases µ∗

µ0
= 1.5 and µ∗

µ0
= 0.02.These di�erent tests tend to reveal that ontributions negleted by the Kirhho� approximationan seriously a�et the sattered wave, for both the amplitude and the phase. We also see that theresults are better for a re�etion oe�ient lose to minus one. For suh a oe�ient, the situation isindeed loser to the perfetly re�eting one where the Kirhho� approximation is more reasonable.We now test the e�et of the asymptotis requirement (inluding λ

4 6
1
κ 6

4
λ) by testing severalratios size of the objet over the wavelength. We only indiate the parameters wih are di�erentfrom those in the tests above. We set the permeability ontrast: µ∗

µ0
= 0.02, and so the re�etionoe�ient is R0 ≈ −0.98. The used wavelength is λ = 0.75. The ratio a1

λ takes now severalsuessive values. The relative error of the asymptoti uCurvature is:
a1
λ 1 5 10 15

|uMoM − uCurvature| / |uMoM| 1.1 0.47 0.15 0.24We see again some limits of the asymptoti model: the error inreases when the urvature beomestoo small or too large.Unfortunately, the global onlusion is that the anonial model (3.12) gives results whose qualityis variable. The optimisti point of view is that results are quite good in ertain regimes of param-eters; this allows to justify the following imaging methods at least for those lasses of parameters.
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Figure 3. Comparison of the monostati wave re�eted by an ellipsoid, om-puted with the boundary element method (uMoM) and the Kirhho� approximation(uCurvature). The re�etion oe�ient is R0 ≈ −0.14 on the left and R0 ≈ −0.98 onthe right. For both ases, we plot the modules on the left and we plot the di�ereneof the arguments divided by π and on the right. For R0 ≈ −0.14, the two resultsare quite di�erent. For R0 ≈ −0.98, the results are quite lose.
Figure 4. Imaging for di�erent re�etion oe�ients: R0 ≈ −0.98,−0.82,−0.43,−0.14.5.2. Inversion. We now test numerially the imaging methods. Monostati sattered intensities

I1,2 on the irles C(M1,2λ) are simulated using the boundary element method, the objet D beingdisretized with about 12 points per wavelength λ. We �rst guess the position of the objet using themapping method. We plot the imaging funtion H on a grid whose step is quarter of a wavelength:
λ/4 (on both axis). We use a graysale; the darker is the gray, the larger is H. We mark with aross the highest value of H. The orresponding position is used as a guess Y0 of the position ofthe objet. Then we use the urvature inversion method, based on this guess and on data I1 fromthe �rst irle. The regularization parameter σ is set to 0.01. The resulting reonstrution is �nallyplotted on the same piture than H; and so is the true boundary ∂D. We expliit below di�erentsets of parameters. Comments about the results will be done later in the text, method by method.The following parameters will be always the same. The permeability of free spae is µ0 = 1, theslowness ontrast is k∗

k0
= 2. The radius of the �rst irle of measurements is M1λ with M1 = 1000.The two irles of measurements are uniformly disretized with 360 points. When the objet is anellipsoid, the ratio of the axes is a2

a1
= 0.6, and the large axis makes an angle of 1 with the x axis.We �rst test the methods for di�erent re�etion oe�ients R0, sine it is a ritial parameter forthe asymptoti forward modelling. The ontrast µ∗

µ0
takes the suessive values 0.02, 0.2, 0.8, 1.5 andso the re�etion oe�ient R0 takes the values −0.98,−0.82,−0.43,−0.14. The other parametersare the following. The wavelength is λ = 0.5. The objet is an ellipsoid whose diameter is thelarge axis a1 = 5λ. Its enter is (10λ,−3λ). The radius of the seond irle of measurements is

M2λ = 1.1M1λ. The results of the imaging methods are represented on Figure 4.Then, we try ellipsoids whose enter is (10λ,−3λ) and whose size is variable: the ratio large axisover the wavelength takes the suessie values: a1
λ = 0.5, 2, 8, 16. By the way, the wavelength is

λ = 0.75. The permeability ontrast is µ∗

µ0
= 0.2 ; so the re�etion oe�ient R0 is about −0.82.
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Figure 5. Imaging of an ellipsoid whose size a1 is given by a1

λ = 0.5, 2, 8, 16.

Figure 6. Imaging of a star whose number of branhs is f = 3, 5, 8 (from top tobottom) and whose branh amplitude is α = 0.1, 0.3, 0.5 (from left to right).The ratio of the radius of the irles of measurements is M2

M1
= 1.1. The imaging results are plottedon Figure 5.Although the methods were designed for onvex objets, we also observe numerially whathappens for star-shaped objets, whose boundary is of the form: γ(t) = (10λ,−3λ) + 2.5λ(1 +

α cos(ft))(cos t, sin t). The number of branhs is f = 3, 5, 8 and the amplitude of a branh is
α = 0.1, 0.3, 0.5. The enter of suh a star is (10λ,−3λ) and its diameter is about 5λ. The otherparameters are the following. The wavelength is λ = 0.5. The ontrast µ∗

µ0
is 0.02 and so the re-�etion oe�ient R0 is −0.98. The ratio of the radius of the irles of measurements is M2

M1
= 1.1.The imaging results are plotted on Figure 6.Mapping from the �rst irle to the seond one. For all the ases, the �rst method provides a mapwhose largest values are loated near the inlusion. By the way, the maximum of this map is reahednear the enter of the objet and so its loation Y0 is a good guess of position.We add some quality ontrol of the mapping on one illustrative example. Let us reall that Y0 isby de�nition the point z suh that the mapping of I1, i.e. |x1−z|2

|x2(z,x1)−z|2 I1(x1), is the losest from I2(evaluated on x2(z, x1)). To ontrol the quality of this mapping, we ompute the mapping of I1 for
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Figure 7. Imaging with di�erent ratio of radius of the irles of measurements:
M2

M1
= 1.05, 2, 3, 10

z = Y0 and we ompare it with I2 by omputing the relative error ‖δ(Y0, x1)‖ / ‖I2(x2(Y0, x1))‖. Forthe third example of Figure 4, we get 0.11% wih is very small, and whih means that the mappingis very good for z = Y0.We add another test, about the radius of the seond irle of measurements to hek that themethod is not sensitive to it. More preisely, the ratio of the radius M2

M1
takes here the suessivevalues: 1.05, 2, 3, 10. The other parameters are the following. The wavelength is λ = 0.5. Theontrast µ∗

µ0
is 0.2 and so the re�etion oe�ient R0 is −0.82. The objet is an ellipsoid whoseenter is (10λ,−3λ) and whose large axis is a1 = 5λ. The results of the Figure 7 shows that themethod is not sensitive at all to the ratio of radius. The only e�et of inreasing it is to very slightlyonentrate the highest values of the imaging funtion near the enter of the objet.The onlusion is that the method �nds the position and that it is very robust.Inversion from urvature. First, even if the estimate of the urvature from intensities data is verynoisy, we always reonstrut a urve whih is smooth. We also observe that the reonstrution isalways onvex. This is due to the method itself whih de�nes the urvature as a positive number.The reonstrution is also well loated, due to the (good) guess of the position Y0 wih is used asan a priori. We an laim that the regularization parameter σ has been well hosen.For the ellipsoids of Figure 5, all the results are quite good. (For the �rst image, the shapeis not so well reonstruted, but the error is under the resolution limit λ/4.) The method wasindeed designed for suh onvex objets with a quite good re�etion oe�ient. By the way, there�etion oe�ient is ritial: on Figure 4, the reonstruted urve is perfet for R0 = −0.98, butdeteriorates when R0 approahes 0. This is due to the Kirhho� forward model wih deteriorates.And to �nish with, when the non-onvexity inreases, the forward model deteriorates again. Thatis why for the stars on Figure 6, the reonstrution is very good for the �rst image but deterioratesmore and more when the number of branhs or/and the branh amplitude inrease.Referenes[1℄ H. Ammari. An Introdution to Mathematis of Emerging Biomedial Imaging. Springer, 2008.[2℄ H. Ammari, P. Garapon, F. Jouve, H. Kang, M. Lim, and S. Yu. A new optimal ontrol approah for thereonstrution of extended inlusions. SIAM Journal on Control and Optimization, 51:1372�1394, 2013.[3℄ H. Ammari, J. Garnier, W. Jing, H. Kang, M. Lim, K. Sølna, and H. Wang.Mathematial and Statistial Methodsfor Multistati Imaging. Leture Notes in Mathematis, Springer, submitted.[4℄ H. Ammari, J. Garnier, V. Jugnon, and H. Kang. Stability and resolution analysis for a topologial derivativebased imaging funtional. SIAM Journal on Control and Optimization, 50:48�76, 2012.[5℄ H. Ammari, J. Garnier, H. Kang, M. Lim, and K. Sølna. Multistati imaging of extended targets. SIAM Journalon Imaging Sienes, 5:564�600, 2012.[6℄ J.-B. Bellet and G. Bergin. Imagerie laser. C. R. Aad. Si. Paris, 2011.[7℄ N. Bleistein, J. Cohen, and J. Stokwell Jr. Mathematis of Multidimensional Seismi Imaging, Migration, andInversion, volume 13. Springer, 2000.[8℄ N. Bleistein and R. A. Handelsman. Asymptoti Expansions of Integrals. Dover, 1986.[9℄ A. Chai, M. Mososo, and G. Papaniolaou. Array imaging using intensity-only measurements. Inverse Problems,27(1):015005, 2011.[10℄ J. R. Fienup et al. Phase retrieval algorithms: a omparison. Applied optis, 21(15):2758�2769, 1982.[11℄ F. Friedlander and J. B. Keller. Asymptoti expansions of solutions of (∇2+k
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