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IMAGING FROM MONOSTATIC SCATTERED INTENSITIES

JEAN-BAPTISTE BELLET AND GERARD BERGINC

AmsTrACT. This paper is about inverse-scattering from monostatic intensity-only measurements.
We first formally rederive the geometrical optics approximation for a penetrable convex target. We
then derive two direct imaging methods. The first one finds the point which best maps measure-
ments over one circle onto a second one, due to amplitude decay of the scattered wave. The second
one is a linearization of the problem, based on estimating the curvature of the object as a function
of the measurements, due to the geometrical optics approximation. The first method aims at esti-
mating the position of the target, whereas the second one aims at reconstructing the shape. The
paper finishes with numerical tests showing the relevance and the limits of the proposed methods.

1. INTRODUCTION

This paper in the class of papers about the determination of the position, the shape and the
electromagnetic parameters of a dielectric target using wave propagation. For such problems, signals
are usually emitted by sources, and for each source, a set of receivers measures the scattered field.
Several imaging algorithms have been developed for such purposes. Some of the most famous ones
are the Kirchhoff migration [7], or the MUltiple Signal Classification [1|. The more recent works [2-5]
are also on this subject. Both of these methods are based on the full scattered field, i.e. they need
both amplitude and phase measurements in the records (in the frequency domain). However it is
commonly admitted that measuring the phase may be difficult or impossible in some situations.
So formulating the problem with phaseless data is an interesting problem from a practical point of
view. In this paper, we will assume that the receivers record only intensities, 7.e. the phase is not
measured.

Let us add some comments about the mathematical effect of the loss of phase. One way to derive
the Kirchhoff migration is to linearize the forward scattering problem using the Born approximation;
then the linearized model leads to a convex minimization problem whose solution can be computed.
Here, deleting the phase from the measurements breaks the linearity! Another point of view consists
in looking at scattering data as some Fourier-type transform, and thus the inverse scattering problem
is some Fourier inversion problem. Here, loosing the phase means recovering a function from its
Fourier amplitude only.

Several imaging methods have been tested for intensity-only measurements. Some of them are
based on phase-retrieval algorithms such as [10,12]. The other ones use the intensity without
recovering the phase, such as [9,14]. Nonetheless, none of them is concerned with imaging from the
scattered intensity by a penetrable target, in a monostatic configuration, i.e. with only one receiver
per source, located at the source place. This is precisely the subject of this paper.

To design inversion methods, a standard approach is to study canonical models. They can
indeed develop the intuition about the problem, and adapted inversion methods can easier be
guessed. Eventually these methods can then be used for more general cases, either by rigorous
extensions, either as heuristics. For scattering problems, a common canonical model is a high
frequency asymptotics for perfectly conducting convex bodies, using a method developed in [11].
It is the so-called geometrical optics approximation. Such a model can link the monostatic radar
cross-section with the curvature of the object. This is the basis of some reconstruction methods [15]
formulated as the Minkowski problem: reconstructing a shape from its curvature. In the same
spirit, an asymptotics is rigorously derived in [13] for a convex body with a Dirichlet, Neumann, or
impedance condition, on its boundary. It is then used to analyse the inverse problem.

This leads us to study our problem with such ideas. As a canonical case, we study a high
frequency asymptotics for a convex body, but with transmission conditions on its boundary. We
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will also assume that the scene is small compared to the distance of observation, and so is the
distance from the object to the origin. Our derivation will be formal and will use the Kirchhoff
approximation. This presentation is quite classical and is essentially derived from [7]. This leads to
a formula expressing the monostatic scattered intensity as a function of two essential factors. One
of them is a decay factor essentially due to the distance from the observation point to the object.
The other one is the ratio of some (squared) reflection coefficient depending on the contrasts of the
electromagnetic parameters, over the curvature of the object. We propose two imaging methods
based on these factors. These methods have the advantage to be direct methods (to be contrasted
with iterative methods of optimization).

The first one takes advantage of the intensity decay to get an original robust method wich
estimates the position of the object. We have introduced in [6] an idea to reconstruct the position
of an object, using monostatic scattering amplitudes over two sets of measurements. The idea is
using the transport equation to map measurements of the first set onto those on the second set,
using rays emanating from a small (arbitrary) disk. Then we claim that the small disk is close to
the object when the mapped amplitude is close to the measured amplitude on the second set. Here,
we propose the same idea, using only the order 0 (with respect to the size of the small disk) of
the mapped amplitude. In fact the relevant mapping is just some intensity correction due to the
intensity decay. We test the imaging function of this method under the canonical model assumption.

To find a second inversion method, we take advantage of the factor involving the curvature,
by assuming that the reflection coefficient is known. We deduce a (rough) approximation of the
curvature from the intensity data. This allows to formulate the problem as a differential equation
whose unknown is the boundary of the object and the second member depends on the (estimated)
curvature. The discrete version of this linear problem will be a linear system whose operator is a
(periodic) finite differences matrix. Since the position of the object is unknown and the curvature
is only roughly known, this problem is ill-posed. It is then solved using a Tikhonov-Phillips regu-
larization [1] wich needs some a priori information, such as the position. The linear system which
is finally inverted has an interesting structure: the matrix is symmetric, sparse, and circulant. To
the authors’ knowledge, this is an original way of formulating and solving the inverse problem of
interest.

After the theoritical considerations, we test numerically the different methods. First, we test the
geometrical optics approximation: we compare the scattered wave using this model with the results
from the boundary element method. We test the method for different reflection coefficients and for
different sizes of objects. Even if we observe results of poor quality for some parameters, we also
observe that results are quite nice for a large object with a reflection coefficient close to —1, which
is close to the perfectly reflecting case (Neumann condition on the boundary of the object). So,
even if the numerical results do not completely validate the forward asymptotic model, they give
some meaning to the inversion methods, at least for some class of parameters.

Then we combine the imaging methods on several sets of parameters. We test more particularly
the effect of the reflection coefficient, the size of the object, and the shape of the object, including
non-convex objects. We observe that the first inversion method is not sensitive to the different pa-
rameters. It recovers robustly the position of the object. The second inversion method reconstructs
some smooth convex curve. It is more or less close to the true object, depending essentially on the
quality of the geometrical optics model.

The paper is organized as follows. We first write mathematically the imaging problem that we
want to solve. Then we derive formally the geometrical optics model associated with the forward
scattering model. In the next section, we interpret monostatic intensity data using this asymptotic
model, and we derive the two inversion methods: the method of mapping data from one circle to
another one, and the method of reconstruction from curvatures. We finish by some numerical tests
about the canonical model and the inversion methods.

2. PROBLEM SETTING

We assume that the free space R? is a dielectric medium whose electromagnetic parameters are
the permittivity g > 0 and the permeability pg > 0. Using harmonic waves whose frequency
is w > 0, the wave number in free space is then kg := w,/eoio, and the associated wavelength
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C(MN)

Zs (source, receptor)

FIGURE 1. Acquisition configuration: a source at xg on the circle C(M A) illuminates
the convex object D ; a receptor at xg measures the scattered intensity.

is A= i—’g A source located at some position y would emit the usual outgoing Green function

Glx.y) = —{HG (ko [ — y]).

We now assume that some dielectric object D is included in the medium. Its permittivity is
g« > 0 ans its permeability is pu, > 0. D is supposed to be some smooth (connex) domain. Its
boundary 0D can be described by a curve 7(s), s denoting the arc length, satisfying the following
properties. The unit tangent vector to 9D at y(s) is 7/(s) and the exterior unit normal vector is
Vy(s) = Rer/2¥'(8), with R_/5 = [_01 é} See Figure 1. The (signed) curvature x(s) is such
that v/ = —kv. Except for some numerical tests, we will assume that D is convex and that the
curvature satisfies kK > mink > 0. Also we assume that the object D is extended or large, i.e. its
size is a few or many wavelengths.

Let us introduce a source located at some point zg in far field. It illuminates the object D
by emitting the incident field ui(x,zs) = G(x,xg). The resulting total field can be decomposed

ur(z, xs) + uy [D](z,x5), = €R2\ D
u_[D](z,xs), x e D.
uy[D](z,zg) and the internal field u_ = u_[D](z,zs) satisfy homogeneous Helmholtz equations,
with transmission conditions on the boundary 9D, and with an outgoing radiation condition:

into the form wu[D](z,zg) = " The scattered field uy =

(A + w?eouo)uy =0, in R*\ D, (2.1)
(A +w?ep)u_ =0, in D, (2.2)
ur +uy =u_, on 9D, (2.3)
1 1
—0y(ur +uy) = —0yu_, on 9D, (2.4)
Ko s
+ outgoing radiation condition on wu . (2.5)

We assume that a receptor located at the source position xg measures the scattered intensity
I[D](zs) = |uy[D](zs, zs)|>. In comparison, standard imaging methods such as Kirchhoff migration
would use u4[D](xg,xg) as input, instead of its module.

We do this experiment for a point xg traveling along the circle C(M M) of center 0, and of radius is
M. Then the data are the monostatic scattered intensities I[D](zg),zs € C(MA). We will assume
that the radius M\ is large comparing with the wavelength, i.e. M >> 1 is a large dimensionless
number. We will also assume that the radius is large comparing with |y|. This has two consequences:
compared with an observation position xg, the position g = 8% faD ydo(y) of the object is near the
origin (i.e. || << |zg|), and the scene is small (i.e. |y — g| << |zg — 7).

The aim of this paper is to study some aspects of the reconstruction of the object D from the
measurements I[D](x). We would like tho reconstruct the shape v of D. Also, we would like to
know if we can guess the electromagnetic parameters e, fi.
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3. ASYMPTOTIC MODEL

3.1. Eikonal and transport equations. Let us consider a general homogeneous Helmholtz prob-
lem in a homogeneous medium :

(A + w?ep)u =0, (3.1)
where w is the frequency, /e > 0 is a constant representing the slowness of the medium. In order

to derive the eikonal and transport equation in high frequency regime, let us write formally the
WKBJ expansion of u:

) = Aj(z)
(B alwe(T J
u(z) ~ wlelwsl Z (w) (3.2)
7=0
This expression is some harmonic version of a progressive wave F(t — ¢(z)) propagating in the
direction of increasing ¢(z) (in time domain). So the phase function ¢(x) corresponds to a travel
time. The constant power 8 depends on some kind of initial conditions imposed on u, such as
the source signature. The terms of the sum involve amplitude terms A;(x) which do not depend
on w. They are smoother and smoother, since a division by iw represents an integration in time
domain; thus the sharpest part, or somehow the highest frequency part, comes from the first terms
of the expansion. We will use in the sequel leading order approximations for such expansions:
u(z) ~ wPelwe®) Ay ().
Insertion of the WKBJ expansion (3.2) in the Helmholtz equation (3.1) yields:

[ee]
. 1
W 3T |w? (e = [V) A +iw (29 VA; + A4;A9) + Ad;| = 0.
Let us identify formally powers of w. The highest power 5 + 2 yields the eikonal equation which
claims that the slowness is the norm of the gradient of the phase; The power [ yields the transport
equation, which links the amplitude Ay with the phase:

V| —ep =0, 2Vp-VAg+ AgAp = 0. (3.3)

For our purpose, we won’t need to solve neither the eikonal equation nor the transport equation.
We only need to focus on what such high frequency asymptotics implies at an interface between
two media.

3.2. Reflection and transmission at an interface. In this subsection, we consider an interface
I' separating two homogeneous medium. The electromagnetic parameters are eg, g above the
interface and e, ux below the interface. We assume that a downward incident wave up in the upper
part generates at the boundary an upward reflected wave ugr in the upper part, and a downward
transmitted wave ur in the lower medium. Of course, uy, ug satisfy a Helmholtz equation such
as (3.1) with ey = epug, and ur satisfies such an equation with ey = e,pu,. So we can write the
WKBJ expansions (3.2) of ur g T, and we apply the results of the previous subsection (we replace £,

¢ and A; by Bir,T, ¢1,r,T and A?R’T). Furthermore, u1, ur and wt must satisfy the two following
transmission conditions on the interface:

ur + ur = ur, i(91,(111 +uRr) = i&,uT, on I (3.4)
o o
Our main goal in this subsection is to express the reflected field ug and its normal derivative 0,ur
on the interface as a function of the incident field u; and its normal derivative 0,u;. We obtain
these results at the leading order, using the transmission conditions.
The first transmission condition in (3.4) becomes:

o] 1 o] R [e’¢) T

. A . Al ) I
B piwer J BR plwer J BT alwer J_ T.
wle ]E:O (iw)j + wte EO (iw)j wle jEZO (iw)J’ on

In general, terms of different order in w cannot be equal, so f; = fr = fr. We must also have
o1 = wr = @1 on I' to be able to match term of like power in w. This determines the phase
for the fields ug and ur on the interface. As phases are equal on the interface, their tangential
derivatives are also equal: 0-p1 = 0;¢r = O-p71. By the way, the eikonal equation in (3.3) implies
that |Ver|* = |Ver|? = eopo, and |Vor|? = e.pu.. First, substracting the second equality to the
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first one yields: (9,¢1)% = euptx — €opto + (Oyp1)?. But up and ur are both downward waves, so
0,1 and 0,1 have the same sign, and thus

Ayt = sign(d,p1)Vesp — soro + (Ouipr). (3.5)

Secondly, as Vr and Ver have the same norm and the same tangential component, their normal
component are equal, up to the sign. As uy is a downward wave and ug is an upward wave, they
are opposite:

Oy or = —0u 1. (3.6)

At this step, we know the phase and its gradient, for the reflected and transmitted fields on the
interface, as a function of the incident field. Let us determine now the amplitude. Since the powers
[ are the same, and so are the phases ¢, the WKBJ expansions inserted into the transmission
conditions (3.4) yield:

U1, 0 L. n 1. 2\

By formally identifying like power in iw : the power 0 in the first line above yields Aj+Af = A{, and
the power —1 in the second line yields iAé&,gpI + ;—OAE{&,QDR — M—l*Ag&,ng = 0. If we introduce
the Fresnel coefficients R and T such that: Af = RA} and Al = T AL, and using (3.6), these

two transmission conditions are given by: 1 4+ R = T,i(l — R)D,p1 = %T&,gprp, ie. R =
%aylplfiaulpT %31»901 . . . . .
g T = _——  [fthe opposite of the incident direction —V ¢ makes an accute
mausol'f'u—*aus@’r M—OauSOI'FM—*&/SOT

angle 6 with the normal direction v, we can write 0,1 = —,/€oto cos § < 0. Then, we get the Fresnel
coefficients from (3.5); in particular, for normal incidence (0 = 0), we get coefficients depending
only on the permeability and the slowness contrasts:

Becosf — /B —sin? 0 2Hx o5 )
R Ho (200) T 1o
9 = s 1Ly — )
Be cos@ + /2= gin? 6 = cosf 4 /S —sin? 6
140 £0140 10 E0H0
P N ExH s
\/E
andforH:O:RO:ZO %,ngﬂ % (3.7)
wo T Veoro o T Veoro

To conclude this section, let us have a look at some leading order terms that we got on the
interface I'. For the incident wave, we have uy ~ wﬁleiw“’IAg. The reflected wave ugr has a similar
expression with Sr = 1, Yr = ¢1 and A} = RA}, with R given by (3.7). On the other hand, at
the leading order, d,u ~ iwud,p, for u = ug and for u = u;. Recalling (3.6), we finally get what
will be a key step in the Kirchhoff approximation:

UR ~~ RUI, &,UR ~ —R&,ul. (3.8)
3.3. Kirchhoff approximation. Let us come back to the original problem defined by (2.1), (2.2),

(2.3), (2.4), (2.5). The scattered field u satisfies the Helmholtz equation (2.1) with the radiation
condition (2.5). So it has the following Green representation [1]:

uy (x) = /8 (Gl 1) = 01 (0)0, Gl ) Ao (), (3.9)

The idea of Kirchhoff approximation is to consider only the contributions from primary reflections
on the visible part I' = {y € 0D : (y — xs) - v, < 0}, and to approximate them at the leading order.
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The well known leading order term of the Green function is thus of interest:

G(%y) ~ wﬁeiww(x7y)‘40(x7y)a with B = _0-57 QD((L',:I/) = VEoMO ‘.%' - y‘ 5

" ( ) _ei7r/4 1

o\, y) = .
V8ot /| —
This result gives the leading order term for the incident wave uy(x,zg) = G(x, zg) and the gradient
of its phase: Vo(z,zg) = ,/so,uo‘i:i:‘. On a visible point y € T', we approximate the scattered
field u4 (y) by the reflected field ug resulting from the interaction of the incident field uy with the

interface I'. Since the incident wave is downgoing: d,,¢ = \/Eoflo é:i:l -1y < 0, then following the

(3.10)

approximation (3.8), we get:
uy ~ Ruy, 9yuy ~ —Ro,ur, onT. (3.11)

By the way, for a point y in the shadow part {y € 9D : (y—zg)-v, > 0}, we assume that the scattered
field and its normal derivative are very small; so we remove these contributions from the integral (3.9)
which becomes an integral over the lit part I'. Finally, inserting the approximation (3.11) in the
Green representation (3.9) yields:

wre) == [ R (G0, 5) + (. 25)0,Gla,1) do(y)

. / ROy, (G(x,y)ur(y, vs)) do(y).

The leading order terms now yield:

uy(z) = —i /F Ry, (o(y, ws) + ¢, y)) Ao(y, ) A (w, y)e P e) 200 dg (y).

In the monostatic case, x = zg, and so we get with the leading order of the Green function (3.10):

up (z) = /F F()eN O ds, with f(s) = —R(7() LT ()2

Am [y(s) =] v(s) =/’
D(s) = ‘@ - % s A = 2wp\/eop0.

We have used the parametrization v to write the integral; the parameter p = ﬁ Jop ly — 9ldo(y)
is the average distance of the points of the boundary dD to the location of the object. The function
® and the parameter A are dimensionless. We now perform a stationary phase analysis wich reveals
that in fact there is only one visible point which contributes to this integral. If A is large, the
stationary phase formula yields [8]:

| 2m iA®(s0)+im/4sign(A) sign(®” (s0))
U+(IE) ’A’ ‘@”(30)‘ f(SO)e )

where s is the stationary point of ® : ®'(sg) = ggzg;:; -%’y'(so) = 0 ; the specular point yo = y(so)
is the visible point on 0D such that the incidence is normal on yq: \58:2\ = —vy,. So f(s0) =
%ﬂ"'y;_lﬂ with Ry given by (3.7). Let us now compute ®”(sg). We have ®'(s) = ggz;:; : %7’(5),
so ®"(sg) = (DZ‘—g‘)]z:yO_wfy'(so) : 7(;0) + e - Ejo) = W, + Uy. The first term is ¥; =
2

m (Yo — ) 'RTF/Q’YI(SO)‘ - But 0= = —vy, = —R_z27(s0), s0 ¥y = m- By the way
7" (s0) = —kovy, where ko denotes the curvature of D at specular point yq ; thus Uy = %0. Then
for z large enough, Wy is negligible compared to ¥y. As a result:

1 Ry -1 o2iws/Eofiolyo—a|+im /4 (3.12)

uy () ~ e
V/Tw/Eooro 4 [yo — |
More particularly, this finally implies the following model for the monostatic scattered intensity:

1 1 R
I[D)(z) ~ 55— 2 o z € C(MN). (3.13)
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To conclude this section, let us add several comments about the limits of the asymptotic-kind
model that we have just derived. First, it is based on the Kirchhoff approximation. This approx-
imation takes into account only the primary reflections on the visible part of the object. Some
other contributions are neglected: the object is penetrable, so there might be also internal multiples
coming back to the receiver; by the way, there may be creeping waves generated at the interface
light /shadow. Concerning the visible part, calculus are approximated using a geometrical optics
model followed by a stationary phase analysis. For both of these asymptotics, we need to specify
what “large” means. The Rayleigh criterion commonly admitted is that a length L is large if the
dimensionless quantity % = % is greater than i, where A\ is the wavelength and k is the wavenum-
ber. For the geometrical optics approximation, we thus require that % > i; for the stationary
phase method, the second derivative |®”(sg)| cannot be too small, i.e. |A]|®"(sg)| = 2kko = .
These two conditions can be summarized on a condition on the radius of curvature: % < % < %.
By the way, the stationary phase analysis should eventually take into account the contributions
from other eventual critical points such as the end points of integration. Here, we have neglected
them. For all these reasons, the intensity model (3.13) could be not exact, both qualitatively and
quantitatively. Nonetheless it is of interest to us: it can be used as a canonic model to describe
monostatic scattered intensity data; we shall just keep in mind that it is not completely exact.

4. INVERSION METHODS

4.1. Consequences of the asymptotic model. Before designing inversion methods to recon-
struct the object, let us analyse the canonical model (3.13) that describes intensity measurements
as a product of three factors. Such an analysis should give an understanding of the data as a
function of the unknonwn object. This should also emphasise what kind of informations about the
object is reconstructable or not, and this should lead to inversion methods.

The first factor m depends only on the slowness of free space and the frequency wich are
both assumed to be fixed. So it is a constant. The use of multi-frequency data could be eventually
subject to further studies.

The second factor 1
lyo—z|

we have roughly the following approximation: |y — 33|2 ~ (MX)2. So the amplitude decay factor
can be almost considered as a constant when x moves on C(M M), this constant does not depend
on the object. The advantage is that it simplifies analysis, since informations are then only in the
third factor. ,

The third factor 1:—8 is the one which contains directly the informations about the object: it is

> is a decay factor in 5. Because of the assumption: |yo| << |z| = M),

the ratio of the (squared) reflection coefficient RZ and the curvature ko at specular point. The first
conclusion is that we cannot hope to reconstruct both the reflection coefficient and the size of the
object: multiplying s by a positive constant and Ry by a square root of this constant would yield
similar measurements! By the way, if kg is supposed to be known then R% can be expressed as
known quantities multiplied by the measurements ; next, averaging over § estimates R3. If on the
contrary we know R2, then the new information in the measurements is the curvature x. Thus the
inverse problem becomes: reconstructing a curve from its curvature. This will be one of the imaging
method that we study below.

Unfortunately, none of these three factors depend sensitively on the position of the object; so
roughly speaking, the given data do not contain the position of the object and thus it cannot be
recovered! More data are needed. If we now have a closer look at the amplitude decay factor under
our small scene assumption, we can see it as ——. The position information 4 is somehow hidden

[g—=|

here. If we assume that the measurements are taken on two concentric circles (and not only one),
then the data from the first circles can be mapped onto the data from the second one. The mapping
is directly related to the position gy due to the amplitude decay, and so this may help to recover g.
This is the basis of the first imaging method.

4.2. Mapping intensities from one circle to another one. In this subsection, we assume that
we know the monostatic intensity I[D] on two large circles C(M;\) and C(Ma\) with M = My < M.
We denote I 2 the intensities that we measure. We try to reconstruct the position ¢ of the object
D by finding a map which transforms I onto Is.
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FiGURE 2. Configuration to map intensities: D is the object, 1 is a source/receiver
on the first circle C(M;\) of measurements, z is a test point, z2(z, z1) is on the second
circle C(M2)) and on the ray [z,21), y1 and y2(z,x1) are the associated specular
points.

For a test point z in the smallest disk, we “transport” I along rays emanating from z by applying
them a correction due to the 1/r2 decay. See Figure 2. If 21 is a point on the first circle C(M)), we
compute the intersection of the ray [z,z1) with the second circle C(MaA): xo(z,21) = 24 (—2z- v+

[(MaX)2 —|2|* + (z-v)%]Y/2)v, with v = ‘g:;. The intensity I (z1) is mapped onto ﬂll(azl)

|22 (2,21)—2|?

and we compared it with the measurement at xo by computing

|21 — 2

0(z,x1) = Iy(z2(2,21)) — I (zq).

a2, 21) — 2

We then compute the L? error (with respect to x1) over the full circle:

180z, )l = ( / |6<z,x1>|2dx1>1/2.

The idea is that the test point z is close to the object D when its associated mapping yields a small
error [|6(z,-)||. As a result, we plot the map of

H(z) = 1/16(z, )|

and we select a high level set of H to get an estimate of D, and more particularly of its position .
Let us have a look at what happens using the asymptotic model (3.13). The model yields

2

directly: I1(x1)/I2(x2) = :—f% Here, 9 = x2(2,71), y1,2 is the specular point associated
1—Y1

with 12, and k12 is the associated curvature. If z is close to D, the specular point y» is close

to the specular point 71, and so are the curvatures k1 and ky. By the way, by the small scene

: |lz2—y2> _ |z2—gf° : : w2 =92 |za—2|?
assumption, P— 14| 2amd since z is close to both y; and s, we have 1 P
Finally Ih(z1)/I2(x2) ~ % and so 0(z,z1) should be small. On the contrary, when the test

|$2—Z‘2 f \m2—y2\2
m moves away Irom m, or Yo moves away

from y; and so the curvature ko moves away from x; ; in any case there is generically no reason to
have §(z,z1) small. These qualitative comments using the asymptotic model tend to confirm that
H is a good imaging function to find the position.

point z moves away from the object D, the ratio

4.3. Reconstruction from curvatures. In this subsection, we come back to the original problem
whose data are recorded on the unique circle C(M\), and we suppose that we know the (squared)
reflection coefficient RZ. The starting point is the asymptotic formula (3.13) wich links the intensity
I(0) measured at x(0) = M ((cosd,sinf) = 6 € [0, 2x]) with the curvature ky(6) at the associated
1 RZ 1
mwy/Eoporo(0) 4% |yo(0)—z(0)]
have the following approximations: |z(0) — yo(0)|vy,9) = z(0) — yo(0) = MA(O — %) ~ M.
More particularly, the normal vector at specular point is assimilated to the measurement angle 6:
Vyo(9) ~ 0 ; also we have |yo(0) — 2(0)|* ~ (MX)2. Then the asymptotics above provides the (radius
of) curvature as a function of the measurements, parametrized by the normal 6:

1 42
— ~ ﬂw\/eo,qu2R—gI(0).

specular point yo(6): 1(0) ~ . Using the assumption |y| << M\, we

Ko(0)
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Thus, the inverse problem is equivalent to reconstructing the boundary 9D (or ), from its radius
of curvature #@, parametrized by the exterior normal vector #. Here we insist on the lack of
knowledge of the position of the object: the curvature contains only derivatives; so the position is
missing, and it cannot be reconstructed here.

We can formulate the problem as an ODE. Indeed, by the chain rule:
dy _dsdy 1
dd  dods  ko(H)

(—sin b, cosb),

and so we would like to find a solution to the following ODE:
dy 1
df  ko(H)

(—sinf,cosf) =: f(0), ~(0) is 2m-periodic.

Before we can hope to find such a periodic function, the right member f(#) must be of zero mean.
Here the curvature k(@) is only roughly known, so unfortunately this may be unsatisfied. By the
way, even if we authorize non-periodic solutions, the constant of integration cannot be determine
by this method because we cannot determine the position of the object. Because of these facts of
non-existence or non-uniqueness, a regularization is needed.

Let us now write the discrete version of the ODE problem that we have to solve. The measurement
angle 6 lives in the discrete set: {0; :=ih,0 < i < n} with h = n2_47:1 These angles correspond also
to the normal vectors at specular points. The boundary v evaluated on those specular points is
the (n + 1) x 2 unknown Y = (y(6;));. The discretized right member is the (n 4+ 1) x 2 matrix
F = (f(0;));. And the discrete operator associated with the (periodic) ODE is a circulant matrix
of size (n+ 1) x (n + 1), corresponding to a finite differences discretization:

0 1 -1

K=— h (4.1)
oy
1 -1 0
With these notations, the discrete problem is the linear system: find the (n+ 1) x 2 matrix Y such
that

KY =F.

If n+ 1 is odd, then the constant vector (1,...,1) spans the kernel of K. Else, the kernel of K is
spanned by the family {(1,...,1),(1,0,1,0,...,1,0)}. In both cases, the matrix is not of full rank,
and then there cannot be a unique solution!

We then propose a Tikhonov-Phillips regularization. We have to assume that we have already
determined some estimate Yy of Y by another method ; Y{ could eventually be a constant repre-
senting the position, eventually determined by the mapping method presented above. We use this
a priori information in an optimization problem: find the (n+ 1) x 2 matrix Y, wich minimizes the
cost function:

1 2, 0 2
Jo(V) = 2y — PP Sy - w)e.

Here, 0 > 0 is a fixed parameter, and for a (n 4+ 1) x 2 matrix X = (X3, X2), we have defined
[X|* := |X1]* + | X2>. The first term of this functionnal tends to impose Y to reproduce the
observed data, whereas the second term tends to force Y to be near Y. The parameter ¢ can be
chosen to make some compromise between the two terms. A point Y is a minimizer over the full
space of such a convex functionnal if, and only if, it satisfies the Euler equation J/(Y) = 0, wich
reduces here to the linear system:

(K*K + ol)Y = K*F + oY,

where K* is the adjoint matrix of K. Since the matrix K*K + ol is positive definite, then the linear
system is invertible. The matrix K*K + ol is a sparse symetric circulant matrix, whose first line is:
(# + 0,0, %, 0,...,0, %, 0). Thus the system can be efficiently solved, eventually by using the
fast fourier transform. Its solution Y, is finally the unique solution to the minimization problem
and can be used to estimate the boundary 9D.
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5. NUMERICAL RESULTS

5.1. Boundary element method versus geometrical optics. We check numerically the rele-
vance (or the limits) of the asymptotic model (3.12). So we compute the scattered wave uy on the
circle C(M \) using this model and another reference method. The reference result uyion is computed
by the boundary element method, and is parametrized by the angular position 6 of the point z(f)
on the circle. Concerning the asymptotic result ucyrvature, we compute it by using finite differences
to evaluate the curvature kK = {R_my il / 9], where y(t),0 < ¢ < 27 is a parametrization of AD,
and the dot is the derivative with respect to t. 0D is first discretized by Y = (y(t;))o<i<n, with
t; =1ih, h = N— Then let K be the (N +1) x (N + 1) derivation matrix of the form (4.1), and let
2 1 1
P I

A be the (N +1) x (N +1) matrix of the second derivative operator: A = 55

. . 1

1 1 -2
Then, (y(t;)); = KY + O(h?), and (§j(t;)); = AY + O(h?). This immediately gives (k(t;));, and
then we get the asymptotics ucurvature, parametrized by t;. (NB : we deduce the normal vector at
y(t;) from g(t;) ; so we get the angle § whose associated specular point is y(¢;), and thus ucurvature

can be parametrized by 6 too.)

We start by observing the effect of the reflection coefficient Ry, wich is closely related to the
ke _ V/Exlix

permeability contrast &= and the slowness contrast .

Mo 0 VEOHO
follows. The wavelength is A = 0.5. The permeability of free space is o = 1. The contrast of
slowness is l,z—o = 2. The object is an ellipsoid whose diameter is the large axis a; = 10A. The
small axis is of size az = 0.7a;. The large axis makes an angle of 1 with the x axis, and the center
of the ellipsoid is (10A,—3X). The object is discretized with about 12 points per wavelength (and
at least 50 points). The scattered wave is computed on the circle C(M\) whose radius divided by
the wavelength is M = 1000. This circle of measurements is uniformly discretized with 360 points.
As a quantitative criterion to compare the methods, we compute the relative error between the
reference result uyron and the asymptotic result ucurvature: |UMoM — UCurvature| / [uanton| (ratio of L?
norms on C(MN\)). Here, we try several reflection coefficients by changing the contrast ’;—0 We get
approximately the following results:

We choose the parameters as

Z—; 1.5 0.8 0.2 0.02
Ry -0.14 —-0.43 —-0.82 —0.98

‘UMOM — uCurvature’ / ]uMOM\ | 0.96 0.74 0.43 0.15

We have also plotted unom and ucyrvature 00 the Figure 3, for the cases % = 1.5 and Zo = 0.02.

These different tests tend to reveal that contributions neglected by the Kirchhoff approximation
can seriously affect the scattered wave, for both the amplitude and the phase. We also see that the
results are better for a reflection coefficient close to minus one. For such a coefficient, the situation is
indeed closer to the perfectly reflecting one where the Kirchhoff approximation is more reasonable.

We now test the effect of the asymptotics requirement (including % < % < %) by testing several
ratios size of the object over the wavelength. We only indicate the parameters wich are different
from those in the tests above. We set the permeability contrast: % = 0.02, and so the reflection
coefficient is Ry ~ —0.98. The used wavelength is A = 0.75. The ratio 5 takes now several
successive values. The relative error of the asymptotic ucurvature 18:

L |1 5 10 15
[untoM — Ucurvature| / [uniom]| | 1.1 0.47  0.15  0.24

We see again some limits of the asymptotic model: the error increases when the curvature becomes
too small or too large.

Unfortunately, the global conclusion is that the canonical model (3.12) gives results whose quality
is variable. The optimistic point of view is that results are quite good in certain regimes of param-
eters; this allows to justify the following imaging methods at least for those classes of parameters.
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uuuuuu

Ficure 3. Comparison of the monostatic wave reflected by an ellipsoid, com-
puted with the boundary element method (unen) and the Kirchhoff approximation
(uCurvature )- The reflection coefficient is Ry & —0.14 on the left and Ry =~ —0.98 on
the right. For both cases, we plot the modules on the left and we plot the difference
of the arguments divided by 7 and on the right. For Ry ~ —0.14, the two results
are quite different. For Ry ~ —0.98, the results are quite close.

F1GURE 4. Imaging for different reflection coefficients: Ry ~ —0.98, —0.82, —0.43, —0.14.

5.2. Inversion. We now test numerically the imaging methods. Monostatic scattered intensities
I on the circles C(Mj 2\) are simulated using the boundary element method, the object D being
discretized with about 12 points per wavelength A\. We first guess the position of the object using the
mapping method. We plot the imaging function H on a grid whose step is quarter of a wavelength:
A/4 (on both axis). We use a grayscale; the darker is the gray, the larger is H. We mark with a
cross the highest value of H. The corresponding position is used as a guess Yy of the position of
the object. Then we use the curvature inversion method, based on this guess and on data I; from
the first circle. The regularization parameter o is set to 0.01. The resulting reconstruction is finally
plotted on the same picture than H; and so is the true boundary dD. We explicit below different
sets of parameters. Comments about the results will be done later in the text, method by method.

The following parameters will be always the same. The permeability of free space is ug = 1, the
slowness contrast is = 2. The radius of the first circle of measurements is M\ with M7 = 1000.
The two circles of measurements are uniformly discretized with 360 points. When the object is an
ellipsoid, the ratio of the axes is Z—f = 0.6, and the large axis makes an angle of 1 with the x axis.

We first test the methods for different reflection coefficients Ry, since it is a critical parameter for
the asymptotic forward modelling. The contrast “—0 takes the successive values 0.02,0.2,0.8,1.5 and
so the reflection coefficient Ry takes the values —0.98, —0.82, —0.43, —0.14. The other parameters
are the following. The wavelength is A = 0.5. The object is an ellipsoid whose diameter is the
large axis a; = bA. Its center is (10A, —3X). The radius of the second circle of measurements is
M)A = 1.1M A, The results of the imaging methods are represented on Figure 4.

Then, we try ellipsoids whose center is (10\, —3)\) and whose size is variable: the ratio large axis
over the wavelength takes the successice values: 4 = 0.5,2,8,16. By the way, the wavelength is
A = 0.75. The permeability contrast is % = 0.2 ; so the reflection coefficient Ry is about —0.82.
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FIGURE 5. Imaging of an ellipsoid whose size a; is given by 4 = 0.5,2, 8, 16.

FIGURE 6. Imaging of a star whose number of branchs is f = 3,5,8 (from top to
bottom) and whose branch amplitude is a = 0.1,0.3,0.5 (from left to right).

The ratio of the radius of the circles of measurements is 22 = 1.1. The imaging results are plotted

on Figure 5. "

Although the methods were designed for convex objects, we also observe numerically what
happens for star-shaped objects, whose boundary is of the form: ~(t) = (10A, —3X) + 2.5A\(1 +
acos(ft))(cost,sint). The number of branchs is f = 3,5,8 and the amplitude of a branch is
a = 0.1,0.3,0.5. The center of such a star is (10A, —3X) and its diameter is about 5A. The other

parameters are the following. The wavelength is A = 0.5. The contrast /lj—; is 0.02 and so the re-

flection coefficient Ry is —0.98. The ratio of the radius of the circles of measurements is % =1.1.

The imaging results are plotted on Figure 6.
Mapping from the first circle to the second one. For all the cases, the first method provides a map
whose largest values are located near the inclusion. By the way, the maximum of this map is reached
near the center of the object and so its location Y[ is a good guess of position.

We add some quality control of the mapping on one illustrative example. Let us recall that Y} is

|21 —2

by definition the point z such that the mapping of Iy, i.e. I1(z1), is the closest from Iy

|22 (z,21)—=|°
(evaluated on xs9(z,x1)). To control the quality of this mapping, we compute the mapping of I for
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FI1GURE 7. Imaging with different ratio of radius of the circles of measurements:

M-
M2 =1.05,2,3,10

z =Yy and we compare it with I, by computing the relative error ||6(Yo, z1)|| / [ T2(z2(Yo, x1))||. For
the third example of Figure 4, we get 0.11% wich is very small, and which means that the mapping
is very good for z = Yj.

We add another test, about the radius of the second circle of measurements to check that the
method is not sensitive to it. More precisely, the ratio of the radius % takes here the successive
values: 1.05,2,3,10. The other parameters are the following. The wavelength is A = 0.5. The

contrast “—:‘) is 0.2 and so the reflection coefficient Ry is —0.82. The object is an ellipsoid whose

center is (10A, —3\) and whose large axis is a; = 5. The results of the Figure 7 shows that the
method is not sensitive at all to the ratio of radius. The only effect of increasing it is to very slightly
concentrate the highest values of the imaging function near the center of the object.

The conclusion is that the method finds the position and that it is very robust.

Inversion from curvature. First, even if the estimate of the curvature from intensities data is very
noisy, we always reconstruct a curve which is smooth. We also observe that the reconstruction is
always convex. This is due to the method itself which defines the curvature as a positive number.
The reconstruction is also well located, due to the (good) guess of the position Yy wich is used as
an a priori. We can claim that the regularization parameter o has been well chosen.

For the ellipsoids of Figure 5, all the results are quite good. (For the first image, the shape
is not so well reconstructed, but the error is under the resolution limit A/4.) The method was
indeed designed for such convex objects with a quite good reflection coefficient. By the way, the
reflection coefficient is critical: on Figure 4, the reconstructed curve is perfect for Ry = —0.98, but
deteriorates when Ry approaches 0. This is due to the Kirchhoff forward model wich deteriorates.
And to finish with, when the non-convexity increases, the forward model deteriorates again. That
is why for the stars on Figure 6, the reconstruction is very good for the first image but deteriorates
more and more when the number of branchs or/and the branch amplitude increase.
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