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IMAGING FROM MONOSTATIC SCATTERED INTENSITIESJEAN-BAPTISTE BELLET AND GÉRARD BERGINCAbstra
t. This paper is about inverse-s
attering from monostati
 intensity-only measurements.We �rst formally rederive the geometri
al opti
s approximation for a penetrable 
onvex target. Wethen derive two dire
t imaging methods. The �rst one �nds the point whi
h best maps measure-ments over one 
ir
le onto a se
ond one, due to amplitude de
ay of the s
attered wave. The se
ondone is a linearization of the problem, based on estimating the 
urvature of the obje
t as a fun
tionof the measurements, due to the geometri
al opti
s approximation. The �rst method aims at esti-mating the position of the target, whereas the se
ond one aims at re
onstru
ting the shape. Thepaper �nishes with numeri
al tests showing the relevan
e and the limits of the proposed methods.1. Introdu
tionThis paper in the 
lass of papers about the determination of the position, the shape and theele
tromagneti
 parameters of a diele
tri
 target using wave propagation. For su
h problems, signalsare usually emitted by sour
es, and for ea
h sour
e, a set of re
eivers measures the s
attered �eld.Several imaging algorithms have been developed for su
h purposes. Some of the most famous onesare the Kir
hho� migration [7℄, or the MUltiple Signal Classi�
ation [1℄. The more re
ent works [2�5℄are also on this subje
t. Both of these methods are based on the full s
attered �eld, i.e. they needboth amplitude and phase measurements in the re
ords (in the frequen
y domain). However it is
ommonly admitted that measuring the phase may be di�
ult or impossible in some situations.So formulating the problem with phaseless data is an interesting problem from a pra
ti
al point ofview. In this paper, we will assume that the re
eivers re
ord only intensities, i.e. the phase is notmeasured.Let us add some 
omments about the mathemati
al e�e
t of the loss of phase. One way to derivethe Kir
hho� migration is to linearize the forward s
attering problem using the Born approximation;then the linearized model leads to a 
onvex minimization problem whose solution 
an be 
omputed.Here, deleting the phase from the measurements breaks the linearity! Another point of view 
onsistsin looking at s
attering data as some Fourier-type transform, and thus the inverse s
attering problemis some Fourier inversion problem. Here, loosing the phase means re
overing a fun
tion from itsFourier amplitude only.Several imaging methods have been tested for intensity-only measurements. Some of them arebased on phase-retrieval algorithms su
h as [10, 12℄. The other ones use the intensity withoutre
overing the phase, su
h as [9,14℄. Nonetheless, none of them is 
on
erned with imaging from thes
attered intensity by a penetrable target, in a monostati
 
on�guration, i.e. with only one re
eiverper sour
e, lo
ated at the sour
e pla
e. This is pre
isely the subje
t of this paper.To design inversion methods, a standard approa
h is to study 
anoni
al models. They 
anindeed develop the intuition about the problem, and adapted inversion methods 
an easier beguessed. Eventually these methods 
an then be used for more general 
ases, either by rigorousextensions, either as heuristi
s. For s
attering problems, a 
ommon 
anoni
al model is a highfrequen
y asymptoti
s for perfe
tly 
ondu
ting 
onvex bodies, using a method developed in [11℄.It is the so-
alled geometri
al opti
s approximation. Su
h a model 
an link the monostati
 radar
ross-se
tion with the 
urvature of the obje
t. This is the basis of some re
onstru
tion methods [15℄formulated as the Minkowski problem: re
onstru
ting a shape from its 
urvature. In the samespirit, an asymptoti
s is rigorously derived in [13℄ for a 
onvex body with a Diri
hlet, Neumann, orimpedan
e 
ondition, on its boundary. It is then used to analyse the inverse problem.This leads us to study our problem with su
h ideas. As a 
anoni
al 
ase, we study a highfrequen
y asymptoti
s for a 
onvex body, but with transmission 
onditions on its boundary. WeDate: May 6, 2013: V2.2.2000 Mathemati
s Subje
t Classi�
ation. 78A46; 78A05.Key words and phrases. Inverse s
attering; ele
tromagneti
s; phaseless data; geometri
al opti
s.1



2 JEAN-BAPTISTE BELLET AND GÉRARD BERGINCwill also assume that the s
ene is small 
ompared to the distan
e of observation, and so is thedistan
e from the obje
t to the origin. Our derivation will be formal and will use the Kir
hho�approximation. This presentation is quite 
lassi
al and is essentially derived from [7℄. This leads toa formula expressing the monostati
 s
attered intensity as a fun
tion of two essential fa
tors. Oneof them is a de
ay fa
tor essentially due to the distan
e from the observation point to the obje
t.The other one is the ratio of some (squared) re�e
tion 
oe�
ient depending on the 
ontrasts of theele
tromagneti
 parameters, over the 
urvature of the obje
t. We propose two imaging methodsbased on these fa
tors. These methods have the advantage to be dire
t methods (to be 
ontrastedwith iterative methods of optimization).The �rst one takes advantage of the intensity de
ay to get an original robust method wi
hestimates the position of the obje
t. We have introdu
ed in [6℄ an idea to re
onstru
t the positionof an obje
t, using monostati
 s
attering amplitudes over two sets of measurements. The idea isusing the transport equation to map measurements of the �rst set onto those on the se
ond set,using rays emanating from a small (arbitrary) disk. Then we 
laim that the small disk is 
lose tothe obje
t when the mapped amplitude is 
lose to the measured amplitude on the se
ond set. Here,we propose the same idea, using only the order 0 (with respe
t to the size of the small disk) ofthe mapped amplitude. In fa
t the relevant mapping is just some intensity 
orre
tion due to theintensity de
ay. We test the imaging fun
tion of this method under the 
anoni
al model assumption.To �nd a se
ond inversion method, we take advantage of the fa
tor involving the 
urvature,by assuming that the re�e
tion 
oe�
ient is known. We dedu
e a (rough) approximation of the
urvature from the intensity data. This allows to formulate the problem as a di�erential equationwhose unknown is the boundary of the obje
t and the se
ond member depends on the (estimated)
urvature. The dis
rete version of this linear problem will be a linear system whose operator is a(periodi
) �nite di�eren
es matrix. Sin
e the position of the obje
t is unknown and the 
urvatureis only roughly known, this problem is ill-posed. It is then solved using a Tikhonov-Phillips regu-larization [1℄ wi
h needs some a priori information, su
h as the position. The linear system whi
his �nally inverted has an interesting stru
ture: the matrix is symmetri
, sparse, and 
ir
ulant. Tothe authors' knowledge, this is an original way of formulating and solving the inverse problem ofinterest.After the theoriti
al 
onsiderations, we test numeri
ally the di�erent methods. First, we test thegeometri
al opti
s approximation: we 
ompare the s
attered wave using this model with the resultsfrom the boundary element method. We test the method for di�erent re�e
tion 
oe�
ients and fordi�erent sizes of obje
ts. Even if we observe results of poor quality for some parameters, we alsoobserve that results are quite ni
e for a large obje
t with a re�e
tion 
oe�
ient 
lose to −1, whi
his 
lose to the perfe
tly re�e
ting 
ase (Neumann 
ondition on the boundary of the obje
t). So,even if the numeri
al results do not 
ompletely validate the forward asymptoti
 model, they givesome meaning to the inversion methods, at least for some 
lass of parameters.Then we 
ombine the imaging methods on several sets of parameters. We test more parti
ularlythe e�e
t of the re�e
tion 
oe�
ient, the size of the obje
t, and the shape of the obje
t, in
ludingnon-
onvex obje
ts. We observe that the �rst inversion method is not sensitive to the di�erent pa-rameters. It re
overs robustly the position of the obje
t. The se
ond inversion method re
onstru
tssome smooth 
onvex 
urve. It is more or less 
lose to the true obje
t, depending essentially on thequality of the geometri
al opti
s model.The paper is organized as follows. We �rst write mathemati
ally the imaging problem that wewant to solve. Then we derive formally the geometri
al opti
s model asso
iated with the forwards
attering model. In the next se
tion, we interpret monostati
 intensity data using this asymptoti
model, and we derive the two inversion methods: the method of mapping data from one 
ir
le toanother one, and the method of re
onstru
tion from 
urvatures. We �nish by some numeri
al testsabout the 
anoni
al model and the inversion methods.2. Problem settingWe assume that the free spa
e R
2 is a diele
tri
 medium whose ele
tromagneti
 parameters arethe permittivity ε0 > 0 and the permeability µ0 > 0. Using harmoni
 waves whose frequen
yis ω > 0, the wave number in free spa
e is then k0 := ω

√
ε0µ0, and the asso
iated wavelength
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Figure 1. A
quisition 
on�guration: a sour
e at xS on the 
ir
le C(Mλ) illuminatesthe 
onvex obje
t D ; a re
eptor at xS measures the s
attered intensity.is λ := 2π
k0
. A sour
e lo
ated at some position y would emit the usual outgoing Green fun
tion

G(x, y) = − i
4H

(1)
0 (k0 |x− y|).We now assume that some diele
tri
 obje
t D is in
luded in the medium. Its permittivity is

ε∗ > 0 ans its permeability is µ∗ > 0. D is supposed to be some smooth (
onnex) domain. Itsboundary ∂D 
an be des
ribed by a 
urve γ(s), s denoting the ar
 length, satisfying the followingproperties. The unit tangent ve
tor to ∂D at γ(s) is γ′(s) and the exterior unit normal ve
tor is
νγ(s) = R−π/2γ

′(s), with R−π/2 =

[

0 1
−1 0

]. See Figure 1. The (signed) 
urvature κ(s) is su
hthat γ′′ = −κν. Ex
ept for some numeri
al tests, we will assume that D is 
onvex and that the
urvature satis�es κ > minκ > 0. Also we assume that the obje
t D is extended or large, i.e. itssize is a few or many wavelengths.Let us introdu
e a sour
e lo
ated at some point xS in far �eld. It illuminates the obje
t Dby emitting the in
ident �eld uI(x, xS) = G(x, xS). The resulting total �eld 
an be de
omposedinto the form u[D](x, xS) =

{

uI(x, xS) + u+[D](x, xS), x ∈ R
2 \D,

u−[D](x, xS), x ∈ D.
The s
attered �eld u+ =

u+[D](x, xS) and the internal �eld u− = u−[D](x, xS) satisfy homogeneous Helmholtz equations,with transmission 
onditions on the boundary ∂D, and with an outgoing radiation 
ondition:
(∆ + ω2ε0µ0)u+ = 0, in R

2 \D, (2.1)
(∆ + ω2ε∗µ∗)u− = 0, in D, (2.2)

uI + u+ = u−, on ∂D, (2.3)
1

µ0
∂ν(uI + u+) =

1

µ∗
∂νu−, on ∂D, (2.4)+ outgoing radiation 
ondition on u+. (2.5)We assume that a re
eptor lo
ated at the sour
e position xS measures the s
attered intensity

I[D](xS) = |u+[D](xS, xS)|2. In 
omparison, standard imaging methods su
h as Kir
hho� migrationwould use u+[D](xS, xS) as input, instead of its module.We do this experiment for a point xS traveling along the 
ir
le C(Mλ) of 
enter 0, and of radius is
Mλ. Then the data are the monostati
 s
attered intensities I[D](xS), xS ∈ C(Mλ). We will assumethat the radius Mλ is large 
omparing with the wavelength, i.e. M >> 1 is a large dimensionlessnumber. We will also assume that the radius is large 
omparing with |γ|. This has two 
onsequen
es:
ompared with an observation position xS , the position ŷ = 1

∂D

∫

∂D ydσ(y) of the obje
t is near theorigin (i.e. |ŷ| << |xS|), and the s
ene is small (i.e. |γ − ŷ| << |xS − ŷ|).The aim of this paper is to study some aspe
ts of the re
onstru
tion of the obje
t D from themeasurements I[D](x). We would like tho re
onstru
t the shape γ of D. Also, we would like toknow if we 
an guess the ele
tromagneti
 parameters ε∗, µ∗.



4 JEAN-BAPTISTE BELLET AND GÉRARD BERGINC3. Asymptoti
 model3.1. Eikonal and transport equations. Let us 
onsider a general homogeneous Helmholtz prob-lem in a homogeneous medium :
(∆ + ω2εµ)u = 0, (3.1)where ω is the frequen
y, √εµ > 0 is a 
onstant representing the slowness of the medium. In orderto derive the eikonal and transport equation in high frequen
y regime, let us write formally theWKBJ expansion of u:

u(x) ∼ ωβeiωϕ(x)
∞
∑

j=0

Aj(x)

(iω)j
. (3.2)This expression is some harmoni
 version of a progressive wave F (t − ϕ(x)) propagating in thedire
tion of in
reasing ϕ(x) (in time domain). So the phase fun
tion ϕ(x) 
orresponds to a traveltime. The 
onstant power β depends on some kind of initial 
onditions imposed on u, su
h asthe sour
e signature. The terms of the sum involve amplitude terms Aj(x) whi
h do not dependon ω. They are smoother and smoother, sin
e a division by iω represents an integration in timedomain; thus the sharpest part, or somehow the highest frequen
y part, 
omes from the �rst termsof the expansion. We will use in the sequel leading order approximations for su
h expansions:

u(x) ∼ ωβeiωϕ(x)A0(x).Insertion of the WKBJ expansion (3.2) in the Helmholtz equation (3.1) yields:
ωβeiωϕ

∞
∑

j=0

1

(iω)j

[

ω2
(

εµ − |∇ϕ|2
)

Aj + iω (2∇ϕ · ∇Aj +Aj∆ϕ) + ∆Aj

]

= 0.Let us identify formally powers of ω. The highest power β + 2 yields the eikonal equation whi
h
laims that the slowness is the norm of the gradient of the phase; The power β yields the transportequation, whi
h links the amplitude A0 with the phase:
|∇ϕ|2 − εµ = 0, 2∇ϕ · ∇A0 +A0∆ϕ = 0. (3.3)For our purpose, we won't need to solve neither the eikonal equation nor the transport equation.We only need to fo
us on what su
h high frequen
y asymptoti
s implies at an interfa
e betweentwo media.3.2. Re�e
tion and transmission at an interfa
e. In this subse
tion, we 
onsider an interfa
e

Γ separating two homogeneous medium. The ele
tromagneti
 parameters are ε0, µ0 above theinterfa
e and ε∗, µ∗ below the interfa
e. We assume that a downward in
ident wave uI in the upperpart generates at the boundary an upward re�e
ted wave uR in the upper part, and a downwardtransmitted wave uT in the lower medium. Of 
ourse, uI, uR satisfy a Helmholtz equation su
has (3.1) with εµ = ε0µ0, and uT satis�es su
h an equation with εµ = ε∗µ∗. So we 
an write theWKBJ expansions (3.2) of uI,R,T, and we apply the results of the previous subse
tion (we repla
e β,
ϕ and Aj by βI,R,T, ϕI,R,T and AI,R,T

j ). Furthermore, uI, uR and uT must satisfy the two followingtransmission 
onditions on the interfa
e:
uI + uR = uT,

1

µ0
∂ν(uI + uR) =

1

µ∗
∂νuT, on Γ. (3.4)Our main goal in this subse
tion is to express the re�e
ted �eld uR and its normal derivative ∂νuRon the interfa
e as a fun
tion of the in
ident �eld uI and its normal derivative ∂νuI. We obtainthese results at the leading order, using the transmission 
onditions.The �rst transmission 
ondition in (3.4) be
omes:

ωβIeiωϕI

∞
∑

j=0

AI
j

(iω)j
+ ωβReiωϕR

∞
∑

j=0

AR
j

(iω)j
= ωβTeiωϕT

∞
∑

j=0

AT
j

(iω)j
, on Γ.In general, terms of di�erent order in ω 
annot be equal, so βI = βR = βT. We must also have

ϕI = ϕR = ϕT on Γ to be able to mat
h term of like power in ω. This determines the phasefor the �elds uR and uT on the interfa
e. As phases are equal on the interfa
e, their tangentialderivatives are also equal: ∂τϕI = ∂τϕR = ∂τϕT. By the way, the eikonal equation in (3.3) impliesthat |∇ϕI|2 = |∇ϕR|2 = ε0µ0, and |∇ϕT|2 = ε∗µ∗. First, substra
ting the se
ond equality to the
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2 = ε∗µ∗ − ε0µ0 + (∂νϕI)

2. But uI and uT are both downward waves, so
∂νϕI and ∂νϕT have the same sign, and thus

∂νϕT = sign(∂νϕI)
√

ε∗µ∗ − ε0µ0 + (∂νϕI)2. (3.5)Se
ondly, as ∇ϕI and ∇ϕR have the same norm and the same tangential 
omponent, their normal
omponent are equal, up to the sign. As uI is a downward wave and uR is an upward wave, theyare opposite:
∂νϕR = −∂νϕI. (3.6)At this step, we know the phase and its gradient, for the re�e
ted and transmitted �elds on theinterfa
e, as a fun
tion of the in
ident �eld. Let us determine now the amplitude. Sin
e the powers

β are the same, and so are the phases ϕ, the WKBJ expansions inserted into the transmission
onditions (3.4) yield:
∞
∑

j=0

AI
j

(iω)j
+

∞
∑

j=0

AR
j

(iω)j
=

∞
∑

j=0

AT
j

(iω)j
,

∞
∑

j=0

[ 1

(iω)j−1

(

1

µ0
AI

j∂νϕI +
1

µ0
AR

j ∂νϕR − 1

µ∗
AT

j ∂νϕT

)

+

1

(iω)j

(

1

µ0
∂νA

I
j +

1

µ0
∂νA

R
j − 1

µ∗
∂νA

T
j

)

]

= 0, on Γ.By formally identifying like power in iω : the power 0 in the �rst line above yields AI
0+AR

0 = AT
0 , andthe power −1 in the se
ond line yields 1

µ0
AI

0∂νϕI +
1
µ0
AR

0 ∂νϕR − 1
µ∗

AT
0 ∂νϕT = 0. If we introdu
ethe Fresnel 
oe�
ients R and T su
h that: AR

0 = RAI
0 and AT

0 = TAI
0, and using (3.6), thesetwo transmission 
onditions are given by: 1 + R = T, 1

µ0
(1 − R)∂νϕI = 1

µ∗

T∂νϕT, i.e. R =
1

µ0
∂νϕI− 1

µ∗
∂νϕT

1

µ0
∂νϕI+

1

µ∗
∂νϕT

, T =
2

µ0
∂νϕI

1

µ0
∂νϕI+

1

µ∗
∂νϕT

. If the opposite of the in
ident dire
tion −∇ϕI makes an a

uteangle θ with the normal dire
tion ν, we 
an write ∂νϕI = −√
ε0µ0 cos θ < 0. Then, we get the Fresnel
oe�
ients from (3.5); in parti
ular, for normal in
iden
e (θ = 0), we get 
oe�
ients dependingonly on the permeability and the slowness 
ontrasts:

Rθ =

µ∗

µ0
cos θ −

√

ε∗µ∗

ε0µ0
− sin2 θ

µ∗

µ0
cos θ +

√

ε∗µ∗

ε0µ0
− sin2 θ

, Tθ =
2µ∗

µ0
cos θ

µ∗

µ0
cos θ +

√

ε∗µ∗

ε0µ0
− sin2 θ

,and for θ = 0 : R0 =

µ∗

µ0
−

√
ε∗µ∗√
ε0µ0

µ∗

µ0
+

√
ε∗µ∗√
ε0µ0

, T0 =
2µ∗

µ0

µ∗

µ0
+

√
ε∗µ∗√
ε0µ0

. (3.7)To 
on
lude this se
tion, let us have a look at some leading order terms that we got on theinterfa
e Γ. For the in
ident wave, we have uI ∼ ωβIeiωϕIAI
0. The re�e
ted wave uR has a similarexpression with βR = βI, ϕR = ϕI and AR

0 = RAI
0, with R given by (3.7). On the other hand, atthe leading order, ∂νu ∼ iωu∂νϕ, for u = uR and for u = uI. Re
alling (3.6), we �nally get whatwill be a key step in the Kir
hho� approximation:

uR ∼ RuI, ∂νuR ∼ −R∂νuI. (3.8)3.3. Kir
hho� approximation. Let us 
ome ba
k to the original problem de�ned by (2.1), (2.2),(2.3), (2.4), (2.5). The s
attered �eld u+ satis�es the Helmholtz equation (2.1) with the radiation
ondition (2.5). So it has the following Green representation [1℄:
u+(x) =

∫

∂D

(

G(x, y)∂νyu+(y)− u+(y)∂νyG(x, y)
)

dσ(y). (3.9)The idea of Kir
hho� approximation is to 
onsider only the 
ontributions from primary re�e
tionson the visible part Γ = {y ∈ ∂D : (y− xS) · νy < 0}, and to approximate them at the leading order.



6 JEAN-BAPTISTE BELLET AND GÉRARD BERGINCThe well known leading order term of the Green fun
tion is thus of interest:
G(x, y) ∼ ωβeiωϕ(x,y)A0(x, y), with β = −0.5, ϕ(x, y) =

√
ε0µ0 |x− y| ,

A0(x, y) =
−eiπ/4

√

8π
√
ε0µ0

1
√

|x− y|
. (3.10)This result gives the leading order term for the in
ident wave uI(x, xS) = G(x, xS) and the gradientof its phase: ∇ϕ(x, xS) =

√
ε0µ0

x−xS

|x−xS| . On a visible point y ∈ Γ, we approximate the s
attered�eld u+(y) by the re�e
ted �eld uR resulting from the intera
tion of the in
ident �eld uI with theinterfa
e Γ. Sin
e the in
ident wave is downgoing: ∂νyϕ =
√
ε0µ0

y−xS

|y−xS| · νy < 0, then following theapproximation (3.8), we get:
u+ ∼ RuI, ∂νu+ ∼ −R∂νuI, on Γ. (3.11)By the way, for a point y in the shadow part {y ∈ ∂D : (y−xS)·νy > 0}, we assume that the s
attered�eld and its normal derivative are very small; so we remove these 
ontributions from the integral (3.9)whi
h be
omes an integral over the lit part Γ. Finally, inserting the approximation (3.11) in theGreen representation (3.9) yields:

u+(x) = −
∫

Γ
R
(

G(x, y)∂νyuI(y, xS) + uI(y, xS)∂νyG(x, y)
)

dσ(y)

= −
∫

Γ
R∂νy (G(x, y)uI(y, xS)) dσ(y).The leading order terms now yield:

u+(x) = −i

∫

Γ
R∂νy(ϕ(y, xS) + ϕ(x, y))A0(y, xS)A0(x, y)e

iω(ϕ(y,xS )+ϕ(x,y))dσ(y).In the monostati
 
ase, x = xS, and so we get with the leading order of the Green fun
tion (3.10):
u+(x) =

∫

Γ
f(s)eiΛΦ(s)ds, with f(s) =

1

4π
R(γ(s))

γ(s)− x

|γ(s)− x| · ν(γ(s))
1

|γ(s)− x| ,

Φ(s) =

∣

∣

∣

∣

γ(s)

ρ
− x

ρ

∣

∣

∣

∣

,Λ = 2ωρ
√
ε0µ0.We have used the parametrization γ to write the integral; the parameter ρ = 1

|∂D|
∫

∂D |y − ŷ| dσ(y)is the average distan
e of the points of the boundary ∂D to the lo
ation of the obje
t. The fun
tion
Φ and the parameter Λ are dimensionless. We now perform a stationary phase analysis wi
h revealsthat in fa
t there is only one visible point whi
h 
ontributes to this integral. If Λ is large, thestationary phase formula yields [8℄:

u+(x) ∼
√

2π

|Λ| |Φ′′(s0)|
f(s0)e

iΛΦ(s0)+iπ/4 sign(Λ) sign(Φ′′(s0)),where s0 is the stationary point of Φ : Φ′(s0) =
γ(s0)−x
|γ(s0)−x| ·

1
ργ

′(s0) = 0 ; the spe
ular point y0 = γ(s0)is the visible point on ∂D su
h that the in
iden
e is normal on y0: y0−x
|y0−x| = −νy0 . So f(s0) =

R0

4π
−1

|y0−x| with R0 given by (3.7). Let us now 
ompute Φ′′(s0). We have Φ′(s) = γ(s)−x
|γ(s)−x| ·

1
ργ

′(s),so Φ′′(s0) = (DZ
Z
|Z|)|z=y0−xγ

′(s0) · γ′(s0)
ρ + y0−x

|y0−x| ·
γ′′(s0)

ρ = Ψ1 + Ψ2. The �rst term is Ψ1 =

1
ρ|y0−x|3

∣

∣

∣(y0 − x) · RT
−π/2γ

′(s0)
∣

∣

∣

2. But y0−x
|y0−x| = −νy0 = −R−π/2γ

′(s0), so Ψ1 =
1

ρ|y0−x| . By the way
γ′′(s0) = −κ0νy0 where κ0 denotes the 
urvature of ∂D at spe
ular point y0 ; thus Ψ2 = κ0

ρ . Thenfor x large enough, Ψ1 is negligible 
ompared to Ψ2. As a result:
u+(x) ∼

1
√

πω
√
ε0µ0κ0

R0

4

−1

|y0 − x|e
2iω

√
ε0µ0|y0−x|+iπ/4. (3.12)More parti
ularly, this �nally implies the following model for the monostati
 s
attered intensity:

I[D](x) ∼ 1

42πω
√
ε0µ0

1

|y0 − x|2
R2

0

κ0
, x ∈ C(Mλ). (3.13)
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on
lude this se
tion, let us add several 
omments about the limits of the asymptoti
-kindmodel that we have just derived. First, it is based on the Kir
hho� approximation. This approx-imation takes into a

ount only the primary re�e
tions on the visible part of the obje
t. Someother 
ontributions are negle
ted: the obje
t is penetrable, so there might be also internal multiples
oming ba
k to the re
eiver; by the way, there may be 
reeping waves generated at the interfa
elight/shadow. Con
erning the visible part, 
al
ulus are approximated using a geometri
al opti
smodel followed by a stationary phase analysis. For both of these asymptoti
s, we need to spe
ifywhat �large� means. The Rayleigh 
riterion 
ommonly admitted is that a length L is large if thedimensionless quantity L
λ = kL

2π is greater than 1
4 , where λ is the wavelength and k is the wavenum-ber. For the geometri
al opti
s approximation, we thus require that 1

κλ >
1
4 ; for the stationaryphase method, the se
ond derivative |Φ′′(s0)| 
annot be too small, i.e. |Λ| |Φ′′(s0)| = 2kκ0 > π.These two 
onditions 
an be summarized on a 
ondition on the radius of 
urvature: λ

4 6
1
κ 6

4
λ .By the way, the stationary phase analysis should eventually take into a

ount the 
ontributionsfrom other eventual 
riti
al points su
h as the end points of integration. Here, we have negle
tedthem. For all these reasons, the intensity model (3.13) 
ould be not exa
t, both qualitatively andquantitatively. Nonetheless it is of interest to us: it 
an be used as a 
anoni
 model to des
ribemonostati
 s
attered intensity data; we shall just keep in mind that it is not 
ompletely exa
t.4. Inversion methods4.1. Consequen
es of the asymptoti
 model. Before designing inversion methods to re
on-stru
t the obje
t, let us analyse the 
anoni
al model (3.13) that des
ribes intensity measurementsas a produ
t of three fa
tors. Su
h an analysis should give an understanding of the data as afun
tion of the unknonwn obje
t. This should also emphasise what kind of informations about theobje
t is re
onstru
table or not, and this should lead to inversion methods.The �rst fa
tor 1

42πω
√
ε0µ0

depends only on the slowness of free spa
e and the frequen
y wi
h areboth assumed to be �xed. So it is a 
onstant. The use of multi-frequen
y data 
ould be eventuallysubje
t to further studies.The se
ond fa
tor 1
|y0−x|2 is a de
ay fa
tor in 1

r2
. Be
ause of the assumption: |y0| << |x| = Mλ,we have roughly the following approximation: |y0 − x|2 ∼ (Mλ)2. So the amplitude de
ay fa
tor
an be almost 
onsidered as a 
onstant when x moves on C(Mλ), this 
onstant does not dependon the obje
t. The advantage is that it simpli�es analysis, sin
e informations are then only in thethird fa
tor.The third fa
tor R2

0

κ0
is the one whi
h 
ontains dire
tly the informations about the obje
t: it isthe ratio of the (squared) re�e
tion 
oe�
ient R2

0 and the 
urvature κ0 at spe
ular point. The �rst
on
lusion is that we 
annot hope to re
onstru
t both the re�e
tion 
oe�
ient and the size of theobje
t: multiplying κ by a positive 
onstant and R0 by a square root of this 
onstant would yieldsimilar measurements! By the way, if κ0 is supposed to be known then R2
0 
an be expressed asknown quantities multiplied by the measurements ; next, averaging over θ estimates R2

0. If on the
ontrary we know R2
0, then the new information in the measurements is the 
urvature κ. Thus theinverse problem be
omes: re
onstru
ting a 
urve from its 
urvature. This will be one of the imagingmethod that we study below.Unfortunately, none of these three fa
tors depend sensitively on the position of the obje
t; soroughly speaking, the given data do not 
ontain the position of the obje
t and thus it 
annot bere
overed! More data are needed. If we now have a 
loser look at the amplitude de
ay fa
tor underour small s
ene assumption, we 
an see it as 1

|ŷ−x|2 . The position information ŷ is somehow hiddenhere. If we assume that the measurements are taken on two 
on
entri
 
ir
les (and not only one),then the data from the �rst 
ir
les 
an be mapped onto the data from the se
ond one. The mappingis dire
tly related to the position ŷ due to the amplitude de
ay, and so this may help to re
over ŷ.This is the basis of the �rst imaging method.4.2. Mapping intensities from one 
ir
le to another one. In this subse
tion, we assume thatwe know the monostati
 intensity I[D] on two large 
ir
les C(M1λ) and C(M2λ) withM = M1 < M2.We denote I1,2 the intensities that we measure. We try to re
onstru
t the position ŷ of the obje
t
D by �nding a map whi
h transforms I1 onto I2.
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Figure 2. Con�guration to map intensities: D is the obje
t, x1 is a sour
e/re
eiveron the �rst 
ir
le C(M1λ) of measurements, z is a test point, x2(z, x1) is on the se
ond
ir
le C(M2λ) and on the ray [z, x1), y1 and y2(z, x1) are the asso
iated spe
ularpoints.For a test point z in the smallest disk, we �transport� I1 along rays emanating from z by applyingthem a 
orre
tion due to the 1/r2 de
ay. See Figure 2. If x1 is a point on the �rst 
ir
le C(M1λ), we
ompute the interse
tion of the ray [z, x1) with the se
ond 
ir
le C(M2λ): x2(z, x1) = z + (−z · v+

[(M2λ)
2−|z|2+(z ·v)2]1/2)v, with v = x1−z

|x1−z| . The intensity I1(x1) is mapped onto |x1−z|2
|x2(z,x1)−z|2 I1(x1)and we 
ompared it with the measurement at x2 by 
omputing

δ(z, x1) = I2(x2(z, x1))−
|x1 − z|2

|x2(z, x1)− z|2
I1(x1).We then 
ompute the L2 error (with respe
t to x1) over the full 
ir
le:

‖δ(z, ·)‖ =

(∫

|δ(z, x1)|2 dx1
)1/2

.The idea is that the test point z is 
lose to the obje
t D when its asso
iated mapping yields a smallerror ‖δ(z, ·)‖. As a result, we plot the map of
H(z) = 1/ ‖δ(z, ·)‖and we sele
t a high level set of H to get an estimate of D, and more parti
ularly of its position ŷ.Let us have a look at what happens using the asymptoti
 model (3.13). The model yieldsdire
tly: I1(x1)/I2(x2) = κ2

κ1

|x2−y2|2
|x1−y1|2

. Here, x2 = x2(z, x1), y1,2 is the spe
ular point asso
iatedwith x1,2, and κ1,2 is the asso
iated 
urvature. If z is 
lose to D, the spe
ular point y2 is 
loseto the spe
ular point y1, and so are the 
urvatures κ1 and κ2. By the way, by the small s
eneassumption, |x2−y2|2
|x1−y1|2

∼ |x2−ŷ|2
|x1−ŷ|2 and sin
e z is 
lose to both y1 and y2, we have |x2−ŷ|2

|x1−ŷ|2 ∼ |x2−z|2
|x1−z|2 .Finally I1(x1)/I2(x2) ∼ |x2−z|2

|x1−z|2 and so δ(z, x1) should be small. On the 
ontrary, when the testpoint z moves away from the obje
t D, the ratio |x2−z|2
|x1−z|2 moves away from |x2−y2|2

|x1−y1|2
, or y2 moves awayfrom y1 and so the 
urvature κ2 moves away from κ1 ; in any 
ase there is generi
ally no reason tohave δ(z, x1) small. These qualitative 
omments using the asymptoti
 model tend to 
on�rm that

H is a good imaging fun
tion to �nd the position.4.3. Re
onstru
tion from 
urvatures. In this subse
tion, we 
ome ba
k to the original problemwhose data are re
orded on the unique 
ir
le C(Mλ), and we suppose that we know the (squared)re�e
tion 
oe�
ient R2
0. The starting point is the asymptoti
 formula (3.13) wi
h links the intensity

I(θ) measured at x(θ) = Mλθ ((cos θ, sin θ) ≡ θ ∈ [0, 2π]) with the 
urvature κ0(θ) at the asso
iatedspe
ular point y0(θ): I(θ) ∼ 1
πω

√
ε0µ0κ0(θ)

R2
0

42
1

|y0(θ)−x(θ)|2 . Using the assumption |γ| << Mλ, wehave the following approximations: |x(θ)− y0(θ)| νy0(θ) = x(θ) − y0(θ) = Mλ(θ − |y0(θ)|
Mλ ) ∼ Mλθ.More parti
ularly, the normal ve
tor at spe
ular point is assimilated to the measurement angle θ:

νy0(θ) ∼ θ ; also we have |y0(θ)− x(θ)|2 ∼ (Mλ)2. Then the asymptoti
s above provides the (radiusof) 
urvature as a fun
tion of the measurements, parametrized by the normal θ:
1

κ0(θ)
∼ πω

√
ε0µ0M

2 4
2

R2
0

I(θ).



IMAGING FROM MONOSTATIC SCATTERED INTENSITIES 9Thus, the inverse problem is equivalent to re
onstru
ting the boundary ∂D (or γ), from its radiusof 
urvature 1
κ0(θ)

, parametrized by the exterior normal ve
tor θ. Here we insist on the la
k ofknowledge of the position of the obje
t: the 
urvature 
ontains only derivatives; so the position ismissing, and it 
annot be re
onstru
ted here.We 
an formulate the problem as an ODE. Indeed, by the 
hain rule:
dγ

dθ
=

ds

dθ

dγ

ds
=

1

κ0(θ)
(− sin θ, cos θ),and so we would like to �nd a solution to the following ODE:

dγ

dθ
=

1

κ0(θ)
(− sin θ, cos θ) =: f(θ), γ(θ) is 2π-periodi
.Before we 
an hope to �nd su
h a periodi
 fun
tion, the right member f(θ) must be of zero mean.Here the 
urvature κ0(θ) is only roughly known, so unfortunately this may be unsatis�ed. By theway, even if we authorize non-periodi
 solutions, the 
onstant of integration 
annot be determineby this method be
ause we 
annot determine the position of the obje
t. Be
ause of these fa
ts ofnon-existen
e or non-uniqueness, a regularization is needed.Let us now write the dis
rete version of the ODE problem that we have to solve. The measurementangle θ lives in the dis
rete set: {θi := ih, 0 6 i 6 n} with h = 2π

n+1 . These angles 
orrespond alsoto the normal ve
tors at spe
ular points. The boundary γ evaluated on those spe
ular points isthe (n + 1) × 2 unknown Y = (γ(θi))i. The dis
retized right member is the (n + 1) × 2 matrix
F = (f(θi))i. And the dis
rete operator asso
iated with the (periodi
) ODE is a 
ir
ulant matrixof size (n+ 1)× (n+ 1), 
orresponding to a �nite di�eren
es dis
retization:

K =
1

2h











0 1 −1

−1 0
. . .. . . . . . 1

1 −1 0











(4.1)With these notations, the dis
rete problem is the linear system: �nd the (n+1)× 2 matrix Y su
hthat
KY = F.If n + 1 is odd, then the 
onstant ve
tor (1, . . . , 1) spans the kernel of K. Else, the kernel of K isspanned by the family {(1, . . . , 1), (1, 0, 1, 0, . . . , 1, 0)}. In both 
ases, the matrix is not of full rank,and then there 
annot be a unique solution!We then propose a Tikhonov-Phillips regularization. We have to assume that we have alreadydetermined some estimate Y0 of Y by another method ; Y0 
ould eventually be a 
onstant repre-senting the position, eventually determined by the mapping method presented above. We use thisa priori information in an optimization problem: �nd the (n+1)× 2 matrix Yσ wi
h minimizes the
ost fun
tion:

Jσ(Y ) :=
1

2
‖KY − F‖2 + σ

2
‖Y − Y0‖2 .Here, σ > 0 is a �xed parameter, and for a (n + 1) × 2 matrix X = (X1,X2), we have de�ned

‖X‖2 := |X1|2 + |X2|2. The �rst term of this fun
tionnal tends to impose Y to reprodu
e theobserved data, whereas the se
ond term tends to for
e Y to be near Y0. The parameter σ 
an be
hosen to make some 
ompromise between the two terms. A point Y is a minimizer over the fullspa
e of su
h a 
onvex fun
tionnal if, and only if, it satis�es the Euler equation J ′
σ(Y ) = 0, wi
hredu
es here to the linear system:

(K∗K + σI)Y = K∗F + σY0,where K∗ is the adjoint matrix of K. Sin
e the matrix K∗K+σI is positive de�nite, then the linearsystem is invertible. The matrix K∗K+σI is a sparse symetri
 
ir
ulant matrix, whose �rst line is:
( 1
2h2 + σ, 0, −1

4h2 , 0, . . . , 0,
−1
4h2 , 0). Thus the system 
an be e�
iently solved, eventually by using thefast fourier transform. Its solution Yσ is �nally the unique solution to the minimization problemand 
an be used to estimate the boundary ∂D.



10 JEAN-BAPTISTE BELLET AND GÉRARD BERGINC5. Numeri
al results5.1. Boundary element method versus geometri
al opti
s. We 
he
k numeri
ally the rele-van
e (or the limits) of the asymptoti
 model (3.12). So we 
ompute the s
attered wave u+ on the
ir
le C(Mλ) using this model and another referen
e method. The referen
e result uMoM is 
omputedby the boundary element method, and is parametrized by the angular position θ of the point x(θ)on the 
ir
le. Con
erning the asymptoti
 result uCurvature, we 
ompute it by using �nite di�eren
esto evaluate the 
urvature κ =
∣

∣R−π/2ẏ · ÿ
∣

∣ / |ẏ|3, where y(t), 0 6 t 6 2π is a parametrization of ∂D,and the dot is the derivative with respe
t to t. ∂D is �rst dis
retized by Y = (y(ti))06i6N , with
ti = ih, h = 2π

N+1 . Then let K be the (N +1)× (N +1) derivation matrix of the form (4.1), and let
∆ be the (N+1)× (N+1) matrix of the se
ond derivative operator: ∆ = 1

h2











−2 1 1

1 −2
. . .. . . . . . 1

1 1 −2











.Then, (ẏ(ti))i = KY + O(h2), and (ÿ(ti))i = ∆Y + O(h2). This immediately gives (κ(ti))i, andthen we get the asymptoti
s uCurvature, parametrized by ti. (NB : we dedu
e the normal ve
tor at
y(ti) from ẏ(ti) ; so we get the angle θ whose asso
iated spe
ular point is y(ti), and thus uCurvature
an be parametrized by θ too.)We start by observing the e�e
t of the re�e
tion 
oe�
ient R0, wi
h is 
losely related to thepermeability 
ontrast µ∗

µ0
and the slowness 
ontrast k∗

k0
=

√
ε∗µ∗√
ε0µ0

. We 
hoose the parameters asfollows. The wavelength is λ = 0.5. The permeability of free spa
e is µ0 = 1. The 
ontrast ofslowness is k∗
k0

= 2. The obje
t is an ellipsoid whose diameter is the large axis a1 = 10λ. Thesmall axis is of size a2 = 0.7a1. The large axis makes an angle of 1 with the x axis, and the 
enterof the ellipsoid is (10λ,−3λ). The obje
t is dis
retized with about 12 points per wavelength (andat least 50 points). The s
attered wave is 
omputed on the 
ir
le C(Mλ) whose radius divided bythe wavelength is M = 1000. This 
ir
le of measurements is uniformly dis
retized with 360 points.As a quantitative 
riterion to 
ompare the methods, we 
ompute the relative error between thereferen
e result uMoM and the asymptoti
 result uCurvature: |uMoM − uCurvature| / |uMoM| (ratio of L2norms on C(Mλ)). Here, we try several re�e
tion 
oe�
ients by 
hanging the 
ontrast µ∗

µ0
. We getapproximately the following results:

µ∗

µ0
1.5 0.8 0.2 0.02

R0 −0.14 −0.43 −0.82 −0.98

|uMoM − uCurvature| / |uMoM| 0.96 0.74 0.43 0.15We have also plotted uMoM and uCurvature on the Figure 3, for the 
ases µ∗

µ0
= 1.5 and µ∗

µ0
= 0.02.These di�erent tests tend to reveal that 
ontributions negle
ted by the Kir
hho� approximation
an seriously a�e
t the s
attered wave, for both the amplitude and the phase. We also see that theresults are better for a re�e
tion 
oe�
ient 
lose to minus one. For su
h a 
oe�
ient, the situation isindeed 
loser to the perfe
tly re�e
ting one where the Kir
hho� approximation is more reasonable.We now test the e�e
t of the asymptoti
s requirement (in
luding λ

4 6
1
κ 6

4
λ) by testing severalratios size of the obje
t over the wavelength. We only indi
ate the parameters wi
h are di�erentfrom those in the tests above. We set the permeability 
ontrast: µ∗

µ0
= 0.02, and so the re�e
tion
oe�
ient is R0 ≈ −0.98. The used wavelength is λ = 0.75. The ratio a1

λ takes now severalsu

essive values. The relative error of the asymptoti
 uCurvature is:
a1
λ 1 5 10 15

|uMoM − uCurvature| / |uMoM| 1.1 0.47 0.15 0.24We see again some limits of the asymptoti
 model: the error in
reases when the 
urvature be
omestoo small or too large.Unfortunately, the global 
on
lusion is that the 
anoni
al model (3.12) gives results whose qualityis variable. The optimisti
 point of view is that results are quite good in 
ertain regimes of param-eters; this allows to justify the following imaging methods at least for those 
lasses of parameters.
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Figure 3. Comparison of the monostati
 wave re�e
ted by an ellipsoid, 
om-puted with the boundary element method (uMoM) and the Kir
hho� approximation(uCurvature). The re�e
tion 
oe�
ient is R0 ≈ −0.14 on the left and R0 ≈ −0.98 onthe right. For both 
ases, we plot the modules on the left and we plot the di�eren
eof the arguments divided by π and on the right. For R0 ≈ −0.14, the two resultsare quite di�erent. For R0 ≈ −0.98, the results are quite 
lose.
Figure 4. Imaging for di�erent re�e
tion 
oe�
ients: R0 ≈ −0.98,−0.82,−0.43,−0.14.5.2. Inversion. We now test numeri
ally the imaging methods. Monostati
 s
attered intensities

I1,2 on the 
ir
les C(M1,2λ) are simulated using the boundary element method, the obje
t D beingdis
retized with about 12 points per wavelength λ. We �rst guess the position of the obje
t using themapping method. We plot the imaging fun
tion H on a grid whose step is quarter of a wavelength:
λ/4 (on both axis). We use a grays
ale; the darker is the gray, the larger is H. We mark with a
ross the highest value of H. The 
orresponding position is used as a guess Y0 of the position ofthe obje
t. Then we use the 
urvature inversion method, based on this guess and on data I1 fromthe �rst 
ir
le. The regularization parameter σ is set to 0.01. The resulting re
onstru
tion is �nallyplotted on the same pi
ture than H; and so is the true boundary ∂D. We expli
it below di�erentsets of parameters. Comments about the results will be done later in the text, method by method.The following parameters will be always the same. The permeability of free spa
e is µ0 = 1, theslowness 
ontrast is k∗

k0
= 2. The radius of the �rst 
ir
le of measurements is M1λ with M1 = 1000.The two 
ir
les of measurements are uniformly dis
retized with 360 points. When the obje
t is anellipsoid, the ratio of the axes is a2

a1
= 0.6, and the large axis makes an angle of 1 with the x axis.We �rst test the methods for di�erent re�e
tion 
oe�
ients R0, sin
e it is a 
riti
al parameter forthe asymptoti
 forward modelling. The 
ontrast µ∗

µ0
takes the su

essive values 0.02, 0.2, 0.8, 1.5 andso the re�e
tion 
oe�
ient R0 takes the values −0.98,−0.82,−0.43,−0.14. The other parametersare the following. The wavelength is λ = 0.5. The obje
t is an ellipsoid whose diameter is thelarge axis a1 = 5λ. Its 
enter is (10λ,−3λ). The radius of the se
ond 
ir
le of measurements is

M2λ = 1.1M1λ. The results of the imaging methods are represented on Figure 4.Then, we try ellipsoids whose 
enter is (10λ,−3λ) and whose size is variable: the ratio large axisover the wavelength takes the su

essi
e values: a1
λ = 0.5, 2, 8, 16. By the way, the wavelength is

λ = 0.75. The permeability 
ontrast is µ∗

µ0
= 0.2 ; so the re�e
tion 
oe�
ient R0 is about −0.82.
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Figure 5. Imaging of an ellipsoid whose size a1 is given by a1

λ = 0.5, 2, 8, 16.

Figure 6. Imaging of a star whose number of bran
hs is f = 3, 5, 8 (from top tobottom) and whose bran
h amplitude is α = 0.1, 0.3, 0.5 (from left to right).The ratio of the radius of the 
ir
les of measurements is M2

M1
= 1.1. The imaging results are plottedon Figure 5.Although the methods were designed for 
onvex obje
ts, we also observe numeri
ally whathappens for star-shaped obje
ts, whose boundary is of the form: γ(t) = (10λ,−3λ) + 2.5λ(1 +

α cos(ft))(cos t, sin t). The number of bran
hs is f = 3, 5, 8 and the amplitude of a bran
h is
α = 0.1, 0.3, 0.5. The 
enter of su
h a star is (10λ,−3λ) and its diameter is about 5λ. The otherparameters are the following. The wavelength is λ = 0.5. The 
ontrast µ∗

µ0
is 0.02 and so the re-�e
tion 
oe�
ient R0 is −0.98. The ratio of the radius of the 
ir
les of measurements is M2

M1
= 1.1.The imaging results are plotted on Figure 6.Mapping from the �rst 
ir
le to the se
ond one. For all the 
ases, the �rst method provides a mapwhose largest values are lo
ated near the in
lusion. By the way, the maximum of this map is rea
hednear the 
enter of the obje
t and so its lo
ation Y0 is a good guess of position.We add some quality 
ontrol of the mapping on one illustrative example. Let us re
all that Y0 isby de�nition the point z su
h that the mapping of I1, i.e. |x1−z|2

|x2(z,x1)−z|2 I1(x1), is the 
losest from I2(evaluated on x2(z, x1)). To 
ontrol the quality of this mapping, we 
ompute the mapping of I1 for
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Figure 7. Imaging with di�erent ratio of radius of the 
ir
les of measurements:
M2

M1
= 1.05, 2, 3, 10

z = Y0 and we 
ompare it with I2 by 
omputing the relative error ‖δ(Y0, x1)‖ / ‖I2(x2(Y0, x1))‖. Forthe third example of Figure 4, we get 0.11% wi
h is very small, and whi
h means that the mappingis very good for z = Y0.We add another test, about the radius of the se
ond 
ir
le of measurements to 
he
k that themethod is not sensitive to it. More pre
isely, the ratio of the radius M2

M1
takes here the su

essivevalues: 1.05, 2, 3, 10. The other parameters are the following. The wavelength is λ = 0.5. The
ontrast µ∗

µ0
is 0.2 and so the re�e
tion 
oe�
ient R0 is −0.82. The obje
t is an ellipsoid whose
enter is (10λ,−3λ) and whose large axis is a1 = 5λ. The results of the Figure 7 shows that themethod is not sensitive at all to the ratio of radius. The only e�e
t of in
reasing it is to very slightly
on
entrate the highest values of the imaging fun
tion near the 
enter of the obje
t.The 
on
lusion is that the method �nds the position and that it is very robust.Inversion from 
urvature. First, even if the estimate of the 
urvature from intensities data is verynoisy, we always re
onstru
t a 
urve whi
h is smooth. We also observe that the re
onstru
tion isalways 
onvex. This is due to the method itself whi
h de�nes the 
urvature as a positive number.The re
onstru
tion is also well lo
ated, due to the (good) guess of the position Y0 wi
h is used asan a priori. We 
an 
laim that the regularization parameter σ has been well 
hosen.For the ellipsoids of Figure 5, all the results are quite good. (For the �rst image, the shapeis not so well re
onstru
ted, but the error is under the resolution limit λ/4.) The method wasindeed designed for su
h 
onvex obje
ts with a quite good re�e
tion 
oe�
ient. By the way, there�e
tion 
oe�
ient is 
riti
al: on Figure 4, the re
onstru
ted 
urve is perfe
t for R0 = −0.98, butdeteriorates when R0 approa
hes 0. This is due to the Kir
hho� forward model wi
h deteriorates.And to �nish with, when the non-
onvexity in
reases, the forward model deteriorates again. Thatis why for the stars on Figure 6, the re
onstru
tion is very good for the �rst image but deterioratesmore and more when the number of bran
hs or/and the bran
h amplitude in
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