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Abstract. A large family of shape comparison methods is based on a
medial axis transform combined with an encoding of the skeleton by a
graph. Despite many qualities this encoding of shapes suffers from the
non continuity of the medial axis transform. In this paper, we propose
to integrate robustness against structural noise inside a graph kernel.
This robustness is based on a selection of the paths according to their
relevance and on path editions. This kernel is positive semi-definite and
several experiments prove the efficiency of our approach compared to
alternative kernels.
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1 Introduction

The skeleton is a key feature within the shape recognition framework [1–3].
Indeed, this representation holds many properties: it is a thin set, homotopic to
the shape and invariant under Euclidean transformations. Moreover, any shape
can be reconstructed from the maximal circles of the skeleton points.

The set of points composing a skeleton does not highlight the structure of a
shape. Consequently, the recognition step is usually based on a graph compari-
son where graphs encode the main properties of the skeletons. Several encoding
systems have been proposed: Di Ruberto [4] proposes a direct translation of the
skeleton to the graph using many attributes. Siddiqi [5] proposes a graph which
characterises both structural properties of a skeleton and the positive, negative
or null slopes of the radius of the maximal circles along a branch. Finally this
last encoding has been improved and extended to 3D by Leymarie and Kimia [6].

The recognition of shapes using graph comparisons may be tackled using
various methods. A first family of methods is based on the graph edit distance
which is defined as the minimal number of operations required to transform
the graph encoding the first shape into the graph encoding the second one [2, 3].

⋆ This work is performed in close collaboration with the laboratory Cycéron and is
supported by the CNRS and the région Basse-Normandie.
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Another method, introduced by Pelillo [1], transforms graphs into trees and then
models the tree matching problem as a maximal clique problem within a specific
association graph. A last method proposed by Bai and Latecki [7] compares
paths between end-node (node with only one neighbor) after a matching task on
the end-nodes. Contrary to previously mentioned approaches this last method
can deal with loops and may thus characterize holed shapes.

All the above methods perform in the graph space which almost contains no
mathematical structure. This forbids many common mathematical tools like the
mean graph of a set which has to be replaced by its median. A solution consists to
project graphs into a richer space. Graph kernels provide such an embedding: by
using appropriate kernels, graphs can be mapped either explicitly or implicitly
into a vector space whose dot product corresponds to the kernel function.

Most famous graph kernels are the random walk kernel, the marginalized
graph kernel and the geometric kernel [8]. A last family of kernels is based on
the notion of bag of paths [9]. These methods describe each graph by a subset of
its paths, the similarity between two graphs being deduced from the similarities
between their paths. Path similarity is based on a comparison between the edges
and nodes attributes of both paths.

However, skeletonization is not a continuous process and small perturbations
of a shape may produce ligatures and spurious branches. Graph kernels may
in this case lead to inaccurate comparisons. Neuhaus and Bunke have proposed
several kernels (e.g. [10]) based on the graph edit distance in order to reduce
the influence of graph perturbations. However the graph edit distance does not
usually fulfills all the properties of a metric and the design of a definite positive
kernel from such a distance is not straightforward. Our approach is slightly
different. Indeed, instead of considering a direct edit distance between graphs,
our kernel is based on a rewriting process applied on the bag of paths of two
graphs. The path rewriting follows the same basic idea than the string edit
distance but provides a definite positive kernel between paths.

This paper follows a first contribution [11] where we introduced the notion
of path rewriting within the graph kernel framework. It is structured as follows:
first, we recall how to construct a bag of path kernel [9, 11] (Section 2). Then, we
propose a graph structure (Section 3) which encodes both the structure of the
skeleton and its major characteristics. This graph contains a sufficient amount
of information for shape reconstruction. We then extend the edition operations
(Section 4) by taking into account all the attributes and by controlling the effect
of the edition on them. Finally, we present experiments (Section 5) in order to
highlight the benefit of the edition process.

2 Bag of path kernel

Let us consider a graph G = (V,E) where V denotes the set of vertices and
E ⊂ V × V the set of edges. A bag of paths P associated to G is defined as a
set of paths of G whose cardinality is denoted by |P |. Let us denote by Kpath

a generic path kernel. Given two graphs G1 and G2 and two paths h1 ∈ P1



Edition within a graph kernel framework for shape recognition 3

(a) Sets on the unit
sphere

(b) Original (c) Spurious branch (d) Ligature

Fig. 1. (a) Separating two sets using one-class SVM. The symbols (w1,ρ1) and (w2,ρ2)
denote the parameters of the two hyperplanes which are represented by dashed lines.
Influence of small perturbation on the skeleton (in black) ((b),(c) and (d)).

and h2 ∈ P2 of respectively G1 and G2, Kpath(h1, h2) may be interpreted as
a measure of similarity between h1 and h2. The aim of a bag of path kernel
consists to aggregate all these local measures between pairs of paths into a global
similarity measure between the two graphs. Such a kernel differs from random
walk kernels where all the paths of the two graphs are compared.

2.1 Change Detection Kernel

Desobry [12] proposed a general approach for the comparison of two sets which
has straightforward applications in the design of a bag of path kernel (bags
are sets). The two bags are modelled as the observation of two sets of random
variables in a feature space.

Desobry proposes to estimate a distance between the two distributions with-
out explicitly building the pdf of the two sets. The considered feature space is
based on a normalised kernel (K(h, h′) = Kpath(h, h′)/

p

(Kpath(h, h)Kpath(h′, h′))).
Using such a kernel we have ‖h‖2

K = K(h, h) = 1 for any path. The image in
the feature space of our set of paths lies thus on an hypersphere of radius 1
centered at the origin (Fig. 1(a)). Using the one-class ν-SVM, we associate a
set of paths to a region on this sphere. This region corresponds to the density
support estimate of the set of paths’ unknown pdf.

Once the two density supports are estimated, the one-class SVM yields w1

(resp. w2), the mean vector, and ρ1 (resp. ρ2), the ordinate at the origin, for the
first bag (resp. the second bag). In order to compare the two mean vectors w1

and w2, we define the following distance function:

dmean(w1, w2) = arccos

(

wt
1K1,2w2

‖w1‖ ‖w2‖

)

, (1)

where K1,2(i, j) = K(hi, hj), hi ∈ P1, hj ∈ P2 and wt
1K1,2w2 is the scalar

product between w1 and w2. This distance corresponds to the angle α between
the two mean vectors w1 and w2 of each region (Fig. 1(a)).Then we define the
kernel between two bags of path P1 and P2 as 1) the product of a Gaussian RBF
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kernel associated to dmean(w1, w2) and 2) a Gaussian RBF kernel associated to
the difference between the two coordinates at the origin (ρ1 and ρ2):

Kchange(P1, P2) = exp

„

−d2

mean(w1, w2)

2σ2
mean

«

exp

„

−(ρ1 − ρ2)
2

2σ2

origin

«

. (2)

Finally, we define the kernel between two graphs G1, G2 as the kernel between
their two bags of path: Kchange(G1, G2) = Kchange(P1, P2).

The distance between the mean vectors is a metric based on a normalized
scalar product combined with arccos which is bijective on [0, 1]. However, the
relationship between the couple (w, ρ) and the bag of path being not bijective,
the final kernel between bags is only semi positive-definite [13]. Though, in all
our experiments run so far the Gram matrices associated to the bags of paths
were positive-definite.

2.2 Path kernel

The above bag of path kernel is based on a generic path kernel Kpath. A kernel
between two paths h1 = (v1, . . . , vn) and h′ = (v′1, . . . , v

′

p) is classically [14] built
by considering each path as a sequence of nodes and a sequence of edges. This
kernel denoted Kclassic is defined as 0 if both paths have not the same size and
as follows otherwise:

Kclassic(h, h
′) = Kv(ϕ(v1), ϕ(v′1))

|h|
Y

i=2

Ke(ψ(evi−1vi
), ψ(ev′

i−1
v′

i
))Kv(ϕ(vi), ϕ(v′i)), (3)

where ϕ(v) and ψ(e) denote respectively the vectors of features associated to the
node v and the edge e. The terms Kv and Ke denote two kernels for respectively
node’s and edge’s features. For the sake of flexibility and simplicity, we use
Gaussian RBF kernels based on the distance between the attributes defined in
section 3.2.

3 Skeleton-based graph

3.1 Graph representations

Medial-axis based skeleton are built upon a distance function whose evolution
along the skeleton is generally modeled as a continuous function. This function
presents important changes of slope mainly located at the transitions between
two parts of the shape. Based on this remark Siddiqi and Kimia distinguish three
kind of branches within the shock graph construction scheme [2]: branches with
positive, null or negative slopes. Nodes corresponding to these slope transitions
are inserted within the graph. Such nodes may thus have a degree 2. Finally,
edges are directed using the slope sign information.

Compared to the shock graph representation, we do not use oriented edges
since small positive or negative values of the slope may change the orientation
of an edge and thus alter the graph representation. On the other hand our set



Edition within a graph kernel framework for shape recognition 5

of nodes corresponds to junction points and to any point encoding an important
change of slope of the radius function. Such a significant change may encode a
change from a positive to a negative slope but also an important change of slope
with a same sign (Fig. 2(a)). Encoding these changes improves the detection of
the different parts of the shape. The main difficulty remains the detection of the
slope changes due to the discrete nature of the data. The slopes are obtained
using regression methods based on first order splines [15]. These methods are
robust to discrete noise and first order splines lead to a continuous representation
of the data. Moreover, such methods intrinsically select the most significant
slopes using a stochastic criterion. Nodes encoding slope transitions are thus
located at the junctions (or knot) between first order splines.

3.2 Attributes

The graph associated to a shape only provides information about its structural
properties. Additional geometrical properties of the shape may be encoded using
node and edge attributes. From a structural point of view, a node represents a
particular point inside the shape skeleton and an edge a branch. However, a
branch also represents the set of points of the shape which are closer to the
branch than any other branch. This set of points is defined as the influence zone

of the branch and can be computed using SKIZ transforms [16].

Descriptors computed from the influence zone are called local, whilst the
ones computed from the whole shape are called global. In [3] Goh introduces this
notion and points out that an equilibrium between local and global descriptors is
crucial for the efficiency of a shape matching algorithm. Indeed local descriptors
provide a robustness against occlusions, while global ones provide a robustness
against noise.

We have thus selected a set of attributes which provides an equilibrium be-
tween local and global features. Torsello in [17] proposes as edge attribute an
approximation of the perimeter of the boundary which contributes to the forma-
tion of the edge, normalized by the approximated perimeter of the whole shape.
Suard proposes [9] as node attribute the distance between the node position and
the gravity center of the shape divided by the square of the shape area. These
two attributes correspond to our global descriptors.

Goh proposes several local descriptors [3] for edges based on the evolution
of the radius of the maximal circle along a branch. For each point (x(t), y(t))
of a branch, t ∈ [0, 1], we consider the radius R(t) of its maximal circle. In or-
der to normalize the data, the radius is divided by the square root of the area
of the influence zone of the branch. We also introduce α(t), the angle formed
by the tangent vector at (x(t), y(t)) and the x-axis. Then we consider (ak)k∈N

and (bk)k∈N the coefficients of two regression polynomials that fit respectively
R(t) and α(t) in the least square sense. If both polynomials are of sufficient
orders, the skeleton can be reconstructed from the graph and so the shape (Sec-
tion 1). Following Goh [3], our two local descriptors are defined by:

∑

k ak/k and
∑

k bk/k.
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(a) A change
of slope

(b) Edition effect on the shape (path in gray)

Fig. 2. Slope detection (a) and edition of paths (b).

The distance associated to each attribute is defined as the absolute value of
the difference between the values a and b of the attribute: d(a, b) = |a− b|. As the
attributes are normalized , the distances are invariant to change of scale and rota-

tion. Such distances are used to define the Gaussian RBF kernels (exp
(

−d2(.,.)
2σ2

)

)

used to design Kpath (Section 2.2).

4 Hierarchical Kernels

The biggest issue with skeleton-based graph representation is the non-negligible
effect of small perturbations on the shape [2]: Fig. 1 shows two deformations of
the skeleton of a circle (Fig. 1(b)) one induced by a small bump (Fig. 1(c)) and
one by an elongation (Fig. 1(d)). On complex shapes, severe modifications of the
graphs may occur and lead to inaccurate comparisons.

From a structural point of view, perturbations like bumps (Fig. 1(c)) create
new nodes and edges. In contrast, the principal effect of an elongation (Fig. 1(d))
is either the addition of an edge inside the graph or the extension of an exist-
ing edge. So shape noise mainly induces two effects on paths: addition of nodes
(Fig. 1(c)) and addition of edges (Fig. 1(d)). This leads to the two editions op-
erations: node suppression and edge contraction. Note that, as the compared
structure are paths, the relevance of these operations should be evaluated ac-
cording to the path under study.

4.1 Elementary operations on path

The node suppression operation removes a node from the path and all the graph
structures that are connected to this path by this node. Within the path, the
two edges incident to the nodes are then merged. This operation corresponds
to the removal of a part of the shape: for example, if we remove the node 2 in
Fig. 2(b1), a new shape similar to Fig. 2(b2) is obtained.

The edge contraction operation contracts an edge and merges its two extrem-
ity nodes. This results in a contraction of the shape: for example, if we contract
the edge e1,2 of the shape in Fig. 2(b1) then the new shape will be similar to
Fig. 2(b3).
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Since each operation is interpreted as a shape transformation, the global
descriptors must be updated. From this point of view our method may be con-
sidered as a combination of the methods of Sebastian [2] and Goh [3] who re-
spectively use local descriptors with edit operations and both local and global
descriptors but without edit operations.

4.2 Edition cost

In order to select the appropriate operation, an edition cost is associated to each
operation. Let us consider an attribute weight associated to each edge of the
graph which encodes the relevance of its associated branch. We suppose that
this attribute is additive: the weight of two consecutive edges along a path is the
sum of both weights.

Note that, we consider the maximal spanning tree T of the graph G. As
skeletonization is an homotopic transform, a shape with no hole yields T = G.
Let us consider a path h = (v1, . . . , vn) within T . Now, an edition cost is assigned
to both operations within h:

– Let us consider a node vi, i ∈ {2, . . . , n− 1} of the path h (extremity nodes
are not considered). The cost of the node suppression operation on vi must
reflect two of its properties: 1) the importance of the sub-trees of T connected
to the path by vi and 2) the importance of the slope changes (Section 3.1)
between the two branches respectively encoded by the edges evi−1vi

and
evivi+1

.
The relevance of a sub-tree is represented by its total weight: for each neigh-
bor v of vi, v /∈ h, we compute the weight W (v) defined as the addition of
the weight of the tree rooted on v in T \ {eviv} and the weight of eviv. This
tree is unique since T is a tree. The weight of the node vi is then defined as
the sum of weights W (v) for all neighbors v of vi (v /∈ h) and is denoted by
ω(vi).
We encode the relevance of a slope change by the angle β(vi) formed by the
slope vectors associated to evi−1vi

and evivi+1
. An high value of β(vi) encodes

a severe change of slopes and conversely. Since slopes are approximated using
first-order polynomials (section 3.1), the angle β(vi) is given by β(vi) =

arccos

(

1+a1∗a′

1√
1+a2

1

√
1+a′2

1

)

where a1 and a′1 are the first order coefficients of the

regression polynomials.
Finally the edition cost of the suppression of a node is defined by (1 −
γ)ω(vi) + γβ(vi)/π, where γ is a tuning variable.

– The cost of the edge contraction operation encodes the importance of the
edge inside the graph T , this is the purpose of the weight. So, the edition
cost of contracting an edge is defined as its weight.

Concerning weight any additive measure encoding the relevance of a skele-
ton’s branch may be used. We choose to use the normalized perimeter as com-
puted by Torsello [17], because of its resistance to noise on the shape boundary.
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4.3 Edition path kernel

Let us denote by κ the function which applies the cheapest operation on a path
and D the maximal number of reductions. The successive applications of the
function κ associate to each path h a sequence of reduced paths (h, κ(h), . . . ,
κD(h)). Each κk(h) is associated to a cost: costk(h) defined as the sum of the
costs of the k operations yielding κk(h) from h. Using Kclassic for the path
comparison, we define the kernel Kedit as a sum of kernels between reduced
paths. Given two paths h and h′, the kernel Kedit(h, h

′) is defined as:

Kedit(h, h
′) =

1

D + 1

D
X

k=0

D
X

l=0

exp

„

−

costk(h) + costl(h
′)

2σ2

cost

«

Kclassic(κ
k(h), κl(h′)), (4)

where σcost is a tuning variable. This kernel is composed of two parts: a scalar
product of the edition costs in a particular space and a path kernel. For a small
value of σcost the behavior of the kernel will be close to Kclassic as only low
editions cost will contribute to Kedit(h, h

′). Conversely, for a high value every
editions will contribute to Kedit(h, h

′) with an approximately equal importance.
The kernel Kclassic is a tensor product kernel based on positive-definite ker-

nels (Section 2.2), so it is positive-definite. The kernel over edition costs is con-
structed from a scalar product and is thus positive-definite. These two last ker-
nels form a tensor product kernel. FinallyKedit is proportional (by a factorD+1)
to a R-convolution kernel [18, Lemma 1], thus this kernel is positive-definite.

5 Experiments

For the following experiments, we defined the importance of a path as the sum of
the weights of its edges. For each graph, we first consider all its paths composed
of at most 7 nodes and we sort them according to their importance using a
descending order. The bag of paths is then constructed using the first 5 percent of
the sorted paths. For all the experiments, the tuning variable of the deformation
cost γ (Section 4.2) is set to 0.5.

The first experiment consists in an indexation of the shapes using the dis-
tances induced by the kernels, i.e. d(G,G′) = k(G,G) + k(G′, G′) − 2k(G,G′)
where k is a graph kernel. The different σ of the attributes RBF kernels in-
volved in Kclassic (Section 3.2) are fixed as follows: σperimeter = σradius =
σorientation = 0.1 and σgravity center = 0.2. Note that Kclassic constitutes the
basis of all the kernels defined below. The parameters of Kchange are set to:
σmean = 1.0, σorigin = 20 and ν = 0.9. The maximal number of editions is fixed
to 6. Let us consider the class tool from the LEMS database [19] of 99 shapes with
11 elements per class. Two kind of robustness are considered: robustness against
ligatures and perturbations and robustness against erroneous slope nodes. Liga-
tured skeletons of the shapes are created by varying the threshold parameter ζ of
the skeletonization algorithm [17], high values lead to ligatured skeletons while
low value tend to remove relevant branches. Skeletons with erroneous slope nodes
are created by varying the parameter of our slope detection algorithm. This de-
tection is based on the BIC criterion which uses the standard error of the noise
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Fig. 3. Resistance to spurious slope changes (a) and spurious branches(b). For (a) and

(b) the kernels are from top to bottom: Kchange,edit2( ), Kchange,edit1( ), random

walk kernel( ), and Kchange,classic( · ). (c) ROC curves for the classification of dogs

and cats using: Kchange,edit ( ), random walk kernel ( ) and Kchange,classic ( · ).

σBIC . A small value of σBIC makes the criterion sensitive to small changes of
slopes and gives many slope nodes, while high value makes the criterion insensi-
tive to slope changes. Four kernels are compared: random walk kernel [8],Kchange

with Kclassic (denoted as Kchange,classic) and 2 kernels using Kchange with Kedit

( with σcost = 0.1 for Kchange,edit1 and σcost = 0.2 for Kchange,edit2 ). Using the
distances induced by the kernels, shapes are sorted in ascending order according
to their distance to the perturbed tool. Fig. 3(a) shows the mean number of tools
inside the first 11 sorted shapes for an increasing value of σBIC . Fig. 3(b) shows
the same number but for a decreasing threshold value ζ. The two edition kernels
show a good resistance to perturbations and ligatures as they get almost all the
tools for each query. Their performances slightly decrease when shapes become
strongly distorted. The kernel Kchange,classic gives the worst results as the re-
duction of the bag of paths leads to paths of different lengths which cannot be
compared with Kclassic (Section 2.2). The random walk kernel is robust against
slight perturbations of the shapes but cannot deal with severe distortion.

In the second experiment, we strain kernels by separating 49 dogs from 49
cats using a ν-SVM. The three considered kernels are Kchange,classic, Kchange,edit

(with σcost = 0.5) and random walk. The different σ of the attributes RBF
kernels (Section 3.2) are fixed as follows: σperimeter = σradius = σorientation = 0.1
and σgravity center = 0.5. The parameters of Kchange are set to: σmean = 5.0,
σorigin = 20 and ν = 0.9. We compute the ROC curves produced by kernels using
a 10-fold cross-validation. Fig 3(c) presents the three ROC curves. The random
walk kernel gives correct results, whilst the Kchange,classic kernel confirms its
poor performance. The Kchange,edit kernel shows the best performances and a
behaviour similar to the random walk kernel. Furthermore, on our computer a
Core Duo 2 at 2GHz, the computational burden of the 98x98 Gram matrix is of
approximately 23 minutes for Kchange,edit and of 2.5 hours for the random walk
kernel.
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6 Conclusion

We have defined in this paper a positive-definite kernel for shape classification
which is robust to perturbations. Our bag of path contains the more important
paths of a shape below a given length in order to only capture the main infor-
mation about the shape. Only the Kedit kernel provides enough flexibility for
path comparison and gives better results then the classical random walk kernel.
In a near future, we would like to improve the selection of paths. An extension
of the edition process on graphs is also planned.
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