
HAL Id: hal-00820559
https://hal.science/hal-00820559

Submitted on 29 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Folner sets of alternate directed groups
Jeremie Brieussel

To cite this version:
Jeremie Brieussel. Folner sets of alternate directed groups. Annales de l’Institut Fourier, 2014, 64 (3),
pp.1109-1130. �10.5802/aif.2875�. �hal-00820559�

https://hal.science/hal-00820559
https://hal.archives-ouvertes.fr


FOLNER SETS OF ALTERNATE DIRECTED GROUPS

JÉRÉMIE BRIEUSSEL

KYOTO UNIVERSITY
JAPAN

Abstract. An explicit family of Folner sets is constructed for some directed
groups acting on a rooted tree of sublogarithmic valency by alternate permuta-
tions. In the case of bounded valency, these groups were known to be amenable by
probabilistic methods. The present construction provides a new and independent
proof of amenability, using neither random walks, nor word length.

1. Introduction

By a criterion of Folner [Fol], amenable groups are those that admit finite sub-
sets with arbitrary small boundaries. A sequence of such subsets, called a Folner
sequence, is easily described for abelian groups, and well-understood for solvable
groups ([PSC], [Ers]). Many non-solvable amenable groups are directed groups act-
ing on rooted trees. This family of groups gathers many examples with ”exotic”
properties, such as infinite torsion groups constructed by Aleshin [Ale], groups of
intermediate growth by Grigorchuk [Gri] or groups with non-uniform exponential
growth by Wilson [Wil1].

Their amenability in the case of bounded valency was shown in [Bri1] by use of
Kesten’s probabilistic criterion [Kes]. The strategy, introduced by Bartholdi and
Virag in [BV], is to show that a self-similar random walk on a Cayley graph di↵uses
slowly, in the sense that its return probability does not decay exponentially, or that
its entropy is sublinear ([KV]). The same method permits to show that automata
groups are amenable when their activity is bounded [BKN] or linear [AAV]. Though
it ensures their existence, such a probabilistic proof does not exhibit Folner sets.

For the groups of [Ale] and [Gri], subexponential growth easily implies the exis-
tence of a subsequence of the family of balls (for a word length) which is a Folner
sequence, but it is not known if the whole sequence of balls is Folner and the subse-
quence (even though it has density 1) is not explicit. Even for groups of polynomial
growth, it is not elementary to show that balls form a Folner sequence, a result due
to Pansu [Pan], using technics from Gromov [Gro].

The object of the present article is to exhibit explicit Folner sets for some groups
in a class denoted DP , containing in particular directed groups acting on a rooted
tree by alternate permutations. A group � in this class DP is defined (see section
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2 BRIEUSSEL

4) by two subgroups A finite and H finitely generated, together with an action on
a rooted tree with valency sequence (dk)k2N. The main result is:

Theorem 1.1. Let � belong to the class DP with H amenable and

dk
log k

! 0, then
the group � is amenable.

As a corollary, this provides a new proof, using neither random walks nor word
length, that directed groups acting on a rooted tree of bounded valency are amenable
([Bri1]). It also provides many new examples of amenable directed groups acting
on a tree of unbounded sublogarithmic valency. Moreover it also permits to reprove
amenability of automata groups with bounded activity by methods di↵erent from
[BKN].

The article is structured as follows. Rooted trees and their automorphism groups
are described in section 2. Section 3 is devoted to the construction of explicit Folner
sets for the archetypal example of the alternate mother group Gd acting on a regular
rooted tree of valency d � 5. This example, treated first for simplicity of notations,
is generalized to the class DP in section 4. Finally, section 5 is devoted to the
construction of groups in the class DP , including the saturated alternate directed
groups, and some groups acting on trees with unbounded valency.

2. Rooted trees and their groups of automorphisms

Let Sd denote the group of permutations of the set {1, . . . , d} with d elements,
and Ad = A{1,...,d} denote the subgroup of alternate permutations.

Given a sequence d̄ = (dk)k�0

of integers � 2, the spherically homogeneous rooted
tree T

¯d is the graph with vertex set {t
0

t
1

. . . tk|ti 2 {1, . . . , di}, k � �1}, including
the empty sequence ;, called the root, corresponding to k = �1, and edge set
{(t

0

. . . tk, t0 . . . tktk+1

)}. The vertex set restricted to a fixed k is called the k + 1st
level of the tree. It is the direct product {1, . . . , d

0

}⇥ · · · ⇥ {1, . . . , dk}. When the
sequence d̄ is constant equal to d, the tree is called d-regular, denoted Td.

The group of automorphisms Aut(T
¯d) of the rooted tree T

¯d is the group of graph
automorphims that fix the root ;. It satisfies a canonical isomorphism:

Aut(T
¯d) ' Aut(T� ¯d) o Sd0 ,(1)

where �d̄ = (dk)k�1

is the shifted sequence obtained by deleting the first entry, and
G o Sd = (G⇥ · · ·⇥G)o Sd is the semi-direct product where Sd acts by permuting
factors, called wreath product. Write g = (g

1

, . . . , gd0)� = (gt0)� the identification
by isomorphism (1). The product rule is gg0 = (g

1

g0�(1), . . . , gd0g
0
�(d0)

)��0.

By iterating the wreath product ismorphism (1), a family of isomorphisms is
obtained:

Aut(T
¯d) ' Aut(T�k

¯d) o Sdk�1
o · · · o Sd0 .

Identifications are denoted g = (gt0...tk)(�t0...tk�1
) . . . (�t0)�, where (�t0...tj) is a se-

quence of permutations in Sdj indexed by the j+1st level of the tree and (gt0...tk) is
a sequence of automorphisms of T�k

¯d indexed by level k + 1. The automorphism g
is determined by the whole sequence of permutations (�v)v2Td̄

, called its portrait.
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The automorphism g is said to be alternate if all the permutations �v of its
portrait are alternate permutations. Denote Autalt(T

¯d) the group of alternate auto-
morphisms of T

¯d. It also satisfies isomorphisms:

Autalt(T
¯d) ' Autalt(T�k

¯d) oAdk�1
o · · · oAd0 .

The neutral element of a group G is denoted eG or e.

3. Folner sets of the alternate mother group

3.1. The alternate mother group. Define alternate automorphisms of the d-
regular rooted tree Td by use of the wreath product isomorphism Autalt(Td) '

Autalt(Td) oAd.

(1) Given � in Ad, denote A = {a(�)|� 2 Ad} ' Ad with:

a(�) = (e, . . . , e)�.

Elements of A are called rooted.
(2) Given a

2

, . . . , ad in A = Ad and ⇢ in FixAd
(1) = A{2,...,d} = Ad�1

, set:

b(a
2

, . . . , ad, ⇢) = (b(a
2

, . . . , ad, ⇢), a2, . . . , ad)⇢.

Denote B = {b(a
2

, . . . , ad, ⇢)|a2, . . . , ad 2 Ad, ⇢ 2 FixAd
(1)}. Elements of B

are called directed. The set B forms a finite subgroup of Aut(Td). Indeed,
the following is an isomorphism:

B ! (Ad ⇥ · · ·⇥Ad)oA{2,...,d}
b(a

2

, . . . , ad, ⇢) 7! (a
2

, . . . , ad)⇢.
.(2)

Define the group generated by the sets A,B:

Gd = hA,Bi < Aut(Td).

By construction, the group Gd is an automata group. It is essentially the mother
group of degree 0 (see [BKN], [AAV]), but the permutations involved are alternate.

Since Ad is simple hence perfect for d � 5, the group Gd satisfies the:

Proposition 3.1. If d � 5, the group Gd is isomorphic to its wreath product with Ad:

Gd ' Gd oAd = (Gd ⇥ · · ·⇥Gd)oAd.

The proposition follows from the:

Fact 3.2. Let d � 5, then for any generator a = a(�) 2 A and b = b(a
2

, . . . , ad, ⇢) 2
B, the elements (a, e, . . . , e) and (b, e, . . . , e) belong to Gd.

Recall the conjugacy notation ga = aga�1, and observe that for g = (g
1

, . . . , gd)�
and a in A, one has ga = (ga(1), . . . , ga(d))�a.
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Proof of fact 3.2. Take ⌧ in Ad such that ⌧(1) = 1 and ⌧�1(2) = 3 and observe the
commutator relations:

b = b(↵
2

, eG, . . . , eG, eA) = (b,↵
2

, eG, eG, . . . , eG)eA,

b0⌧ = b(↵0
2

, eG, . . . , eG, eA)
⌧ = (b0, 1,↵0

2

, eG, . . . , eG)eA,

[b, b0⌧ ] = ([b, b0], eG, eG, eG, . . . , eG).

As [b(↵
2

, eG, . . . , eG, eA), b(↵0
2

, eG, . . . , eG, eA)] = b([↵
2

,↵0
2

], eG, . . . , eG, eA) and as the
group A = Ad is perfect (because it is simple), any element a

2

in A ' Ad is
a product of commutators. This shows that Gd contains (b

2

, eG, . . . , eG) for any
b
2

= b(a
2

, eG, . . . , eG, eA) with a
2

in Ad. Moreover for any b; = b(eG, . . . , eG, ⇢) with
⇢ in FixA(1) ' Ad�1

, the group Gd contains b;a(⇢�1) = (b;, eG, . . . , eG).

Now the elements b
2

= b(a
2

, eG, . . . , eG, eA) and b; = b(eG, . . . , eG, ⇢) generate B
by isomorphism (2), because ⇢ in A{2,...,d} and (a

2

, eA, . . . , eA) for a2 in Ad generate
the finite group (Ad ⇥ · · ·⇥Ad)oA{2,...,d}. Thus Gd contains (b, eG, . . . , eG) for any
b in B.

Finally given a
2

in A, for b
2

= b(a
2

, eG, . . . , eG, eA) = (b
2

, a
2

, eG, . . . , eG), the
element (b�1

2

, eG, . . . , eG) belongs to Gd by the above. So do (b�1

2

, eG, . . . , eG)b2 =
(eG, a2, eG, . . . , eG) and (eG, a2, eG, . . . , eG)⌧ = (a

2

, eG, . . . , eG) for ⌧ in A = Ad such
that ⌧�1(2) = 1. ⇤

Proof of proposition 3.1. By definition, Gd admits an embedding into the wreath
product Gd ,! Gd oAd. The key point is that this embedding is surjective. Clearly
A ' Ad is the set of rooted automorphisms. Moreover, fact 3.2 shows that Gd ⇥

{1} ⇥ · · · ⇥ {1} is in Gd. As Ad acts transitively on {1, . . . , d}, conjugation shows
that {1}⇥ · · ·⇥Gd⇥ · · ·⇥ {1} also belongs to Gd for any position of the non-trivial
factor. Then Gd ⇥ · · · ⇥ Gd belongs to Gd by product. This proves the wreath
product isomorphism. ⇤

3.2. Definition of Folner sets. For a group � with finite generating set S, the
boundary of a subset L ⇢ � is defined as:

@L = {� 2 L|9s 2 S, �s /2 L}.

The interior of L is the set Int(L) = L \ @L.

A sequence Lk of subsets of � is a Folner sequence if |@Lk|
|Lk|

! 0. By [Fol], a finitely
generated group � is amenable if and only if it admits a Folner sequence for some
(equivalently for any) finite generating set S.

Let us define a sequence of subsets of Gd as follows:

L
0

= {g 2 Gd|9� 2 B,↵
2

, . . . ,↵d, � 2 A, g = (�,↵
2

, . . . ,↵d)�}.

By induction on k, define:

Lk+1

= {g = (g
1

, . . . , gd)�|8t, gt 2 Lk and 9T, gT 2 Int(Lk)}.

By proposition 3.1, the sets Lk are included in Gd for d � 5, and not just in the
automorphism group Aut(Td).
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Theorem 3.3. For d � 5, the sets Lk form a Folner sequence for Gd. In particular,

the group Gd is amenable.

The group Gd was known to be amenable by [Bri1] (use of Kesten criterion on
return probability) or [BKN] (triviality of the Poisson boundary). However, these
proofs, based on contraction in the wreath product of word length for some random
walks, did not provide explicit Folner sets. The following proof uses neither random
walks, nor word length.

3.3. Proof of theorem 3.3. Observe that for any a in A and g = (�,↵
2

, . . . ,↵d)�
in L

0

, the element ga = (�,↵
2

, . . . ,↵d)�a still belongs to L
0

. Moreover, for any
b = b(a

2

, . . . , ad, ⇢) = (b, a
2

, . . . , ad)⇢ in B, one has:

gb =

⇢
(�b,↵

2

a�(2), . . . ,↵da�(d))�⇢ if ��1(1) = 1,
(�a�(1),↵2

a�(2), . . . ,↵��1
(1)

b, . . . ,↵da�(d))�⇢ if ��1(1) 6= 1.

As the sets A and B are finite groups, this shows equivalence of (1), (2) and (3) in
the:

Fact 3.4. The following are equivalent:

(1) g belongs to Int(L
0

),
(2) gb 2 L

0

for all b 2 B,

(3) ��1(1) = 1,
(4) gb 2 Int(L

0

) for all b 2 B.

In particular,

|Int(L0)|
|L0| = 1

d
, hence �

0

= |@L0|
|L0| = 1� 1

d
.

Proof. Point (4) is equivalent to (3) due to the fixed point assumption ⇢(1) = 1 in the
definition of B, which guarantees that (�⇢)�1(1) = (⇢�1��1)(1) = ��1(⇢�1(1)) = 1
when ��1(1) = 1.

The evaluation of �
0

is done by counting |L
0

| = |B||A|d as g is described by
�,↵

2

, . . . ,↵d, �, and condition ��1(1) = 1 occurs with probability 1

d
. ⇤

Lemma 3.5. The following are equivalent:

(1) g belongs to Int(Lk),
(2) gb 2 Lk for all b 2 B,

(3) ��1(1) 2 I(g) = {T |gT 2 Int(Lk�1

)},
(4) gb 2 Int(Lk) for all b 2 B.

Proof of lemma 3.5. The case k = 0 is treated by fact 3.4 with convention that
I(g) = {1} if g 2 L

0

. Assume by induction that the result is true for k � 1, and
prove it for k.

Again ga = (g
1

, . . . , gd)�a belongs to Lk for any value of a in A, g in Lk. Moreover:

gb = (g
1

a�(1), . . . , g��1
(1)

b, . . . , gda�(d))�⇢.

Suppose (3) that g��1
(1)

2 Int(Lk�1

), then as (1) implies (4) for k�1, the element
g��1

(1)

b belongs to Int(Lk�1

) for any b in B, so that gb belongs to Lk for any b in
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B, proving (2). Then (1) follows because ga also belongs to Lk for a in A, hence g
is an interior point of Lk.

Suppose (3) does not hold, so g��1
(1)

2 @Lk�1

. By equivalence of (1) and (2)
for k � 1, there exists b in B such that g��1

(1)

b /2 Lk�1

, so that gb is not in Lk,
disclaiming (1) and (2) for g. This proves equivalence of (1), (2) and (3) for k.

Now gb belongs to Int(Lk) if and only if (�⇢)�1(1) 2 I(g) by equivalence of (1)
and (3). But (�⇢)�1(1) = ��1(⇢�1(1)) = ��1(1) because ⇢(1) = 1. So (3) implies
(4). Obviously, (4) implies (2), closing step k of induction. ⇤

There remains to evaluate the sizes of the interior and boundary of Lk. Set:

�k =
|@Lk|

|Lk|
, 1� �k =

|Int(Lk)|

|Lk|
.

Lemma 3.6. The sequence (�k) satisfies:

1� �k+1

=
1� �k
1� �dk

.

Proof of lemma 3.6. Given a subset I ⇢ {1, . . . , d}, denote:

JI = {g = (g
1

, . . . , gd)�|8T 2 I, gT 2 Int(Lk) and 8t /2 I, gt 2 @Lk}.

By definition, Lk+1

is the disjoint union Lk+1

= t|I|�1

JI .

For i = |I|, the size of JI and its intersection with Int(Lk+1

) are evaluated as:

|JI | = |Ad||Int(Lk)|
i
|@Lk|

d�i = |Ad||Lk|
d(1� �k)

i�d�i
k ,

|JI \ Int(Lk+1

)| =
|I|

d
|Ad||Int(Lk)|

i
|@Lk|

d�i =
i

d
|JI |,

where the factor i
d
comes from (3) of lemma 3.5. Denote C i

d the number of subsets
of size i in {1, . . . , d}, and use the mean of binomial distribution to get:

|Int(Lk+1

)| =
dX

i=1

C i
d(1� �k)

i�d�i
k

i

d
|Lk|

d
|Ad| = (1� �k)|Lk|

d
|Ad|,

|Lk+1

| =
dX

i=1

C i
d(1� �k)

i�d�i
k |Lk|

d
|Ad| = (1� �dk)|Lk|

d
|Ad|.

This shows that:

1� �k+1

=
|Int(Lk+1

)|

|Lk+1

|

=
1� �k
1� �dk

.

⇤

Proof of theorem 3.3. As �k > 0, lemma 3.6 implies 1��k+1

> 1��k, so the sequence
(�k) is decreasing, tending to a limit � satisfying 1 � � = 1��

1��d
, hence � is 0 (or 1,

ruled out by �
0

< 1). ⇤

More precisely, lemma 3.6 implies that for any ⌘ < 1

d�1

, one has �k = O(k�⌘), as
shown below in lemma 4.12. On the other hand:

|Lk| = |B|

dk
|A|(d�1)dk+(dk+···+d+1)

� 22
k
.
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Remark 3.7. Lemma 3.5 provides a complete combinatorial description of Lk. An
element g of Gd has the form g = (gt0...tk)(�t0...tk�1

) . . . (�t0)� in the kth iteration of
the wreath product. Such an element g belongs to Lk if and only if it satisfies the
three following conditions:

(1) 8t
0

. . . tk�1

, the element gt0...tk�11
is in B and gt0...tk�12

, . . . , gt0...tk�1d are in A,
(2) 8t

0

. . . tk�2

, the set I(t
0

. . . tk�2

) = {Tk�1

|��1

t0...tk�2Tk�1
(1) = 1} is non-empty.

(3) 83  l  k + 1, 8t
0

. . . tk�l, the set

I(t
0

. . . tk�l) = {Tk�l+1

|��1

t1...tk�lTk�l+1
(1) 2 I(t

1

. . . tk�lTk�l+1

)},

defined by induction on l, is non-empty (for l = k + 1, consider I(;) where
; is the root vertex of Td).

The element g belongs to Int(Lk) if and only if it satisfies (1), (2), (3)
and moreover:

(4) ��1(1) 2 I(;) = {T |�T 2 I(T )}.

Note that condition (2) is a specific case of condition (3) where I(t
0

. . . tk�1

) = {1}
for all t

0

. . . tk. As an interpretation, say a vertex v = t
0

. . . tl with l  k� 1 is open
if ��1

v (1) 2 I(v). Conditions (1), (2), (3) ensure that g belongs to Lk if and only if
each vertex v has at least one neighbour of next level vT which is open. Condition
(4) ensures that g is in the interior Int(Lk) if and only if the root itself is open.

4. Generalization

4.1. The class DP. Theorem 3.3 can be generalized to a wider setting.

Definition 4.1. A group �
0

belongs to the class DP if and only if it satisfies the
two following conditions:

(1) the group �
0

contains two subgroups A
0

and H
0

such that:
(a) the set A

0

[H
0

generates the group �
0

,
(b) the group A

0

is finite, acting transitively on a finite set {1, . . . , d
0

} of
size d

0

� 2,
(c) the group H

0

is finitely generated (denote B
0

some finite generating set
of H

0

, so �
0

= hA
0

[B
0

i),
(2) there is a group �

1

in the class DP with an isomorphism:

'
0

: �
0

�! �
1

o A
0

= (�
1

⇥ · · ·⇥ �
1

)o A
0

,

with d
0

factors in the direct product, on which A
0

is acting by permutation
of coordinates, according to its transitive action on {1, . . . , d

0

}. Moreover,
this isomorphism '

0

satisfies:
(a) 8s 2 A

0

,'
0

(s) = (e
�1 , . . . , e�1)s,

(b) 8h 2 H
0

, 9h
1

2 H
1

, 9a
2

, . . . , ad0 2 A
1

, 9⇢ 2 A
0

, with ⇢(1) = 1 and:

'
0

(h) = (h
1

, a
2

, . . . , ad0)⇢.

Note that in (2)(b), the groups A
1

and H
1

are the subgroups of �
1

satisfying condi-
tion (1) for �

1

, which belongs to DP .
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Consider a group �
0

in the class DP , together with a finite generating set A
0

[B
0

.
There exists a sequence of groups �i with finite generating sets Ai [ Bi, such that
Ai is a finite group acting transitively on {1, . . . , di}, and an isomorphism:

'i : �i �! �i+1

o Ai,

such that for any bi 2 Bi, there exists bi+1

2 Bi+1

, ai,2, . . . , ai,di 2 Ai+1

, ⇢i 2 Ai with
⇢i(1) = 1 and:

'i(bi) = (bi+1

, ai,2, . . . , ai,di)⇢i.

Moreover, one may assume that |Bi| = |B
0

| for all i (possible because in (2)(b)
above, h

1

is unique, hence from a given b
0

, there is a unique associated sequence
bi). This sequence of groups �i is obtained inductively, applying definition 4.1 to �i,
which belongs to DP , to define �i+1

. Set Hi = hBii < �i.

The groups of the class DP are related to the groups of non-unifrom growth
constructed by Wilson (see [Wil1],[Wil2],[Bri1]). In particular, if all the groups �i

associated to a group �
0

are generated by a finite number (independent of i) of
involutions, and if all the groups Ai involved are alternate groups Adi acting on sets
of size di � 29, then they have non-uniform growth by [Wil2]. This is the case of
the examples in proposition 5.3 below.

Fact 4.2. If �
0

belongs to DP, there exists a sequence d̄ = (di)i of integers di � 2,
and the group �

0

is acting by automorphisms on the spherically homogeneous rooted

tree T
¯d. This action is transitive on each level.

Note that this action on the tree is not necessarily faithful (for instance, the
subgroup F of the group � = �(Ad0 , A ¯d, F ) of section 2.4 of [Bri3] has a trivial
action on the tree T

¯d, even though � belongs to the class DP).

Proof. By iteration of definition 4.1, there is an isomorphism �
0

' �i+1

oAi o · · · oA0

.
As Ai is acting transitively on {1, . . . , di}, the group Ai o · · · oA0

is acting transitively
on {1, . . . , d

0

} ⇥ · · · ⇥ {1, . . . , di}, which is the i + 1st level of T
¯d. Taking the limit

with i, this provides the action on the tree T
¯d. ⇤

Fact 4.3. The group H
0

is amenable if and only if the groups Hi are amenable for

all i.

Proof. By (2)(b), the restriction of '
0

to H
0

provides an embedding:

'
0

|H0 : H0

,! H
1

⇥ (A
1

o FixA0(1)).

As the second factor is a finite group, amenability of H
1

implies that of H
0

.

Conversely assume that H
0

is amenable. Denote p
1

the projection on the factor
H

1

and p
2

the projection on the factor A
1

o FixA0(1). Then ker(p
2

) \ '
0

(H
0

) has
finite index in '

0

(H
0

) ' H
0

, hence is amenable. Now p
1

� '
0

surjects onto H
1

(by
choice that |B

1

| = |B
0

|) and p
1

|

ker(p2) is an isomorphism, thus H
1

is a finite extension
of ker(p

2

) \ '
0

(H
0

), hence is amenable.

The same proof shows that amenability of Hi+1

is equivalent to that of Hi. ⇤
Question 4.4. If a group �

0

= hA
0

, H
0

i belongs to the class DP with H
0

amenable,
is the group �

0

amenable?
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The following theorem provides a partial answer, with a condition on the sequence
of integers d̄ = (di)i.

Theorem 4.5. Let �
0

belong to the class DP with H
0

amenable and d̄ growing

su�ciently slowly (for instance

dk
log k

! 0), then �
0

is amenable.

This theorem generalizes theorem 3.3. The proof is similar, though slightly more
technical.

4.2. Proof of theorem 4.5. Given �
0

= hA
0

[ B
0

i in the class DP , consider
the sequence of finitely generated groups �K = hAK [ BKi obtained by iterating
definition 4.1, where BK is the canonical generating set of the group HK .

To ease notations, write g instead of 'K(g). For ⌦ ⇢ HK+1

, set:

LK
0

(⌦) = {g 2 �K |9h 2 ⌦,↵
2

, . . . ,↵dK 2 AK+1

, � 2 AK , g = (h,↵
2

, . . . ,↵dK )�},

◆LK
0

(⌦) = {g 2 LK
0

(⌦)|��1(1) = 1},

and by induction for 1  k  K, set:

LK
k (⌦) = {g = (g

1

, . . . , gdK�k
)� 2 �K�k|8t, gt 2 LK

k�1

(⌦), 9T, gT 2 ◆LK
k1
(⌦)},

◆LK
k (⌦) = {g 2 LK

k (⌦)|g��1
(1)

2 ◆LK
k�1

(⌦)}.

The sets ◆LK
k (⌦) should be considered as “combinatorial interiors” of LK

k (⌦).
They satisfy a combinatorial description as remark 3.7, but slightly di↵er from the
actual interior of LK

k (⌦), unless the set ⌦ has empty boundary (see remark 4.9
below). Fact 3.4 generalizes as:

Fact 4.6. The three following are equivalent:

(1) g 2 Int(LK
0

(⌦)),
(2) gbK 2 LK

0

(⌦) for all bK 2 BK,

(3) ��1(1) = 1 and h 2 Int(⌦) ⇢ ⌦ ⇢ HK+1

.

Moreover they also imply:

(4) gbK 2 ◆LK
0

(⌦) for all bK 2 BK.

In particular,

|Int(LK
0 (⌦))|

|LK
0 (⌦)| = |Int(⌦)|

dK |⌦| , and �K
0

(⌦) = |@LK
0 (⌦)|

|LK
0 (⌦)| = 1� |Int(⌦)|

dK |⌦| .

Proof. Let g = (h,↵
2

, . . . ,↵dK )� belong to LK
0

(⌦). By (2)(a) of definition 4.1 for
AK , the element gaK still belongs to LK

0

(⌦) for aK in AK . This proves equivalence
of (1) and (2).

Now take bK = (bK+1

, a
2

, . . . , adK )⇢ in BK , then:

gbK =

⇢
(hbK+1

,↵
2

a�(2), . . . ,↵da�(d))�⇢ if ��1(1) = 1,
(ha�(1),↵2

a�(2), . . . ,↵��1
(1)

bK+1

, . . . ,↵da�(d))�⇢ if ��1(1) 6= 1.

This shows that gbK belongs to LK
0

(⌦) for all bK if and only if ��1(1) = 1 and h
belongs to Int(⌦), i.e. equivalence of (2) and (3).

This implies (4) because then (�⇢)�1(1) = 1. Computing the sizes follows
from (3). ⇤
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Notation 4.7. Let g = (g
1

, . . . , gdi)� = (gti)� in �i, with � in Ai, gti in �i+1

for
ti 2 {1, . . . , di} by identification of g with 'i(g). More generally, identify gti...tj with
'j+1

(gti...tj) for i  j  K and denote:

g = (gti...tK )(�ti...tK�1) . . . (�ti)�,

where �ti...tj belongs to Aj+1

and gti...tK to �K . Set ⌧i = ��1(1) 2 {1, . . . , di}, and by
induction ⌧j+1

= (�⌧i...⌧j)
�1(1) 2 {1, . . . , dj+1

}, which guarantees g(⌧i⌧i+1

. . . ⌧j) =
11 . . . 1 for the action on the tree of fact 4.2.

The following generalizes lemma 3.5.

Lemma 4.8. For 0  k  K, the three following are equivalent:

(1) g 2 Int(LK
k (⌦)),

(2) gbK�k 2 LK
k (⌦) for all bK�k 2 BK�k,

(3) g 2 ◆LK
k (⌦) (i.e. ��1(1) 2 I(g) = {T |gT 2 ◆LK

k�1

(⌦)}) and g⌧K�k...⌧K 2

Int(⌦).

Moreover, they also imply:

(4) gbK�k 2 ◆LK
k (⌦) for all bK�k 2 BK�k.

Observe that if g 2 ◆LK
k (⌦), then g⌧K�k...⌧K 2 ⌦, by definitions of ◆LK

k (⌦) and
⌧K�k . . . ⌧K .

Proof. Let g = (g
1

, . . . , gdK�k
)� belong to LK

k (⌦). For a in AK�k, ga still belongs to
LK
k (⌦) (no condition on �). Thus (1) is equivalent to (2). To prove equivalence with

(3) and implication of (4), proceed by induction on 0  k  K. The case k = 0 was
treated as fact 4.6 (where h = g

1

= g��1
(1)

= g⌧K ), now assume the lemma is known
for k � 1.

For bK�k = (bK�k+1

, a
2

, . . . , adK�k
)⇢, one has:

gbK�k = (g
1

a�(1), . . . , g��1
(1)

bK�k+1

, . . . , gdK�k
a�(dK�k)

)�⇢.

Assume (2) for g, then g��1
(1)

bK�k+1

2 LK
k�1

(⌦) for all bK�k+1

2 BK�k+1

, which
means (2) for k� 1 applied to g��1

(1)

. By induction hypothesis, g��1
(1)

satisfies (3),
which means that it belongs to ◆LK

k�1

(⌦), so g 2 ◆LK
k (⌦), and g��1

(1)⌧K�k+1...⌧K =
g⌧K�k⌧K�k+1...⌧K 2 Int(⌦), proving (3) for g.

Moreover, (2) applied to g��1
(1)

implies, by induction, (4) that g��1
(1)

bK�k+1

2

◆LK
k�1

(⌦) for all bK�k+1

2 BK�k+1

. As (�⇢)�1(1) = ��1(⇢�1(1)) = ��1(1), this shows
gbK�k 2 ◆LK

K�k(⌦), which is (4) for g.

Conversely, assume (3) for g, then g��1
(1)

2 ◆LK
k�1

(⌦), and g⌧K�k⌧K�k+1...⌧K =
g��1

(1)⌧K�k+1...⌧K 2 Int(⌦), i.e. (3) for g��1
(1)

. As (3) implies (4) for k � 1, one
has g��1

(1)

bK�k+1

2 ◆LK
k�1

(⌦) for all bK�k+1

2 BK�k+1

, so gbK�k 2 LK
k (⌦) for all

bK�k 2 BK�k, which means (2) for g. ⇤
Remark 4.9. The combinatorial description of remark 3.7 still applies to an element
g 2 �K�k of the form:

g = (gtK�k...tK )(�tK�k...tK�1) . . . (�tK�k
)�,
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with tK�k+l 2 {1, . . . , dK�k+l}, �tK�k...tK�k+l
2 AK�k+l+1

and gtK�k...tK 2 �K+1

. Such
an element g belongs to LK

k (⌦) if and only if it satisfies the three following conditions:

(1) 8tK�k . . . tK�1

, the element gtK�k...tK�11 is in ⌦ ⇢ HK+1

and the elements
gtK�k...tK�12, . . . , gtK�k...tK�1dK are in AK+1

,
(2) 8tK�k . . . tK�2

, the set:

I(tK�k . . . tK�2

) = {TK�1

2 {1, . . . , dK�1

}|��1

tK�k...tK�2TK�1
(1) = 1}

= {TK�1

2 {1, . . . , dK�1

}|gtK�k...tK�2TK�1 2 ◆LK
0

(⌦) ⇢ �K}

is non-empty.
(3) 82  l  k, 8tK�k . . . tK�l, the following subset of {1, . . . , dK�l+1

}:

I(tK�k . . . tK�l) = {TK�l+1

|��1

tK�k...tK�lTK�l+1
(1) 2 I(tK�k . . . tK�lTk�l+1

)},

= {TK�l+1

|gtK�k...tK�lTK�l+1
2 ◆LK

l�2

(⌦) ⇢ �K�l+2

},

defined by induction on l, is non-empty.

The element g belongs to ◆LK
k (⌦) if and only if it satisfies (1), (2), (3) and

moreover:
(4) ��1(1) belongs to the set:

I(;) = {TK�k|�
�1

TK�k
(1) 2 I(TK�k)} = {TK�k|gTK�k

2 ◆LK
k�1

(⌦) ⇢ �K�k+1

}.

The element g belongs to Int(LK
k (⌦)) if and only if it satisfies (1), (2), (3),

(4) and moreover:
(5) g⌧K�k...⌧K 2 Int(⌦).

This description and especially point (5) prove the:

Fact 4.10. With respect to the generating set AK�k [BK�k of the group �K�k, and

the generating set BK+1

of the group HK+1

, one has:

|Int(LK
k (⌦))| = |◆LK

k (⌦)|
|Int(⌦)|

|⌦|
.

In particular, the set ◆LK
k (⌦) is precisely the interior Int(LK

k (⌦)) when Int(⌦) =
⌦. This happens when HK+1

(hence H
0

) is finite.

For 0  k  K, set
|◆LK

k (⌦)|
|LK

k (⌦)| = 1� "k. The number "k will be denoted "Kk later on

to emphasize the dependance on K. Lemma 3.6 generalizes as:

Lemma 4.11. The sequence ("k)0kK satisfies "
0

= 1� 1

dK
and:

1� "k+1

=
1� "k

1� "dK�k�1

k

.

Proof. Given a subset I ⇢ {1, . . . , dK�k�1

}, denote:

JI = {g = (g
1

, . . . , gdK�k�1
)�|8T 2 I, gT 2 ◆LK

k (⌦) and 8t /2 I, gt 2 LK
k (⌦)\◆L

K
k (⌦)}.

By definition, LK
k+1

(⌦) is the disjoint union LK
k+1

(⌦) = t|I|�1

JI .
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As in the proof of lemma 3.6, one has for i = |I|:

|JI | = |AK�k�1

||LK
k (⌦)|

dK�k�1(1� "k)
i"dK�k�1�i

k ,

|JI \ ◆LK
k+1

(⌦)| =
i

dK�k�1

|JI |.

Again by use of the mean of binomial distribution, get:

|◆LK
k+1

(⌦)| =

dK�k�1X

i=1

C i
dK�k�1

(1� "k)
i"dK�k�1�i

k

i

dK�k�1

|LK
k (⌦)|

d
|AK�k�1

|

= (1� "k)|L
K
k (⌦)|

d
|AK�k�1

|,

|LK
k+1

(⌦)| =

dK�k�1X

i=1

C i
dK�k�1

(1� "k)
i"dK�k�1�i

k |LK
k (⌦)|

d
K�k�1

|AK�k�1

|

= (1� "dK�k�1

k )|LK
k (⌦)|

d
|AK�k�1

|.

This proves the lemma. ⇤
Lemma 4.12. If dk

log k
�! 0, then "KK �! 0.

If dk  D for all k, then "KK = O(K�⌘) for all ⌘ < 1

D�1

.

First check the elementary:

Fact 4.13. Let f(D, ") = 1�"D�1

1�"D
, for D � 2 and " 2 (0, 1). Then for fixed D,

the function f(D, ") is decreasing with ", and for fixed ", the function f(D, ") is

increasing with D.

Proof. Compute derivatives:

(1� "D)2
@f

@"
(D, ") = "D�2(1� ")("D�1 + · · ·+ "2 + "� (D � 1)) < 0,

(1� "D)2
@f

@D
(D, ") = "D�1("� 1) log " > 0.

⇤

Proof of lemma 4.12. For a fixed K, and 0  k  K, set Dk = dK�k, and D(K) =
max

0kK{dk} = o(logK). By lemma 4.11, one has:

"k+1

= "k
1� "Dk+1�1

k

1� "Dk+1

k

= "kf(Dk+1

, "k).

By fact 4.13, as long as "k � E, one has:

"k+1

 "kf(Dk+1

, E)  "kf(D(K), E),

so "K = "KK  max{E, f(D(K), E)K} for any E 2 (0, 1). Now consider a sequence
EK �! 0 so that |D(K) logEK | = o(logK) (it exists). One has:

f(D(K), EK)
K = expK(log(1� ED(K)�1

K )� log(1� ED(K)

K )),

= exp(�KED(K)�1

K +O(KED(K)

K )) �! 0,

because KED(K)�1

K �! +1. This shows "KK �! 0.
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If moreover dk  D, take EK = K�⌘ with ⌘ < 1

D�1

, then:

f(D,EK)
K = exp(�K1�⌘(D�1) +O(K1�⌘D)) = o(K�⌘),

so "KK = O(K�⌘). ⇤

Proof of theorem 4.5. By fact 4.10, one has:

|Int(LK
K(⌦))|

|LK
K(⌦)|

=
|◆LK

K(⌦)|

|LK
K(⌦)|

|Int(⌦)|

|⌦|
= (1� "KK)

|Int(⌦)|

|⌦|
.

As the group HK+1

is amenable by fact 4.3, the set ⌦ can be chosen with |Int(⌦)|
|⌦|

arbitrarily close to 1. By lemma 4.12, this shows that there exists a sequence of sets
⌦K ⇢ HK+1

so that the sets LK
K(⌦K) ⇢ �

0

form a Folner sequence. ⇤

5. Examples of groups in the class DP

5.1. Alternate directed groups. Given a sequence d̄ = (di)i2N of integers di � 2,
set:

ATi = AT (di, di+1

) = (Adi+1 ⇥ · · ·⇥Adi+1)oAdi�1

= Adi+1 oAdi�1

,

where Ad is the alternate group of even permutations of the set {1, . . . , d}, there are
di � 1 factors in the product (indexed by {2, . . . , di}), and Adi�1

acts by permuting
these factors. Consider the countable infinite direct product:

Halt
¯d =

1Y

i=0

ATi =
1Y

i=0

Adi+1 oAdi�1

.

Its elements are denoted as sequences h = (hi)1i=0

with hi = (ai,2, . . . , ai,di)⇢i 2 ATi.

The group Halt
¯d

acts faithfully on the spherically homogeneous rooted tree T
¯d

in the direction of the ray 11, where under the canonical isomorphism Aut(T
¯d) '

Aut(T� ¯d) o Sd0 , one has:

(hi)
1
i=0

= ((hi)
1
i=1

, a
0,2, . . . , a0,d0)⇢0,

where ⇢
0

2 Ad0�1

' FixAd0
(1). Inductively under isomorphism Aut(T�k

¯d) '

Aut(T�k+1
¯d) o Sdk , one has (hi)1i=k = ((hi)1i=k+1

, ak,2, . . . , ak,dk)⇢k.

On the other hand, the group Ad0 acts on T
¯d by rooted automorphisms:

Ad0 3 a = (e, . . . , e)a.

Definition 5.1. An alternate directed group G is a subgroup of Aut(T
¯d) with gen-

erating set A [H, with A ⇢ Ad0 and H ⇢ Halt
¯d
. Denote:

G(A,H) = hA [Hi < Aut(T
¯d).

When the sequence d̄ is constant di = d, if A = Ad and H ' Ad oAd�1

is diagonaly
embedded into the direct product Halt

¯d
, then G(A,H) = Gd is the alternate mother

group of section 3. Directed groups (not necessarily alternate) satisfy the same
definition without requirement that the permutations involved are even, that is
with Sd instead of Ad and H

¯d =
Q1

i=0

Sdi+1 oSdi�1

instead of Halt
¯d

(see [Bri1], [Bri3]).
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5.2. Case of bounded valency. In this section, assume that the sequence d̄ is
bounded 5  di  D. Let B ⇢ Halt

¯d
be a finite subset, and denote its elements by

� = (�i)1i=0

2 Halt
¯d
. Then for each i, the set {�i, � 2 B} is a B-indexed subset of

ATi = AT (di, di+1

). As the valency sequence d̄ is bounded, there is a finite set of
pairs:

{(AT (s), {�(s), � 2 B}), s 2 J},

such that for any i, there exists s(i) in the finite set J with (ATi, {�i, � 2 B}) =
(AT (s(i)), {�(s(i)), � 2 B}), as pairs of finite groups with B-indexed subsets.

This provides an isomorphism:

Halt
¯d > H = h�, � 2 Bi ' h(�(s))s2J , � 2 Bi <

Y

s2J

AT (s).

The group H is said saturated if H =
Q

s2J AT (s). (Mind a di↵erence with the
notion of saturation in [Bri1] and [Bri3], where it was only required that H surjects
on each factor AT (s). The present condition is slightly stronger.) Finiteness of J
shows the:

Fact 5.2. If d̄ is bounded, any finitely generated subgroup of Halt
¯d

is contained in a

finite saturated subgroup H.

The following proposition will permit to show amenability of all directed groups
acting on a tree of bounded valency.

Proposition 5.3. Let d̄ be a bounded sequence of integers di � 5. If H < Halt
¯d

is

a finite saturated subgroup, then the alternate directed group G(Ad0 , H) < Aut(T
¯d)

belongs to the class DP with A
0

= Ad0 and H
0

= H.

Proof. Set H
1

= {(hi)1i=1

|(hi)1i=0

2 H}. The only non-trivial point in order to verify
definition 4.1 is surjectivity of the isomorphism:

'
0

: G(Ad0 , H) �! G(Ad1 , H1

) oAd0 .

Given h = (hi)1i=0

in H
¯d with hi = (ai,2, . . . , ai,di)⇢i, set:

h(2) = ((ai,2, e, . . . , e)e)
1
i=0

, and h(;) = ((e, . . . , e)⇢i)
1
i=0

.

In each factor AT (s) = Ad0(s) oAd(s)�1

, the subset

{(a
2

, e, . . . , e)|a
2

2 Ad0(s)} [ {(e, . . . , e)⇢|⇢ 2 Ad(s)�1

}

generates the group AT (s). Thus by saturation

hh(2), h 2 Hi '

Y

s2J

Ad0(s) ⇥ {e}⇥ · · ·⇥ {e}, and hh(;), h 2 Hi '

Y

s2J

Ad0(s).

So saturation shows that the subsets H(2) = {h(2), h 2 H} and H(;) = {h(;), h 2

H} are subgroups of H, and moreover hH(2) [H(;)i = H.

The proofs of fact 3.2 and proposition 3.1 apply directly, replacing the generators
b
2

= b(↵
2

, e, . . . , e, eA) and b; = b(e, . . . , e, ⇢) by h(2) and h(;) respectively. ⇤
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Let � be a permutation of the set {1, . . . , d}. Denote �0 another copy of � acting
on the set {d + 1, . . . , 2d} by �0(t) = �(t � d) + d, and consider the embedding
a : Sd ,! A

2d given by a(�) = ��0. It can be extended to furnish:

a : Aut(T
¯d) ! Autalt(T

¯

2d),

an embedding of the group of automorphisms of the tree T
¯d into the group of alter-

nate automorphisms of the tree T
¯

2d.

Indeed, let � 2 Aut(T
¯d) be described by a family of permutations {�v}v2Td̄

,
where �v 2 Sdk for every v = t

1

. . . tk in T
¯d. The automorphism a(�) is described by

a family of permutations {a(�)v}v2T2̄d
given by a(�)v = a(�v) 2 A

2dk for v = t
1

. . . tk
in T

¯d ⇢ T
¯

2d and a(�)v = e for v 2 T
¯

2d \ T ¯d.

Fact 5.4. Directed elements have directed image under a, i.e. a(H
¯d) ⇢ Halt

¯

2d
. In

particular, the mother group of degree 0 acting on a d-regular tree embeds in the

alternate mother group G
2d acting on a 2d-regular tree.

Proof. As a shortcut denote 1k for the sequence 11 . . . 1 with k ones. By definition,
an automorphism � is directed if and only if �

1

k 2 FixSdk
(1) ' Sdk�1

and �v = e if

v is not of the form 1k�1t for some t in {1, . . . , dk}. This is still the case for a(�). ⇤

The following result from [Bri1] can now be reproved.

Corollary 5.5. Directed groups acting on a tree of bounded valency are amenable.

Proof. Let � be a directed group, with generating set S [ H where S ⇢ Sd0 and
H ⇢ H

¯d. By fact 5.4, the group a(�) < Autalt(T
¯

2d) is alternate and directed. By fact
5.2, it can be included in a directed, alternate and saturated subgroup of Autalt(T

¯

2d),
which is in the class DP by proposition 5.3, hence amenable by theorem 4.5, since
2̄d is bounded and H

0

finite. The group � is also amenable as a subgroup. ⇤
Corollary 5.6 (Main theorem in [BKN]). Automata groups with bounded activity

are amenable.

Proof. By theorem 3.3 in [BKN], an automata group � with bounded activity is a
subgroup of the alternate mother group of degree 0 acting on a d-regular tree for d
large enough. By fact 5.4, � is a subgroup of G

2d, hence is amenable by theorem
3.3. ⇤

5.3. Examples with unbounded valency. This section aims at constructing ex-
amples of groups in the class DP for which the sequence d̄ of fact 4.2 is unbounded.

Let H
0

be a finitely generated, residually finite, perfect group with a sequence
of normal subgroups (Nk)k�0

of finite index so that each quotient Ak = H
0

/Nk is
perfect, acting faithfully and transitively on a finite set {1, . . . , dk} of size dk � 2.
For h in H

0

, denote ak(h) = hNk 2 Ak.

To the group H
0

together with subgroup sequence (Nk)k�0

is associated an action
on the rooted tree T

¯d of valency sequence d̄ = (dk)k�0

, denoted b
0

: H
0

! Aut(T
¯d),

given by the portrait (b
0

(h))
1

k�1
2

= ak(h) and (b
0

(h))v = e if v is not of the form



16 BRIEUSSEL

1k�12 for k � 1 (notation 1k is a shortcut for 11 . . . 1 with k ones). In the wreath
product isomorphism, one has:

b
0

(h) = (b
1

(h), a
1

(h), e, . . . , e),

where b
1

(h) is the similar action of the group H
0

on the tree T� ¯d associated to the
shifted subgroup sequence (Nk)k�1

. The group A
0

= H
0

/N
0

also acts on T
¯d as a

rooted automorphism acting on {1, . . . , d
0

}, i.e. a
0

= (e, . . . , e)a
0

.

Fact 5.7. With the actions described above, the group �
0

= hA
0

[ H
0

i < Aut(T
¯d)

belongs to the class DP.

Proof. Let �
1

be the subgroup of Aut(T� ¯d) generated by H
1

= H
0

with the b
1

(h)
action and A

1

= H
1

/N
1

with a rooted action. Properties (1) and (2) of definition
4.1 follow from the construction above. Thus �

0

belongs to the class DP as soon as
�
1

does. As �
1

satisfies the same properties as �
0

, they are in the class DP . ⇤

As an example of such a finitely generated, residually finite, perfect group H
0

,
one may take the alternate mother group Gd of section 3 for d � 6 (then both finite
generating subgroups A and B are perfect). This group satisfies Gd ' Gd oAd. Its
finite index normal subgroups are:

Stj = ker(Gd ! Ad o · · · oAd),

where the j factors in the iterated wreath product are obtained by iteration of the
above isomorphism. The group Stj is called stabilizer of level j of the group Gd.
The quotient Gd/Stj is acting transitively on level j, which is the set {1, . . . , d}j.
By [Neu], these stabilizers Stj are the only finite index normal subgroups of Gd.

For an arbitrary function j : N ! N, take Nk = Stj(k) as a sequence of normal
subgroups. The group �

0

defined by Gd together with the function j(k) belongs to
the class DP by fact 5.7. It is amenable when dj(k) is sublogarithmic by theorem
4.5. Note that in the construction above, one could use any group of proposition
5.3 with di � 6 instead of Gd.
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