Folner sets of alternate directed groups

Jeremie Brieussel

To cite this version:

Jeremie Brieussel. Folner sets of alternate directed groups. Annales de l'Institut Fourier, 2014, 64 (3), pp.1109-1130. 10.5802/aif.2875 . hal-00820559

HAL Id: hal-00820559

https://hal.science/hal-00820559

Submitted on 29 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FOLNER SETS OF ALTERNATE DIRECTED GROUPS

JÉRÉMIE BRIEUSSEL
KYOTO UNIVERSITY
JAPAN

Abstract

An explicit family of Folner sets is constructed for some directed groups acting on a rooted tree of sublogarithmic valency by alternate permutations. In the case of bounded valency, these groups were known to be amenable by probabilistic methods. The present construction provides a new and independent proof of amenability, using neither random walks, nor word length.

1. Introduction

By a criterion of Folner [Fol], amenable groups are those that admit finite subsets with arbitrary small boundaries. A sequence of such subsets, called a Folner sequence, is easily described for abelian groups, and well-understood for solvable groups ([PSC], [Ers]). Many non-solvable amenable groups are directed groups acting on rooted trees. This family of groups gathers many examples with "exotic" properties, such as infinite torsion groups constructed by Aleshin [Ale], groups of intermediate growth by Grigorchuk [Gri] or groups with non-uniform exponential growth by Wilson [Wil1].

Their amenability in the case of bounded valency was shown in [Bri1] by use of Kesten's probabilistic criterion [Kes]. The strategy, introduced by Bartholdi and Virag in [BV], is to show that a self-similar random walk on a Cayley graph diffuses slowly, in the sense that its return probability does not decay exponentially, or that its entropy is sublinear ([KV]). The same method permits to show that automata groups are amenable when their activity is bounded [BKN] or linear [AAV]. Though it ensures their existence, such a probabilistic proof does not exhibit Folner sets.

For the groups of [Ale] and [Gri], subexponential growth easily implies the existence of a subsequence of the family of balls (for a word length) which is a Folner sequence, but it is not known if the whole sequence of balls is Folner and the subsequence (even though it has density 1) is not explicit. Even for groups of polynomial growth, it is not elementary to show that balls form a Folner sequence, a result due to Pansu [Pan], using technics from Gromov [Gro].

The object of the present article is to exhibit explicit Folner sets for some groups in a class denoted $\mathcal{D P}$, containing in particular directed groups acting on a rooted tree by alternate permutations. A group Γ in this class $\mathcal{D P}$ is defined (see section
4) by two subgroups A finite and H finitely generated, together with an action on a rooted tree with valency sequence $\left(d_{k}\right)_{k \in \mathbb{N}}$. The main result is:

Theorem 1.1. Let Γ belong to the class $\mathcal{D P}$ with H amenable and $\frac{d_{k}}{\log k} \rightarrow 0$, then the group Γ is amenable.

As a corollary, this provides a new proof, using neither random walks nor word length, that directed groups acting on a rooted tree of bounded valency are amenable ([Bri1]). It also provides many new examples of amenable directed groups acting on a tree of unbounded sublogarithmic valency. Moreover it also permits to reprove amenability of automata groups with bounded activity by methods different from [BKN].

The article is structured as follows. Rooted trees and their automorphism groups are described in section 2. Section 3 is devoted to the construction of explicit Folner sets for the archetypal example of the alternate mother group G_{d} acting on a regular rooted tree of valency $d \geq 5$. This example, treated first for simplicity of notations, is generalized to the class $\mathcal{D P}$ in section 4 . Finally, section 5 is devoted to the construction of groups in the class $\mathcal{D P}$, including the saturated alternate directed groups, and some groups acting on trees with unbounded valency.

2. Rooted trees and their groups of automorphisms

Let S_{d} denote the group of permutations of the set $\{1, \ldots, d\}$ with d elements, and $\mathcal{A}_{d}=\mathcal{A}_{\{1, \ldots, d\}}$ denote the subgroup of alternate permutations.

Given a sequence $\bar{d}=\left(d_{k}\right)_{k \geq 0}$ of integers ≥ 2, the spherically homogeneous rooted tree $T_{\bar{d}}$ is the graph with vertex set $\left\{t_{0} t_{1} \ldots t_{k} \mid t_{i} \in\left\{1, \ldots, d_{i}\right\}, k \geq-1\right\}$, including the empty sequence \emptyset, called the root, corresponding to $k=-1$, and edge set $\left\{\left(t_{0} \ldots t_{k}, t_{0} \ldots t_{k} t_{k+1}\right)\right\}$. The vertex set restricted to a fixed k is called the $k+1$ st level of the tree. It is the direct product $\left\{1, \ldots, d_{0}\right\} \times \cdots \times\left\{1, \ldots, d_{k}\right\}$. When the sequence \bar{d} is constant equal to d, the tree is called d-regular, denoted T_{d}.

The group of automorphisms $\operatorname{Aut}\left(T_{\bar{d}}\right)$ of the rooted tree $T_{\bar{d}}$ is the group of graph automorphims that fix the root \emptyset. It satisfies a canonical isomorphism:

$$
\begin{equation*}
\operatorname{Aut}\left(T_{\bar{d}}\right) \simeq \operatorname{Aut}\left(T_{\sigma \bar{d}}\right) \prec S_{d_{0}} \tag{1}
\end{equation*}
$$

where $\sigma \bar{d}=\left(d_{k}\right)_{k \geq 1}$ is the shifted sequence obtained by deleting the first entry, and $G \imath S_{d}=(G \times \cdots \times G) \rtimes S_{d}$ is the semi-direct product where S_{d} acts by permuting factors, called wreath product. Write $g=\left(g_{1}, \ldots, g_{d_{0}}\right) \sigma=\left(g_{t_{0}}\right) \sigma$ the identification by isomorphism (1). The product rule is $g g^{\prime}=\left(g_{1} g_{\sigma(1)}^{\prime}, \ldots, g_{d_{0}} g_{\sigma\left(d_{0}\right)}^{\prime}\right) \sigma \sigma^{\prime}$.

By iterating the wreath product ismorphism (1), a family of isomorphisms is obtained:

$$
\operatorname{Aut}\left(T_{\bar{d}}\right) \simeq \operatorname{Aut}\left(T_{\sigma^{k} \bar{d}}\right)\left\langle S_{d_{k-1}} \imath \cdots \imath S_{d_{0}}\right.
$$

Identifications are denoted $g=\left(g_{t_{0} \ldots t_{k}}\right)\left(\sigma_{t_{0} \ldots t_{k-1}}\right) \ldots\left(\sigma_{t_{0}}\right) \sigma$, where $\left(\sigma_{t_{0} \ldots t_{j}}\right)$ is a sequence of permutations in $S_{d_{j}}$ indexed by the $j+1$ st level of the tree and $\left(g_{t_{0} \ldots t_{k}}\right)$ is a sequence of automorphisms of $T_{\sigma^{k} \bar{d}}$ indexed by level $k+1$. The automorphism g is determined by the whole sequence of permutations $\left(\sigma_{v}\right)_{v \in T_{\bar{d}}}$, called its portrait.

The automorphism g is said to be alternate if all the permutations σ_{v} of its portrait are alternate permutations. Denote $A u t^{a l t}\left(T_{\bar{d}}\right)$ the group of alternate automorphisms of $T_{\bar{d}}$. It also satisfies isomorphisms:

$$
A u t^{a l t}\left(T_{\bar{d}}\right) \simeq A u t^{a l t}\left(T_{\sigma^{k} \bar{d}}\right)<\mathcal{A}_{d_{k-1}} \prec \cdots \prec \mathcal{A}_{d_{0}}
$$

The neutral element of a group G is denoted e_{G} or e.

3. Folner sets of the alternate mother group

3.1. The alternate mother group. Define alternate automorphisms of the d regular rooted tree T_{d} by use of the wreath product isomorphism $A u t^{\text {alt }}\left(T_{d}\right) \simeq$ Aut ${ }^{\text {alt }}\left(T_{d}\right)$) \mathcal{A}_{d}.
(1) Given σ in \mathcal{A}_{d}, denote $A=\left\{a(\sigma) \mid \sigma \in \mathcal{A}_{d}\right\} \simeq \mathcal{A}_{d}$ with:

$$
a(\sigma)=(e, \ldots, e) \sigma
$$

Elements of A are called rooted.
(2) Given a_{2}, \ldots, a_{d} in $A=\mathcal{A}_{d}$ and ρ in Fix $_{\mathcal{A}_{d}}(1)=\mathcal{A}_{\{2, \ldots, d\}}=\mathcal{A}_{d-1}$, set:

$$
b\left(a_{2}, \ldots, a_{d}, \rho\right)=\left(b\left(a_{2}, \ldots, a_{d}, \rho\right), a_{2}, \ldots, a_{d}\right) \rho
$$

Denote $B=\left\{b\left(a_{2}, \ldots, a_{d}, \rho\right) \mid a_{2}, \ldots, a_{d} \in \mathcal{A}_{d}, \rho \in \operatorname{Fix}_{\mathcal{A}_{d}}(1)\right\}$. Elements of B are called directed. The set B forms a finite subgroup of $\operatorname{Aut}\left(T_{d}\right)$. Indeed, the following is an isomorphism:

$$
\begin{align*}
B & \rightarrow\left(\mathcal{A}_{d} \times \cdots \times \mathcal{A}_{d}\right) \rtimes \mathcal{A}_{\{2, \ldots, d\}} \tag{2}\\
b\left(a_{2}, \ldots, a_{d}, \rho\right) & \mapsto\left(a_{2}, \ldots, a_{d}\right) \rho .
\end{align*}
$$

Define the group generated by the sets A, B :

$$
G_{d}=\langle A, B\rangle<A u t\left(T_{d}\right)
$$

By construction, the group G_{d} is an automata group. It is essentially the mother group of degree 0 (see [BKN], [AAV]), but the permutations involved are alternate.

Since \mathcal{A}_{d} is simple hence perfect for $d \geq 5$, the group G_{d} satisfies the:
Proposition 3.1. If $d \geq 5$, the group G_{d} is isomorphic to its wreath product with \mathcal{A}_{d} :

$$
G_{d} \simeq G_{d} \curlywedge \mathcal{A}_{d}=\left(G_{d} \times \cdots \times G_{d}\right) \rtimes \mathcal{A}_{d}
$$

The proposition follows from the:
Fact 3.2. Let $d \geq 5$, then for any generator $a=a(\sigma) \in A$ and $b=b\left(a_{2}, \ldots, a_{d}, \rho\right) \in$ B, the elements (a, e, \ldots, e) and (b, e, \ldots, e) belong to G_{d}.

Recall the conjugacy notation $g^{a}=a g a^{-1}$, and observe that for $g=\left(g_{1}, \ldots, g_{d}\right) \sigma$ and a in A, one has $g^{a}=\left(g_{a(1)}, \ldots, g_{a(d)}\right) \sigma^{a}$.

Proof of fact 3.2. Take τ in \mathcal{A}_{d} such that $\tau(1)=1$ and $\tau^{-1}(2)=3$ and observe the commutator relations:

$$
\begin{aligned}
b & =b\left(\alpha_{2}, e_{G}, \ldots, e_{G}, e_{A}\right)=\left(b, \alpha_{2}, e_{G}, e_{G}, \ldots, e_{G}\right) e_{A}, \\
b^{\prime \tau} & =b\left(\alpha_{2}^{\prime}, e_{G}, \ldots, e_{G}, e_{A}\right)^{\tau}=\left(b^{\prime}, 1, \alpha_{2}^{\prime}, e_{G}, \ldots, e_{G}\right) e_{A}, \\
{\left[b, b^{\prime \tau}\right] } & =\left(\left[b, b^{\prime}\right], e_{G}, e_{G}, e_{G}, \ldots, e_{G}\right) .
\end{aligned}
$$

As $\left[b\left(\alpha_{2}, e_{G}, \ldots, e_{G}, e_{A}\right), b\left(\alpha_{2}^{\prime}, e_{G}, \ldots, e_{G}, e_{A}\right)\right]=b\left(\left[\alpha_{2}, \alpha_{2}^{\prime}\right], e_{G}, \ldots, e_{G}, e_{A}\right)$ and as the group $A=\mathcal{A}_{d}$ is perfect (because it is simple), any element a_{2} in $A \simeq \mathcal{A}_{d}$ is a product of commutators. This shows that G_{d} contains $\left(b_{2}, e_{G}, \ldots, e_{G}\right)$ for any $b_{2}=b\left(a_{2}, e_{G}, \ldots, e_{G}, e_{A}\right)$ with a_{2} in \mathcal{A}_{d}. Moreover for any $b_{\emptyset}=b\left(e_{G}, \ldots, e_{G}, \rho\right)$ with ρ in $\operatorname{Fix}_{A}(1) \simeq \mathcal{A}_{d-1}$, the group G_{d} contains $b_{\emptyset} a\left(\rho^{-1}\right)=\left(b_{\emptyset}, e_{G}, \ldots, e_{G}\right)$.

Now the elements $b_{2}=b\left(a_{2}, e_{G}, \ldots, e_{G}, e_{A}\right)$ and $b_{\emptyset}=b\left(e_{G}, \ldots, e_{G}, \rho\right)$ generate B by isomorphism (2), because ρ in $\mathcal{A}_{\{2, \ldots, d\}}$ and $\left(a_{2}, e_{A}, \ldots, e_{A}\right)$ for a_{2} in \mathcal{A}_{d} generate the finite group $\left(\mathcal{A}_{d} \times \cdots \times \mathcal{A}_{d}\right) \rtimes \mathcal{A}_{\{2, \ldots, d\}}$. Thus G_{d} contains $\left(b, e_{G}, \ldots, e_{G}\right)$ for any b in B.

Finally given a_{2} in A, for $b_{2}=b\left(a_{2}, e_{G}, \ldots, e_{G}, e_{A}\right)=\left(b_{2}, a_{2}, e_{G}, \ldots, e_{G}\right)$, the element $\left(b_{2}^{-1}, e_{G}, \ldots, e_{G}\right)$ belongs to G_{d} by the above. So do $\left(b_{2}^{-1}, e_{G}, \ldots, e_{G}\right) b_{2}=$ $\left(e_{G}, a_{2}, e_{G}, \ldots, e_{G}\right)$ and $\left(e_{G}, a_{2}, e_{G}, \ldots, e_{G}\right)^{\tau}=\left(a_{2}, e_{G}, \ldots, e_{G}\right)$ for τ in $A=\mathcal{A}_{d}$ such that $\tau^{-1}(2)=1$.

Proof of proposition 3.1. By definition, G_{d} admits an embedding into the wreath product $G_{d} \hookrightarrow G_{d} \prec \mathcal{A}_{d}$. The key point is that this embedding is surjective. Clearly $A \simeq \mathcal{A}_{d}$ is the set of rooted automorphisms. Moreover, fact 3.2 shows that $G_{d} \times$ $\{1\} \times \cdots \times\{1\}$ is in G_{d}. As \mathcal{A}_{d} acts transitively on $\{1, \ldots, d\}$, conjugation shows that $\{1\} \times \cdots \times G_{d} \times \cdots \times\{1\}$ also belongs to G_{d} for any position of the non-trivial factor. Then $G_{d} \times \cdots \times G_{d}$ belongs to G_{d} by product. This proves the wreath product isomorphism.
3.2. Definition of Folner sets. For a group Γ with finite generating set S, the boundary of a subset $L \subset \Gamma$ is defined as:

$$
\partial L=\{\gamma \in L \mid \exists s \in S, \gamma s \notin L\}
$$

The interior of L is the set $\operatorname{Int}(L)=L \backslash \partial L$.
A sequence L_{k} of subsets of Γ is a Folner sequence if $\frac{\left|\partial L_{k}\right|}{\left|L_{k}\right|} \rightarrow 0$. By [Fol], a finitely generated group Γ is amenable if and only if it admits a Folner sequence for some (equivalently for any) finite generating set S.

Let us define a sequence of subsets of G_{d} as follows:

$$
L_{0}=\left\{g \in G_{d} \mid \exists \beta \in B, \alpha_{2}, \ldots, \alpha_{d}, \sigma \in A, g=\left(\beta, \alpha_{2}, \ldots, \alpha_{d}\right) \sigma\right\}
$$

By induction on k, define:

$$
L_{k+1}=\left\{g=\left(g_{1}, \ldots, g_{d}\right) \sigma \mid \forall t, g_{t} \in L_{k} \text { and } \exists T, g_{T} \in \operatorname{Int}\left(L_{k}\right)\right\}
$$

By proposition 3.1, the sets L_{k} are included in G_{d} for $d \geq 5$, and not just in the automorphism group $\operatorname{Aut}\left(T_{d}\right)$.

Theorem 3.3. For $d \geq 5$, the sets L_{k} form a Folner sequence for G_{d}. In particular, the group G_{d} is amenable.

The group G_{d} was known to be amenable by [Bri1] (use of Kesten criterion on return probability) or [BKN] (triviality of the Poisson boundary). However, these proofs, based on contraction in the wreath product of word length for some random walks, did not provide explicit Folner sets. The following proof uses neither random walks, nor word length.
3.3. Proof of theorem 3.3. Observe that for any a in A and $g=\left(\beta, \alpha_{2}, \ldots, \alpha_{d}\right) \sigma$ in L_{0}, the element $g a=\left(\beta, \alpha_{2}, \ldots, \alpha_{d}\right) \sigma a$ still belongs to L_{0}. Moreover, for any $b=b\left(a_{2}, \ldots, a_{d}, \rho\right)=\left(b, a_{2}, \ldots, a_{d}\right) \rho$ in B, one has:

$$
g b= \begin{cases}\left(\beta b, \alpha_{2} a_{\sigma(2)}, \ldots, \alpha_{d} a_{\sigma(d)}\right) \sigma \rho & \text { if } \sigma^{-1}(1)=1 \\ \left(\beta a_{\sigma(1)}, \alpha_{2} a_{\sigma(2)}, \ldots, \alpha_{\sigma^{-1}(1)} b, \ldots, \alpha_{d} a_{\sigma(d)}\right) \sigma \rho & \text { if } \sigma^{-1}(1) \neq 1\end{cases}
$$

As the sets A and B are finite groups, this shows equivalence of (1), (2) and (3) in the:

Fact 3.4. The following are equivalent:
(1) g belongs to $\operatorname{Int}\left(L_{0}\right)$,
(2) $g b \in L_{0}$ for all $b \in B$,
(3) $\sigma^{-1}(1)=1$,
(4) $g b \in \operatorname{Int}\left(L_{0}\right)$ for all $b \in B$.

In particular, $\frac{\left|\operatorname{Int}\left(L_{0}\right)\right|}{\left|L_{0}\right|}=\frac{1}{d}$, hence $\delta_{0}=\frac{\left|\partial L_{0}\right|}{\left|L_{0}\right|}=1-\frac{1}{d}$.
Proof. Point (4) is equivalent to (3) due to the fixed point assumption $\rho(1)=1$ in the definition of B, which guarantees that $(\sigma \rho)^{-1}(1)=\left(\rho^{-1} \sigma^{-1}\right)(1)=\sigma^{-1}\left(\rho^{-1}(1)\right)=1$ when $\sigma^{-1}(1)=1$.

The evaluation of δ_{0} is done by counting $\left|L_{0}\right|=|B||A|^{d}$ as g is described by $\beta, \alpha_{2}, \ldots, \alpha_{d}, \sigma$, and condition $\sigma^{-1}(1)=1$ occurs with probability $\frac{1}{d}$.
Lemma 3.5. The following are equivalent:
(1) g belongs to $\operatorname{Int}\left(L_{k}\right)$,
(2) $g b \in L_{k}$ for all $b \in B$,
(3) $\sigma^{-1}(1) \in I(g)=\left\{T \mid g_{T} \in \operatorname{Int}\left(L_{k-1}\right)\right\}$,
(4) $g b \in \operatorname{Int}\left(L_{k}\right)$ for all $b \in B$.

Proof of lemma 3.5. The case $k=0$ is treated by fact 3.4 with convention that $I(g)=\{1\}$ if $g \in L_{0}$. Assume by induction that the result is true for $k-1$, and prove it for k.

Again $g a=\left(g_{1}, \ldots, g_{d}\right) \sigma a$ belongs to L_{k} for any value of a in A, g in L_{k}. Moreover:

$$
g b=\left(g_{1} a_{\sigma(1)}, \ldots, g_{\sigma^{-1}(1)} b, \ldots, g_{d} a_{\sigma(d)}\right) \sigma \rho
$$

Suppose (3) that $g_{\sigma^{-1}(1)} \in \operatorname{Int}\left(L_{k-1}\right)$, then as (1) implies (4) for $k-1$, the element $g_{\sigma^{-1}(1)} b$ belongs to $\operatorname{Int}\left(L_{k-1}\right)$ for any b in B, so that $g b$ belongs to L_{k} for any b in
B, proving (2). Then (1) follows because $g a$ also belongs to L_{k} for a in A, hence g is an interior point of L_{k}.

Suppose (3) does not hold, so $g_{\sigma^{-1}(1)} \in \partial L_{k-1}$. By equivalence of (1) and (2) for $k-1$, there exists b in B such that $g_{\sigma^{-1}(1)} b \notin L_{k-1}$, so that $g b$ is not in L_{k}, disclaiming (1) and (2) for g. This proves equivalence of (1), (2) and (3) for k.

Now $g b$ belongs to $\operatorname{Int}\left(L_{k}\right)$ if and only if $(\sigma \rho)^{-1}(1) \in I(g)$ by equivalence of (1) and (3). But $(\sigma \rho)^{-1}(1)=\sigma^{-1}\left(\rho^{-1}(1)\right)=\sigma^{-1}(1)$ because $\rho(1)=1$. So (3) implies (4). Obviously, (4) implies (2), closing step k of induction.

There remains to evaluate the sizes of the interior and boundary of L_{k}. Set:

$$
\delta_{k}=\frac{\left|\partial L_{k}\right|}{\left|L_{k}\right|}, \quad 1-\delta_{k}=\frac{\left|\operatorname{Int}\left(L_{k}\right)\right|}{\left|L_{k}\right|} .
$$

Lemma 3.6. The sequence $\left(\delta_{k}\right)$ satisfies:

$$
1-\delta_{k+1}=\frac{1-\delta_{k}}{1-\delta_{k}^{d}}
$$

Proof of lemma 3.6. Given a subset $I \subset\{1, \ldots, d\}$, denote:

$$
J_{I}=\left\{g=\left(g_{1}, \ldots, g_{d}\right) \sigma \mid \forall T \in I, g_{T} \in \operatorname{Int}\left(L_{k}\right) \text { and } \forall t \notin I, g_{t} \in \partial L_{k}\right\}
$$

By definition, L_{k+1} is the disjoint union $L_{k+1}=\sqcup_{|I| \geq 1} J_{I}$.
For $i=|I|$, the size of J_{I} and its intersection with $\operatorname{Int}\left(L_{k+1}\right)$ are evaluated as:

$$
\begin{aligned}
\left|J_{I}\right| & =\left|\mathcal{A}_{d}\right|\left|\operatorname{Int}\left(L_{k}\right)\right|^{i}\left|\partial L_{k}\right|^{d-i}=\left|\mathcal{A}_{d}\right|\left|L_{k}\right|^{d}\left(1-\delta_{k}\right)^{i} \delta_{k}^{d-i} \\
\left|J_{I} \cap \operatorname{Int}\left(L_{k+1}\right)\right| & =\frac{|I|}{d}\left|\mathcal{A}_{d}\right|\left|\operatorname{Int}\left(L_{k}\right)\right|^{i}\left|\partial L_{k}\right|^{d-i}=\frac{i}{d}\left|J_{I}\right|
\end{aligned}
$$

where the factor $\frac{i}{d}$ comes from (3) of lemma 3.5. Denote C_{d}^{i} the number of subsets of size i in $\{1, \ldots, d\}$, and use the mean of binomial distribution to get:

$$
\begin{aligned}
\left|\operatorname{Int}\left(L_{k+1}\right)\right| & =\sum_{i=1}^{d} C_{d}^{i}\left(1-\delta_{k}\right)^{i} \delta_{k}^{d-i} \frac{i}{d}\left|L_{k}\right|^{d}\left|\mathcal{A}_{d}\right|=\left(1-\delta_{k}\right)\left|L_{k}\right|^{d}\left|\mathcal{A}_{d}\right| \\
\left|L_{k+1}\right| & =\sum_{i=1}^{d} C_{d}^{i}\left(1-\delta_{k}\right)^{i} \delta_{k}^{d-i}\left|L_{k}\right|^{d}\left|\mathcal{A}_{d}\right|=\left(1-\delta_{k}^{d}\right)\left|L_{k}\right|^{d}\left|\mathcal{A}_{d}\right| .
\end{aligned}
$$

This shows that:

$$
1-\delta_{k+1}=\frac{\left|\operatorname{Int}\left(L_{k+1}\right)\right|}{\left|L_{k+1}\right|}=\frac{1-\delta_{k}}{1-\delta_{k}^{d}} .
$$

Proof of theorem 3.3. As $\delta_{k}>0$, lemma 3.6 implies $1-\delta_{k+1}>1-\delta_{k}$, so the sequence $\left(\delta_{k}\right)$ is decreasing, tending to a limit δ satisfying $1-\delta=\frac{1-\delta}{1-\delta^{d}}$, hence δ is 0 (or 1 , ruled out by $\delta_{0}<1$).

More precisely, lemma 3.6 implies that for any $\eta<\frac{1}{d-1}$, one has $\delta_{k}=O\left(k^{-\eta}\right)$, as shown below in lemma 4.12. On the other hand:

$$
\left|L_{k}\right|=|B|^{d^{k}}|A|^{(d-1) d^{k}+\left(d^{k}+\cdots+d+1\right)} \geq 2^{2^{k}}
$$

Remark 3.7. Lemma 3.5 provides a complete combinatorial description of L_{k}. An element g of G_{d} has the form $g=\left(g_{t_{0} \ldots t_{k}}\right)\left(\sigma_{t_{0} \ldots t_{k-1}}\right) \ldots\left(\sigma_{t_{0}}\right) \sigma$ in the k th iteration of the wreath product. Such an element g belongs to L_{k} if and only if it satisfies the three following conditions:
(1) $\forall t_{0} \ldots t_{k-1}$, the element $g_{t_{0} \ldots t_{k-1} 1}$ is in B and $g_{t_{0} \ldots t_{k-1} 2}, \ldots, g_{t_{0} \ldots t_{k-1} d}$ are in A,
(2) $\forall t_{0} \ldots t_{k-2}$, the set $I\left(t_{0} \ldots t_{k-2}\right)=\left\{T_{k-1} \mid \sigma_{t_{0} \ldots t_{k-2} T_{k-1}}^{-1}(1)=1\right\}$ is non-empty.
(3) $\forall 3 \leq l \leq k+1, \forall t_{0} \ldots t_{k-l}$, the set

$$
I\left(t_{0} \ldots t_{k-l}\right)=\left\{T_{k-l+1} \mid \sigma_{t_{1} \ldots t_{k-l} T_{k-l+1}}^{-1}(1) \in I\left(t_{1} \ldots t_{k-l} T_{k-l+1}\right)\right\}
$$

defined by induction on l, is non-empty (for $l=k+1$, consider $I(\emptyset)$ where \emptyset is the root vertex of T_{d}).

The element g belongs to $\operatorname{Int}\left(L_{k}\right)$ if and only if it satisfies (1), (2), (3) and moreover:
(4) $\sigma^{-1}(1) \in I(\emptyset)=\left\{T \mid \sigma_{T} \in I(T)\right\}$.

Note that condition (2) is a specific case of condition (3) where $I\left(t_{0} \ldots t_{k-1}\right)=\{1\}$ for all $t_{0} \ldots t_{k}$. As an interpretation, say a vertex $v=t_{0} \ldots t_{l}$ with $l \leq k-1$ is open if $\sigma_{v}^{-1}(1) \in I(v)$. Conditions (1), (2), (3) ensure that g belongs to L_{k} if and only if each vertex v has at least one neighbour of next level $v T$ which is open. Condition (4) ensures that g is in the interior $\operatorname{Int}\left(L_{k}\right)$ if and only if the root itself is open.

4. Generalization

4.1. The class $\mathcal{D P}$. Theorem 3.3 can be generalized to a wider setting.

Definition 4.1. A group Γ_{0} belongs to the class $\mathcal{D P}$ if and only if it satisfies the two following conditions:
(1) the group Γ_{0} contains two subgroups A_{0} and H_{0} such that:
(a) the set $A_{0} \cup H_{0}$ generates the group Γ_{0},
(b) the group A_{0} is finite, acting transitively on a finite set $\left\{1, \ldots, d_{0}\right\}$ of size $d_{0} \geq 2$,
(c) the group H_{0} is finitely generated (denote B_{0} some finite generating set of H_{0}, so $\left.\Gamma_{0}=\left\langle A_{0} \cup B_{0}\right\rangle\right)$,
(2) there is a group Γ_{1} in the class $\mathcal{D P}$ with an isomorphism:

$$
\varphi_{0}: \Gamma_{0} \longrightarrow \Gamma_{1} 乙 A_{0}=\left(\Gamma_{1} \times \cdots \times \Gamma_{1}\right) \rtimes A_{0}
$$

with d_{0} factors in the direct product, on which A_{0} is acting by permutation of coordinates, according to its transitive action on $\left\{1, \ldots, d_{0}\right\}$. Moreover, this isomorphism φ_{0} satisfies:
(a) $\forall s \in A_{0}, \varphi_{0}(s)=\left(e_{\Gamma_{1}}, \ldots, e_{\Gamma_{1}}\right) s$,
(b) $\forall h \in H_{0}, \exists h_{1} \in H_{1}, \exists a_{2}, \ldots, a_{d_{0}} \in A_{1}, \exists \rho \in A_{0}$, with $\rho(1)=1$ and:

$$
\varphi_{0}(h)=\left(h_{1}, a_{2}, \ldots, a_{d_{0}}\right) \rho
$$

Note that in (2)(b), the groups A_{1} and H_{1} are the subgroups of Γ_{1} satisfying condition (1) for Γ_{1}, which belongs to $\mathcal{D P}$.

Consider a group Γ_{0} in the class $\mathcal{D P}$, together with a finite generating set $A_{0} \cup B_{0}$. There exists a sequence of groups Γ_{i} with finite generating sets $A_{i} \cup B_{i}$, such that A_{i} is a finite group acting transitively on $\left\{1, \ldots, d_{i}\right\}$, and an isomorphism:

$$
\varphi_{i}: \Gamma_{i} \longrightarrow \Gamma_{i+1} \curlywedge A_{i},
$$

such that for any $b_{i} \in B_{i}$, there exists $b_{i+1} \in B_{i+1}, a_{i, 2}, \ldots, a_{i, d_{i}} \in A_{i+1}, \rho_{i} \in A_{i}$ with $\rho_{i}(1)=1$ and:

$$
\varphi_{i}\left(b_{i}\right)=\left(b_{i+1}, a_{i, 2}, \ldots, a_{i, d_{i}}\right) \rho_{i}
$$

Moreover, one may assume that $\left|B_{i}\right|=\left|B_{0}\right|$ for all i (possible because in (2)(b) above, h_{1} is unique, hence from a given b_{0}, there is a unique associated sequence b_{i}). This sequence of groups Γ_{i} is obtained inductively, applying definition 4.1 to Γ_{i}, which belongs to $\mathcal{D P}$, to define Γ_{i+1}. Set $H_{i}=\left\langle B_{i}\right\rangle<\Gamma_{i}$.

The groups of the class $\mathcal{D P}$ are related to the groups of non-unifrom growth constructed by Wilson (see [Wil1],[Wil2],[Bri1]). In particular, if all the groups Γ_{i} associated to a group Γ_{0} are generated by a finite number (independent of i) of involutions, and if all the groups A_{i} involved are alternate groups $\mathcal{A}_{d_{i}}$ acting on sets of size $d_{i} \geq 29$, then they have non-uniform growth by [Wil2]. This is the case of the examples in proposition 5.3 below.
Fact 4.2. If Γ_{0} belongs to $\mathcal{D P}$, there exists a sequence $\bar{d}=\left(d_{i}\right)_{i}$ of integers $d_{i} \geq 2$, and the group Γ_{0} is acting by automorphisms on the spherically homogeneous rooted tree $T_{\bar{d}}$. This action is transitive on each level.

Note that this action on the tree is not necessarily faithful (for instance, the subgroup F of the group $\Gamma=\Gamma\left(\mathcal{A}_{d_{0}}, A_{\bar{d}}, F\right)$ of section 2.4 of [Bri3] has a trivial action on the tree $T_{\bar{d}}$, even though Γ belongs to the class $\left.\mathcal{D P}\right)$.

Proof. By iteration of definition 4.1, there is an isomorphism $\Gamma_{0} \simeq \Gamma_{i+1}$ 亿 $A_{i} \prec \cdots \prec A_{0}$. As A_{i} is acting transitively on $\left\{1, \ldots, d_{i}\right\}$, the group $\left.A_{i} \imath \cdots\right\} A_{0}$ is acting transitively on $\left\{1, \ldots, d_{0}\right\} \times \cdots \times\left\{1, \ldots, d_{i}\right\}$, which is the $i+1$ st level of $T_{\bar{d}}$. Taking the limit with i, this provides the action on the tree $T_{\bar{d}}$.

Fact 4.3. The group H_{0} is amenable if and only if the groups H_{i} are amenable for all i.

Proof. By (2)(b), the restriction of φ_{0} to H_{0} provides an embedding:

$$
\left.\varphi_{0}\right|_{H_{0}}: H_{0} \hookrightarrow H_{1} \times\left(A_{1} \prec \operatorname{Fix}_{A_{0}}(1)\right) .
$$

As the second factor is a finite group, amenability of H_{1} implies that of H_{0}.
Conversely assume that H_{0} is amenable. Denote p_{1} the projection on the factor H_{1} and p_{2} the projection on the factor A_{1} 乙 Fix $_{A_{0}}(1)$. Then $\operatorname{ker}\left(p_{2}\right) \cap \varphi_{0}\left(H_{0}\right)$ has finite index in $\varphi_{0}\left(H_{0}\right) \simeq H_{0}$, hence is amenable. Now $p_{1} \circ \varphi_{0}$ surjects onto H_{1} (by choice that $\left.\left|B_{1}\right|=\left|B_{0}\right|\right)$ and $\left.p_{1}\right|_{\operatorname{ker}\left(p_{2}\right)}$ is an isomorphism, thus H_{1} is a finite extension of $\operatorname{ker}\left(p_{2}\right) \cap \varphi_{0}\left(H_{0}\right)$, hence is amenable.

The same proof shows that amenability of H_{i+1} is equivalent to that of H_{i}.
Question 4.4. If a group $\Gamma_{0}=\left\langle A_{0}, H_{0}\right\rangle$ belongs to the class $\mathcal{D P}$ with H_{0} amenable, is the group Γ_{0} amenable?

The following theorem provides a partial answer, with a condition on the sequence of integers $\bar{d}=\left(d_{i}\right)_{i}$.

Theorem 4.5. Let Γ_{0} belong to the class $\mathcal{D P}$ with H_{0} amenable and \bar{d} growing sufficiently slowly (for instance $\frac{d_{k}}{\log k} \rightarrow 0$), then Γ_{0} is amenable.

This theorem generalizes theorem 3.3. The proof is similar, though slightly more technical.
4.2. Proof of theorem 4.5. Given $\Gamma_{0}=\left\langle A_{0} \cup B_{0}\right\rangle$ in the class $\mathcal{D P}$, consider the sequence of finitely generated groups $\Gamma_{K}=\left\langle A_{K} \cup B_{K}\right\rangle$ obtained by iterating definition 4.1, where B_{K} is the canonical generating set of the group H_{K}.

To ease notations, write g instead of $\varphi_{K}(g)$. For $\Omega \subset H_{K+1}$, set:

$$
\begin{gathered}
L_{0}^{K}(\Omega)=\left\{g \in \Gamma_{K} \mid \exists h \in \Omega, \alpha_{2}, \ldots, \alpha_{d_{K}} \in A_{K+1}, \sigma \in A_{K}, g=\left(h, \alpha_{2}, \ldots, \alpha_{d_{K}}\right) \sigma\right\}, \\
\iota L_{0}^{K}(\Omega)=\left\{g \in L_{0}^{K}(\Omega) \mid \sigma^{-1}(1)=1\right\}
\end{gathered}
$$

and by induction for $1 \leq k \leq K$, set:

$$
\begin{aligned}
L_{k}^{K}(\Omega)=\{g= & \left.\left(g_{1}, \ldots, g_{d_{K-k}}\right) \sigma \in \Gamma_{K-k} \mid \forall t, g_{t} \in L_{k-1}^{K}(\Omega), \exists T, g_{T} \in \iota L_{k_{1}}^{K}(\Omega)\right\}, \\
& \iota L_{k}^{K}(\Omega)=\left\{g \in L_{k}^{K}(\Omega) \mid g_{\sigma^{-1}(1)} \in \iota L_{k-1}^{K}(\Omega)\right\} .
\end{aligned}
$$

The sets $\iota L_{k}^{K}(\Omega)$ should be considered as "combinatorial interiors" of $L_{k}^{K}(\Omega)$. They satisfy a combinatorial description as remark 3.7, but slightly differ from the actual interior of $L_{k}^{K}(\Omega)$, unless the set Ω has empty boundary (see remark 4.9 below). Fact 3.4 generalizes as:

Fact 4.6. The three following are equivalent:
(1) $g \in \operatorname{Int}\left(L_{0}^{K}(\Omega)\right)$,
(2) $g b_{K} \in L_{0}^{K}(\Omega)$ for all $b_{K} \in B_{K}$,
(3) $\sigma^{-1}(1)=1$ and $h \in \operatorname{Int}(\Omega) \subset \Omega \subset H_{K+1}$.

Moreover they also imply:

(4) $g b_{K} \in \iota L_{0}^{K}(\Omega)$ for all $b_{K} \in B_{K}$.

In particular, $\frac{\left|\operatorname{Int}\left(L_{0}^{K}(\Omega)\right)\right|}{\left|L_{0}^{K}(\Omega)\right|}=\frac{|\operatorname{Int}(\Omega)|}{d_{K}|\Omega|}$, and $\delta_{0}^{K}(\Omega)=\frac{\left|\partial L_{0}^{K}(\Omega)\right|}{\left|L_{0}^{K}(\Omega)\right|}=1-\frac{|\operatorname{Int}(\Omega)|}{d_{K}|\Omega|}$.
Proof. Let $g=\left(h, \alpha_{2}, \ldots, \alpha_{d_{K}}\right) \sigma$ belong to $L_{0}^{K}(\Omega)$. By (2)(a) of definition 4.1 for A_{K}, the element $g a_{K}$ still belongs to $L_{0}^{K}(\Omega)$ for a_{K} in A_{K}. This proves equivalence of (1) and (2).

Now take $b_{K}=\left(b_{K+1}, a_{2}, \ldots, a_{d_{K}}\right) \rho$ in B_{K}, then:

$$
g b_{K}= \begin{cases}\left(h b_{K+1}, \alpha_{2} a_{\sigma(2)}, \ldots, \alpha_{d} a_{\sigma(d)}\right) \sigma \rho & \text { if } \sigma^{-1}(1)=1, \\ \left(h a_{\sigma(1)}, \alpha_{2} a_{\sigma(2)}, \ldots, \alpha_{\sigma^{-1}(1)} b_{K+1}, \ldots, \alpha_{d} a_{\sigma(d)}\right) \sigma \rho & \text { if } \sigma^{-1}(1) \neq 1 .\end{cases}
$$

This shows that $g b_{K}$ belongs to $L_{0}^{K}(\Omega)$ for all b_{K} if and only if $\sigma^{-1}(1)=1$ and h belongs to $\operatorname{Int}(\Omega)$, i.e. equivalence of (2) and (3).

This implies (4) because then $(\sigma \rho)^{-1}(1)=1$. Computing the sizes follows from (3).

Notation 4.7. Let $g=\left(g_{1}, \ldots, g_{d_{i}}\right) \sigma=\left(g_{t_{i}}\right) \sigma$ in Γ_{i}, with σ in $A_{i}, g_{t_{i}}$ in Γ_{i+1} for $t_{i} \in\left\{1, \ldots, d_{i}\right\}$ by identification of g with $\varphi_{i}(g)$. More generally, identify $g_{t_{i} \ldots t_{j}}$ with $\varphi_{j+1}\left(g_{t_{i} \ldots t_{j}}\right)$ for $i \leq j \leq K$ and denote:

$$
g=\left(g_{t_{i} \ldots t_{K}}\right)\left(\sigma_{t_{i} \ldots t_{K-1}}\right) \ldots\left(\sigma_{t_{i}}\right) \sigma,
$$

where $\sigma_{t_{i} \ldots t_{j}}$ belongs to A_{j+1} and $g_{t_{i} \ldots t_{K}}$ to Γ_{K}. Set $\tau_{i}=\sigma^{-1}(1) \in\left\{1, \ldots, d_{i}\right\}$, and by induction $\tau_{j+1}=\left(\sigma_{\tau_{i} \ldots \tau_{j}}\right)^{-1}(1) \in\left\{1, \ldots, d_{j+1}\right\}$, which guarantees $g\left(\tau_{i} \tau_{i+1} \ldots \tau_{j}\right)=$ $11 \ldots 1$ for the action on the tree of fact 4.2.

The following generalizes lemma 3.5.
Lemma 4.8. For $0 \leq k \leq K$, the three following are equivalent:
(1) $g \in \operatorname{Int}\left(L_{k}^{K}(\Omega)\right)$,
(2) $g b_{K-k} \in L_{k}^{K}(\Omega)$ for all $b_{K-k} \in B_{K-k}$,
(3) $g \in \iota L_{k}^{K}(\Omega)$ (i.e. $\left.\sigma^{-1}(1) \in I(g)=\left\{T \mid g_{T} \in \iota L_{k-1}^{K}(\Omega)\right\}\right)$ and $g_{\tau_{K-k} \ldots \tau_{K}} \in$ $\operatorname{Int}(\Omega)$.

Moreover, they also imply:
(4) $g b_{K-k} \in \iota L_{k}^{K}(\Omega)$ for all $b_{K-k} \in B_{K-k}$.

Observe that if $g \in \iota L_{k}^{K}(\Omega)$, then $g_{\tau_{K-k} \ldots \tau_{K}} \in \Omega$, by definitions of $\iota L_{k}^{K}(\Omega)$ and $\tau_{K-k} \ldots \tau_{K}$.

Proof. Let $g=\left(g_{1}, \ldots, g_{d_{K-k}}\right) \sigma$ belong to $L_{k}^{K}(\Omega)$. For a in $A_{K-k}, g a$ still belongs to $L_{k}^{K}(\Omega)$ (no condition on σ). Thus (1) is equivalent to (2). To prove equivalence with (3) and implication of (4), proceed by induction on $0 \leq k \leq K$. The case $k=0$ was treated as fact 4.6 (where $h=g_{1}=g_{\sigma^{-1}(1)}=g_{\tau_{K}}$), now assume the lemma is known for $k-1$.

For $b_{K-k}=\left(b_{K-k+1}, a_{2}, \ldots, a_{d_{K-k}}\right) \rho$, one has:

$$
g b_{K-k}=\left(g_{1} a_{\sigma(1)}, \ldots, g_{\sigma^{-1}(1)} b_{K-k+1}, \ldots, g_{d_{K-k}} a_{\sigma\left(d_{K-k}\right)}\right) \sigma \rho .
$$

Assume (2) for g, then $g_{\sigma^{-1}(1)} b_{K-k+1} \in L_{k-1}^{K}(\Omega)$ for all $b_{K-k+1} \in B_{K-k+1}$, which means (2) for $k-1$ applied to $g_{\sigma^{-1}(1)}$. By induction hypothesis, $g_{\sigma^{-1}(1)}$ satisfies (3), which means that it belongs to $\iota L_{k-1}^{K}(\Omega)$, so $g \in \iota L_{k}^{K}(\Omega)$, and $g_{\sigma^{-1}(1) \tau_{K-k+1} \ldots \tau_{K}}=$ $g_{\tau_{K-k} \tau_{K-k+1} \ldots \tau_{K}} \in \operatorname{Int}(\Omega)$, proving (3) for g.

Moreover, (2) applied to $g_{\sigma^{-1}(1)}$ implies, by induction, (4) that $g_{\sigma^{-1}(1)} b_{K-k+1} \in$ $\iota L_{k-1}^{K}(\Omega)$ for all $b_{K-k+1} \in B_{K-k+1}$. As $(\sigma \rho)^{-1}(1)=\sigma^{-1}\left(\rho^{-1}(1)\right)=\sigma^{-1}(1)$, this shows $g b_{K-k} \in \iota L_{K-k}^{K}(\Omega)$, which is (4) for g.

Conversely, assume (3) for g, then $g_{\sigma^{-1}(1)} \in \iota L_{k-1}^{K}(\Omega)$, and $g_{\tau_{K-k} \tau_{K-k+1} \ldots \tau_{K}}=$ $g_{\sigma^{-1}(1) \tau_{K-k+1} \ldots \tau_{K}} \in \operatorname{Int}(\Omega)$, i.e. (3) for $g_{\sigma^{-1}(1)}$. As (3) implies (4) for $k-1$, one has $g_{\sigma^{-1}(1)} b_{K-k+1} \in \iota L_{k-1}^{K}(\Omega)$ for all $b_{K-k+1} \in B_{K-k+1}$, so $g b_{K-k} \in L_{k}^{K}(\Omega)$ for all $b_{K-k} \in B_{K-k}$, which means (2) for g.

Remark 4.9. The combinatorial description of remark 3.7 still applies to an element $g \in \Gamma_{K-k}$ of the form:

$$
g=\left(g_{t_{K-k} \ldots t_{K}}\right)\left(\sigma_{t_{K-k} \ldots t_{K-1}}\right) \ldots\left(\sigma_{t_{K-k}}\right) \sigma,
$$

with $t_{K-k+l} \in\left\{1, \ldots, d_{K-k+l}\right\}, \sigma_{t_{K-k} \cdots t_{K-k+l}} \in A_{K-k+l+1}$ and $g_{t_{K-k} \ldots t_{K}} \in \Gamma_{K+1}$. Such an element g belongs to $L_{k}^{K}(\Omega)$ if and only if it satisfies the three following conditions:
(1) $\forall t_{K-k} \ldots t_{K-1}$, the element $g_{t_{K-k} \ldots t_{K-1} 1}$ is in $\Omega \subset H_{K+1}$ and the elements $g_{t_{K-k} \cdots t_{K-1} 2}, \ldots, g_{t_{K-k} \cdots t_{K-1} d_{K}}$ are in A_{K+1},
(2) $\forall t_{K-k} \ldots t_{K-2}$, the set:

$$
\begin{aligned}
I\left(t_{K-k} \ldots t_{K-2}\right) & =\left\{T_{K-1} \in\left\{1, \ldots, d_{K-1}\right\} \mid \sigma_{t_{K-k} \cdots t_{K-2} T_{K-1}}^{-1}(1)=1\right\} \\
& =\left\{T_{K-1} \in\left\{1, \ldots, d_{K-1}\right\} \mid g_{\left.t_{K-k \cdots t_{K-2} T_{K-1}} \in \iota L_{0}^{K}(\Omega) \subset \Gamma_{K}\right\}}\right.
\end{aligned}
$$ is non-empty.

(3) $\forall 2 \leq l \leq k, \forall t_{K-k} \ldots t_{K-l}$, the following subset of $\left\{1, \ldots, d_{K-l+1}\right\}$:

$$
\begin{aligned}
I\left(t_{K-k} \ldots t_{K-l}\right) & =\left\{T_{K-l+1} \mid \sigma_{t_{K-k} \ldots t_{K-l} T_{K-l+1}}^{-1}(1) \in I\left(t_{K-k} \ldots t_{K-l} T_{k-l+1}\right)\right\} \\
& =\left\{T_{K-l+1} \mid g_{t_{K-k} \ldots t_{K-l} T_{K-l+1}} \in \iota L_{l-2}^{K}(\Omega) \subset \Gamma_{K-l+2}\right\}
\end{aligned}
$$

defined by induction on l, is non-empty.
The element g belongs to $\iota L_{k}^{K}(\Omega)$ if and only if it satisfies (1), (2), (3) and moreover:
(4) $\sigma^{-1}(1)$ belongs to the set:

$$
I(\emptyset)=\left\{T_{K-k} \mid \sigma_{T_{K-k}}^{-1}(1) \in I\left(T_{K-k}\right)\right\}=\left\{T_{K-k} \mid g_{T_{K-k}} \in \iota L_{k-1}^{K}(\Omega) \subset \Gamma_{K-k+1}\right\} .
$$

The element g belongs to $\operatorname{Int}\left(L_{k}^{K}(\Omega)\right)$ if and only if it satisfies (1), (2), (3), (4) and moreover:
(5) $g_{\tau_{K-k} \ldots \tau_{K}} \in \operatorname{Int}(\Omega)$.

This description and especially point (5) prove the:
Fact 4.10. With respect to the generating set $A_{K-k} \cup B_{K-k}$ of the group Γ_{K-k}, and the generating set B_{K+1} of the group H_{K+1}, one has:

$$
\left|\operatorname{Int}\left(L_{k}^{K}(\Omega)\right)\right|=\left|\iota L_{k}^{K}(\Omega)\right| \frac{|\operatorname{Int}(\Omega)|}{|\Omega|}
$$

In particular, the set $\iota L_{k}^{K}(\Omega)$ is precisely the interior $\operatorname{Int}\left(L_{k}^{K}(\Omega)\right)$ when $\operatorname{Int}(\Omega)=$ Ω. This happens when H_{K+1} (hence H_{0}) is finite.

For $0 \leq k \leq K$, set $\frac{\left|L L_{k}^{K}(\Omega)\right|}{\left|L_{k}^{K}(\Omega)\right|}=1-\varepsilon_{k}$. The number ε_{k} will be denoted ε_{k}^{K} later on to emphasize the dependance on K. Lemma 3.6 generalizes as:
Lemma 4.11. The sequence $\left(\varepsilon_{k}\right)_{0 \leq k \leq K}$ satisfies $\varepsilon_{0}=1-\frac{1}{d_{K}}$ and:

$$
1-\varepsilon_{k+1}=\frac{1-\varepsilon_{k}}{1-\varepsilon_{k}^{d_{K-k-1}}}
$$

Proof. Given a subset $I \subset\left\{1, \ldots, d_{K-k-1}\right\}$, denote:
$J_{I}=\left\{g=\left(g_{1}, \ldots, g_{d_{K-k-1}}\right) \sigma \mid \forall T \in I, g_{T} \in \iota L_{k}^{K}(\Omega)\right.$ and $\left.\forall t \notin I, g_{t} \in L_{k}^{K}(\Omega) \backslash \iota L_{k}^{K}(\Omega)\right\}$.
By definition, $L_{k+1}^{K}(\Omega)$ is the disjoint union $L_{k+1}^{K}(\Omega)=\sqcup_{|I| \geq 1} J_{I}$.

As in the proof of lemma 3.6, one has for $i=|I|$:

$$
\begin{aligned}
\left|J_{I}\right| & =\left|A_{K-k-1}\right|\left|L_{k}^{K}(\Omega)\right|^{d_{K-k-1}}\left(1-\varepsilon_{k}\right)^{i} \varepsilon_{k}^{d_{K-k-1}-i}, \\
\left|J_{I} \cap \iota L_{k+1}^{K}(\Omega)\right| & =\frac{i}{d_{K-k-1}}\left|J_{I}\right| .
\end{aligned}
$$

Again by use of the mean of binomial distribution, get:

$$
\begin{aligned}
\left|\iota L_{k+1}^{K}(\Omega)\right| & =\sum_{i=1}^{d_{K-k-1}} C_{d_{K-k-1}}^{i}\left(1-\varepsilon_{k}\right)^{i} \varepsilon_{k}^{d_{K-k-1}-i} \frac{i}{d_{K-k-1}}\left|L_{k}^{K}(\Omega)\right|^{d}\left|A_{K-k-1}\right| \\
& =\left(1-\varepsilon_{k}\right)\left|L_{k}^{K}(\Omega)\right|^{d}\left|A_{K-k-1}\right|, \\
\left|L_{k+1}^{K}(\Omega)\right| & =\sum_{i=1}^{d_{K-k-1}} C_{d_{K-k-1}}^{i}\left(1-\varepsilon_{k}\right)^{i} \varepsilon_{k}^{d_{K-k-1}-i}\left|L_{k}^{K}(\Omega)\right|_{K-k-1}^{d}\left|A_{K-k-1}\right| \\
& =\left(1-\varepsilon_{k}^{d_{K-k-1}}\right)\left|L_{k}^{K}(\Omega)\right|^{d}\left|A_{K-k-1}\right| .
\end{aligned}
$$

This proves the lemma.
Lemma 4.12. If $\frac{d_{k}}{\log k} \longrightarrow 0$, then $\varepsilon_{K}^{K} \longrightarrow 0$.
If $d_{k} \leq D$ for all k, then $\varepsilon_{K}^{K}=O\left(K^{-\eta}\right)$ for all $\eta<\frac{1}{D-1}$.
First check the elementary:
Fact 4.13. Let $f(D, \varepsilon)=\frac{1-\varepsilon^{D-1}}{1-\varepsilon^{D}}$, for $D \geq 2$ and $\varepsilon \in(0,1)$. Then for fixed D, the function $f(D, \varepsilon)$ is decreasing with ε, and for fixed ε, the function $f(D, \varepsilon)$ is increasing with D.

Proof. Compute derivatives:

$$
\begin{gathered}
\left(1-\varepsilon^{D}\right)^{2} \frac{\partial f}{\partial \varepsilon}(D, \varepsilon)=\varepsilon^{D-2}(1-\varepsilon)\left(\varepsilon^{D-1}+\cdots+\varepsilon^{2}+\varepsilon-(D-1)\right)<0 \\
\left(1-\varepsilon^{D}\right)^{2} \frac{\partial f}{\partial D}(D, \varepsilon)=\varepsilon^{D-1}(\varepsilon-1) \log \varepsilon>0
\end{gathered}
$$

Proof of lemma 4.12. For a fixed K, and $0 \leq k \leq K$, set $D_{k}=d_{K-k}$, and $D(K)=$ $\max _{0 \leq k \leq K}\left\{d_{k}\right\}=o(\log K)$. By lemma 4.11, one has:

$$
\varepsilon_{k+1}=\varepsilon_{k} \frac{1-\varepsilon_{k}^{D_{k+1}-1}}{1-\varepsilon_{k}^{D_{k+1}}}=\varepsilon_{k} f\left(D_{k+1}, \varepsilon_{k}\right)
$$

By fact 4.13 , as long as $\varepsilon_{k} \geq E$, one has:

$$
\varepsilon_{k+1} \leq \varepsilon_{k} f\left(D_{k+1}, E\right) \leq \varepsilon_{k} f(D(K), E)
$$

so $\varepsilon_{K}=\varepsilon_{K}^{K} \leq \max \left\{E, f(D(K), E)^{K}\right\}$ for any $E \in(0,1)$. Now consider a sequence $E_{K} \longrightarrow 0$ so that $\left|D(K) \log E_{K}\right|=o(\log K)$ (it exists). One has:

$$
\begin{aligned}
f\left(D(K), E_{K}\right)^{K} & =\exp K\left(\log \left(1-E_{K}^{D(K)-1}\right)-\log \left(1-E_{K}^{D(K)}\right)\right), \\
& =\exp \left(-K E_{K}^{D(K)-1}+O\left(K E_{K}^{D(K)}\right)\right) \longrightarrow 0
\end{aligned}
$$

because $K E_{K}^{D(K)-1} \longrightarrow+\infty$. This shows $\varepsilon_{K}^{K} \longrightarrow 0$.

If moreover $d_{k} \leq D$, take $E_{K}=K^{-\eta}$ with $\eta<\frac{1}{D-1}$, then:

$$
f\left(D, E_{K}\right)^{K}=\exp \left(-K^{1-\eta(D-1)}+O\left(K^{1-\eta D}\right)\right)=o\left(K^{-\eta}\right)
$$

so $\varepsilon_{K}^{K}=O\left(K^{-\eta}\right)$.
Proof of theorem 4.5. By fact 4.10, one has:

$$
\frac{\left|\operatorname{Int}\left(L_{K}^{K}(\Omega)\right)\right|}{\left|L_{K}^{K}(\Omega)\right|}=\frac{\left|\iota L_{K}^{K}(\Omega)\right|}{\left|L_{K}^{K}(\Omega)\right|} \frac{|\operatorname{Int}(\Omega)|}{|\Omega|}=\left(1-\varepsilon_{K}^{K}\right) \frac{|\operatorname{Int}(\Omega)|}{|\Omega|} .
$$

As the group H_{K+1} is amenable by fact 4.3 , the set Ω can be chosen with $\frac{|\operatorname{Int}(\Omega)|}{|\Omega|}$ arbitrarily close to 1 . By lemma 4.12, this shows that there exists a sequence of sets $\Omega_{K} \subset H_{K+1}$ so that the sets $L_{K}^{K}\left(\Omega_{K}\right) \subset \Gamma_{0}$ form a Folner sequence.

5. Examples of groups in the class $\mathcal{D P}$

5.1. Alternate directed groups. Given a sequence $\bar{d}=\left(d_{i}\right)_{i \in \mathbb{N}}$ of integers $d_{i} \geq 2$, set:

$$
A T_{i}=A T\left(d_{i}, d_{i+1}\right)=\left(\mathcal{A}_{d_{i+1}} \times \cdots \times \mathcal{A}_{d_{i+1}}\right) \rtimes \mathcal{A}_{d_{i}-1}=\mathcal{A}_{d_{i+1}} \prec \mathcal{A}_{d_{i}-1}
$$

where \mathcal{A}_{d} is the alternate group of even permutations of the set $\{1, \ldots, d\}$, there are $d_{i}-1$ factors in the product (indexed by $\left\{2, \ldots, d_{i}\right\}$), and $\mathcal{A}_{d_{i}-1}$ acts by permuting these factors. Consider the countable infinite direct product:

$$
H_{\bar{d}}^{a l t}=\prod_{i=0}^{\infty} A T_{i}=\prod_{i=0}^{\infty} \mathcal{A}_{d_{i+1}} \prec \mathcal{A}_{d_{i}-1}
$$

Its elements are denoted as sequences $h=\left(h_{i}\right)_{i=0}^{\infty}$ with $h_{i}=\left(a_{i, 2}, \ldots, a_{i, d_{i}}\right) \rho_{i} \in A T_{i}$.
The group $H_{\bar{d}}^{a l t}$ acts faithfully on the spherically homogeneous rooted tree $T_{\bar{d}}$ in the direction of the ray 1^{∞}, where under the canonical isomorphism $\operatorname{Aut}\left(T_{\bar{d}}\right) \simeq$ $\operatorname{Aut}\left(T_{\sigma \bar{d}}\right)$ l $S_{d_{0}}$, one has:

$$
\left(h_{i}\right)_{i=0}^{\infty}=\left(\left(h_{i}\right)_{i=1}^{\infty}, a_{0,2}, \ldots, a_{0, d_{0}}\right) \rho_{0},
$$

where $\rho_{0} \in \mathcal{A}_{d_{0}-1} \simeq$ Fix $_{\mathcal{A}_{d_{0}}}$ (1). Inductively under isomorphism $\operatorname{Aut}\left(T_{\sigma^{k} \bar{d}}\right) \simeq$ $\operatorname{Aut}\left(T_{\sigma^{k+1} \bar{d}}\right)$ l $S_{d_{k}}$, one has $\left(h_{i}\right)_{i=k}^{\infty}=\left(\left(h_{i}\right)_{i=k+1}^{\infty}, a_{k, 2}, \ldots, a_{k, d_{k}}\right) \rho_{k}$.

On the other hand, the group $\mathcal{A}_{d_{0}}$ acts on $T_{\bar{d}}$ by rooted automorphisms:

$$
\mathcal{A}_{d_{0}} \ni a=(e, \ldots, e) a
$$

Definition 5.1. An alternate directed group G is a subgroup of $\operatorname{Aut}\left(T_{\bar{d}}\right)$ with generating set $A \cup H$, with $A \subset \mathcal{A}_{d_{0}}$ and $H \subset H_{\bar{d}}^{\text {alt }}$. Denote:

$$
G(A, H)=\langle A \cup H\rangle<A u t\left(T_{\bar{d}}\right)
$$

When the sequence \bar{d} is constant $d_{i}=d$, if $A=\mathcal{A}_{d}$ and $H \simeq \mathcal{A}_{d} \imath \mathcal{A}_{d-1}$ is diagonaly embedded into the direct product $H_{\bar{d}}^{\text {alt }}$, then $G(A, H)=G_{d}$ is the alternate mother group of section 3. Directed groups (not necessarily alternate) satisfy the same definition without requirement that the permutations involved are even, that is with S_{d} instead of \mathcal{A}_{d} and $H_{\bar{d}}=\prod_{i=0}^{\infty} S_{d_{i+1}} \backslash S_{d_{i}-1}$ instead of $H_{\bar{d}}^{\text {alt }}$ (see [Bri1], [Bri3]).
5.2. Case of bounded valency. In this section, assume that the sequence \bar{d} is bounded $5 \leq d_{i} \leq D$. Let $B \subset H_{\bar{d}}^{\text {alt }}$ be a finite subset, and denote its elements by $\beta=\left(\beta_{i}\right)_{i=0}^{\infty} \in H_{\bar{d}}^{\text {alt }}$. Then for each i, the set $\left\{\beta_{i}, \beta \in B\right\}$ is a B-indexed subset of $A T_{i}=A T\left(d_{i}, d_{i+1}\right)$. As the valency sequence \bar{d} is bounded, there is a finite set of pairs:

$$
\{(A T(s),\{\beta(s), \beta \in B\}), s \in J\}
$$

such that for any i, there exists $s(i)$ in the finite set J with $\left(A T_{i},\left\{\beta_{i}, \beta \in B\right\}\right)=$ $(A T(s(i)),\{\beta(s(i)), \beta \in B\})$, as pairs of finite groups with B-indexed subsets.

This provides an isomorphism:

$$
H_{\bar{d}}^{\text {alt }}>H=\langle\beta, \beta \in B\rangle \simeq\left\langle(\beta(s))_{s \in J}, \beta \in B\right\rangle<\prod_{s \in J} A T(s)
$$

The group H is said saturated if $H=\prod_{s \in J} A T(s)$. (Mind a difference with the notion of saturation in [Bri1] and [Bri3], where it was only required that H surjects on each factor $A T(s)$. The present condition is slightly stronger.) Finiteness of J shows the:

Fact 5.2. If \bar{d} is bounded, any finitely generated subgroup of $H_{\bar{d}}^{\text {alt }}$ is contained in a finite saturated subgroup H.

The following proposition will permit to show amenability of all directed groups acting on a tree of bounded valency.

Proposition 5.3. Let \bar{d} be a bounded sequence of integers $d_{i} \geq 5$. If $H<H_{\bar{d}}^{\text {alt }}$ is a finite saturated subgroup, then the alternate directed group $G\left(\mathcal{A}_{d_{0}}, H\right)<\operatorname{Aut}\left(T_{\bar{d}}\right)$ belongs to the class $\mathcal{D P}$ with $A_{0}=\mathcal{A}_{d_{0}}$ and $H_{0}=H$.

Proof. Set $H_{1}=\left\{\left(h_{i}\right)_{i=1}^{\infty} \mid\left(h_{i}\right)_{i=0}^{\infty} \in H\right\}$. The only non-trivial point in order to verify definition 4.1 is surjectivity of the isomorphism:

$$
\varphi_{0}: G\left(\mathcal{A}_{d_{0}}, H\right) \longrightarrow G\left(\mathcal{A}_{d_{1}}, H_{1}\right) \imath \mathcal{A}_{d_{0}}
$$

Given $h=\left(h_{i}\right)_{i=0}^{\infty}$ in $H_{\bar{d}}$ with $h_{i}=\left(a_{i, 2}, \ldots, a_{i, d_{i}}\right) \rho_{i}$, set:

$$
h(2)=\left(\left(a_{i, 2}, e, \ldots, e\right) e\right)_{i=0}^{\infty}, \text { and } h(\emptyset)=\left((e, \ldots, e) \rho_{i}\right)_{i=0}^{\infty}
$$

In each factor $A T(s)=\mathcal{A}_{d^{\prime}(s)} \backslash \mathcal{A}_{d(s)-1}$, the subset

$$
\left\{\left(a_{2}, e, \ldots, e\right) \mid a_{2} \in \mathcal{A}_{d^{\prime}(s)}\right\} \cup\left\{(e, \ldots, e) \rho \mid \rho \in \mathcal{A}_{d(s)-1}\right\}
$$

generates the group $A T(s)$. Thus by saturation

$$
\langle h(2), h \in H\rangle \simeq \prod_{s \in J} \mathcal{A}_{d^{\prime}(s)} \times\{e\} \times \cdots \times\{e\}, \text { and }\langle h(\emptyset), h \in H\rangle \simeq \prod_{s \in J} \mathcal{A}_{d^{\prime}(s)}
$$

So saturation shows that the subsets $H(2)=\{h(2), h \in H\}$ and $H(\emptyset)=\{h(\emptyset), h \in$ $H\}$ are subgroups of H, and moreover $\langle H(2) \cup H(\emptyset)\rangle=H$.

The proofs of fact 3.2 and proposition 3.1 apply directly, replacing the generators $b_{2}=b\left(\alpha_{2}, e, \ldots, e, e_{A}\right)$ and $b_{\emptyset}=b(e, \ldots, e, \rho)$ by $h(2)$ and $h(\emptyset)$ respectively.

Let σ be a permutation of the set $\{1, \ldots, d\}$. Denote σ^{\prime} another copy of σ acting on the set $\{d+1, \ldots, 2 d\}$ by $\sigma^{\prime}(t)=\sigma(t-d)+d$, and consider the embedding $a: S_{d} \hookrightarrow \mathcal{A}_{2 d}$ given by $a(\sigma)=\sigma \sigma^{\prime}$. It can be extended to furnish:

$$
a: A u t\left(T_{\bar{d}}\right) \rightarrow A u t^{a l t}\left(T_{\overline{2 d}}\right),
$$

an embedding of the group of automorphisms of the tree $T_{\bar{d}}$ into the group of alternate automorphisms of the tree $T_{\overline{2}}$.

Indeed, let $\gamma \in \operatorname{Aut}\left(T_{\bar{d}}\right)$ be described by a family of permutations $\left\{\sigma_{v}\right\}_{v \in T_{\bar{d}}}$, where $\sigma_{v} \in S_{d_{k}}$ for every $v=t_{1} \ldots t_{k}$ in $T_{\bar{d}}$. The automorphism $a(\gamma)$ is described by a family of permutations $\left\{a(\gamma)_{v}\right\}_{v \in T_{2 \bar{d}}}$ given by $a(\gamma)_{v}=a\left(\gamma_{v}\right) \in \mathcal{A}_{2 d_{k}}$ for $v=t_{1} \ldots t_{k}$ in $T_{\bar{d}} \subset T_{\overline{2 d}}$ and $a(\gamma)_{v}=e$ for $v \in T_{\overline{2 d}} \backslash T_{\bar{d}}$.

Fact 5.4. Directed elements have directed image under a, i.e. $a\left(H_{\bar{d}}\right) \subset H_{2 d}^{\text {alt }}$. In particular, the mother group of degree 0 acting on a d-regular tree embeds in the alternate mother group $G_{2 d}$ acting on a $2 d$-regular tree.

Proof. As a shortcut denote 1^{k} for the sequence $11 \ldots 1$ with k ones. By definition, an automorphism γ is directed if and only if $\sigma_{1^{k}} \in \operatorname{Fix}_{S_{d_{k}}}(1) \simeq S_{d_{k}-1}$ and $\sigma_{v}=e$ if v is not of the form $1^{k-1} t$ for some t in $\left\{1, \ldots, d_{k}\right\}$. This is still the case for $a(\gamma)$.

The following result from [Bri1] can now be reproved.
Corollary 5.5. Directed groups acting on a tree of bounded valency are amenable.
Proof. Let Γ be a directed group, with generating set $S \cup H$ where $S \subset S_{d_{0}}$ and $H \subset H_{\bar{d}}$. By fact 5.4, the group $a(\Gamma)<A u t^{\text {alt }}\left(T_{2 d}\right)$ is alternate and directed. By fact 5.2 , it can be included in a directed, alternate and saturated subgroup of $A u t^{a l t}\left(T_{\overline{2 d}}\right)$, which is in the class $\mathcal{D P}$ by proposition 5.3, hence amenable by theorem 4.5, since $2 d$ is bounded and H_{0} finite. The group Γ is also amenable as a subgroup.

Corollary 5.6 (Main theorem in [BKN]). Automata groups with bounded activity are amenable.

Proof. By theorem 3.3 in [BKN], an automata group Γ with bounded activity is a subgroup of the alternate mother group of degree 0 acting on a d-regular tree for d large enough. By fact $5.4, \Gamma$ is a subgroup of $G_{2 d}$, hence is amenable by theorem 3.3.
5.3. Examples with unbounded valency. This section aims at constructing examples of groups in the class $\mathcal{D P}$ for which the sequence \bar{d} of fact 4.2 is unbounded.

Let H_{0} be a finitely generated, residually finite, perfect group with a sequence of normal subgroups $\left(N_{k}\right)_{k \geq 0}$ of finite index so that each quotient $A_{k}=H_{0} / N_{k}$ is perfect, acting faithfully and transitively on a finite set $\left\{1, \ldots, d_{k}\right\}$ of size $d_{k} \geq 2$. For h in H_{0}, denote $a_{k}(h)=h N_{k} \in A_{k}$.

To the group H_{0} together with subgroup sequence $\left(N_{k}\right)_{k>0}$ is associated an action on the rooted tree $T_{\bar{d}}$ of valency sequence $\bar{d}=\left(d_{k}\right)_{k \geq 0}$, denoted $b_{0}: H_{0} \rightarrow \operatorname{Aut}\left(T_{\bar{d}}\right)$, given by the portrait $\left(b_{0}(h)\right)_{1^{k-1} 2}=a_{k}(h)$ and $\left(b_{0}(\bar{h})\right)_{v}=e$ if v is not of the form
$1^{k-1} 2$ for $k \geq 1$ (notation 1^{k} is a shortcut for $11 \ldots 1$ with k ones). In the wreath product isomorphism, one has:

$$
b_{0}(h)=\left(b_{1}(h), a_{1}(h), e, \ldots, e\right),
$$

where $b_{1}(h)$ is the similar action of the group H_{0} on the tree $T_{\sigma \bar{d}}$ associated to the shifted subgroup sequence $\left(N_{k}\right)_{k \geq 1}$. The group $A_{0}=H_{0} / N_{0}$ also acts on $T_{\bar{d}}$ as a rooted automorphism acting on $\left\{1, \ldots, d_{0}\right\}$, i.e. $a_{0}=(e, \ldots, e) a_{0}$.

Fact 5.7. With the actions described above, the group $\Gamma_{0}=\left\langle A_{0} \cup H_{0}\right\rangle<\operatorname{Aut}\left(T_{\bar{d}}\right)$ belongs to the class $\mathcal{D P}$.

Proof. Let Γ_{1} be the subgroup of $A u t\left(T_{\sigma \bar{d}}\right)$ generated by $H_{1}=H_{0}$ with the $b_{1}(h)$ action and $A_{1}=H_{1} / N_{1}$ with a rooted action. Properties (1) and (2) of definition 4.1 follow from the construction above. Thus Γ_{0} belongs to the class $\mathcal{D P}$ as soon as Γ_{1} does. As Γ_{1} satisfies the same properties as Γ_{0}, they are in the class $\mathcal{D P}$.

As an example of such a finitely generated, residually finite, perfect group H_{0}, one may take the alternate mother group G_{d} of section 3 for $d \geq 6$ (then both finite generating subgroups A and B are perfect). This group satisfies $G_{d} \simeq G_{d}$ 久 \mathcal{A}_{d}. Its finite index normal subgroups are:

$$
S t_{j}=\operatorname{ker}\left(G_{d} \rightarrow \mathcal{A}_{d} \imath \cdots \imath \mathcal{A}_{d}\right)
$$

where the j factors in the iterated wreath product are obtained by iteration of the above isomorphism. The group $S t_{j}$ is called stabilizer of level j of the group G_{d}. The quotient $G_{d} / S t_{j}$ is acting transitively on level j, which is the set $\{1, \ldots, d\}^{j}$. By [Neu], these stabilizers $S t_{j}$ are the only finite index normal subgroups of G_{d}.

For an arbitrary function $j: \mathbb{N} \rightarrow \mathbb{N}$, take $N_{k}=S t_{j(k)}$ as a sequence of normal subgroups. The group Γ_{0} defined by G_{d} together with the function $j(k)$ belongs to the class $\mathcal{D P}$ by fact 5.7 . It is amenable when $d^{j(k)}$ is sublogarithmic by theorem 4.5. Note that in the construction above, one could use any group of proposition 5.3 with $d_{i} \geq 6$ instead of G_{d}.

References

[Ale] Aleshin S., Finite automata and Burnside's problem for periodic groups, Math. Notes 11 (1972), 199-203.
[AAV] Amir G., Angel O., Virag B., Amenability of linear-activity automaton groups, arXiv: 0905.2007v1 (2009).
[BKN] Bartholdi L., Kaimanovich V. A., Nekrashevych V. V., On amenability of automata groups, Duke Math. J. 154 (2010), no. 3, 575-598.
[BV] Bartholdi L., Virag B., Amenability via random walks, Duke Math. J. 130 (2005), no. 1, 39-56.
[Bri1] Brieussel J., Amenability and non-uniform growth of some directed automorphism groups of a rooted tree, Math. Z. 263 (2009), no. 2, 265-293.
[Bri2] Brieussel J., Growth behaviors in the range $e^{r^{\alpha}}$, arXiv: 1107.1632v1 (2011).
[Bri3] Brieussel J., Behaviors of entropy on finitely generated groups, arXiv: 1110.5099v1 (2011).
[Ers] Erschler A., Isoperimetric inequality for wreath product of Markov chains and selfintersections of random walks, Probab. Theory Relat. Fields 136(4), 560-586 (2006).
[Fol] Folner E., On groups with full Banach mean value, Math. Scand. 3 (1955) 243-254.
[Gri] Grigorchuk R., Degrees of growth of finitely generated groups and the theory of invariant means, Math. USSR Izv. 25:2 (1985), 259-300.
[Gro] Gromov M., Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73.
[KV] Kaimanovich V., Vershik A., Random walks on discrete groups: boundary and entropy, Ann. Probab. Volume 11, Number 3 (1983), 457-490.
[Kes] Kesten H., Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146-156.
[Neu] Neumann P.M., Some questions of Edjvet and Pride about infinite groups, Ill. J. Math. 30 (1986), 301-316.
[Pan] Pansu P., Croissance des boules et des géodésiques fermées dans les nilvariétés, Erg. Th. Dynam. Systems 3 (1983) no. 3, 415-445.
[PSC] Pittet C., Saloff-Coste L., Random walks on finite rank solvable groups, J. Eur. Math. Soc. 5 (2003), 313-342.
[Wil1] Wilson J., On exponential growth and uniformly exponential growth for groups, Invent. Math. 155 (2004), 287-303.
[Wil2] Wilson J., Further groups that do not have uniformly exponential growth, Journal of Algebra 279 (2004), 292-301.

E-mail address: jeremie.brieussel@gmail.com

