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FOLNER SETS OF ALTERNATE DIRECTED GROUPS

JEREMIE BRIEUSSEL

KYOTO UNIVERSITY
JAPAN

ABSTRACT. An explicit family of Folner sets is constructed for some directed
groups acting on a rooted tree of sublogarithmic valency by alternate permuta-
tions. In the case of bounded valency, these groups were known to be amenable by
probabilistic methods. The present construction provides a new and independent
proof of amenability, using neither random walks, nor word length.

1. INTRODUCTION

By a criterion of Folner [Fol], amenable groups are those that admit finite sub-
sets with arbitrary small boundaries. A sequence of such subsets, called a Folner
sequence, is easily described for abelian groups, and well-understood for solvable
groups ([PSC], [Ers]). Many non-solvable amenable groups are directed groups act-
ing on rooted trees. This family of groups gathers many examples with ”exotic”
properties, such as infinite torsion groups constructed by Aleshin [Ale|, groups of
intermediate growth by Grigorchuk [Gri] or groups with non-uniform exponential
growth by Wilson [Will].

Their amenability in the case of bounded valency was shown in [Bril] by use of
Kesten’s probabilistic criterion [Kes]. The strategy, introduced by Bartholdi and
Virag in [BV], is to show that a self-similar random walk on a Cayley graph diffuses
slowly, in the sense that its return probability does not decay exponentially, or that
its entropy is sublinear ([KV]). The same method permits to show that automata
groups are amenable when their activity is bounded [BKN] or linear [AAV]. Though
it ensures their existence, such a probabilistic proof does not exhibit Folner sets.

For the groups of [Ale] and [Gri], subexponential growth easily implies the exis-
tence of a subsequence of the family of balls (for a word length) which is a Folner
sequence, but it is not known if the whole sequence of balls is Folner and the subse-
quence (even though it has density 1) is not explicit. Even for groups of polynomial
growth, it is not elementary to show that balls form a Folner sequence, a result due
to Pansu [Pan], using technics from Gromov [Gro].

The object of the present article is to exhibit explicit Folner sets for some groups
in a class denoted DP, containing in particular directed groups acting on a rooted
tree by alternate permutations. A group I' in this class DP is defined (see section
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2 BRIEUSSEL

4) by two subgroups A finite and H finitely generated, together with an action on
a rooted tree with valency sequence (dj)keny. The main result is:

Theorem 1.1. Let I' belong to the class DP with H amenable and kflﬁ — 0, then
the group I' is amenable.

As a corollary, this provides a new proof, using neither random walks nor word
length, that directed groups acting on a rooted tree of bounded valency are amenable
([Bril]). It also provides many new examples of amenable directed groups acting
on a tree of unbounded sublogarithmic valency. Moreover it also permits to reprove
amenability of automata groups with bounded activity by methods different from
[BKN].

The article is structured as follows. Rooted trees and their automorphism groups
are described in section 2. Section 3 is devoted to the construction of explicit Folner
sets for the archetypal example of the alternate mother group G4 acting on a regular
rooted tree of valency d > 5. This example, treated first for simplicity of notations,
is generalized to the class DP in section 4. Finally, section 5 is devoted to the
construction of groups in the class DP, including the saturated alternate directed
groups, and some groups acting on trees with unbounded valency.

2. ROOTED TREES AND THEIR GROUPS OF AUTOMORPHISMS

Let S; denote the group of permutations of the set {1,...,d} with d elements,
and A; = Agi,..qp denote the subgroup of alternate permutations.

Given a sequence d = (dy)>0 of integers > 2, the spherically homogeneous rooted
tree Ty is the graph with vertex set {tot;...t|t; € {1,...,d;},k > —1}, including
the empty sequence (), called the root, corresponding to k& = —1, and edge set
{(to.. tg,to.. titry1)}. The vertex set restricted to a fixed k is called the k + 1st
level of the tree. It is the direct product {1,...,dp} x --- x {1,...,dr}. When the
sequence d is constant equal to d, the tree is called d-regular, denoted T},.

The group of automorphisms Aut(T};) of the rooted tree T} is the group of graph
automorphims that fix the root (). It satisfies a canonical isomorphism:

(1) Aut(Ty) ~ Aut(T,7) 1 Sqy,

where od = (di)r>1 is the shifted sequence obtained by deleting the first entry, and
G1Sy= (G x---x G) xSy is the semi-direct product where Sy acts by permuting
factors, called wreath product. Write g = (g1, ..., 94,)0 = (g1,)o the identification
by isomorphism (1). The product rule is g¢’ = (glg(’y(l), e ,gdog;(do))aa’.

By iterating the wreath product ismorphism (1), a family of isomorphisms is
obtained:

Aut(Tz) ~ Aut(T,xg) Sy, U+ US4,

Identifications are denoted g = (Gs...t;)(Ttg..ty_,) - - - (01y)0, Where (0y,..4;) is a se-
quence of permutations in Sy, indexed by the j + 1st level of the tree and (gq,..¢, ) is
a sequence of automorphisms of 7,7 indexed by level k + 1. The automorphism g
is determined by the whole sequence of permutations (0,)ver;, called its portrait.
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The automorphism ¢ is said to be alternate if all the permutations o, of its
portrait are alternate permutations. Denote Aut®(T};) the group of alternate auto-
morphisms of T;. It also satisfies isomorphisms:

Aut™(Ty) ~ Aut™(Toug) VAg,_ -+ L Ag,.

The neutral element of a group G is denoted eg or e.

3. FOLNER SETS OF THE ALTERNATE MOTHER GROUP

3.1. The alternate mother group. Define alternate automorphisms of the d-
regular rooted tree Ty by use of the wreath product isomorphism Aut®(Ty) ~
Autalt(Td) l .Ad.

(1) Given o in Ay, denote A = {a(o)|o € Ay} ~ Ay with:
a(o) = (e,...,e)o.

Elements of A are called rooted.
(2) Given ag,...,aqin A= Ag and p in Fiza,(1) = Ap,.a = Ad_1, set:
blag,...,aq,p) = (b(ag,...,aq,p),as,...,aq)p-

Denote B = {b(ay, ..., aq4,p)|az,...,aq € Ag,p € Fixa,(1)}. Elements of B
are called directed. The set B forms a finite subgroup of Aut(T}). Indeed,
the following is an isomorphism:

(2) B — (Ad X X Ad) A A{Z,...,d}
blag,...,aq,p) +— (az,...,aq)p. :

Define the group generated by the sets A, B:
Ga = (A, B) < Aut(Ty).

By construction, the group Gy, is an automata group. It is essentially the mother
group of degree 0 (see [BKN], [AAV]), but the permutations involved are alternate.

Since Ay is simple hence perfect for d > 5, the group G, satisfies the:
Proposition 3.1. Ifd > 5, the group G4 is isomorphic to its wreath product with Ag:
Gg~=Gal A = (GdX XGd) X Ag.

The proposition follows from the:

Fact 3.2. Let d > 5, then for any generator a = a(c) € A and b = b(as, ...,aq,p) €
B, the elements (a,e,...,e) and (b,e, ... e) belong to Gy.

1

Recall the conjugacy notation ¢ = aga™", and observe that for g = (¢g1,...,9a4)0

and a in A, one has ¢* = (ga(1), - - - » Ga(a)) 0%
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Proof of fact 3.2. Take 7 in Ay such that 7(1) = 1 and 77(2) = 3 and observe the
commutator relations:

b = blasg,eq,...,eq,ea) = (b,ag,eq,eq,...,eq)ea,
VT = blay,eq,...,eq.eq)” =, 1,a5,eq,...,eq)eaq,
[b, b/T] = ([b, b/], €G,€G,€G, - - -, 6@).
As [b(aa, eq, ..., eq ea),b(0h, eq, ... eq ea)] = b([ag, ab], eq, ..., eq,ea) and as the
group A = Ay is perfect (because it is simple), any element ay in A ~ A, is
a product of commutators. This shows that G4 contains (bs,eq, ..., eq) for any
by = b(ag, eq, . .., eq,ea) with ay in A,. Moreover for any by = b(eg, - . ., eq, p) with
pin Fiza(1) ~ Ay 1, the group Gy contains bya(p™t) = (by, eg, - - -, eq).

Now the elements by = b(as, eq, ..., eq,ea) and by = b(eg, ..., eq, p) generate B
by isomorphism (2), because p in Ags, . 4y and (ag,eq,...,ea) for ay in Ay generate

the finite group (Ag x - - x Ag) X Aga,.. 4y Thus G4 contains (b, eq, . . ., eq) for any
bin B.

Finally given as in A, for by = b(ag, eq,...,eq,ea) = (be,as,€q,...,eq), the
element (b;',eq,...,eq) belongs to Gy by the above. So do (by',eq, ..., eq)by =
(eg,as,eq,...,eq) and (eq,as, eq,...,eq)" = (az, eq,...,eq) for 7in A = A, such
that 771(2) = 1. O

Proof of proposition 3.1. By definition, G; admits an embedding into the wreath
product G4 < G4 Ay. The key point is that this embedding is surjective. Clearly
A ~ A, is the set of rooted automorphisms. Moreover, fact 3.2 shows that G4 X
{1} x --- x {1} is in G4. As Ay acts transitively on {1,...,d}, conjugation shows
that {1} x ---x Gy x ---x {1} also belongs to G for any position of the non-trivial
factor. Then G4 x --- X G4 belongs to G4 by product. This proves the wreath
product isomorphism. O

3.2. Definition of Folner sets. For a group I' with finite generating set .S, the
boundary of a subset L C I' is defined as:

OL={ye L|3se S,ys ¢ L}.
The interior of L is the set Int(L) = L\ OL.

A sequence L;, of subsets of I' is a Folner sequence if % — 0. By [Fol], a finitely

generated group I' is amenable if and only if it admits a Folner sequence for some
(equivalently for any) finite generating set S.

Let us define a sequence of subsets of G4 as follows:
Ly={g€ G430 € B,ag,...,ag,0 € A,g=(B,09,...,0q)0}.
By induction on k, define:
Ly ={9=(91,---,9a)0|Vt,g: € Ly and 3T, gr € Int(Ly)}.

By proposition 3.1, the sets L; are included in G4 for d > 5, and not just in the
automorphism group Aut(Ty).
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Theorem 3.3. Ford > 5, the sets Ly form a Folner sequence for Gy4. In particular,
the group G4 is amenable.

The group G4 was known to be amenable by [Bril] (use of Kesten criterion on
return probability) or [BKN] (triviality of the Poisson boundary). However, these
proofs, based on contraction in the wreath product of word length for some random
walks, did not provide explicit Folner sets. The following proof uses neither random
walks, nor word length.

3.3. Proof of theorem 3.3. Observe that for any a in A and g = (8, ag, ..., aq)0
in Lo, the element ga = (B, q,...,aq4)oa still belongs to Ly. Moreover, for any
b="b(as,...,aq,p) = (b,as,...,aq)p in B, one has:

(6@0(1), Q2G4(2)y - - - 7a071(1)b7 SR 7adaa(d))0p if 0_1( ) ;é L.

As the sets A and B are finite groups, this shows equivalence of (1), (2) and (3) in
the:

gb = { (Bb, 2g(2), - - - , 4l (a)) TP if o71(1) = 1,
B 1

Fact 3.4. The following are equivalent:

(1) g belongs to Int(Ly),

(2) gb€ Lo forallb e B,
(3) o71(1) =1,

(4) gb € Int(Ly) for all b€ B.

[Int(Lo)| _ 1
[Lo|  — d’

In particular,

Proof. Point (4) is equivalent to (3) due to the fixed pomt assumption p(1) = 1in the
definition of B, which guarantees that (op)™1(1) = (p~lo™1)(1) = o (p~ (1)) =
when o71(1) = 1.

The evaluation of &y is done by counting |Lo| = |B||A|¢ as g is described by
B,aq,...,aq, 0, and condition c~!(1) = 1 occurs with probability %l. O

Lemma 3.5. The following are equivalent:

(1) g belongs to Int(Ly),
ngkaoralleB

(2)
(3) o ( )€ I(g) ={T|gr € Int(Lx_1)},
(4) gb € Int(Ly) for all b € B.

Proof of lemma 3.5. The case k = 0 is treated by fact 3.4 with convention that
I(g) = {1} if g € Ly. Assume by induction that the result is true for &k — 1, and
prove it for k.

Again ga = (g1, . . ., g¢)oa belongs to Ly for any value of a in A, g in Ly. Moreover:
gb = (glag(l), c. ,ga—l(l)b, N ,gdag(d))(fp.

Suppose (3) that g,-11) € Int(Ly—1), then as (1) implies (4) for £—1, the element
go-1(1)b belongs to Int(Ly_,) for any b in B, so that gb belongs to L for any b in
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B, proving (2). Then (1) follows because ga also belongs to Ly for a in A, hence g
is an interior point of L.

Suppose (3) does not hold, so g,-1(1y € 0Ly—1. By equivalence of (1) and (2)
for k — 1, there exists b in B such that g,-11)b ¢ Ly_1, so that gb is not in Ly,
disclaiming (1) and (2) for g. This proves equivalence of (1), (2) and (3) for k.

Now gb belongs to Int(Ly) if and only if (op)~'(1) € I(g) by equivalence of (1)
and (3). But (op)~ (1) = o7 (p~!(1)) = 67(1) because p(1) = 1. So (3) implies
(4). Obviously, (4) implies (2), closing step k of induction. O

There remains to evaluate the sizes of the interior and boundary of Lj. Set:

)
|Li| | Ly|

O

Lemma 3.6. The sequence (0x) satisfies:
1 — oy

1= Gpuq = — 2
k+1 1_5;€1

Proof of lemma 3.6. Given a subset I C {1,...,d}, denote:
Jr={9=(q1,...,92)0\NT € I,gr € Int(Lg) and Vt ¢ I, g, € OLy}.
By definition, Ly is the disjoint union Ljq; = Ujp>1J7.
For i = ||, the size of J; and its intersection with Int(Lj4,) are evaluated as:
[Jil = [AallInt(Li)[[|OLk|"" = [ Aal | Li|*(1 = &8)"5, ",

I . . 7
0 It (L)| = A Dt (L) [JOL = 1

where the factor £ comes from (3) of lemma 3.5. Denote C; the number of subsets

of size 7 in {1,...,d}, and use the mean of binomial distribution to get:

d .
. ) 1
[Int(Lisa)l = ) Co(l— 5k)l5g_za\Lk|d|«4d\ = (1= ) | Ly |" Adl,
i=1

d
Lipal = D Ci(1 = 6)' 017 | Lel*| Al = (1 — 67)| L[ Ad]-
i=1

This shows that:

|Lp|  1—6F

1= 0pp1 =
O

Proof of theorem 3.3. As ¢, > 0, lemma 3.6 implies 1 —09;1 > 1—0Jg, so the sequence
(0x) is decreasing, tending to a limit 0 satisfying 1 — § = %, hence ¢ is 0 (or 1,
ruled out by §p < 1). O

More precisely, lemma 3.6 implies that for any n < -1, one has &, = O(k™"), as
shown below in lemma 4.12. On the other hand:

k 1\ gk k... k
|Lk| — |B|d |A|(d 1dF+(dF+--+d+1) Z 22 ]
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Remark 3.7. Lemma 3.5 provides a complete combinatorial description of Ly. An
element g of Gy has the form g = (g4y..4,)(0tg..t, ) - - - (0, )0 in the kth iteration of
the wreath product. Such an element g belongs to Lj if and only if it satisfies the
three following conditions:

(1) Vto...tg_1, the element gy 4,1 isin B and gy 1, 12, - - Gty..t,_,a av€ in A,
(2) Vtg...tg_o, the set I(ty...tx_2) = {Tk—1|0t_0.1..tk_2Tk_1(1) = 1} is non-empty.
(3) V3 <I<k+1,Vty...txy, the set

I(to. . tet) = {Thrnalog o p (D) € I(t .t Thiia)},

defined by induction on [, is non-empty (for [ = k + 1, consider () where
() is the root vertex of T}).

The element g belongs to Int(Ly) if and only if it satisfies (1), (2), (3)
and moreover:

4) o~1(1) € I(0) = {T|or € I(T)}.

Note that condition (2) is a specific case of condition (3) where I(y...tx—1) = {1}
for all ¢ty ...t;. As an interpretation, say a vertex v =ty...¢; with [ < k — 1 is open
if 0,71(1) € I(v). Conditions (1), (2), (3) ensure that g belongs to Ly, if and only if
each vertex v has at least one neighbour of next level vI" which is open. Condition
(4) ensures that g is in the interior Int(Ly) if and only if the root itself is open.

4. GENERALIZATION

4.1. The class DP. Theorem 3.3 can be generalized to a wider setting.

Definition 4.1. A group I'y belongs to the class DP if and only if it satisfies the
two following conditions:

(1) the group I'y contains two subgroups Ay and H, such that:
(a) the set Ay U Hy generates the group Iy,
(b) the group Ay is finite, acting transitively on a finite set {1,...,do} of
size dy > 2,
(c) the group Hj is finitely generated (denote By some finite generating set
of Ho, SO FO = <A0 U B())),
(2) there is a group I'y in the class DP with an isomorphism:

@0:F0—>F12A0:(T1><~~><I’1)>4A0,

with dy factors in the direct product, on which Aq is acting by permutation
of coordinates, according to its transitive action on {1,...,do}. Moreover,
this isomorphism ¢, satisfies:

(a) Vs € Ag,o(s) = (ery,...,er,)s,

(b) Vh € Hy,3hy € Hy,3ag, ..., aq, € Ay, 3p € Ag, with p(1) =1 and:

SOO(h) = (h17a27 e 7ad0>p-

Note that in (2)(b), the groups A; and H; are the subgroups of I'; satisfying condi-
tion (1) for I'y, which belongs to DP.
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Consider a group I'y in the class DP, together with a finite generating set AygU By.
There exists a sequence of groups I'; with finite generating sets A; U B;, such that
A; is a finite group acting transitively on {1,...,d;}, and an isomorphism:

i Iy — T VA,

such that for any b; € Bi, there exists bi+1 € BZ‘+1, A2y -y Qid; € Ai+1, pi € Az with
pi(1) =1 and:

©i(bi) = (bit1,ai2; -, Qia,)pi-
Moreover, one may assume that |B;| = |By| for all i (possible because in (2)(b)
above, h; is unique, hence from a given by, there is a unique associated sequence
b;). This sequence of groups I'; is obtained inductively, applying definition 4.1 to I';,
which belongs to DP, to define I';;. Set H; = (B;) < T.

The groups of the class DP are related to the groups of non-unifrom growth
constructed by Wilson (see [Will],[Wil2],[Bril]). In particular, if all the groups I';
associated to a group I'g are generated by a finite number (independent of i) of
involutions, and if all the groups A; involved are alternate groups Ay, acting on sets
of size d; > 29, then they have non-uniform growth by [Wil2]. This is the case of
the examples in proposition 5.3 below.

Fact 4.2. If Ty belongs to DP, there exists a sequence d = (d;); of integers d; > 2,
and the group I'y is acting by automorphisms on the spherically homogeneous rooted
tree Tz. This action is transitive on each level.

Note that this action on the tree is not necessarily faithful (for instance, the
subgroup F' of the group I' = I'(Ay,, Az, F') of section 2.4 of [Bri3] has a trivial
action on the tree T}, even though I' belongs to the class DP).

Proof. By iteration of definition 4.1, there is an isomorphism I'g >~ I";, 1 2 A; -+ - Ag.
As A; is acting transitively on {1,...,d;}, the group A;1- -1 Ay is acting transitively
on {1,...,do} x ---x{1,...,d;}, which is the i + 1st level of T;. Taking the limit
with ¢, this provides the action on the tree Tj. OJ

Fact 4.3. The group Hy is amenable if and only if the groups H; are amenable for
all 7.

Proof. By (2)(b), the restriction of ¢y to Hy provides an embedding:
300|H0 : HO — H; x (A1 ! FZIAO(l))
As the second factor is a finite group, amenability of H; implies that of H.

Conversely assume that Hj is amenable. Denote p; the projection on the factor
H; and p, the projection on the factor A; ! Fiza,(1). Then ker(ps) N ¢o(Hy) has
finite index in yo(Hy) ~ Hy, hence is amenable. Now p; o ¢q surjects onto H; (by
choice that | B;| = |By|) and pi|ker(p,) is an isomorphism, thus H; is a finite extension
of ker(p2) N po(Hp), hence is amenable.

The same proof shows that amenability of H;,, is equivalent to that of H;. [

Question 4.4. If a group 'y = (Ao, Hy) belongs to the class DP with Hy amenable,
is the group I'y amenable?
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The following theorem provides a partial answer, with a condition on the sequence
of integers d = (d;);.

Theorem 4.5. Let I'y belong to the class DP with Hy amenable and d growing

sufficiently slowly (for instance % — 0), then Iy is amenable.

This theorem generalizes theorem 3.3. The proof is similar, though slightly more
technical.

4.2. Proof of theorem 4.5. Given I'y = (4g U By) in the class DP, consider
the sequence of finitely generated groups 'y = (Ax U Bg) obtained by iterating
definition 4.1, where By is the canonical generating set of the group Hg.

To ease notations, write g instead of px(g). For Q C Hg 1, set:
LEQ)={geTk|3h e Qay,..., a4, € Agy1,0 € A, g = (h,qa,... 04, )0},
Ly () = {g € Lg (D)o™' (1) = 1},

and by induction for 1 < k < K, set:
L) ={9= (91, 9a )0 € Drc_|Vt, g € Ly 1(),3T, gr € LLj (D)},
(L () = {g € L (Dgo-101) € eLi1 (D)}
The sets tLE(Q) should be considered as “combinatorial interiors” of LK ().
They satisfy a combinatorial description as remark 3.7, but slightly differ from the

actual interior of LX(€), unless the set © has empty boundary (see remark 4.9
below). Fact 3.4 generalizes as:

Fact 4.6. The three following are equivalent:

(1) g € Int(Lg (2)),
(2) gbr € LE(Q) for all bx € By,
(3) o7 (1) =1 and h € Int(Q) C Q C Hg41.

Moreover they also imply:
(4) gbr € LLE(Q) for all by € By.

In particular, THEEOIL _ 1@ g 55 () — OLE@L _ j _ |Int(e)

ILg @ dklQl 7 TOILE@I di |9 -
Proof. Let g = (h, sy, ...,aq, )0 belong to LE(Q2). By (2)(a) of definition 4.1 for

A, the element gay still belongs to LE () for ax in Agx. This proves equivalence
of (1) and (2).

Now take by = (bii1,a2,...,a4,)p in By, then:
gbi — (hbg 41, Q205(2), - - -, Calo(a)) TP if o71(1) =1,
(haoy, 200(2), - - -, C-11)bK 415 - - -, Qaloa))op  if o~1(1) # 1.

This shows that gbr belongs to L& (Q) for all by if and only if 67*(1) = 1 and h
belongs to Int(2), i.e. equivalence of (2) and (3).

This implies (4) because then (op)~'(1) = 1. Computing the sizes follows
from (3). O
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Notation 4.7. Let g = (¢1,...,94,)0 = (g,)0 in Ty, with o in A;, g, in T';44 for
t; € {1,...,d;} by identification of g with ¢;(g). More generally, identify g;, ., with
©i+1(gt;..t;) for i < j < K and denote:

J
g = (gti---tK)(O-ti---tK—l) cee (Uti)ga
where oy, ¢, belongs to Aj; and gy, to I'x. Set 7; = oY1) € {1,...,d;}, and by
induction ;4 = (aTi.,.Tj)_l(l) e {1,...,d;j11}, which guarantees g(7;7iy1...7;) =
11...1 for the action on the tree of fact 4.2.

The following generalizes lemma 3.5.

Lemma 4.8. For 0 < k < K, the three following are equivalent:

(1) g & Mt(LEQ),

(2) gbr_1 € LE(Q) for all b1, € By,

(3) g G(é)Lf Q) (ie. o7'(1) € I(9) = {Tlgr € tLi(Q)}) and gry_, 7 €
nt(§2).

Moreover, they also imply:
(4) gbr_1, € LLE(Q) for all by, € Bg .

Observe that if g € (LX(Q), then ¢, , .. € Q, by definitions of (LX(Q) and
TK—k---TK.

Proof. Let g = (g1,- .-, gax_, )0 belong to LE(Q). For a in Ag_j, ga still belongs to
LE(Q) (no condition on ¢). Thus (1) is equivalent to (2). To prove equivalence with
(3) and implication of (4), proceed by induction on 0 < k < K. The case k = 0 was
treated as fact 4.6 (where h = g1 = go-1(1) = gr, ), DOW assume the lemma is known
for £ — 1.

For bg_ = (brx—k+1, a2, ..., G4,_,)p, One has:
gbek = (glao(l)a cee aga—l(l)bek+17 cee 7gdK—ka0'(dK—k))O-p'
Assume (2) for g, then go—1(1)bx_p41 € LE (Q) for all bx 1 € Bx_gy1, which
means (2) for k — 1 applied to g,-1(1). By induction hypothesis, g,-1(1) satisfies (3),

which means that it belongs to ¢Lj ,(2), so g € (Li (), and g,—1(
€ Int(Q2), proving (3) for g.

DT —kt1-TK
9K kTR —kt1--TK

Moreover, (2) applied to g,-1¢1) implies, by induction, (4) that g,-11)bx—x+1 €
LLE () for all by _g41 € Br_jr1- As (op) 71 (1) = 07 (p71(1)) = 071(1), this shows
gbr_r € LLE _(Q), which is (4) for g.

Conversely, assume (3) for g, then g,-1;) € ¢Lf (), and Gric w7 psr T =
Jo 1 (Vri_psrrc € INE(Q), ie. (3) for go1q). As (3) implies (4) for £ — 1, one
has go-1(1)br—kt1 € LLE () for all by j11 € Br_gy1, 850 gbgx_x € LE(Q) for all
bk € Bi_k, which means (2) for g. O

Remark 4.9. The combinatorial description of remark 3.7 still applies to an element
g € 'k of the form:

g = (gtK—kth)(O-tK—kthfl) cee (O-thk)O-7
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with t_py € {1,. .., drx—r+1}, Ot potr—p © Ak _pyiv1 and g 4 € gyq. Such
an element g belongs to L (Q2) if and only if it satisfies the three following conditions:

(1) VEg_g...tx—1, the element g, , ¢ .1 is in @ C Hgyy and the elements

Otg potre 125+ s Gt gt _1dy A€ in AK+1>
(2) \V/tK_k C tK_27 the set:

I(tgg. . tx o) = {Tk_1€{1,... 7dK_1}|O-t_K1—kth—2TK—1(1> =1}
= {Tx 1 €{l,....dg 1 MGixrotnotrc, € LLE(Q) C Tk}
is non-empty.
(3) V2 <1< k,Vtg k... .tx_y, the following subset of {1,... dx_111}:
It g t) = {Txnlog e e (D) € Itk gt Thi41)},
= {Tx—151|Gts_poticiTic 111 € LLE () C Tgpya),

defined by induction on [, is non-empty.

The element g belongs to ¢L¥ () if and only if it satisfies (1), (2), (3) and
IMOTreover:
(4) o71(1) belongs to the set:

I(0) = {Txklog, (1) € [(Tk 1)} = {Tkklgry_, € tLi 1(Q) CTx py1}

The element g belongs to Int(LE(€)) if and only if it satisfies (1), (2), (3),
(4) and moreover:
(5) Gric_pmic € INt(S).

This description and especially point (5) prove the:

Fact 4.10. With respect to the generating set Ax_. U Bi_y of the group I'k_y, and
the generating set By 1 of the group Hg 1, one has:
| [ Int(€2)]

[Int(Ly ()] = 1L (Q) Q)

In particular, the set t L& () is precisely the interior Int(LE (Q2)) when Int(Q2) =
Q). This happens when Hg,; (hence Hy) is finite.

e L ()]
For 0 < k < K, set K@)

to emphasize the dependance on K. Lemma 3.6 generalizes as:

=1 — . The number ¢, will be denoted ng later on

Lemma 4.11. The sequence (ex)o<k<i Satisfies g = 1 — i and:

1_519

dr k-1

I —epp1 =

Proof. Given a subset I C {1,...,dg_x_1}, denote:
Jr={9=0(91,-,9ap_,_)oIVT € I,gr € Ly (Q) and Vt ¢ I, g; € Ly (Q\¢Ly (Q)}.
By definition, Lf,, () is the disjoint union Lf, () = Ujp>1Jr.
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As in the proof of lemma 3.6, one has for i = |I|:

il = e IZE (@t (1= e)'ef ™,
L @) = 1l
K—k—1
Again by use of the mean of binomial distribution, get:
dK—k—1 i
i d 7
LKL (Q) = Z Ci (1 =)t o 1ILi‘(mldlAK_k_ll
= (1—€k)|Lf( N AR k1],
dr k-1
i z d 1— ’L
L (@) = Z Gl oy (L= ) L () %1 [ AR -1 |
= ( —6dK OILE I Ag -k .
This proves the lemma. 0

Lemma 4.12. [f% — 0, then e& — 0.

If di < D for all k, then efe = O(K™") for all n < 5

First check the elementary:

Fact 4.13. Let f(D,e) = 11_f§;1, for D > 2 and € € (0,1). Then for fized D,
the function f(D,e) is decreasing with €, and for fived €, the function f(D,¢€) is
increasing with D.

Proof. Compute derivatives:

(1—5)Qaf(Da) P2 _ )P g4 2 e — (D—1)) <0,
(1—¢eP)? glj;(D g) =eP (e —1)loge > 0.

O

Proof of lemma 4.12. For a fixed K, and 0 < k < K, set Dy = dx_y, and D(K) =
maxo<k<r {dr} = o(log K). By lemma 4.11, one has:

T o o Drnen).

€k
By fact 4.13, as long as ¢, > E, one has:
ert1 < enf(Dryr, B) < enf(D(K), ),

so ex = el <max{FE, f(D(K), E)X} for any £ € (0,1). Now consider a sequence
Ex — 0 so that |D(K)log Ex| = o(log K) (it exists). One has:

F(D(K), Ex)% = expK(log(1 — ERY™Y Z10g(1 — ER5)Y),

because K ER)™ — 400, This shows £ —s 0.
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If moreover dj, < D, take Ex = K" with n < 5, then:

F(D. B)™ = exp(—= K707V + O(K'™17)) = o( K™),
so ek = O(K™). O
Proof of theorem 4.5. By fact 4.10, one has:

[Int(LE ()] _ [tLi(Q)] Int(Q)] y _€K)|[nt(9>|
LK ()] g 19 el

As the group Hg 1 is amenable by fact 4.3, the set 2 can be chosen with %

arbitrarily close to 1. By lemma 4.12, this shows that there exists a sequence of sets
Qx C Hy 1 so that the sets LE(Qg) C Ty form a Folner sequence. O

5. EXAMPLES OF GROUPS IN THE CLASS DP

5.1. Alternate directed groups. Given a sequence d = (d;);cy of integers d; > 2,
set:

AT, = AT(di,dH_l) = (.Adi“ X oo X -Adiﬂ) X Adi—l = »Adi“ 2~Adi—1>

where Ay is the alternate group of even permutations of the set {1, ..., d}, there are
d; — 1 factors in the product (indexed by {2,...,d;}), and A4 _; acts by permuting
these factors. Consider the countable infinite direct product:

Hi" = HATi = HAdi+1 VA -1
=0

i=0
Its elements are denoted as sequences h = (h;)3%, with h; = (a;2, ..., a;q,)p;i € AT.
The group Hg” acts faithfully on the spherically homogeneous rooted tree T

in the direction of the ray 1°°, where under the canonical isomorphism Aut(7j;) ~
Aut(T,3) US4y, one has:

(hi)Zo = ((hi)iZ1, a0,2; - - -, @o,d) Po;
where py € Agy—1 =~ Fizg, (1). Inductively under isomorphism Aut(T,rg) ~
Aut(Tr413) U Sqy,, one has (h)i2, = ((hi)Zgi1s k2, - - - Qkdy ) Pr-
On the other hand, the group Ay, acts on T by rooted automorphisms:
Agy D a= (e, ..., e)a.

Definition 5.1. An alternate directed group G is a subgroup of Aut(T};) with gen-
erating set AU H, with A C Aq, and H C H4". Denote:

G(A, H) = (AU H) < Aut(Tj).

When the sequence d is constant d; = d, if A = Ay and H ~ A A, is diagonaly
embedded into the direct product H4*, then G(A, H) = Gy is the alternate mother
group of section 3. Directed groups (not necessarily alternate) satisfy the same
definition without requirement that the permutations involved are even, that is

with Sy instead of Ag and Hy =[], Sa,,, 1 Sa,—1 instead of H4'" (see [Bril], [Bri3]).
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5.2. Case of bounded valency. In this section, assume that the sequence d is
bounded 5 < d; < D. Let B C Hglt be a finite subset, and denote its elements by

B = (8)2, € HY". Then for each i, the set {f;, 5 € B} is a B-indexed subset of
AT; = AT(d;,d;i;1). As the valency sequence d is bounded, there is a finite set of
pairs:

{(AT(s),{B(s),8 € B}),s € J},

such that for any ¢, there exists s(i) in the finite set J with (AT}, {5, € B}) =
(AT (s(i)), {5 (s(1)), ﬁ € B}), as pairs of finite groups with B-indexed subsets.

This provides an isomorphism:

H$' > H = (8,8 € B) ~ ((B(5))ses, 8 € B) < | [ AT (5)

sed

The group H is said saturated if H = [[,.; AT(s). (Mind a difference with the
notion of saturation in [Bril] and [Bri3], where it was only required that H surjects
on each factor AT'(s). The present condition is slightly stronger.) Finiteness of .J
shows the:

Fact 5.2. If d is bounded, any finitely generated subgroup of Hg” s contained in a
finite saturated subgroup H .

The following proposition will permit to show amenability of all directed groups
acting on a tree of bounded valency.

Proposition 5.3. Let d be a bounded sequence of integers d; > 5. If H < Hglt 8
a finite saturated subgroup, then the alternate directed group G(Aqg,, H) < Aut(Ty)
belongs to the class DP with Ay = A4, and Hy = H.

Proof. Set Hy = {(h;)2,](h:)2, € H}. The only non-trivial point in order to verify
definition 4.1 is surjectivity of the isomorphism:

G(AdO,H) — G(Adl, Hl) I Ado‘

Given h = (h;)2, in Hg with h; = (a;2, ..., aiq,)p:, set:
h(2) = ((aiz,€, ... €)e)y, and h( )= (e~ e)pi)Zo-
In each factor AT(s) = Ag(s) ! Ades)—1, the subset
{(ag,e,...,€e)las € Ap} U{l(e, ... e)plp € Ags)-1}
generates the group AT'(s). Thus by saturation

(h(2),h € H) ~ [ [ Aw) x {e} x -+ x {e}, and (h(0),h € H) ~ ][ Auw (.

seJ seJ

So saturation shows that the subsets H(2) = {h(2),h € H} and H(0) = {h(D),h €
H?} are subgroups of H, and moreover (H(2) U H(()) = H.

The proofs of fact 3.2 and proposition 3.1 apply directly, replacing the generators
by = b(a,e,...,e,e4) and by = b(e, ..., e, p) by h(2) and h(()) respectively. O
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Let o be a permutation of the set {1,...,d}. Denote ¢’ another copy of o acting
on the set {d + 1,...,2d} by ¢'(t) = o(t — d) + d, and consider the embedding
a:Sq— Ay given by a(c) = oo’. It can be extended to furnish:

a: Aut(Ty) — Aut™(Ty,),

an embedding of the group of automorphisms of the tree 77 into the group of alter-
nate automorphisms of the tree T5,.

Indeed, let v € Aut(Ty) be described by a family of permutations {o,}very,
where 0, € Sy, for every v = t;...t; in T3 The automorphism a(y) is described by
a family of permutations {a(¥). }ver;, given by a(v), = a(y,) € Az, forv=1,...1%;
in T; C Ty and a(7), = e for v € T, \ Ty

Fact 5.4. Directed elements have directed image under a, i.e. a(Hg) C Hg—cllt. In
particular, the mother group of degree 0 acting on a d-regular tree embeds in the
alternate mother group Gaog acting on a 2d-reqular tree.

Proof. As a shortcut denote 1% for the sequence 11...1 with k ones. By definition,
an automorphism 7 is directed if and only if oyv € Fizs, (1) >~ S4,—1 and 0, = e if
v is not of the form 1*7'¢ for some ¢ in {1,...,dy}. This is still the case for a(y). O

The following result from [Bril] can now be reproved.

Corollary 5.5. Directed groups acting on a tree of bounded valency are amenable.

Proof. Let I' be a directed group, with generating set S U H where S C Sy, and
H C Hy. By fact 5.4, the group a(I") < Aut®(Ty,) is alternate and directed. By fact
5.2, it can be included in a directed, alternate and saturated subgroup of Aut®!(Ty,),
which is in the class DP by proposition 5.3, hence amenable by theorem 4.5, since
2d is bounded and Hj finite. The group I is also amenable as a subgroup. 0

Corollary 5.6 (Main theorem in [BKN]). Automata groups with bounded activity
are amenable.

Proof. By theorem 3.3 in [BKN], an automata group I' with bounded activity is a
subgroup of the alternate mother group of degree 0 acting on a d-regular tree for d
large enough. By fact 5.4, I' is a subgroup of (G54, hence is amenable by theorem
3.3. OJ

5.3. Examples with unbounded valency. This section aims at constructing ex-
amples of groups in the class DP for which the sequence d of fact 4.2 is unbounded.

Let Hy be a finitely generated, residually finite, perfect group with a sequence
of normal subgroups (Ny)r>o of finite index so that each quotient Ay = Hy/Ny is
perfect, acting faithfully and transitively on a finite set {1,...,d;} of size dy > 2.
For h in Hy, denote ax(h) = hNy € Ay.

To the group Hy together with subgroup sequence (/N)x>o is associated an action
on the rooted tree Ty of valency sequence d = (di)r>0, denoted by : Hy — Aut(T}),
given by the portrait (bo(h))x-15 = ax(h) and (by(h)), = e if v is not of the form
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1¥=12 for k > 1 (notation 1* is a shortcut for 11...1 with k& ones). In the wreath
product isomorphism, one has:

bo(h) = (b1(h),a1(h),e, ... e),

where by (h) is the similar action of the group Hy on the tree T, ; associated to the
shifted subgroup sequence (Ni)g>1. The group Ay = Hy/Np also acts on Ty as a
rooted automorphism acting on {1,...,dp}, i.e. ag = (e, ..., e)ap.

Fact 5.7. With the actions described above, the group I'y = (Ag U Hy) < Aut(T})
belongs to the class DP.

Proof. Let T’y be the subgroup of Aut(7,;) generated by H; = Hy with the by (h)
action and A; = H;/N; with a rooted action. Properties (1) and (2) of definition
4.1 follow from the construction above. Thus I'y belongs to the class DP as soon as

I'; does. As I'y satisfies the same properties as I'g, they are in the class DP. O

As an example of such a finitely generated, residually finite, perfect group Hy,
one may take the alternate mother group Gy of section 3 for d > 6 (then both finite
generating subgroups A and B are perfect). This group satisfies G4 ~ G4l Ag. Its
finite index normal subgroups are:

St; =ker(Gqg — Aql--- L Ag),

where the j factors in the iterated wreath product are obtained by iteration of the
above isomorphism. The group St; is called stabilizer of level j of the group Gg.
The quotient G4/St; is acting transitively on level j, which is the set {1,...,d}.
By [Neul, these stabilizers St; are the only finite index normal subgroups of Gy.

For an arbitrary function j : N — N, take N, = St;) as a sequence of normal
subgroups. The group I'y defined by G4 together with the function j(k) belongs to
the class DP by fact 5.7. It is amenable when /(%) is sublogarithmic by theorem
4.5. Note that in the construction above, one could use any group of proposition
5.3 with d; > 6 instead of Gy .
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