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Abstract 

This paper focuses on the axial impact crushing behaviour of recyclable empty metal beverage cans 

available in the market. The idea is to make a macro-foam (sacrificial cladding structure) out of these cans to 

protect the main load bearing members of civil engineering structures from the air blast load. Axial drop weight 

tests have been conducted to understand the crushing characteristics and the corresponding energy absorption of 

a single empty beverage can in detail. To conduct such tests a small-scale drop weight test set-up has been 

designed and manufactured. The deformation mechanisms and the corresponding energy absorption of the 

beverage cans were studied in detail for different initial impact velocities (1.4 m/s, 2.2 m/s, 3.1 m/s. 3.8 m/s, 4.4 

m/s and 4.9 m/s). Furthermore, an analytical model is proposed to calculate the crushing parameters of empty 

metal beverage cans. The results from the analytical model are compared and validated with the experimental 

results.  

 
KEYWORDS: Empty metal beverage can; Axial impact; Asymmetry deformation; Energy absorption; mean 
crush load; Analytical solution. 
 

1. Introduction 

Protecting the civilian population against blast attacks is a complex and 

comprehensive task. If critical civil structures (tower buildings, embassies etc.,) are 

threatened, the main concerns are with the elaboration of an efficient rescue plan and a rapid 

intervention. The structural integrity of the engineering structure itself is rarely considered. 

However, since the early nineties (bomb attacks World Trade Centre (1993), Oklahoma 

(1995), US embassy Kenya (1998),World Trade Centre (2001)) the protection of civil 

engineering structures against explosions has become an important research area. Efforts 

have been made around the globe to propose suitable solutions for this problem. Out of many 

proposed solutions, the concept of sacrificial cladding design [1-3] has attracted more 

attention in terms of its functionality and its predictable behaviour. Any sacrificial cladding 

structure can have two layers (an outer skin and an inner core). The function of the outer skin 

is to distribute the blast pressure more evenly to the inner core which deforms progressively 

so that the peak force transferred to the non-sacrificial structure can be minimized. In order to 
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safeguard the main load bearing members of the civil engineering structures, the failure load 

of the sacrificial cladding structure should be kept as low as possible. Keeping a lower failure 

load for the inner core may attribute to achieve the plastic deformation during an explosion 

event and so the transferred peak force to the non-sacrificial structure can be minimised. 

Therefore, in this work, we propose empty recyclable metal beverage cans for the inner core 

members of the sacrificial cladding structure. The concept of the proposed sacrificial 

cladding structure using empty recyclable metal beverage cans is shown in Figure 1. This 

configuration can be used to protect typical civil engineering structures from air blast loading. 

The advantages of this sacrificial structure using empty beverage cans are: (i) environment 

friendly due to recyclable material (ii) it is a waste product and readily available in the market 

and (iii) non-corrosive due to inner lacquer and outer aesthetic coatings (iv) these cans can be 

adopted in different configurations of macro foam depending upon the blast loading 

magnitudes. As an example, two different configurations (axial and radial) of the macro foam 

assembly of empty beverage cans are shown in Figure 2.  

 
 

Before designing the inner core of a full-scale sacrificial cladding structure the 

knowledge of the crushing performance (progressive crushing stages and the corresponding 

energy absorption) of an individual beverage can is very important. Investigation of these 

factors during a blast loading is extremely difficult. Capturing the deformation mechanism, 

deformation pattern and the corresponding energy absorption during an impact test is 

relatively easier due to a slow speed of crushing. Therefore, to understand the above factors a 

detailed axial impact tests were conducted. However, the effect of strain rate on the 

deformation mechanisms and the corresponding deformation patterns of the beverage cans 

have to be further studied and verified for blast loading conditions. 

 
Generic energy absorption devices which belong to two different categories (type I 

and II) based on their load-displacement curves were well studied in [4-10]. The load-

displacement curve of type I is relatively “flat topped” and for type II the curve falls sharply 

after the peak crush load. The effect of “strain-rate factor” and the “inertia factor” on the 

above structures are also explained in those works. The general conclusions of the referred 

studies are as follows: (i) the deformation of type II structures is significantly more sensitive 

to the impact velocity than type I; (ii) when the total kinetic energy remains the same for all 

test specimens, smaller final deformations result from higher impact velocities and this 

phenomenon is much more significant for type II structures than type I; (iii) strain rate 
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sensitivity and the inertia effect must be considered throughout the crushing process during 

an impact event. Tam and Calladine [11] studied the effect of strain rate and inertia on simple 

plate structures under impact loading. They explained two phases of deformation of type II 

structures which involves plastic compression and rotation at the plastic hinges. 

 
Many studies have been conducted to study the crushing mechanism of the circular 

and square cross sectional thin-walled structures. The influence of impact velocity and the 

material characteristics on the dynamic buckling response of circular tubes during axial 

loading (quasi-static and impact) were studied in [12, 13].  In this work, the buckling mode to 

global bending was explained in terms of the material yield stress, strain hardening and the 

strain-rate sensitivity. This paper also proved that the energy absorption performance of 

cylindrical ductile tubes with high yield stress and low strain hardening is better than the one 

with low yield stress and high strain hardening. Similarly, the transition from initial global 

bending to progressive buckling on square and circular geometries was studied in [14]. 

Investigations of dynamic progressive crushing of cylindrical tubes indicate that the 

deformation is mainly started and concentrated at the end of the cylinder subjected to 

impulsive loading [15]. Furthermore, it deforms either axisymmetrically (concertina or ring 

mode) or asymmetrically (diamond mode), depending on the D/t ratio (diameter – thickness) 

[16]. Experiments have shown that tubes with D/t < 80 and rigid-perfectly plastic (low strain-

hardening) deform in concertina mode and the tubes with higher D/t (> 80) and sensitive to 

strain-hardening will deform into diamond mode [16-19]. Andrews et al. [20] further gave a 

guideline to predict the mode of deformation based on tube length to wall thickness ratio (L/t) 

and diameter to wall thickness ratio (D/t). Few studies also focussed on the switch of 

deformation pattern from concertina mode to diamond mode and mixed collapse of diamond 

and concertina modes [18, 20-22]. Hsu and Jones [22] observed tearing of the circular tube 

wall during the switch of deformation pattern from concertina to diamond mode. Pugsley [18] 

concluded that the transition from concertina to diamond mode occurs for D/t = 91. The 

influence of other parameters on the switching of deformation patterns such as heat treatment 

and end constraints was also studied in ref. [23] and [21] respectively.  

 
The mean crush load is the most important parameter in evaluating the energy 

absorption capacity of any structure. Hence, many theoretical models have been developed to 

study the mean crush load of the circular and square cross sectional tubular structures 

exhibiting axisymmetric and asymmetric deformation modes [16, 22, 24-26]. Alexander [25] 
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was the first to provide an analytical model for the circular cross sectional tubes for 

axisymmetric failure mode. This model assumed the formation of three circumferential 

plastic hinges during the formation of a single fold; and when the fold goes outwards the 

material experiences circumferential tensile strain. Furthermore, the external work done is 

dissipated by plastic bending and circumferential stretching. In order to predict the 

occurrence and the position of the second peak within each fold Wierzbicki et al. [27] 

introduced a parameter known as the eccentricity factor (the ratio of outward fold to the 

whole fold length). This work has been further refined by Singace et al. [28] and Singace and 

Elsokby [29]. Similarly, few researchers have worked on diamond deformation mode [16, 30, 

31]. Pugsley and Macaulay [18, 32] were the first researchers who initiated the work on 

diamond crushing mode. Later Johnson et al. [19] tried to develop a theoretical model for the 

diamond mode crushing based on the experiments with PVC tubes. Later Singace [16] 

proposed an improved solution to calculate the mean crush load of tubular structures. Most of 

the above analyses have focused on the quasi-static crushing of tubular structures. However, 

during a dynamic loading condition the strain-rate effect plays a key role to enhance the yield 

stress of the material. Abramowicz and Jones [24] suggested a method to extend the quasi-

static mean crush load expression to dynamic loading condition considering the strain-rate 

effects. 

 
In this work, to understand the crushing mechanisms, deformation patterns and the 

corresponding energy absorption of empty beverage cans axial impact tests have been 

conducted. The effect of initial impact velocities (strain rate effect) and the corresponding 

strain hardening on the crushing performance of the beverage can are studied. Furthermore, 

an analytical solution is proposed to calculate the dynamic mean crush load of the beverage 

can. The results from this analytical solution are also compared and validated with the 

experimental data. 

 

2. Test specimen and experimental set-up 

2.1. Empty recyclable metal beverage cans 

Used empty recyclable metal beverage cans were selected for this experimental study. 

Special care was taken to choose cans without defects such as indents and scratches. The 

metal beverage cans available in the European market can be classified into two types based 

on the type of material they are made of. Type A is made of a combination of two materials; 
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the entire body is made of steel and the top cover is made of aluminium (Figure 3(a)). Type B 

is completely made of aluminium. Due to the larger availability especially in Belgium, Type 

A was chosen for our experimental study. The measured average mass of a beverage can for 

this study was 26 g. The details of the geometry of an empty metal beverage can are also 

shown in Figure 3(b). The corresponding material properties of the top cover and body of the 

beverage can are given in Table 1.   

 

2.2. Experimental set-up and measurements of data 

The schematic representation of the experimental test set-up is shown in Figure 4. The 

vertical guides along which an impactor slides were fixed to a wall by means of horizontal 

supports. The impactor assembly slides on the vertical guides by roller ball bearings. The 

maximum drop height of the impactor for this set-up is 2 m. The mass of the impactor, 

support structure for the test specimens and the end crushing part of the impactor can be 

varied as per the test specimen’s requirement. An impactor mass of 7.7 kg was chosen for all 

tests. The experimental test set-up is fully instrumented with a dynamic force sensor and an 

accelerometer at the crushing end of the impactor to measure the reaction force and the 

acceleration of the impactor respectively. Furthermore, an inductive displacement sensor is 

also used to measure the drop height, instantaneous displacement of the impactor and the 

residual deformation length of the test specimen. Axial impact tests have been conducted 

with different impact heights which correspond to different initial impact velocities ranging 

from 1.4 m/s to 4.9 m/s. A high speed camera (Photron APX RS 250K capable of recording 

250,000 fps) was also used to capture the images during the test. A frame rate of 5000 fps 

was used for these tests. A sampling frequency of 2 MHz was chosen for all sensors (load 

cell, accelerometer and the inductive displacement sensor). In order to compare the 

deformation mechanism with the corresponding load-deformation curve all sensors and the 

high speed camera were triggered at the same time for recording the data.  

 
For all tests, the data from the different sensors have been checked and validated 

against each other. The integrated displacement from the accelerometer signal was validated 

with the signal from the inductive displacement sensor. As an example, one of the cases is 

presented here. Figure 5(a) shows the measured acceleration signal from the accelerometer 

for the initial impact velocity of 3.1 m/s (only the relevant portion of the signal is shown 

here). To calculate the velocity and the corresponding displacement (equivalent to the 

deformation length of the test specimen) of the impactor the acceleration signal was 
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integrated using trapezoidal integration rule without filtering the signal (the filtered signal 

also provided the same results). The corresponding integrated velocity and the displacement 

of the impactor are given in Figure 5(b) and 5(c) respectively. Furthermore, Figure 5(c) also 

shows the recorded signal from the inductive displacement sensor during the impact event. It 

can be noticed that the results from these two measurements provided almost the same result. 

Similarly, the load signal from the force sensor was validated with the load signal calculated 

from the accelerometer signal assuming that the impactor is a rigid body. It can be noticed 

from Figure 5(a) that the acceleration signal contains high frequency noise. Hence, the 

measured accelerometer signal was numerically filtered with a low-pass filter (with a cut-off 

frequency of 1500 Hz and a slope of -100 dB/decade). To calculate the force signal the 

filtered accelerometer signal was multiplied by the mass of the impactor (7.7 kg). A 

comparison of these two signals is given in Figure 6. Similar to the displacement signals there 

was a good correlation observed for the force signals.  

 

3. Experimental results and discussions 

The crushing performance of empty beverage cans was studied for different initial 

impact velocities such as 1.4 m/s, 2.2 m/s, 3.1 m/s, 3.8 m/s, 4.4 m/s and 4.9 m/s. For each 

case a minimum of ten tests have been carried out and the average of all the parameters were 

taken into account to calculate the performance parameters which are discussed in the next 

section. The empty beverage cans showed a controlled and progressive failure pattern for all 

cases. As an example, the different phases of empty beverage can crushing subjected to an 

initial impact velocity of 4.9 m/s are shown in Figure 7.  

 

3.1. Collapse modes 

The final deformation patterns of the empty beverage cans for different initial impact 

velocities are shown in Figure 8(a – f). These cans are painted after the test due to the 

intellectual property rights (except the one which is shown in Figure 7). Based on the 

thickness distribution of an empty beverage can, it can be concluded that the initial 

deformation should occur at the mid-wall location (belly portion) of the can due to its lower 

thickness (0.07 mm). However, for the case with an initial impact velocity of 1.4 m/s the 

deformation occurred at different points of the can along its length (plastic local wall 

buckling and folding). The difference in the deformation pattern of the cans may be 

influenced by a combination of two effects: (i) the initial geometry imperfections induced 
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during the manufacturing process and during usage and (ii) a lower impact velocity of the 

impactor. The average deformation length of the beverage can for this case was 17.5 mm.  

 

The deformation patterns of the beverage cans for all other impact velocities (2.2 m/s, 

3.1 m/s, 3.8 m/s, 4.4 m/s and 4.9 m/s) are different from the earlier case (refer Figure 8(b - 

f)). The chronological order of the initiation of the folding process and the corresponding 

collapse mode can be understood from the high speed images (refer Figure 9). For these 

cases, an initial elastic local wall buckling started below the top shoulder region which 

caused to form few fold legs around the circumference (indicated in Figure 9). The initial 

elastic local wall buckling (towards the inside of the can) was always axisymmetric. 

Furthermore, the location of local wall buckling and the corresponding fold legs below the 

top shoulder region was consistent for these cases (2.2 m/s, 3.1 m/s, 3.8 m/s, 4.4 m/s and 4.9 

m/s). This was due to the combined effect of higher impact velocity, inertia of the impactor 

and a lower geometrical thickness of the beverage can at that location. The formation of fold 

legs removed the cylindrical curvature of the beverage can and converted it into a ring of 

triangles. During further crushing the base of the triangular fold inclined towards the axis of 

the beverage can and the apex started to move away from the axis of the beverage can. When 

the fold legs reach a critical angle the elastic hinge became plastic which facilitated for axial 

bending and subsequent fold formation. Due to the presence of loading, the de-curving 

process continues for all triangle folds until the distance from the apex to the base of the 

triangle (called as half fold length H) becomes invariable. During the above process an 

initiation of another set of fold legs occurred below. At later crushing phases the deformation 

propagated downwards along its length and crushed progressively in a diamond mode which 

caused an asymmetric failure pattern (refer Figure 7, 9 and 10). The occurrence of the 

diamond mode deformation depends upon the combined effect of D/t ratio (~ 937 for 

beverage can) and material strain hardening characteristics [16]. During the crushing process, 

the diamond folding of the wall of the beverage can occur partially inside and partially 

outside from the mean diameter. Experiments have shown that the wall of a concertina mode 

deformed tube will be laid down partly to the inside and partly to the outside of the mean 

diameter; furthermore, it was proved that the outward part is usually bigger than the inward 

part [27]. However, in case of asymmetric deformation mode (diamond mode) the inward 

part of the fold is found to be bigger than the outward fold. Similar evidence can be noticed 

from Figure 10, where the inward fold or lobes are bigger than outwards. Therefore, the 
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eccentricity factor for a diamond mode deformation can be defined as the ratio of the inward 

part to the total folding length [21, 28]. 

 
The number of circumferential triangular segments or lobes varied from a minimum of 

5 to a maximum of 8. The higher D/t ratio of the beverage can facilitated to form a larger 

number of triangular lobes [16]. As an example, the geometric relationships for an empty 

beverage can that deformed into six circumferential lobes are given in Figure 11(a) and (b). 

For the case with an initial impact velocity of 2.2 m/s the formation of triangular lobes 

occurred for 2 rows simultaneously. For all cases, the length of the first lobe was always 

longer than for the others. The longitudinal cut-section of these test specimens confirmed the 

same (refer Figure 10). This may be due to the combined effect of initial impact velocity and 

impactor inertia on the initial compression phase of the beverage can. The average half 

folding length of each lobe and the corresponding numbers were increased with increasing 

initial impact velocities (refer Figure 10). The average half folding length varied from a 

minimum of 2.1 mm to a maximum of 4.5 mm.  For higher initial impact velocities such as 

3.8 m/s, 4.4 m/s and 4.9 m/s, the impactor rebounded after reaching the maximum 

deformation length of the test specimen; subsequently, successive impacts were observed for 

these cases. This was due to the densification of lobes and the corresponding strain hardening 

of the material. However, the successive impacts were not taken into account for the energy 

absorption calculation. Compared to the thickness of a bright can (can without any coating) 

the thickness of the aesthetic coating on the outer surface and lacquer coating (used to 

prevent the contact of beverage with metal) at the inner surface was negligible. Hence, it can 

be concluded that the effect of these coatings on the deformation mechanisms and the 

corresponding energy absorption was negligible. However, a detailed study on bright cans is 

needed for the final conclusion of this statement. For all cases, no significant deformation 

was noticed at top and bottom shoulder and end caps (refer Figure 8 (a-f)). 

 

3.2. Typical load-deformation curves 

The measured crushing load of the beverage cans can be expressed in terms of the 

impactor acceleration as (Equation 1), 

 
 [ ]gtaMtF Ic +⋅= )()(  (1) 

where Fc(t) is the instantaneous crushing load of an empty beverage can which was measured 

by a dynamic load cell at the crushing end; MI is the mass of the impactor (7.7 kg); a(t) is the 
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acceleration of the impactor (m/s2); g is the acceleration due to gravity (m/s2). The velocity of 

the impactor (v(t)) and the corresponding displacement (l(t)) which is equivalent to the 

deformation length of the test specimen can be written as (Equation 2 and 3), 

 

 ∫ ⋅=
t

dttatv
0

)()(

     

)/()0( 0 smvv =  (2) 

 ∫ ⋅=
t

dttvtl
0

)()(

     

)(0)0( ml =  (3) 

where v0 is the initial impact velocity which is varied from a minimum of 1.4 m/s to a 

maximum of 4.9 m/s. From equations 1 and 3 the total absorbed energy (Eabs) by an empty 

beverage can for each initial impact velocity can be calculated from the following relation 

(Equation 4), 

 

 ∫ ⋅=
max

0

)(
l

abs dllFE  [J] (4) 

 

where F(l) is the instantaneous crushing load corresponding to the instantaneous crushing 

deformation length of the beverage can dl. lmax is the maximum or total deformation length of 

the test specimen (for the first impact). Similarly, the total energy given by the impactor can 

be calculated from the following relation (Equation 5)  

 

 ∫ ⋅⋅+⋅=
max

0

2
02

1 l

IIgiven dlgMvME  [J] (5) 

 

In Equation 5, the first term on the right hand side of the equation corresponds to the initial 

kinetic energy given by the impactor before impact and the second term corresponds to an 

additional potential energy due to the travelling mass of the impactor during the crushing 

process. The calculated average values (from 10 experiments for each case) are given in 

Table 2. From Table 2, it can be noticed that there was a difference in the energy levels 

between the total energy given by the impactor (Egiven) and the energy absorbed by the 

beverage can (Eabs) (varied from approximately 2 to 3.5 % for the initial impact velocity of 

1.4 m/s to 4.4 m/s). The reason for the difference can be attributed to: (i) the friction between 

the roller ball bearing of the impactor and the supporting guides (ii) air resistance to the 

impactor (iii) energy loss due to the impacting sound (iv) friction between the impactor and 

the test specimen during crushing (v) energy absorbed by the impactor by elastic deformation 
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(vi) heat dissipation during the plastic deformation of the can. However, for the case with the 

initial impact velocity of 4.9 m/s the difference (Egiven - Eabs) was higher compared to other 

cases (approximately 7.7 %). An investigation and the corresponding reason for this 

difference are presented in section 3.2.1.  

 
A preliminary quasi-static study of the empty beverage cans clearly indicated the strain-

rate dependency on their material deformation and their peak crush load (refer Figure 12). 

The peak crush load of an empty beverage can varied from 1.1 to 1.4 kN for 0.002 to 0.037 s-

1 rate of loading. For the simplification the crushing compressive load and the deformation 

length are shown in positive values in all load-deformation graphs. From the quasi-static and 

impact experimental results it can be concluded that these structures performed as type-II 

structures which we discussed in the Introduction section.   

 
As an example, one of the load-deformation profiles of the empty beverage cans for 

each initial impact velocity are given in Figure 13(a – f). The initial peak crush load 

corresponds to the initial formation of fold legs which altered the cylindrical curvature of the 

can and subsequent plastic folding into a certain number of triangular lobes. Immediately 

after the peak load there was a reduction in the load noticed; this stage corresponded to the 

complete collapse or rotation of the triangular lobes about their base. At the end of this 

process, the subsequent formation of another set of fold legs occurred and these processes 

continued. This phenomenon can be noticed from Figure 13(b – f); after the peak crush load 

the load fluctuated in the form of a triangle. The increase in load corresponds to the formation 

of new fold legs and the drop in the load corresponds to the collapse or compression of 

triangular lobes. The number of triangles in the curve indicates the number of folds along its 

length. Furthermore, it can be noticed from these figures that the fold length increases with 

increasing initial impact velocities (refer Figure 13(c) and 13(e)). In all load – deformation 

curves (except 1.4 m/s initial velocity) after achieving 20 mm of deformation length the crush 

load of the can increased considerably; this was due to the onset collapse and the 

corresponding compression of triangular lobes. Furthermore, the strain hardening 

characteristics of the material significantly contributed for this increasing crush load. From 

the load-deformation curves of successive tests, it can be noticed that the peak crushing load 

of an empty beverage can varied from 1.8 kN to 2.4 kN (a minimum of 10 tests for each case) 

and it is increasing with higher initial impact velocities (Figure 13). These values are 
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significantly higher than from quasi-static results (1.1 to 1.4 kN for 0.002 to 0.037 s-1 rate of 

loading). This shows a clear evidence of strain-rate dependency of the material.  

 
When characterizing the energy absorption capacity of a material or structure the 

following three important parameters have to be considered. The first parameter is the mean 

load (Pmean - can be calculated using Equation 6); it is a measure of average force required to 

deform the material in a progressive manner. The second important parameter is the specific 

energy absorption (SEA - energy absorbed per unit mass of the crushed material) which 

provides a measure of the energy absorption ability of a structural component (Equation 7). 

The third parameter crush efficiency (ηc) gives an idea about how ideal a structural 

component for energy absorption behaves (Equation 8). The ideal value is 100% which 

means that after the initiation of crushing (peak crush load) the load will remain the same 

(mean load). A low percentage is not desirable because a higher initial force (acceleration) 

will be transferred to the mounting structure. 

 

 
max

0

max

)(

l

dllF
P

l

mean

∫ ⋅
=   [kN] (6) 

 
bc

l

m

dllF
SEA

∫ ⋅
=

max

0

)(
 [J/g] (7) 

 
maxP

Pmean
c =η  (%) (8) 

 

where mbc is the mass of an empty beverage can for maximum length of deformation (an 

equivalent mass over length was considered); Pmax is the peak crush load of each empty 

beverage can. The calculated average values (from 10 test specimens) of each case are given 

in Table 2. The results from these tests provided clear guidelines for the deployment of 

beverage cans for the sacrificial cladding structure. For the case with initial impact velocity 

of 4.9 m/s the crush load (~ 2.68 kN) was increased beyond the initial peak crush load (~ 2.46 

kN) after reaching the deformation length of about 83 mm. Hence, a higher acceleration 

could be transferred at the end of the crushing. Therefore, limiting the deformation length 

below 80 mm would provide tolerable acceleration to the mounting structure. However, the 

deformation mechanism and mode are to be further verified for explosive loading conditions. 
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Furthermore, as we noticed the peak crush load increased with increasing the initial impact 

velocities which corresponds to a higher acceleration to the mounting structure.  

 

3.2.1. Effect of air inside the beverage can during crushing 

As mentioned earlier, the difference in the energy levels (Egiven - Eabs) for the case with 

the initial impact velocity of 4.9 m/s was higher compared to other cases (approximately 

7.7%). In order to investigate the difference the high speed images of this particular case 

were examined; as an example the high speed images from one of the tests are presented in 

Figure 14. After reaching a maximum deformation length during the first impact the elastic 

strain energy from the test specimen was given back to the impactor (spring back). In 

addition to the elastic strain energy given by the test specimen the air entrapped inside the test 

specimen played a major role. When the deformation length of the beverage can reached its 

maximum value the compressed air inside the beverage can provided an additional resistance 

to the impactor (refer Figure 14). Due to this combined effect, the impactor bounced back and 

dropped once more on the test specimen and the combined spring back energy (elastic strain 

energy + energy from compressed air) was absorbed by the beverage can in subsequent 

impacts. The developed internal pressure inside the beverage can caused an upward force, 

leading to a longer contact time between the impactor and the beverage can during rebound, 

and a higher rebound height. This phenomenon was noticed only for 50% of the tests. The 

occurrence of air entrapping and its resistance depend upon the perfect contact between the 

crushing platform and the test specimen. During the compression process the temperature of 

the compressed air should have increased; consequently, a part of the thermal energy from 

the compressed air was lost to the atmosphere (by convection through the beverage can wall 

and discharge of air from the top opening of the beverage can). For the remaining 50% of the 

tests the air escapes due to a minor gap between the test specimen and the crushing platform 

and hence the height of bounce back of the impactor was shorter. 

 
In order to confirm the influence of air inside the beverage can additional tests have 

been conducted. To avoid the entrapping and consequent compression of the air during the 

crushing process, holes were drilled at the bottom of the beverage cans at four locations 

without deforming the beverage can (refer Figure 15). Experiments on these beverage cans 

(for the initial impact velocity of 4.9 m/s) showed a higher deformation length and 

corresponding energy, compared to the test specimen without holes. However, there was no 

difference in the deformation pattern compared to the ones without holes. Furthermore, there 
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was a very minor spring back of the test specimen observed (refer Figure 16). The average 

crushing parameters (from 10 experiments) are reported in Table A1. It can be noticed that 

for the case with holes the difference in the energy levels (Egiven - Eabs) was approximately 

reduced to 4.5%. A comparison of the energy balance for the cases without and with holes is 

also shown in Figure 17(a) and 17(b) respectively. The total energy absorption of these cases 

was very close to the respective experimental average values. From these figures it can be 

noticed that the total energy given by the impactor (initial kinetic energy + additional 

potential energy due to the travelling mass of the impactor) for both cases was approximately 

the same (99.9 J). However, the total energy absorbed by the beverage can for the without 

holes case (89.9 J) was lower than for the case with holes (96.1 J). Due to this there was a 

significant difference in the energy loss observed for these two cases (refer Figure 17(a) and 

17(b)). An additional evidence for the influence of the entrapped and compressed air can be 

observed from these figures. Due to the resistance provided by the compressed air, the total 

duration of the impact for the beverage can without holes was shorter (26.9 ms) than for the 

one with holes (31.4 ms). Therefore, it can be concluded from the results that the remaining 

3% of energy loss was caused by the entrapped and compressed air inside the beverage can 

during the crushing process. In order to check the influence of air inside the beverage cans 

similar tests have been conducted for other impact velocity cases (1.4 m/s to 4.4 m/s). The 

results from these tests showed no significant difference in the crushing performance of these 

beverage cans (compared to the one without holes). 

 

3.2.2. Effect of initial impact velocity on the performance parameters 

The effect of initial impact velocity on the performance parameters can be understood 

from Figure 18(a) and 18(b). It can also be noticed that the variation in SEA and peak crush 

load is quite low for these tests. The mean crush load of the beverage can was increased with 

increasing initial impact velocity. The mean crush load varied from a minimum of 413 N (for 

the case with 1.4 m/s initial impact velocity) to a maximum of 1060 N (for the case with 4.9 

m/s initial impact velocity). The strain hardening of the material during onset collapse and 

folding process significantly contributed to increase the mean crush load. Consequently, the 

corresponding total energy absorption and the specific energy absorption of the beverage can 

was increased (1.86 kJ/kg, 2 kJ/kg, 2.74 kJ/kg, 3.48 kJ/kg, 4.13 kJ/kg and 4.72 kJ/kg for 1.4 

m/s, 2.2 m/s, 3.1 m/s, 3.8 m/s, 4.4 m/s and 4.9 m/s initial impact velocities respectively). 

Furthermore, the initial peak crush load was increased with increasing initial impact velocity 
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(1.69 kN, 1.72 kN, 2.19 kN, 2.28 kN, 2.37 kN and 2.46 kN for 1.4 m/s, 2.2 m/s, 3.1 m/s, 3.8 

m/s, 4.4 m/s and 4.9 m/s initial impact velocities respectively). This clearly indicates the 

strain rate dependency on the material behaviour. 

 

4. Analytical model 

In this section an analytical model is established to calculate the deformation length and 

the corresponding energy absorption of the empty beverage can subjected to the axial impact 

loading condition. The total kinetic energy of the impactor before impact (equal to the 

potential energy for certain drop height having an initial impact velocity) and the additional 

potential energy due the travelling mass of the impactor during the crushing process has been 

used to deform the empty beverage can.  Hence, we write the force equilibrium for this 

system as (Equation 9),  

 

 ( )absIc E
dx

d
g

dt

dv
MtF =







 +⋅=)(  (9) 

 

where )(ta
dt

dv = is the acceleration of the impactor (m/s2); ( )absE
dx

d
 is the energy absorbed 

per crushed empty beverage can length (J/m); Eabs(x) is the energy absorbed by the beverage 

can (J) as a function of crushing length using a qualitative term called ‘dynamic mean crush 

load” (Equation 10). 

  

 xPxE meanabs ⋅=)(  (10) 

 

where x is the deformation length of the beverage can. The expression to calculate the 

dynamic mean crush load of the empty beverage can considering diamond mode is discussed 

later. Equation 9 can be integrated by means of the “Runge-Kutta” integration scheme where 

the second order differential equation can be split in two single order equations using 

“Odesolve” function of MathCAD [38]. The initial condition for velocity and displacement of 

the impactor are as follows: 

 

 ;2)0( 0 ghvv ==
     

0)0( =x  (11) 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

15 
 

where h is the drop height of the impactor (m).  
 

4.1. Expression for dynamic mean crush load 

As we noticed from Figure 8(a-f) there was no significant deformation noticed for top 

and bottom shoulders and end caps. Hence, for simplification the beverage can can be 

considered as a cylindrical structure and subsequently the stability provided by the top and 

bottom end caps can also be neglected. The diamond mode crushing characteristics of thin-

walled structures by the formation of triangular lobes considering total bending and the 

corresponding membrane energies (contributing in converting the tube into collated and 

flattened triangles) are well studied in ref. [16]. Furthermore, the development of initial and 

successive lobes and their corresponding angle relationship for inward and outwards fold are 

given. The triangular formation at the start of this impact event (for an initial impact velocity 

of 2.2 m/s) and during crushing (for an initial impact velocity of 4.4 m/s) and the 

corresponding geometrical relationships are given in Figure 19(a) and 19(b).  

Singace [16] has proposed an expression to calculate the mean crush load of a tubular 

structure (which exhibits asymmetric or diamond deformation pattern) under quasi-static 

compressive loading condition. The following modes of deformation were accounted for to 

calculate the mean crush load: (i) bending energy – which comprises the de-curving of the 

tube wall into triangles and the rotation of the triangles about their base and side edges (ii) 

membrane energy at the base of the triangle (i.e) the energy required to compress an element 

of the tube wall towards the axis of the tube. (iii) membrane energy at the apex of the 

triangle, i.e the energy required to push an element of the tube wall outwards (away from the 

axis of the tube). The mean crush load of a tubular structure that exhibits asymmetric or 

diamond mode is given by [16],  

 

 
3

4 N

t

H

M

P

p

mean ππ −≅  (12) 

 

where H is the half fold length (m); N is the number of lobes; t is the thickness of the 

tubular structure (m); Mp is full plastic bending moment per unit length which can be written 

as follows [16],   
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32
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p

σ
≅  (13) 

where yσ is the yield stress of the tubular structure (MPa). The above model (Equation 12) 

can be extended to the impact loadings with the method used by Abramowicz and Jones [24]. 

Among rate-dependent constitutive equations, the Cowper-Symonds equation has been most 

popularly employed in structural impact problems. This relation represents a rigid, perfectly 

plastic material with dynamic yield or flow stress that depends on strain rate. The ratio of 

dynamic yield stress d
yσ  and static yield stress yσ is [24], 

 

 

p

y

d
y

C

1

1













+=

•
ε

σ
σ

 (14) 

where C (characteristic strain rate) and p (measure of the strain rate sensitivity) are material 

constants; 
•
ε  is the strain rate. Using Equation 13 and 14, the Equation 12 can be written as 

follows (Equation 15), 
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To estimate the strain rate over collapse process, a simple estimate for the mean 

circumferential strain  for a completely flattened fold of the circular tube is [16], 

 

 
D

H≅ε  (16) 

where D  is the average diameter of the beverage can at mid-wall region (65.63 mm). It was 

assumed that the empty beverage can deforms with an initial impact velocity of  and this 

velocity decreases linearly with time (this assumption is experimentally supported by the 

integrated velocity-time profile of the impactor from the acceleration signal – refer Figure 

5(b)). This corresponds to a constant deceleration of the impactor during the crushing 

process. For the simplification, the effect of additional potential energy during the crushing 

process on the strain rate was neglected. Furthermore, the air resistance inside the can for the 

50% of the cases with the initial impact velocity of 4.9 m/s was not accounted. The time 
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taken to deform for one complete fold (T) and the corresponding average strain rate  can 

be given as Equation 17 and 18 respectively. 

 

 
0

2
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H
T =  (17) 
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T 2
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• εε  (18) 

 

Now, substituting Equation 17 into Equation 15 gives the mean crush load of that structure 

including the strain rate effect for a particular initial impact velocity (Equation 19),  
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Experimental studies have proved that structures with high D/t ratio and/or material sensitive 

to strain hardening would generally deform in diamond mode [16-19]. Further, as we noticed 

from the experimental results the mean crush load of the beverage can significantly increase 

after 30 mm of deformation length for 3.8 m/s, 4.4 m/s and 4.9 m/s. This was due to strain 

hardening of the material during the onset collapse, flattening and subsequent compression of 

each lobe. Therefore, to capture the appropriate mean crush load of beverage cans for these 

impact velocities the effect of strain hardening has to be included in the above expression. 

The effect of strain hardening of any material can be captured with yield stress and plastic 

strain using Ludwik equation [35]. Assuming the mean circumferential strain as the plastic 

strain the final form of the dynamic mean crush load of a thin tubular structure subjected to 

impact loading can be written as follows (Equation 20),  

 

 




















+⋅






 −
+

≅
pn

y
mean DC

vN

t

HtDHB
P

1

0

2

2
1

3

4

32

)( ππσ
 (20) 

 

where B and n  are material constants (usually calculated from experimental data). The final 

material parameters of the manufactured steel beverage cans are very close to the steel grade 

4340 [35]. The corresponding values for steel 4340 are given in Table 1 [33, 37]. Substituting 

the value obtained from Equation 20 for a particular initial impact velocity in Equation 10 

and subsequently, solving of Equation 9 provides the total deformation length and the 
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corresponding energy absorption of the tubular structure (beverage can). The choice of mean 

crush load equation 19 or 20 should be based on the initial impact velocity and the 

corresponding strain rate and strain hardening properties of the material. For lower impact 

velocities the consideration of Equation 19 can provide reasonable results; however for the 

impact velocities where the chances of strain hardening of the material are more, 

consideration of Equation 20 can yield close results compared to the experimental values.   

 

4.2. Comparison of analytical and experimental results 

4.2.1. Comparison of dynamic mean crush load 

Due to the inconsistent failure pattern, the case with an initial impact velocity of 1.4 

m/s was not considered for the calculation of dynamic mean crush load. A comparison of 

dynamic mean crush loads for the remaining cases is given in Figure 20. The dynamic mean 

crush load using Equation 19 yielded a good correlation for the case with an initial impact 

velocity of 2.2 m/s. For the remaining cases (from 3.1 m/s to 4.9 m/s), there was a significant 

difference noted from the experimental data. Equation 19 predicted lower values compared to 

the experimental data. The major reason for this difference is the absence of the strain 

hardening effect which was observed in all cases. On the other hand, Equation 20 provided 

reasonable results for all impact velocities. The difference between the experimental and 

analytical solution was gradually reduced for higher impact velocities. Hence, it can be 

concluded that the consideration of strain rate and the corresponding hardening 

characteristics of the beverage can material is absolutely necessary to calculate the dynamic 

mean crush load. 

 

4.2.2. Comparison of crushing parameters 

The crushing performance of an empty beverage can can be calculated considering the 

values from Figure 20. Substituting these values of dynamic mean crush load in Equation 10 

and solving Equation 9, the corresponding crushing performance (deformation, velocity and 

energy histories with respect to time) of the beverage can was calculated. The calculated 

performance values for all cases are given in Table 2. As an example, the initial impact 

velocity of 3.8 m/s case is discussed here. Figure 21(a), 21(b) and 21(c) show a comparison 

of deformation, velocity and the corresponding energy absorption of experimental and 

analytical solutions respectively. The dotted line is an experimental curve (one of the tests 

with the deformation length close to the average deformation length from 10 tests); the 
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second curve (dashed line) represents the analytical solution considering the average dynamic 

mean crush load from the experiments; and the third solid curve shows the analytical solution 

considering Equation 20. The results from these three cases showed a good correlation of 

parameters such as deformation length, velocity and the corresponding energy absorption. 

Compared to experimental data there was a difference in the total impact duration noticed 

(Figure 21(a-c)). This was due to the change in crush load and the corresponding deceleration 

of impactor during the experimental crushing process. However, the analytical formulation 

uses a constant mean crush load (the decrease in velocity and the corresponding deceleration 

were linear).  

 
Similarly, Figure 22 shows the energy balance during the crushing process. It can be 

noticed that the total energy given by the impactor is increased due to the travelling mass of 

the impactor during the crushing process. The initial kinetic energy and the total energy given 

by the impactor were 55.6 J and 61.2 J respectively. An incremental energy value of 4.6 J 

was obtained from the additional potential energy from the travelling mass of the impactor 

during the crushing process. 

 

5. Conclusions 

In this study the axial impact energy absorption characteristics and the corresponding 

deformation mechanism of empty recyclable metal beverage cans were investigated. Axial 

impact tests have been conducted for different initial impact velocities ranging from 1.4 m/s 

to 4.9 m/s. An analytical model is also developed to predict the performance parameters of 

the beverage cans. From the conducted experiments the following conclusions can be made: 

 

• For all initial impact velocities (2.2 m/s, 3.1 m/s, 3.8 m/s, 4.4 m/s and 4.9 m/s) the 

empty beverage cans showed controlled and uniform crushing failure modes. Furthermore, 

these beverage cans exhibited a diamond mode deformation pattern (formation of fold legs 

around the circumference and collapse and fold of triangular folds) (except for the case with 

an initial impact velocity of 1.4 m/s). 

• The peak crush load of beverage cans with different initial impact velocities showed 

the strain rate sensitivity consistently. Hence, the effect of strain rate on increasing yield 

strength should be taken into account for dynamic investigations. 
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• The mean crush load and the corresponding specific energy absorption of these cans 

increased with increasing initial impact velocities. Furthermore, this test has given a guideline 

that these cans should be deployed for the maximum allowable deformation length of 80 mm. 

• For the tests with the initial impact velocity of 4.9 m/s the air trapped inside the 

beverage can consumed 3% of the total energy given during the impact process. 

• An analytical solution including the strain rate and strain hardening effects of the 

material provided the mean crush loads which are very close to the experimental results. 

Furthermore, the other parameters such as deformation length, velocity and the corresponding 

energy absorption are very close to the experimental data. 
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FIGURES AND CAPTIONS 
 

 

 
Figure 1: Concept of proposed sacrificial cladding structure with empty recyclable metal beverage cans. 

 

 

 

 

 

 
Figure 2: Two configurations of macro foam arrangement of empty recyclable metal beverage cans. 
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(a) Nomenclature and material details (b) Geometry details 

Figure 3: Material and geometry details of an empty metal beverage can. 
 

 

 

 

 

 

 
Figure 4: Schematic representation of the experimental set-up. 
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Figure 5: (a) measured accelerometer signal (without filtering). (b) Integrated velocity profile from the 

accelerometer signal (c) Comparison of the displacement (equivalent to the deformation length of the test 
specimen) profile from the integrated accelerometer signal and from an inductive displacement sensor. 
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Figure 6: Comparison of force-time signal from the dynamic force and sensor and the derived signal from the 

accelerometer for the case with the initial impact velocity of 3.1 m/s. 
 

 

 

 

 

 

 

 

 

 
Figure 7: Progressive crushing stages of empty beverage can for an initial impact velocity of 4.9 m /s. 
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(a) Deformation patterns for initial impact velocity 1.4 m/s 

 
(b) Deformation patterns for initial impact velocity 2.2 m/s 

 
(c) Deformation patterns for initial impact velocity 3.1 m/s 

 
(d) Deformation patterns for initial impact velocity 3.8 m/s 

 
(e) Deformation patterns for initial impact velocity 4.4 m/s 

 
(f) Deformation patterns for initial impact velocity 4.9 m/s 

Figure 8: Final deformation patterns of empty recyclable metal beverage cans for different impact velocities. (a) 
1.4 m/s (b) 2.2 m/s (c) 3.1 m/s (d) 3.8 m/s (e) 4.4 m/s (f) 4.9 m/s. 
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Figure 9: Chronological order of initiation and folding of fold legs and triangular folds during 
crushing of an empty beverage can. 
 

 
 
 
 
 
 

 
Figure 10: Cut sectional view of beverage cans for initial impact velocity of 3.8 m/s. 
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(a) (b) 
Figure 11: Deformed view of a beverage can with six lobes (a) Top view (b) Developed view. 

 
 
 
 
 
 
 

  
Figure 12: Quasi-static load-deformation curves of empty beverage cans at different strain rates 
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Figure 13: Force-deformation histories of empty beverage cans: (a) for initial impact velocity of 1.4 m/s. (b) for 
initial impact velocity of 2.2 m/s. (c) for initial impact velocity of 3.1 m/s. (d) for initial impact velocity of 3.8 

m/s. (e) for initial impact velocity of 4.4 m/s. (f) for initial impact velocity of 4.9 m/s. 
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Figure 14: Spring back of the test specimen due to elastic strain energy and the trapped and compressed air 
inside the test specimen for the initial impact velocity of 4.9 m/s. 
 
 
 
 
 
 
 
 

 

Figure 15: Beverage cans with holes at the bottom (to remove the air inside the beverage can 
during the crushing process). 
 
 
 
 
 
 
 

 
Figure 16: Separation and bounce of the impactor after crushing the beverage can with 4 holes (φ 3.5 mm each) 

for the initial impact velocity of 4.9 m/s. 
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(a) Beverage can without holes  (b) Beverage can with holes at the bottom 

Figure 17: Comparison of the experimental energy balance for the case with the initial impact velocity of 4.9 
m/s (for the test on beverage cans with and without holes). 

 
 
 
 
 
 
 

  
(a) Specific energy absorption (b) Peak crush load 

Figure 18: Effect of initial impact velocity on the specific energy absorption and peak crush load of an empty 
beverage can (error bar indicates the standard deviation). 
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(a) (b) 

Figure 19: (a) Formation of triangular lobes at the start of the impact process for an initial impact velocity of 
2.2 m/s. (b) Formation of triangular lobes during the crushing process for an initial impact velocity of 4.4 m/s. 

 
 
 
 
 

 
Figure 20: Comparison of dynamic mean crush load from experimental and analytical solutions. 
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Figure 21: Comparison of crushing parameters of experimental and analytical solutions. (a) deformation time 

history (b) velocity time history (c) energy absorption history. 
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Figure 22: Energy balance for the case with the initial impact velocity of 3.8 m/s. 
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TABLES 
 

 

 

 

 

Table 1: Johnson-Cook and Cowper-Symonds parameters for top cover and body of the beverage can [33-37]. 

 Johnson-Cook material parameters 
Cowper-Symonds 

parameters 

Material 
Density 
(Kg/m3) 

Cp 
(J/Kg K) 

Tmelt 

(K) 
A 

(MPa) 
B 

(MPa) n c m 
C 

(s-1) p 

Aluminium 2024 
(for top cover) 

2770 875 775 265 426 0.34 0.015 1.0 6500 4 

Steel 4043 (for 
body of the can) 

7830 477 1793 792 510 0.26 0.014 1.03 200000 3.3 

Cp = Specific heat capacity; Tmelt = melting temperature; A, B, n, c, m, C and p are material constants. 
 

 

 

 

 

 

 

 

Table 2: Summary of average crushing parameters (from 10 tests of each category). 
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(S
E

A
) 

(m) (m/s) (kg) (g) (mm) (J) (J) (kN) (kN) (mm) (%) (kJ/kg) 

Experimental 
0.1 1.4 8.9 8.7 1.69 0.413 18.1 24.4 2.16 
0.25 2.2 21.8 21.1 1.72 0.446 42.1 25.9 2.25 
0.5 3.1 41.5 40.2 2.19 0.610 60.6 27.8 2.98 
0.75 3.8 60.9 59.0 2.28 0.774 71.8 33.9 3.69 
1.0 4.4 80.5 77.5 2.37 0.918 80.0 38.7 4.37 
1.25 4.9 

7.7 26 117 

98.9 91.3 2.46 1.060 86.7 43.0 4.75 
1.25* 4.9*    100.0* 95.4* 2.47* 0.998* 95.5* 38.8* 4.49* 

*Tests have been conducted with beverage cans having 4 holes (φ 3.5 mm each) at the bottom (refer Figure 15). 
Analytical using Equation (20) 

0.25 2.2 21.9 21.9 - 0.495 44.2 - 2.22 
0.5 3.1 41.6 41.6 - 0.673 61.8 - 3.02 
0.75 3.8 61.2 61.2 - 0.808 74.5 - 3.70 
1.0 4.4 80.7 80.7 - 0.968 83.3 - 4.35 
1.25 4.9 

7.7 26 117 

99.0 99.0 - 1.120 88.4 - 5.03 
 


