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Understanding the impact failure of particles made of brittle materials such as glasses, ceramics and rocks is an important issue for many engineering applications. During the impact, a solid particle is turned into a discrete assembly of many fragments through the development of multiple cracks. The finite element method is fundamentally ill-equipped to model this transition. Recently a so-called material point method (MPM) has been used to study a wide range of problems of material and structural failures. In this paper we propose a new material point model for the brittle failure which incorporates a statistical failure criterion. The capability of the method for modelling multiple cracks is demonstrated using disc particles. Three impact failure patterns observed experimentally are captured by the model: Hertzian ring cracks, meridian cracks, and multi-fragment cracks. Detailed stress analysis is carried out to interpret the experimental observations. In particular it is shown that the experimentally observed dependence of a threshold velocity for the initiation of meridian cracks on the particle size can be explained by the proposed model. The material points based scheme requires a relatively modest programming effort and avoids node splitting which makes it very attractive over the traditional finite element method.

Introduction

The brittle failure of particles during impact is an important issue in chemical and materials engineering. Many experimental and modelling studies have been conducted during the past decades. Due to the high speed and violent nature of the brittle failure process, experimental observations are usually restricted to the final failure patterns of particles. In summary the failure patterns observed experimentally can be divided into three categories which are illustrated in Fig. 1. Patten I shown in Fig. 1(a) represents a small damage concentrating on a ring of material surrounding the contact area, which is often referred to as Hertzian ring and observed typically at low velocity impact.

Sometimes a secondary ring crack can be observed within the Hertzian ring as shown in Fig. 1(a). If the impact velocity increases, a cone crack linked with the meridian cracks is often observed which is referred to as Pattern II and shown in Fig. 1(b). At high velocity impact oblique cracks split the particle into small pieces with or without the help of the meridian cracks as shown in Fig. 1(c). The left hand side of Fig. 1(c) shows the oblique cracks observed by Salman and Gorham during medium velocity impact of large particles [START_REF] Salman | The fracture of glass spheres[END_REF]. The right hand side of Fig. 1(c) shows the meridian cracks developed and then the oblique cracks followed turning the particles into small pieces at a high velocity impact [START_REF] Wu | Crushing and fragmentation of brittle spheres under double impact test[END_REF]. Arbiter et al. [START_REF] Arbiter | Single fracture of brittle spheres[END_REF] studied the fracture patterns of sand-cement spheres and observed Hertzian ring and cone cracks at low velocity impact and meridian cracks at high velocity impact. For particles made of different materials after high velocity impact, meridian cracks were observed by Shipway and Hutchings [START_REF] Shipway | Fracture of brittle spheres under compression and impact loading: I. Elastic stress distribution[END_REF] and by Andrews and Kim [START_REF] Andrews | Threshold conditions for dynamic fragmentation of ceramic particles[END_REF]. Salman and Gorham [START_REF] Salman | The fracture of glass spheres[END_REF] found that the meridian cracks occurred in soda-lime glass particles of very small sizes at very high velocities and that oblique cracks occurred in large particles. Wu et al. [START_REF] Wu | Crushing and fragmentation of brittle spheres under double impact test[END_REF] categorised twelve failure patterns observed in their impact experiments on plaster spheres.
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The brittle failure process of materials during impact has been modelled extensively in the past decades. Most of the previous studies used the finite element method.

However dealing with crack formation and fragmentation has been a major challenge.

Tvergaard [START_REF] Tvergaard | Influence of void nucleation on ductile shear fracture at a free surface[END_REF] proposed an element vanishing technique which removes elements that meet a failure criterion in the sense that these elements no longer contribute to the virtual work integral of the weak form. The element vanishing technique was used to model the failure process of both brittle materials [START_REF] Guo | Brittle-damage analysis of cracks under conditions of plane-strain tensile loading[END_REF] and porous ductile materials [START_REF] Needleman | An analysis of ductile rupture modes at a crack tip[END_REF].

Xu and Needleman [START_REF] Xu | Numerical simulations of fast crack growth in brittle solids[END_REF] developed a mesh splitting method to simulate crack branching. Once a failure criterion is reached at a finite element node, it is duplicated and the two nodes separate according to a cohesive constitutive law. Based on this approach an elaborate model was developed by Camacho and Ortiz [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF] to simulate the fragmentation process including crack opening, growing and healing. Espinosa et al. [START_REF] Espinosa | A finite deformation continuum/ discrete model for the description of fragmentation and damage in brittle materials[END_REF] simplified the model by Camacho and Ortiz [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF] to take into account of material microstructures. The node duplicating technique is widely used to solve different problems [START_REF] Batra | Simulation of brittle and ductile fracture in an impact loaded prenotched plate[END_REF]. However as multiple cracks appear, the node separation can be excessive and require adaptive mesh refinement. The complexity in the numerical procedure has severely limited the applications of the finite element based approach. Molecular Dynamics (MD) is an alternative approach to model the failure of materials [START_REF] Wagner | Molecular-dynamics simulation of twodimensional materials at high strain rates[END_REF]. However it is limited to nano-sized particles at extremely high impact velocities.

Recently peri-dynamics has been developed to simulate cracking [START_REF] Parks | Implementing peridynamics within a molecular dynamics code[END_REF]. By scaling-up MD, the peri-dynamics approach is able to obtain some satisfying results. To characterise a specific material, the peri-dynamic (PD) simulation uses force between "particles" while the FE method using a constitutive law. Although the inter-atomic potentials have been established for a wide range of materials, the real impact behaviour of a material can be controlled by factors such as microstructure, defect,
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alloying details and impurity. The continuum theory based on the constitutive law and the FE methods cannot be readily replaced by the peri-dynamic model. Another approach is to use the discrete element method [START_REF] Potapov | Computer simulation of impact-induced particle breakage[END_REF][START_REF] Potapov | The two mechanisms of particle impact breakage and the velocity effect[END_REF][START_REF] Potapov | Parametric dependence of particle breakage mechanisms[END_REF][START_REF] Kadono | Crack propagation in thin glass plates caused by high velocity impact[END_REF][START_REF] Cheong | Modelling fragment size distribution using two-parameter Weibull equation[END_REF][START_REF] Munjiza | Combined single and smeared crack model in combined finite-discrete element analysis[END_REF][START_REF] Thornton | Numerical simulation of the impact fracture and fragmentation of agglomerates[END_REF][START_REF] Moreno | Effect of the impact angle on the breakage of agglomerates: a numerical study using DEM[END_REF][START_REF] Behera | Fragmentation of a circular disc by impact on a frictionless plate[END_REF]. However the results of this approach heavily rely on the contact law and particle separation criteria which may not reflect the properties of a continuum solid.

The purpose of this paper is to demonstrate that the impact failure of brittle particles can be conveniently modelled using the material point method (MPM), which was initially proposed by Sulsky et al. [START_REF] Sulsky | Application of a particle-in-cell method to solid mechanics[END_REF] for large deformation plasticity. The MPM has been used to simulate impact problems [START_REF] Sulsky | Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems[END_REF][START_REF] Li | Contact laws between solid particles[END_REF] and the behaviour of granular materials [START_REF] Wieckowski | A particle-in-cell solution to the silo discharging problem[END_REF][START_REF] Wieckowski | The material point method in large strain engineering problems[END_REF]. It has also been used to simulate crack propagation by Sulsky and Shreyer [START_REF] Sulsky | MPM simulation of dynamic material failure with a decohesion constitutive model[END_REF]. This is accomplished by incorporating a de-cohesive constitutive law into MPM formulation. This approach however requires the pre-knowledge of the crack surface and hence cannot be used to simulate multi-cracking during particle impact. In the present paper, the material point method is combined with the Weibull's failure theory to simulate the brittle impact failure. Details of the numerical scheme are described in the next section. Simulation results are presented in Section 3 where the proposed model is used to explain the experimental observations. The summary of the present work and the conclusion is in section 4. The work presented here is limited to plane stress models of disc particles for simplicity. Full three dimensional modelling of the impact failure requires extensive computer programming effort which is undergoing and will be reported in future publications. The basic idea of the material point method is to discretise a solid body into a collection of material points by density concentration. Fig. 2 illustrates a typical problem of particle impact to be solved using the MPM. All state variables are traced at these material points during the entire deformation and failure history. A separate computational mesh is employed to determine the velocities of the material points by mapping these state variables forward to the computational mesh and backward after the velocities are determined. At each time step only the positions of the material points are updated. Therefore mesh tangling or distortion is not an issue which causes a major problem in the traditional finite element method. Another attracting feature of the MPM is that no special treatment of the contact conditions is required. The material point velocity is determined using the computational mesh which automatically ensures no inter-penetration between the contacting bodies. The formulation of the material point method is described in details by Sulsky and Schreyer [START_REF] Sulsky | Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems[END_REF] and Wieckowski [START_REF] Wieckowski | The material point method in large strain engineering problems[END_REF]. Here a brief outline of the method is presented in order to provide a context for our model for brittle failure. As shown in Fig. 2, in the MPM, a solid body is discretized into a collection of material points using a density concentration function 1 ( )

Description of the model

Outline of the Material Point Method

p N p p p M ρ δ = = ∑ x -X (1) 
in the standard FE weak form over region Ω with boundary ∂Ω :

( ) d d dS d ρ ρ Ω Ω ∂Ω Ω ∆ Ω = -∇ ∆ Ω + ∆ + ∆ Ω ∫ ∫ ∫ ∫ v v v σ vτ v b & . ( 2 
)
In Eq. (1), ρ is the material density, p N is the total number of material points, p M is the mass of a material point calculated from the density of the material which the particular material point represents, δ is the Dirac delta function, x is the vector of spatial coordinate, and p X is the vector of material point position. In Eq. ( 2), v is the 

{ } 1 1 1 ( ) ( ) [ ( )] ( ) ( ) p p N N p p p p p p p p p p M M dS ρ - ∂Ω = = ∆ + ∇ ∆ = ∆ + ∆ ∑ ∑ ∫ v X v X σ v X b X v X vτ & , (3) 
in which p ρ is the density of the material points. Next a computational background mesh is used to determine the velocity of the material points as illustrated in Fig. 2.

Using the Eulerain shape functions ( )

N x , ( ) ( ) N t = v
x v , and ( ) ( )

N t ∆ = ∆ v x v , in which t is time, Eq. (3) becomes 1 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) p p p N N N T T p p p p p p p p p p p p p p M N N M B M N N dS ρ - ∂Ω = = = = - + + ∑ ∑ ∑ ∫ X X v X σ X X b X X τ & (4) or int ext + mv = f f & . ( 5 
)
In Eq. ( 4) B is the spatial gradient of the shape function N . In Eq. ( 5), m , int f and ext f are the consistent mass matrix, internal nodal forces and external nodal forces on the computational mesh respectively. Note that we do not discriminate spatial velocity and discretized nodal velocity in order to avoid any confusion. Here the bold lower case letters denote the spatial or nodal tensor variables of the computational mesh while bold upper case letters denote the tensor variables of the material points. Eq. ( 5)

is similar to the equation of motion in a standard dynamic finite element formulation.

A lumped mass matrix is employed in the explicit time integration instead of the consistent mass matrix on the left hand side of Eq. ( 4). The stresses are traced at the material points, the density of which is updated at each time step in order to calculate the first term on the right hand side of Eq. ( 4). In brittle failure problems, although the
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strains generally remain small, large deformation and rotation are locally possible. In order to account for this, the Jaumann rate stress measure [START_REF] Sulsky | Application of a particle-in-cell method to solid mechanics[END_REF] is used. The second term of the right hand side of Eq. ( 4) shows how body forces such as gravity are applied on the material points. Surface tractions are applied on the computational mesh according to the third term at the right hand side of Eq. (4).

Failure criterion and its implementation in MPM

The primary motivation of employing MPM to simulate impact failure of particles is its convenience in dealing with particle fragmentation. In MPM, it is straightforward to separate two material points as opposed to mesh splitting in the traditional finite element method. Weibull's theory [START_REF] Ashby | [END_REF] based on the maximum principal stress is adopted here. According to Weibull's theory the survival probability ( )

s ref P V of material samples of a standard volume ref V under a maximum principal stress σ can be calculated as 0 ( ) exp m s ref P V σ σ       = -           , ( 6 
)
in which 0 σ is a reference stress at which the fraction of 1/ 37% e ≈ of samples survive, m is the Weibull's modulus reflecting the variability of the material and how rapidly the survival probability reduces as σ approaches 0 σ . The survival probability of a material of volume material V is given by

/ ( ) ( ( )) material ref V V s material s ref P V P V = . ( 7 
)
In MPM, the maximum principal stress is calculated at each material point at each time step. The results are then fed into Eqs. ( 6) and ( 7) to calculate the survival probabilities of all the material points. At the beginning of the simulation, each
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material point is assigned a random value ζ between 0 and 1. At each time step the survival probability of a material point is compared to its assigned value of ζ . If the survival probability of a material point is less than ζ , then this material point fails and the stresses of this material point are set to zero. The failed material point is referred to as a "ghost material point" and no longer contributes to the volume integration. Using k as an index for the ghost material point, the first term of the right hand side of Eq. ( 4) can be written as

int ghost int N p N p k k k T k p p p T p int p k B M B M f f X σ X X σ X f - =       - - = ∑ ∑ = = - - 1 1 1 1 ) ( ) ( ) ( ) ( ~ρ ρ , ( 8 
)
in which N k is the total number of ghost material points. The nodal force calculated from Eq. ( 8) for a uniform stress state with one ghost material point is shown in Fig. 3.

Because of the piecewise property of the shape function, int ghost f reaches its maximum at node k % , which is the nearest node on the computational mesh to material point k . In the node duplicating scheme of the traditional finite element method [START_REF] Xu | Numerical simulations of fast crack growth in brittle solids[END_REF][START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF][START_REF] Espinosa | A finite deformation continuum/ discrete model for the description of fragmentation and damage in brittle materials[END_REF], the node k % has to be duplicated and separated in order to generate a crack. The degrees of freedom have to be renumbered and new element connection has to be formed which requires major computer programming efforts. In MPM on the other hand it is the discrete material points that are separated instead of the finite element mesh. The separation of material upon failure takes place automatically and does not require any further treatment in the computer programming. The "ghost points" do not carry any stress but still contribute to the mass matrix as it is sensible to consider their effect of inertia on the impact behaviour. This is obviously an empirical treatment. Our numerical trials of various alternative approaches showed that this approach produces stable numerical results. The methodology presented here is generally valid for three 

Convergence test and mesh selection

It is necessary to show that the MPM prediction of the failure pattern converges if the mesh is fine and enough materials points are used. As shown in Fig. 2, a circular disc impacts on a rigid wall at a velocity of 0 16 V = m/s. A square computational mesh is used to cover the possible domain of the particle motion. The rigid wall is represented by imposing acceleration and velocity constraints at the bottom line of nodes of the computational mesh. Frictionless contact is assumed in the model. In order to focus on the effect of the mesh size, the material strength is assumed to be uniform, i.e. m in Eq. ( 6) is taken as +∞, in this particular test. Consequently a material point will fail if its maximum principal stress reaches the reference stress 0 σ , which is assigned to be 50MPa. A range of meshes using different numbers of material points are tested as listed in Table 1. The predicted failure patterns using the different levels of meshes are shown in Fig. 4. The computational time consumed by the simulation is also listed in Table 1. It can be observed that convergence is achieved using 693602 material points and 320×320 cells in the computational mesh. Taking into account of both time expense and simplicity, this set of mesh and material points are chosen for all the following simulations. Another issue connecting mesh sensitivity is the effect of the regular shape of the mesh on crack patterns. During the mesh refinement, the shape of the computational mesh is kept the same. However, the converged crack pattern shown in Fig. 4(d) is not confined to the x-and y-directions. The effect of the regular mesh on the crack pattern diminishes if a fine enough mesh is used (from Fig. 
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A Numerical study of impact failure of circular disc particles

Computer simulated impact failure

In the numerical study a circular disc particle with a diameter of D = 4.7mm is projected with different initial velocities of 0 V perpendicularly to a rigid stationary wall. The following material parameters for glass are taken from Salman and Gorham m and 0 σ in Eq. ( 6) are taken as 20 and 50 MPa respectively. The reference volume ref V in Eq. ( 7) is taken as the original volume of the entire particle.

Fig. 5 shows the kinetic energy as a function of time for four different impact velocities. This kinetic energy is calculated from the velocity and mass of all material points including those of the "ghost material points" and is normalized by the initial kinetic energy for each case. A series of snapshots of the particle are shown in Fig. 5 for the case of impact velocity V 0 = 10 m/s. Fig. 6 shows the final failure patterns of the particle at four different impact velocities. At V 0 = 5 m/s the particle exhibits a typical elastic response. Starting from the point of impact, the kinetic energy falls gradually to zero which reflects the maximum compression status during the impact.

The total kinetic energy then increases and recovers after rebound. About 3% of total kinetic energy is lost due to elastic wave and numerical dissipation. No crack is formed as no material point reaches the failure stress during the impact. This is consistent with the validation cases in our previous publication [START_REF] Li | Contact laws between solid particles[END_REF] for the impact of unbroken particles, which can be treated as a validation of the computational code. At V 0 = 6 m/s the decreasing in the kinetic energy is slightly faster than that of V 0 = 5 m/s and the total impact time is slightly shortened. Discernable energy dissipation (about 10% of the initial kinetic energy) takes place at the final status. By recalling that the
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12 kinetic energy shown in Fig. 5 is calculated from both failed and unfailed material points, such kinetic energy loss reflects the total amount of energy used for the crack formation. The particle shows damage adjacent to both sides of the contact area (Pattern i in Fig. 6). Considering that the simulation assumes plane stress conditions, it is reasonable to associate the Pattern i in Fig. 6 with the experimental observation of Pattern I in Fig. 1(a). Furthermore inside the ring two secondary vertical cracks at both sides of the central axis can be clearly observed. These details are in good consistency with experimental observation shown in Fig. 1(a). When velocity is increased to V 0 = 7.5 m/s, there is a further reduction in the kinetic energy after rebound. The particle is broken into two halves by a dominant crack along the middle axis with some small branches also present (Pattern ii in Fig. 6). This can be directly related to the meridian crack that splits the particle into two or more parts, i.e. Pattern II shown in Fig. 1(b) observed experimentally. About 20% of the initial kinetic energy is spent on the crack formation as shown in Fig. 5.

At the high impact velocity of V 0 = 10 m/s the kinetic energy curve (solid line in Fig. 5) behaves similarly to that calculated by Wagner et al. [START_REF] Wagner | Molecular-dynamics simulation of twodimensional materials at high strain rates[END_REF] 6). Similar to the experimental observations for spherical particles, the numerical simulations show that the brittle failure of circular disc particles can also be categorized into the same three failure patterns, which can be regarded as a quantitative validation of the proposed model. The evolution of the failure Pattern for V 0 = 10 m/s is also presented in the horizontal row in Fig. 5. Crack is firstly initiated directly beneath the contact area during the very early stage of impact. When compression reaches its peak, this crack grows vertically upwards and downwards. Ring cracks are also generated at the bottom of particle which coalesces with the vertical crack to form a cone crack pattern. Cracks are formed and grow very fast during the rebound period of the impact. It is important to note that most cracks are generated at this time period. As suggested by Potapov and Campbell [START_REF] Potapov | The two mechanisms of particle impact breakage and the velocity effect[END_REF], cracks perpendicular to the vertical crack are formed at the rebound period because of bulk bending in the material. Furthermore those cracks could originate not only from the dominant crack but also at some distance away. Similar findings were reported by Xu and Needleman [START_REF] Xu | Numerical simulations of fast crack growth in brittle solids[END_REF]. The inter-perpendicular cracks further grow after the full rebound, which break the particle into small pieces. The computer-simulated final failure pattern relates well to the experimental observations as summarized in Fig. 1(c). The overall trend in the failure pattern is that the particle splits in the vertical direction, which is consistent with the fact that a tensile stress state is generated in a particle under a diametrical compression. This fact has been widely used to design "indirect tensile test" or the "Brazilian test" of brittle particles.

Stress field in the disc particles

In order to gain a more fundamental understanding into the different failure patterns, we examine the maximum principal stress which is used in the failure criterion for Furthermore such a threshold velocity shows a strong dependency on the particle size: larger particles require smaller impact velocity to generate the fracture pattern. Stress analysis alone is not able to explain this size effect because parametric study reveals that the stress level in a particle does not depend on the particle size but only on material properties and impact velocity for both spherical particles and circular discs [START_REF] Potapov | Parametric dependence of particle breakage mechanisms[END_REF][START_REF] Johnson | Contact Mechanics[END_REF]. Andrews and Kim [START_REF] Andrews | Threshold conditions for dynamic fragmentation of ceramic particles[END_REF] studied the formation of the crack and concluded that the size effect cannot be explained using Weibull's strength variability theory. They then explained the crack formation by imposing a size dependence on the dynamic material toughness. In this section we show that the size dependence can be in fact explained using Weibull's strength variability theory at least in the case of circular discs with plane stress.

The impact failure is simulated roughly following the experimental procedure by Andrews and Kim [START_REF] Andrews | Threshold conditions for dynamic fragmentation of ceramic particles[END_REF]. The disc considered here is made of Si 3 N 4 with size range from As shown in Fig. 8, a smaller particle requires higher impact velocity to form the crack pattern. This is consistent with Eq. ( 7) in the sense that a smaller particle contains fewer micro-cracks and is therefore less likely to form a large crack. If there is no strength variability, i.e. m = +∞, the threshold velocity shows no size effect as expected. A stronger size effect is found for larger material variability, i.e. a smaller Weibull's modulus m. It is interesting to notice that for small particles, large material variability will make the disc "stronger" by showing higher threshold velocity. We can further compare Fig. 8 with the experimental data obtained by Andrews and Kim [START_REF] Andrews | Threshold conditions for dynamic fragmentation of ceramic particles[END_REF], which is reproduced in the inset of Fig. 8. Despite the difference in absolute values due to the plane stress calculation, the trend in the threshold velocity is quite similar to those obtained experimentally. In both the experimental and numerical results, the threshold velocity decreases with increasing particle size and the decreasing rate of the threshold velocity is larger for smaller particles. The size effect here is caused by the Weibull's theory alone without introducing any other size dependant parameter in the model.

Concluding remarks

In this paper a computer model based on the material point method incorporating

Weibull's theory is proposed to simulate the brittle failure of particle impact. Circular disc particles with plane stress conditions are used to demonstrate the capacity of the model. It is shown that the numerical model is able to capture the dependence of the failure pattern on the impact velocity as observed in experiment. The stress analysis

shows the failure patterns are associated with the distribution of the maximum principal stresses. It is demonstrated that the size dependency of a threshold velocity observed in experiment can be explained using Weibull's theory. The main advantage of the proposed model is however its convenience in computer programming. No extra effort is required to split the finite element nodes in order to simulate multiple cracks and material fragmentation. Because the method does not involve any empirical judgement in mesh splitting, the computer simulations are rarely terminated prematurely due to numerical issues.
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  ∆v is an arbitrary admissible test function of the velocity, v & is the acceleration (dot denotes the time derivative), σ is the Cauchy stress tensor, and τ and b are the vectors of surface traction and body force respectively. The discretized form of MPM is then given by

  However the current paper is limited to disc particles of plane stress state for simplicity.
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  using molecular dynamics for shock induced cracks. At first the kinetic energy decreases fast. The lowest point of the curve drifts upwards from zero by 7.5%, reflecting that a part of the particle material has failed during the inbound period of the impact. By observing the data about 1.7% material points have failed during the inbound period of the impact. The non-zero minimum kinetic energy suggests that different parts of the particle do not move harmonically like a whole after failure. During rebound, the compression is gradually released. Due to the velocity difference, different parts of the particle separate further. The cracks continue to grow until the final failure pattern M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 13 is reached (Pattern iii shown in Fig.

5 .

 5 The stress field at the early stage of Pattern iii in Fig.6is shown in Fig.7(a). For comparison purpose, the stress field of an unbroken particle (using a high strength while keeping all other parameters the same) is shown in Fig.7(b). The stress contours of the unbroken particle are similar to those calculated by Potapov and Campbell[START_REF] Potapov | The two mechanisms of particle impact breakage and the velocity effect[END_REF] using the discrete element method. The maximum tensile stress of the unbroken particle has an azimuthal distribution. The maximum value of the maximum tensile stress occurs beneath the contact area, which coincides with the location of crack initiation. Within the small zone between the maximum stress location and the contact area, isostress contours surround azimuthally the maximum stress zone and spread into the whole particle. The stress field is extensively altered by the opening of cracks. As shown in Fig.7(a) in the presence of a crack along central axis, the stresses away from both sides of the crack are severely reduced. Stress concentration near crack tips drive the growth of the dominant crack and can lead the crack to the meridian failure of Pattern II shown in Fig.1(b) and Pattern ii shown in Fig.6. Above the dominant crack, stress distribution is relatively uniform. The stress field of a particle during rebound while still in contact with the wall is presented in Fig.7(c), when most stresses in the disc have been relaxed. Two stress concentration zones near either side of the contact area can be observed, where the Hertzian ring cracks have been observed in experiments at low impact velocities. The stress concentration just before the full rebound is the main mechanism for Pattern i shown in Fig.6. Naturally Hertzian ring cracks can also occur during the high velocity impact as showed in Fig.Howeverin this case the Hertzian rings can be surpassed by other cracks. A possible factor affecting the failure pattern in the numerical simulation is the random number ζ assigned to each material point as introduced in Section 2.1. Based on our extensive numerical tests, only details of Pattern iii are sensitive to ζ . For Weibull's 20 which covers a wide range of brittle materials[START_REF] Ashby | [END_REF] the stress field is the most important factor that decides the failure pattern.3.3 Threshold velocityIt was experimentally observed that brittle particles failed by Pattern II (meridian crack) show a threshold velocity. Andrews and Kim[START_REF] Andrews | Threshold conditions for dynamic fragmentation of ceramic particles[END_REF] performed a series of impact experiments using particles made of Si 3 N 4 and Al 2 O 3 . It was discovered that there exists a unique threshold velocity above which Pattern II fracture are always observed.
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 710 mm to 0.5 mm in diameter and a thickness of 5 mm. The material density is ρ = 3.2×10 3 kg/m 3 , Young's modulus E = 311 GPa, Poisson's ratio υ = 0.26, and tensile strength σ c = 550 MPa. Two values of Weibull's modulus in Eq. (6) are used: m = to Ashby and Jones[START_REF] Ashby | [END_REF]. Each simulation is repeated 3 times with 3 different sets of randomly generated ζ . It was found that the choice of ζ has no significant effect on the threshold velocity. Uniformly distributed material strength variability (m = +∞) is also simulated. The threshold velocity is plotted in Fig.8, where the size of the symbols represents errors estimated during the numerical experiments.

Fig. 3

 3 Fig. 3 Nodal force singularity caused by failed material point, in a 2D uniform stress plane.

Fig. 5

 5 Fig. 5 Normalized kinetic energy as a function of time for different impact velocities. The horizontal row shows snapshots during impact for the initial impact velocity of 0 10 V = m/s.

Fig. 6

 6 Fig.6Computer simulated final failure patterns for different impact velocities, for circular disc particles with plane stress.

Fig. 7

 7 Fig.7Contour lines of maximum principal stress field at three different characteristic impact stages of a circular disc particle with plane stress. Numbers refer to the stress values. (a) Stress field of a particle of pattern iii in Fig.6, at a time during the inbound period of impact, (b) stress field of a particle same with (a) except it is unbroken, and (c) stress field of an unbroken particle at the time instance that the particle is moving away from the wall.
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