
HAL Id: hal-00820440
https://hal.science/hal-00820440v1

Preprint submitted on 4 May 2013 (v1), last revised 22 Nov 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability inequality for the scalar potential in an infinite
quantum waveguide

Quang Sang Phan, Eric Soccorsi

To cite this version:
Quang Sang Phan, Eric Soccorsi. Stability inequality for the scalar potential in an infinite quantum
waveguide. 2013. �hal-00820440v1�

https://hal.science/hal-00820440v1
https://hal.archives-ouvertes.fr


Stability inequality for the scalar potential in an
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Abstract

We prove Lipschitz stability in the determination of the scalar potential in
the dynamic Schrödinger equation in an infinite waveguide from one boundary
observation and one (arbitrarily small with respect to the infinite direction of the
waveguide) internal measurement of the solution.
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1 Introduction

1.1 What we are aiming for

In the present paper we consider an infinite waveguide Ω = ω×R, where ω is a connected
bounded open subset of Rn−1, n ≥ 2, with C2-boundary ∂ω. Given T > 0 we consider
the following initial boundary value problem






−iu′ −∆u+ q(x)u = 0, in Q = (0, T )× Ω,
u(0, x) = u0(x), x ∈ Ω,
u(t, x) = g(t, x), (t, x) ∈ Σ = (0, T )× Γ,

(1.1)

where Γ := ∂ω × R and the sign ’ stands for ∂
∂t
. Here u0 (resp. g) is the initial (resp.

boundary) condition associated to (1.1) and q is a function of x ∈ Ω only.
Since Γ is unbounded it is worth making the boundary condition in the last line of

(1.1) more precise. Writing x = (x′, xn) with x′ = (x1, . . . , xn−1) ∈ ω for every x ∈ Ω
we extend the mapping

C∞
0 ((0, T )× R; H2(ω)) −→ L2((0, T )× R;H3/2(∂ω)))

v 7→ [(t, xn) ∈ (0, T )× R 7→ v(t, ·, xn)|∂ω], (1.2)
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to a bounded operator from L2((0,T)×R; H2(ω)) into L2((0,T)×R; H3/2(∂ω)), denoted
by γ0. Then for every u ∈ C0([0, T ]; H2(Ω)) the above mentioned boundary condition
reads γ0u = g.
The main purpose of this paper is to prove stability in the determination of the

scalar potential q from both boundary and arbitrarily small (with respect to the infinite
direction xn of the waveguide) internal measurements of the solution u to (1.1).

1.2 Published papers

The problem of stability in determining the time-independent electric potential in a
Schrödinger equation from a single boundary measurement was treated by Baudouin and
Puel in [1]. This result was improved by Mercado, Osses and Rosier in [8]. In these two
papers, the main assumption is that the part of the boundary where the measurement
is made satisfies a geometric condition related to geometric optics condition insuring
observability. This geometric condition was relaxed in [2] under the assumption that the
potential is known near the boundary. In all the above mentioned papers the Schrödinger
equation is defined in a bounded domain.
In this paper we investigate the problem of determining the scalar potential in the

Schrödinger equation defined in a closed waveguide, which is an unbounded domain. It
turns out that there is a very small number of articles dealing with inverse boundary
value problems in an unbounded domain in the mathematical literature. In [7] Li and
Uhlmann prove uniqueness in the determination of the scalar potential in an infinite
slab from partial Dirichlet-to-Neumann map. In [4] Cardoulis, Cristofol and Gaitan
obtain Lipschitz stability from a single lateral measurement performed on one side of an
unbounded strip. For an inverse boundary value problem stated in a waveguide geometry
we refer to [5, 6] where stability is claimed for various coefficients of the Schrödinger
equation from the associated Dirichlet-to-Neumann map. Here we investigate the same
type of problems in absence of any information given by the Dirichlet-to-Neumann map.

1.3 Main results and contents

In this section we state the main result of this article and briefly comment on it.

Theorem 1.1. For M > 0, ℓ > 0 and α > 0 fixed, let u0 ∈ H4(Ω;R) obey

u0(x) ≥ α > 0, x ∈ Ω, (1.3)

let qj ∈ QM := {q ∈ W 2,∞(Ω;R), ‖q‖W 2,∞(Ω) ≤ M}, j = 1, 2, fulfill

q1(x) = q2(x), x ∈ ω × (R \ (−ℓ, ℓ)), (1.4)

and let uj denote the C1([0, T ]; H2(Ω) ∩H1
0(Ω)) ∩ C2([0, T ]; L2(Ω))-solution to (1.1) as-

sociated to u0, g = γ0G and qj, where

G(t, x) := u0(x) + it(∆− q2)u0(x), (t, x) ∈ Q. (1.5)
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Then for every L > ℓ, there exist a subboundary Γ∗ ⊂ ∂ω × (−L, L) and a constant
C > 0 depending only on L, T,M, ω and Γ∗, such that we have

‖q1 − q2‖L2(Ω) ≤ C
(
‖∂ν(u1 − u2)‖H1(0,T ;L2(Γ∗)) + ‖u1 − u2‖H1(0,T ;H1(ω×(ℓ,L)))

)
. (1.6)

Under the prescribed conditions (1.3)–(1.5), Theorem 1.1 claims Lipschitz stability in
the determination of the scalar potential appearing in the dynamic Schrödinger equation
in Ω from two different observations of the solution u to (1.1). The first one is a lateral
measurement of ∂νu on some subboundary of ∂ω × (−L, L). The second observation is
an internal measurement of u which is performed in each of the two “slices” S−(L) :=
ω × (−L,−ℓ) and S+(L) := ω × (ℓ, L) of Ω. Although the R

n-Lebesgue measure of
S±(L) can be made arbitrarily small by taking L sufficiently close to ℓ, this observation
cannot be removed from the rhs of (1.6) since the prefactor (ie the constant C) tends to
infinity as L goes to ℓ. The occurence of this internal observation of u in (1.6) arises from
the unbounded geometry of Ω. More precisely, the derivation of the stability inequality
(1.6) being by means of a global Carleman estimate for the Schrödinger equation in a
bounded domain, the strategy used in this paper involves a cut off function with first
derivative supported in (−L,−ℓ) ∪ (ℓ, L), which gives rise to the measurement of u in
S±(L).
The paper is organized as follows. Section 2 deals with the direct problem associ-

ated to (1.1). Namely §2.1 gathers existence and uniqueness results for the solution
to the dynamic Schrödinger equation in the infinite domain Ω and §2.2 is devoted to
the study of the direct problem for the linearized system associated to (1.1). In §2.3
the corresponding solution is suitably extended to a function of [−T, T ] × Ω which is
continuous wrt the time variable t. This is required by the method used in the proof
of the stability inequality (1.6), which is the purpose of Section 3. It is by means of a
Carleman estimate for the Schrödinger equation stated in §3.1. Finally §3.2 contains
the completion of the proof of Theorem 1.1.

2 Analysis of the direct problem

2.1 Existence and uniqueness results

This subsection gathers two existence and uniqueness results needed for the analysis of
the direct problem. We start by recalling from [6][Proposition 2.1] the following:

Proposition 2.1. Let M > 0. Then for all q ∈ QM , v0 ∈ H1
0(Ω) ∩ H2(Ω) and

f ∈ W 1,1(0, T ; L2(Ω)), there is a unique solution v ∈ Z0 = C([0, T ]; H1
0(Ω) ∩ H2(Ω)) ∩

C1([0, T ]; L2(Ω)) to the boundary value problem





−iv′ −∆v + qv = f, in Q,
v(0, x) = v0, x ∈ Ω,
v(t, x) = 0, (t, x) ∈ Σ.
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Moreover we have

‖v‖Z0
≤ C

(
‖v0‖H2(Ω) + ‖f‖W 1,1(0,T ;L2(Ω))

)
,

for some constant C > 0 depending only on ω, T and M .

Set
X0 := γ0(W

2,2(0, T ; H2(Ω))). (2.7)

The space X0 is equipped with the following quotient norm

‖g‖X0
= inf{‖G‖W 2,2(0,T ;H2(Ω)); G ∈ W 2,2(0, T ; H2(Ω)) satisfies γ0G = g},

in such a way that every g ∈ X0 admits an extension G ∈ W 2,2(0, T ; H2(Ω)) obeying

‖G‖W 2,2(0,T ;H2(Ω)) ≤ 2‖g‖X0
.

Further, put
L := {(u0, g) ∈ H2(Ω)× X0; u0 = g(0, ·) on Γ}. (2.8)

Then, setting u = v+G, where v is defined by Proposition 2.1 for f = i∂tG+∆G−V G
and v0 = u0 −G(0, .), we obtain the following existence and uniqueness result, which is
similar to [6][Corollary 2.1].

Theorem 2.2. Let M > 0. Then for every q ∈ QM and (u0, g) ∈ L there is a unique
solution u ∈ Z = C([0, T ]; H2(Ω)) ∩ C1([0, T ]; L2(Ω)) to the boundary value problem
(1.1). Moreover the estimate

‖u‖Z ≤ C(‖u0‖H2(Ω) + ‖g‖X0
), (2.9)

holds for some some positive constant C depending only on ω, T and M .

2.2 The linearized problem

LetM , qj , j = 1, 2, u0, g andG bethe same as in Theorem 1.1. SinceG ∈ W 2,2(0, T ; H2(Ω))
and g(0, ·) = u0 on Γ, we have (u0, g) ∈ L . Applying Theorem 2.2 there is thus a unique
solution uj ∈ Z,j = 1, 2, to the system





−iu′
j −∆uj + qj(x)uj = 0, in Q,

uj(0, x) = u0(x), x ∈ Ω,
uj(t, x) = g(t, x), (t, x) ∈ Σ.

(2.10)

Further, differentiating (2.10) with respect to t for j = 2, we obtain that u′
2 is solution

to the following boundary value problem




−iu′′
2 −∆u′

2 + q2(x)u
′
2 = 0, in Q,

u′
2(0, x) = ν0(x), x ∈ Ω,
u′
2(t, x) = g′(t, x), (t, x) ∈ Σ,

(2.11)
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where ν0 = i(∆ − q2)u0. Since G′(t, x) = ν0(x) for a.e. (t, x) ∈ Q by (1.5) then it is
true that G′ ∈ W 2,2(0, T ; H2(Ω)) and consequently (ν0, g

′) ∈ L . Therefore u′
2 ∈ Z from

(2.11) and Theorem 2.2. As a consequence we have

u2 ∈ C1([0, T ]; H2(Ω)) ∩ C2([0, T ]; L2(Ω)).

Moreover, it follows from (2.10) that u = u1 − u2 is solution to the linearized system





−iu′ −∆u+ q1u = f, in Q,
u(0, x) = 0, x ∈ Ω,
u(t, x) = 0, (t, x) ∈ Σ,

(2.12)

with f = (q2 − q1)u2. Since u2 ∈ Z and q1 − q2 ∈ L∞(Ω) then f ∈ W 1,1(0, T ; L2(Ω)) so
that we have u ∈ Z0 by Proposition 2.1.
Last, we deduce from (2.12) that v = u′ satisfies





−iv′ −∆v + q1v = f ′, in Q,
v(0, x) = i(q2 − q1)(x)u0(x), x ∈ Ω.
v(t, x) = 0, (t, x) ∈ Σ,

(2.13)

with f ′ = (q2 − q1)u
′
2 ∈ W 1,1(0, T ; L2(Ω)). From the identity q1 = q2 on Γ we get that

i(q2 − q1)u0 ∈ H1
0(Ω) ∩ H2(Ω). Therefore v = u′

1 − u′
2 ∈ Z0 by Proposition 2.1. Bearing

in mind that u′
2 ∈ Z we deduce from this that u′

1 ∈ Z. Summing up, we have obtained
that

uj ∈ C1([0, T ]; H2(Ω)) ∩ C2([0, T ]; L2(Ω)), j = 1, 2.

2.3 Time symmetrization

In this subsection we prove that v may be extended to a solution of (2.13) over the time
span [−T, T ].
We extend v (resp. f ′) on (−T, 0)×Ω by setting v(t, x) = −v(−t, x) (resp. f ′(t, x) =

−f ′(−t, x)) for (t, x) ∈ (−T, 0) × Ω. Since the initial conditions v(0, ·) and f ′(0, ·) are
purely complex valued according to (2.13), the mappings t 7→ v(t, x) and t 7→ f ′(t, x)
are thus continuous at t = 0 for a.e. x ∈ Ω. Therefore, we have v ∈ C0([−T, T ]; H1

0(Ω)∩
H2(Ω)) ∩ C1([−T, T ]; L2(Ω)) and f ′ ∈ W 1,1(−T, T ; L2(Ω)). Moreover v is solution to
(2.13) over the whole time span (−T, T ):






−iv′ −∆v + q1v = f ′, in (−T, T )× Ω,
v(0, x) = i(q2 − q1)(x)u0(x), x ∈ Ω.
v(t, x) = 0, (t, x) ∈ (−T, T )× ∂Ω,

(2.14)
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3 Stability inequality

3.1 Global Carleman estimate

In this subsection we recall a global Carleman estimate for the Schrödinger operator,
which is borrowed from [1][proposition 3].
Given an arbitrary bounded domain O ⊂ R

n with C2 boundary, we consider the
Schrödinger operator L acting in (C∞

0 )′((−T, T )×O),

L := −i∂t −∆+ q, (3.15)

with scalar potential q ∈ L∞(O).
Next we introduce an open subset Γ0 of ∂O, and a function β̃ ∈ C4(O;R+) satisfying

the following conditions:

Assumption 3.1.

(i) ∃C0 > 0 such that the estimate |∇β̃(x)| ≥ C0 holdsfor all x ∈ O;

(ii) ∂ν β̃(x) := ∇β̃(x).ν(x) < 0 for all x ∈ ∂O\Γ0;

(iii) ∃Λ1 > 0, ∃ǫ > 0 such that we have λ|∇β̃(x).ζ |2 +D2β̃(ζ, ζ̄) ≥ ǫ|ζ |2 for all ζ ∈ R
n

and λ > Λ1.

There are actual functions β̃ fulfilling Assumption 3.1, such as Ω ∋ x 7→ |x − x0|
2

where x0 ∈ R
n \ Ω is fixed.

Further we put

β := β̃ +K, where K := m‖β̃‖∞ for some m > 1, (3.16)

and define the two following weight functions for λ > 0:

ϕ(t, x) =
eλβ(x)

(T + t)(T − t)
and η(t, x) =

e2λK − eλβ(x)

(T + t)(T − t)
, (t, x) ∈ (−T, T )×O. (3.17)

Finally, for all s > 0 we introduce two operators acting in (C∞
0 )′((−T, T )×O),

M1 := i∂t +∆+ s2|∇η|2 and M2 := isη′ + 2s∇η.∇+ s(∆η). (3.18)

M1 (resp. M2) is the adjoint (resp. skew-adjoint) part of the operator e−sηLesη, where
L is given by (3.15).

Proposition 3.2. Let q ∈ L∞(O), let β be given by (3.16), where β̃ ∈ C4(O;R+) fulfills
Assumption 3.1, let ϕ and η be as in (3.17), and let L, M1 and M2 be defined by (3.15)-
(3.18). Then there exist λ > 0, s0 > 0, and a constant C > 0 depending only on T ,
‖q‖L∞(O), O and Γ0, such that the estimate

s‖e−sη∇w‖2L2((−T,T )×O) + s3‖e−sηw‖2L2((−T,T )×O) +
∑

j=1,2

‖Mje
−sηw‖2L2((−T,T )×O)

≤ C
(
s‖e−sηϕ1/2(∂νβ)

1/2∂νw‖
2
L2((−T,T )×Γ0)

+ ‖e−sηLw‖2L2((−T,T )×O)

)
, (3.19)
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holds for all s ≥ s0 and all w ∈ L2(−T, T ; H1
0(O)) satisfying Lw ∈ L2((−T, T )×O) and

∂νw ∈ L2(−T, T ; L2(Γ0)).

3.2 Proof of Theorem 1.1

In this section we apply the Bugkhgeim-Klibanov method defined in [3] to prove the
stability inequality (1.6). To this purpose we first introduce the following useful notation
used throughout the section. For all d > 0 we define Ωd := ω × (−d, d).
Fix L > ℓ, set r = (L+ ℓ)/2 and consider a domain O in R

n, with C2 boundary ∂O,
obeying

Ωℓ ⊂ Ωr ⊂ O ⊂ ΩL. (3.20)

Next choose χ ∈ C∞
0 (Rxn

, [0, 1]) such that

χ(xn) =

{
1 if |xn| ≤ ℓ
0 if |xn| ≥ r.

Put w = χv, where v is the C0([−T, T ]; H1
0(Ω) ∩ H2(Ω)) ∩ C1([−T, T ]; L2(Ω))-solution

to (2.14), in such a way that the restriction w|O of w to O satisfies

w|O ∈ C0([−T, T ]; H1
0(O) ∩ H2(O)) ∩ C1([−T, T ]; L2(O)) (3.21)

and is solution to the following system





−iw′ −∆w + q1w = χf ′ −Kv, in (−T, T )×O,
w(0, x) = iχ(q2 − q1)(x)u0(x), x ∈ O.
w(t, x) = 0, (t, x) ∈ (−T, T )× ∂O,

(3.22)

where K = [∆, χ] = χ̈ + 2χ̇∂xn
. Here χ̇ (resp. χ̈) is a shorthand for the first (resp.

second) derivative of χ.
As a preamble to the proof of the stability inequality stated in Theorem 1.1 we first

establish two elementary technical results.

3.2.1 Two auxiliary results

Lemma 3.3. For s > 0, let φ := e−sηw, where w is defined by (3.21)-(3.22). Then we
have

J := ‖e−sη(0,·)w(0, ·)‖2L2(O) = 2Im

(∫

(−T,0)×O

M1φφdtdx

)
.

Proof. In light of (3.16)-(3.17) we have lim
t↓(−T )

η(t, x) = +∞ for all x ∈ O hence

lim
t↓(−T )

φ(t, x) = 0.
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Therefore J = ‖φ(0, ·)‖2L2(O) =
∫
(−T,0)×O

∂t|φ|
2dtdx, from where we get that

J = 2Re

(∫

(−T,0)×O

∂tφφdtdx

)
. (3.23)

On the other hand, (3.18) and the Green formula yield

Im

(∫

(−T,0)×O

(M1φ)φdtdx

)

= Re

(∫

(−T,0)×O

∂tφφdtdx

)
+ Im

(∫

(−T,0)×O

∆φφdtdx+ s2‖∇ηφ‖2L2(−T,0)×O

)

= Re

(∫

(−T,0)×O

∂tφφdtdx

)
+ Im

(
‖∇φ‖2L2((−T,0)×O)

)
= Re

(∫

(−T,0)×O

∂tφφdtdx

)
,

so the result follows from this and (3.23).

Lemma 3.4. Let w and J be the same as in Lemma 3.3. Then we have

J ≤ s−3/2I(w), s > 0,

where

I(w) := s‖e−sη∇w‖2L2((−T,T )×O) + s3‖e−sηw‖2L2((−T,T )×O) +
∑

j=1,2

‖Mje
−sηw‖2L2((−T,T )×O).

(3.24)

Proof. In view of Lemma 3.3 and the Cauchy-Schwarz inequality, we have

J ≤ 2‖M1φ‖L2((−T,T )×O)‖φ‖L2((−T,T )×O)

≤ s−3/2
(
‖M1(e

−sηw)‖2L2((−T,T )×O) + s3‖e−sηw‖2L2((−T,T )×O)

)
.

This and (3.24) yields the desired result.

3.2.2 Completion of the proof

The next step of the proof involves majorizing I(w) with the aid of the Carleman
inequality of Proposition 3.2. In view of (3.21)-(3.22) and (3.24) the estimate

I(w) ≤ C
(
s‖e−sηϕ1/2(∂νβ)

1/2∂νw‖
2
L2((−T,T )×Γ0)

+ ‖e−sη(χf ′ −Kv)‖2L2((−T,T )×O)

)

≤ C
(
s‖e−sηϕ1/2(∂νβ)

1/2∂νw‖
2
L2((−T,T )×Γ0)

+
∑

j=0,1

‖e−sη∇jv‖2L2((−T,T )×(Ωr\Ωℓ))
+ ‖e−sηχf ′‖2L2((−T,T )×Ωr)

)
, (3.25)
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holds for s ≥ s0. Here and henceforth C denotes a generic positive constant. Bearing
in mind that η(0, x) = inft∈(−T,T ) n(t, x) for all x ∈ Ω and that f ′ = (q2 − q1)u

′
2, u

′
2, we

have
‖e−sηχf ′‖L2((−T,T )×Ωr) ≤ C‖e−sη(0,·)(q1 − q2)‖L2(Ωℓ). (3.26)

Here we used the fact that ‖u′
2‖L∞((−T,T )×Ωℓ) < ∞. On the other hand, the function

ϕ∂νβ being bounded in (−T, T )× Γ0 as well, we deduce from (3.25)-(3.26) that

I(w) ≤ C

(
s‖e−sη(0,·)∂νw‖

2
L2((−T,T )×Γ0)

+
∑

j=0,1

‖e−sη(0,·)∇jv‖2L2((−T,T )×(Ωr\Ωℓ))

+‖e−sη(0,·)(q1 − q2)‖
2
L2(Ωℓ)

)

≤ C
(
obs+ ‖e−sη(0,·)(q1 − q2)‖

2
L2(Ωℓ)

)
, s ≥ s0, (3.27)

where

obs := s‖e−sη(0,·)∂νw‖
2
L2((−T,T )×Γ0)

+
∑

j=0,1

‖e−sη(0,·)∇jv‖2L2((−T,T )×(Ωr\Ωℓ))
. (3.28)

In light of Lemma 3.4, (3.27)-(3.28) then yields

J = ‖e−sη(0,·)χ(q1 − q2)u0‖
2
L2(O) ≤ Cs−3/2

(
obs+ ‖e−sη(0,·)(q1 − q2)‖

2
L2(Ωℓ)

)
, (3.29)

for all s ≥ s0. Further we have J ≥ α2‖e−sη(0,·)(q1−q2)‖
2
L2(Ωℓ)

from the assumption (1.3)
whence

(α2 − Cs−3/2)‖e−sη(0,·)(q1 − q2)‖
2
L2(Ωℓ)

≤ Cs−3/2
obs, s ≥ s0, (3.30)

by (3.29). Chosing s ≥ s0 so large that α2 − Cs−3/2 ≥ α2/2 and taking into account
that infx∈Ωℓ

e−sη(0,x) > 0, we derive from (3.28) and (3.30) that

‖q1 − q2‖
2
L2(Ωℓ)

≤ C

(
‖∂νw‖

2
L2((−T,T )×Γ0)

+
∑

j=0,1

‖∇jv‖2L2((−T,T )×(Ωr\Ωℓ))

)
. (3.31)

Now, recalling from §2.3 that ‖∇jv‖L2((−T,T )×(Ωr\Ωℓ)) = 2‖∇jv‖L2((0,T )×(Ωr\Ωℓ)) for j =
0, 1, and from the identity w = χv that ‖∂νw‖L2((−T,T )×Γ0) = 2‖∂νw‖L2((0,T )×Γ0), it
follows from (3.31) that

‖q1 − q2‖
2
L2(Ω) ≤ C

(
‖∂νw‖

2
L2((0,T )×Γ0)

+
∑

j=0,1

‖∇jv‖2L2((0,T )×(Ωr\Ωℓ))

)
. (3.32)

Here we used the identity ‖q1 − q2‖L2(Ωℓ) = ‖q1 − q2‖L2(Ω) arising from (1.4).

Set Γ1 := ∂ω × (−r, r) and Γ2 := Γ0 ∩ (ΩL \ Ωr) in such a way that

Γ0 = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅,

9



in virtue of (3.20). Since χ(xn) = 0 for every |xn| ≥ r then the function w = χv is
uniformy zero in (0, T )× (ΩL \ Ωr), entailing:

∂νw(t, σ) = 0, (t, σ) ∈ (0, T )× Γ2.

As a consequence we have

‖∂νw‖L2((0,T )×Γ0) = ‖∂νw‖L2((0,T )×Γ1) ≤ C‖∂νv‖L2((0,T )×Γ1).

Putting this together with (3.32) and the identity v = (u1 − u2)
′ we obtain (1.6).
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