
HAL Id: hal-00820404
https://hal.science/hal-00820404

Preprint submitted on 4 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the unsteady Stokes problem with a nonlinear open
artificial boundary condition modelling a singular load

Philippe Angot

To cite this version:
Philippe Angot. On the unsteady Stokes problem with a nonlinear open artificial boundary condition
modelling a singular load. 2013. �hal-00820404�

https://hal.science/hal-00820404
https://hal.archives-ouvertes.fr


On the unsteady Stokes problem with a nonlinear open artificial boundary

condition modelling a singular load

Philippe Angot

Aix-Marseille Université, Laboratoire d’Analyse, Topologie, Probabilités - CNRS UMR7353, Centre de Mathématiques et Informatique, 13453

Marseille Cedex 13 - France.

Abstract

We propose a practical nonlinear open boundary condition of Robin type for unsteady incompressible viscous flows

taking account of the local inflow/outflow volume rate at an open artificial boundary with a singular load. The in-

flow/outflow parameters introduced in the modelling can be connected to the coefficient of singular head loss through

Bernouilli’s theorem of energy balance in a curl-free viscous flow. Then, we prove that this boundary condition leads

to a well-posed unsteady nonlinear Stokes problem, i.e. global in time existence of a weak solution in dimension

d ≤ 3 with no restriction on the data. The proof is carried out by passing to the limit on a sequence of consistent

discrete solutions of a non linear numerical scheme which approximates the original problem. The main ingredients

are Schauder’s fixed-point theorem and Aubin-Lions compactness argument.

Keywords: Open boundary condition, inflow/outflow boundary condition, artificial boundary, singular head loss,

non stationary Stokes problem, unsteady incompressible viscous flow.

2010 MSC: 35A35, 35J50, 35J60, 35J65, 35K40, 35K55, 35K60, 35Q30, 76D03, 76D05, 65M06, 65M12, 65N12

1. Introduction

Let Ω be a bounded and connected open set of Rd, for d = 2 or 3, with a Lipschitz continuous boundary Γ = ∂Ω

and ν be the outward unit normal vector on Γ. We study the non stationary Stokes problem associated with the

following non linear Robin boundary condition for the traction on the whole boundary Γ:































∂v

∂t
− div

(

2µD(v)
)

+ ∇p = f in Ω × (0,T ),

div v = 0 in Ω × (0,T ),

v(t = 0) = v0 in Ω.

(1)

(OBC|Γ)
{

σ(v, p) · ν + 1

2
α(v · ν) v = 0 on Γ × (0,T ), with α(v · ν) = α−(v · ν)− + α+(v · ν)+. (2)

We recall that the positive and negative parts of any real number x ∈ R are defined by

x+ = max(x, 0), x− = −min(x, 0) = max(−x, 0) = (−x)+, x = x+ − x−, |x| = max(x,−x) = x+ + x−.

Here, the tensor D(v) denotes the symmetic part of ∇v and σ(v, p) · ν = −p ν+ 2µD(v) · ν is the stress vector on Γ, the

viscosity µ satisfying 0 < µm ≤ µ(x) ≤ µM a.e. inΩ. The given dimensionless parameters 0 ≤ α−, α+ ≤ 1 represent the

local rates of kinetic energy transfer for the inflow/outflow on Γ due to a singular load downstream from the artificial

boundary. So, by the generalized Bernouilli’s theorem of energy balance in a curl-free incompressible viscous flow
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[12], they are connected to the coefficient of singular head loss for which there exist many tables in experimental fluid

mechanics; see [13, Chap. XII]. Indeed, a part of the kinetic energy on the artificial boundary can be locally absorbed

(for outflow) or provided (for inflow) by the singular load and the other part of the head loss being controlled by the

exterior pressure pe included in the given traction force on Γ, for instance g = −pe ν, which is taken to zero here. By

introducing these inflow/outflow parameters α−, α+, we generalize Bruneau & Fabrie’s outflow boundary condition

which needs a reference solution [10, 11]; see also [6, 22]. Moreover, by choosing α− = α+ = 0, the famous free

outflow or do nothing condition, see e.g. [19, 20, 21, 2, 5], is still available although it only gives local existence in

time or global existence with small data for Navier-Stokes problems; see [25, 20, 23] and also [14, 15] for related

problems.

It is also possible to penalize the Robin condition by taking α(v · ν)|ΓD
= 1/ε on a part ΓD of Γ to reach a velocity

Dirichlet condition at the limit when the penalty parameter ε > 0 tends to zero; see [21, 2, 7]. Finally, such a condition

(OBC|Γ) can be a basis towards some fluid-porous transmission problems like in [1, 2, 3] or [4].

We use below the usual Sobolev functional setting and notations for Navier-Stokes equations; see [9, 26, 8]. Since

we have a traction condition on the whole boundary Γ, we work in the Hilbert space W defined by

W =
{

w ∈ H1(Ω); div w = 0 in Ω
}

equipped with the natural inner product and associated norm in H1(Ω). Then, we have the continuous imbeddings:















(i) W ⊂ L2(Ω) = L2(Ω)′ ⊂W′

(ii) H
1
2 (Γ) ⊂ L2(Γ) = L2(Γ)′ ⊂ H−

1
2 (Γ).

(3)

We use throughout the paper the notation c(Ω) or C(Ω) to denote a generic positive ”constant” depending only on Ω.

We associate to the Stokes problem (1,2) the weak problem below stated using usual integrations by part with

Green’s formula. For v0 ∈ L2(Ω) and f ∈ L2
(

0,T ; L2(Ω)
)

given, find v in L∞(0,T ; L2(Ω)) ∩ L2(0,T ; W) such that
dv
dt
∈ L1(0,T ; W′), v(t = 0) = v0 and satisfying inD′(]0,T [):

d

dt

∫

Ω

v · ϕ dx +

∫

Ω

2µD(v) : D(ϕ) dx +
1

2

∫

Γ

α(v · ν) v · ϕ ds =

∫

Ω

f · ϕ dx, ∀ϕ ∈W. (4)

Then, we have the main result of this paper which is proved in several steps detailed in Sections 2 and 3.

Theorem 1.1 (Existence of weak solution to the nonlinear Stokes problem (1,2) for d ≤ 3). For all v0 ∈ L2(Ω),

f ∈ L2(0,T ; L2(Ω)) and for α(.) ≥ 0 a.e. on Γ given, the problem (1,2) admits at least a weak solution (v, p) satisfying

(4) with v ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; W),
dv

dt
∈ L

4
3 (0,T ; W′) and p ∈ W−1,∞(0,T ; L2(Ω)). Moreover, v is weakly

continuous from [0,T ] into L2(Ω) with v(0) = v0 in L2(Ω) weakly and satisfies the energy inequality for all t ∈ [0,T ]:

1

2

∫

Ω

|v(t)|2 dx +

∫ t

0

∫

Ω

2µ |D(v)|2 dx dτ +
1

2

∫ t

0

∫

Γ

α(v · ν) |v|2 ds dτ ≤ 1

2

∫

Ω

|v0|2 dx +

∫ t

0

∫

Ω

f (τ) · v(τ) dx dτ.

(5)

2. Solvability of discrete Stokes problems with (OBC|Γ)

In this section, we prove the existence of weak solution to a non linear semi-discretization scheme in time which

approximates the Stokes problem (1,2). The proof is carried out using Schauder’s fixed-point theorem, e.g. [17], with

some compactness argument.

For a given time step 0 < δt ≤ T , possibly sufficiently small, un denotes a desired approximation of any function

u(.) at the time tn = nδt for all n ∈ N such that (n + 1)δt ≤ T . More precisely, we have for f ∈ L2(0,T ; L2(Ω)):

f n+1 =
1

δt

∫ (n+1)δt

nδt

f (t) dt ∈ L2(Ω), such that

n
∑

k=0

δt
∥

∥

∥ f k+1
∥

∥

∥

2

0,Ω
≤

n
∑

k=0

∫ (k+1)δt

kδt

∥

∥

∥ f (t)
∥

∥

∥

2

0,Ω
dt ≤

∫ T

0

∥

∥

∥ f (t)
∥

∥

∥

2

0,Ω
dt.
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Let us consider the backward-Euler semi-discretization of the problem (1,2). Here, the non linear term over

the boundary is treated fully-implicitly in time. With the initial data v0 = v0 ∈ L2(Ω), the time discrete solution

(vn+1, pn+1) satisfies the scheme below for all n ∈ N such that (n + 1)δt ≤ T :











































vn+1 − vn

δt
− div

(

2µD(vn+1)
)

+ ∇pn+1 = f n+1 in Ω

div vn+1 = 0 in Ω

σ(vn+1, pn+1) · ν + 1

2
α(vn+1 · ν) vn+1 = 0 on Γ.

(6)

Then, the weak problem associated to the discrete scheme (6) and corresponding to the time discretization of the

weak problem (4) reads as follows. For v0 ∈ L2(Ω) and f ∈ L2(0,T ; L2(Ω)) given, find (vn+1, pn+1) in W× L2(Ω) with

v0 = v0 and satisfying for all n ∈ N such that (n + 1)δt ≤ T :

∫

Ω

vn+1 − vn

δt
· ϕ dx +

∫

Ω

2µD(vn+1) : D(ϕ) dx +
1

2

∫

Γ

α(vn+1 · ν) vn+1 · ϕ ds =

∫

Ω

f n+1 · ϕ dx, ∀ϕ ∈W. (7)

2.1. A priori energy estimates of discrete solutions

Assuming that discrete solutions exist for the previous numerical scheme (6), at least with a time step δt small

enough, we prove some energy bounds showing the unconditional stability of this scheme.

Theorem 2.1 (Stability of the discrete scheme (6,7)). For v0 ∈ L2(Ω), f ∈ L2(0,T ; L2(Ω)) and for all α(.) ≥ 0

a.e. on Γ given, let us assume that there exists, at least for δt small enough, a time discrete solution (vn+1, pn+1) in

W × L2(Ω) to the numerical scheme (6,7). Then, there exists a bound C0 = C0(Ω,T, v0, f ) > 0 depending only on the

data such that, for all 0 < δt < min(1,T ), the following energy estimate holds for all n ∈ N such that (n + 1)δt ≤ T:

∥

∥

∥vn+1
∥

∥

∥

2

0,Ω
+

n
∑

k=0

∥

∥

∥vk+1 − vk
∥

∥

∥

2

0,Ω
+ 4

n
∑

k=0

δt
∥

∥

∥

√
µD(vk+1)

∥

∥

∥

2

0,Ω
+

n
∑

k=0

δt
∥

∥

∥

√

α(vk+1 · ν) vk+1
∥

∥

∥

2

0,Γ
≤ C0(Ω,T, v0, f ). (8)

Proof. By choosing the test function ϕ = 2δt vn+1 ∈W in (7), we get through classical calculations:

∥

∥

∥vn+1
∥

∥

∥

2

0,Ω
−

∥

∥

∥vn
∥

∥

∥

2

0,Ω
+

∥

∥

∥vn+1 − vn
∥

∥

∥

2

0,Ω
+ 4δt

∥

∥

∥

√
µD(vn+1)

∥

∥

∥

2

0,Ω
+ δt

∥

∥

∥

√

α(vn+1 · ν) vn+1
∥

∥

∥

2

0,Γ
= 2δt

∫

Ω

f n+1 · vn+1 dx.

Using the Cauchy-Schwarz and Young inequalities, the right-hand side term can be bounded as below:

2δt

∫

Ω

f n+1 · vn+1 dx ≤ 2δt
∥

∥

∥ f n+1
∥

∥

∥

0,Ω

∥

∥

∥vn+1
∥

∥

∥

0,Ω
≤ δt

∥

∥

∥ f n+1
∥

∥

∥

2

0,Ω
+ δt

∥

∥

∥vn+1
∥

∥

∥

2

0,Ω
.

Using this bound and then summing up, we get the desired estimate thanks to an implicit version of the discrete

Gronwall inequality which holds for δt < 1 with
∑n

k=0 δt ≤ T , together with the initial condition v0 = v0.

2.2. Existence result of the time discrete solution to the scheme (6,7)

We begin by the following preliminary technical lemmas.

Lemma 2.2 (Lipschitz continuity of α(.)). For 0 ≤ α−, α+ ≤ 1, let us define the positive function α : R −→ R
+ by

α(v · ν) = α−(v · ν)− + α+(v · ν)+ for all v ∈ Rd. Then, we have for all u, v ∈ Rd:

0 ≤ α(v · ν) ≤ |v|, and |α(u · ν) − α(v · ν)| ≤ |(u − v) · ν| ≤ |u − v| ,

where |.| denotes the absolute value of a real number or the Euclidean norm in R
d, as far as there is no confusion.

Proof. It is an easy matter using the properties of positive and negative parts of any real number and |ν| = 1.

3



Lemma 2.3 (Estimates for the non linear boundary term for d ≤ 3). There exists c(Ω) > 0 (different for each

inequality) such that for all u, v,w ∈ H1(Ω), the estimates below hold for d ≤ 3:

(i)

∫

Γ

|u| v · w ds ≤ c(Ω)
∥

∥

∥u
∥

∥

∥

1,Ω

∥

∥

∥v
∥

∥

∥

1,Ω

∥

∥

∥w
∥

∥

∥

1
2

0,Ω

∥

∥

∥w
∥

∥

∥

1
2

1,Ω

(ii)

∫

Γ

|u| v · w ds ≤ c(Ω)
∥

∥

∥u
∥

∥

∥

1
4

0,Ω

∥

∥

∥u
∥

∥

∥

3
4

1,Ω

∥

∥

∥v
∥

∥

∥

1,Ω

∥

∥

∥w
∥

∥

∥

1
4

0,Ω

∥

∥

∥w
∥

∥

∥

3
4

1,Ω
.

Proof. We use Hölder inequalities combined with Sobolev imbeddings [9] as well as refined trace inequalities from

[8, Lemma V.2.2]. For (i), we take for instance u ∈ L4(Γ), v ∈ L4(Γ) and w ∈ L2(Γ). For (ii), we choose for example

u, w ∈ L
8
3 (Γ) and v ∈ L4(Γ). Then, the results follow with trace and interpolation inequalities [8, Proposition II.3.7 &

Lemma V.2.2].

Lemma 2.4 (Compact set in L2(Ω)). For all δt > 0, µm > 0 and R > 0, let us define the subset of H1(Ω)

KR(Ω) =

{

w ∈W,
∥

∥

∥w
∥

∥

∥

2

0,Ω
≤ R and µm δt

∥

∥

∥D(w)
∥

∥

∥

2

0,Ω
≤ R

}

.

Then, KR(Ω) ⊂W is a compact and convex subset in L2(Ω).

Proof. The proof is immediate using Korn’s first inequality [18, Chap. I.5] and the compact injection of H1(Ω) into

L2(Ω) thanks to Rellich’s compactness theorem, see e.g. [9].

For any v given in H1(Ω), let us first consider the following linear discrete scheme. For v0 ∈ L2(Ω), f ∈
L2(0,T ; L2(Ω)) given, find (vn+1 = v(v), pn+1 = p(v)) in W × L2(Ω) with v0 = v0 and satisfying for all n ∈ N

such that (n + 1)δt ≤ T :

∫

Ω

vn+1 − vn

δt
· ϕ dx +

∫

Ω

2µD(vn+1) : D(ϕ) dx +
1

2

∫

Γ

α(v · ν) vn+1 · ϕ ds =

∫

Ω

f n+1 · ϕ dx, ∀ϕ ∈W. (9)

Then, we have the following well-posedness and energy estimate results for the linear problem.

Theorem 2.5 (Existence and uniqueness of solution to discrete Stokes problem (9)). Let v be given in H1(Ω).

Then, with v0 ∈ L2(Ω), f ∈ L2(0,T ; L2(Ω)) and α(.) ≥ 0 a.e. on Γ given, and for all δt > 0, there exists for all n ∈ N
such that (n + 1)δt ≤ T a unique solution (vn+1 = v(v), pn+1) = p(v) in W × L2(Ω) to the discrete Stokes problem (9).

Moreover, there exists a bound C0 = C0(Ω,T, v0, f ) > 0 depending only on the data such that, for all 0 < δt <

min(1,T ), the following energy estimate holds for all n ∈ N such that (n + 1)δt ≤ T:

∥

∥

∥vn+1
∥

∥

∥

2

0,Ω
+

n
∑

k=0

∥

∥

∥vk+1 − vk
∥

∥

∥

2

0,Ω
+ 4

n
∑

k=0

δt
∥

∥

∥

√
µD(vk+1)

∥

∥

∥

2

0,Ω
+

n
∑

k=0

δt
∥

∥

∥

√

α(v · ν) vk+1
∥

∥

∥

2

0,Γ
≤ C0(Ω,T, v0, f ). (10)

Proof. The proof is made by an easy induction. We first apply at each time step tn = nδt the Lax-Milgram theorem

[9] in the Hilbert space W to solve the weak problem (9) for vn+1 ∈W. The continuity of the bilinear form is obtained

using Lemma 2.2 and (i) in Lemma 2.3 whereas the coercivity in H1(Ω) is ensured thanks to Korn’s classical inequality

and α(.) ≥ 0. Then, the estimate (10) holds similarly as (8) in Theorem 2.1 with the same bound C0.

Conversely, by taking in (9) a smooth and compactly supported test function ϕ ∈ C∞c (Ω)d = D(Ω)d such that

divϕ = 0 in Ω, we get using De Rham’s theorem in H−1(Ω) [18, Lemma I.2.1] that there exists pn+1
0
∈ L2

0
(Ω), which

is unique if Ω is connected, and such that the Stokes equation in (6) is satisfied in H−1(Ω). Then, using [18, Lemma

I.2.2] we construct an ad hoc divergence-free extension in W of any function in H
1
2 (Γ). Thanks to that with ϕ ∈W in

(9) and adapting the proof given in [8, Chap. III.5.2] for the Stokes problem with a Neumann boundary condition, it

turns out that the open condition (OBC|Γ) is satisfied in H−
1
2 (Γ) with the pressure field, unique as soon as vn+1 and v

are given, pn+1(v) = pn+1
0
+Cn+1

Γ
(v) ∈ L2(Ω) where the constant Cn+1

Γ
(v) is given by, |Γ| being the measure of Γ:

Cn+1
Γ (v) =

1

|Γ|

〈(

σ(vn+1, pn+1
0 ) · ν + 1

2
α(v · ν) vn+1

)

, ν

〉

− 1
2
,Γ

.

4



Theorem 2.6 (Existence of solution to discrete Stokes scheme (6,7) for d ≤ 3). Let us give v0 ∈ L2(Ω), f ∈
L2(0,T ; L2(Ω)), α(.) ≥ 0 a.e. on Γ and 0 < δt < min(1,T ).

Then for all n ∈ N such that (n + 1)δt ≤ T, there exists at least one solution (vn+1, pn+1) in W × L2(Ω) to the non

linear discrete scheme (6,7). Moreover, this solution satisfies the stability estimate (8) stated in Theorem 2.1.

Proof. Let us choose R = C0 where C0 = C0(Ω,T, v0, f ) > 0 is the bound given in (10) stated by Theorem 2.5. We

consider the set KR(Ω) ⊂ W, as defined in Lemma 2.4, which is a convex and compact subset of L2(Ω). Let us now

define the application S : KR(Ω) −→ W by S (v) = vn+1 for all v ∈ KR(Ω), where vn+1 = v(v) ∈ W is the solution of

the linear discrete Stokes problem (9) as stated in Theorem 2.5. First, we notice that the range of S , S (KR(Ω)) with

R = C0, is included in KR(Ω). Indeed, whatever v in H1(Ω) and in particular for all v ∈ KR(Ω) ⊂ W, the solution

vn+1 = v(v) ∈ W of (9) satisfies the energy estimate (10) given in Theorem 2.5. With µ(.) ≥ µm, this implies that for

all n ∈ N such that (n + 1)δt ≤ T , vn+1 = S (v) belongs to KR(Ω) with R = C0 and we have S (KR(Ω)) ⊂ KR(Ω).

Let us now prove that the application S is a continuous map on KR(Ω). For any v ∈ KR(Ω), let us consider a

sequence (vl)l∈N in KR(Ω) which converges to v, i.e.
∥

∥

∥vl − v
∥

∥

∥

1,Ω
→ 0 when l→ +∞. We define wn+1

l
= S (vl) − S (v) =

vn+1
l
− vn+1 ∈W with w0

l
= 0. Then, the weak problem satisfied by wn+1

l
for all ϕ ∈W reads:

∫

Ω

wn+1
l
− wn

l

δt
· ϕ dx +

∫

Ω

2µD(wn+1
l ) : D(ϕ) dx +

1

2

∫

Γ

α(vl · ν) wn+1
l · ϕ ds = −1

2

∫

Γ

(α(vl · ν) − α(v · ν)) vn+1 · ϕ ds.

We now choose the test function ϕ = 2δt wn+1
l
∈W and bound the right-hand side term as below. For that, we use the

Lipschitz continuity of α(.) from Lemma 2.2 and the estimate (i) in Lemma 2.3. Then, we get

δt

∣

∣

∣

∣

∣

∫

Γ

(α(vl · ν) − α(v · ν)) vn+1 · wn+1
l ds

∣

∣

∣

∣

∣

≤ c(Ω) δt
∥

∥

∥vl − v
∥

∥

∥

1,Ω

∥

∥

∥vn+1
∥

∥

∥

1,Ω

∥

∥

∥wn+1
l

∥

∥

∥

1,Ω
.

Using this bound and summing up similarly as in the proof of Theorem 2.1 with w0
l
= 0, it yields:

∥

∥

∥wn+1
l

∥

∥

∥

2

0,Ω
+

n
∑

k=0

∥

∥

∥wk+1
l − wk

l

∥

∥

∥

2

0,Ω
+ 4

n
∑

k=0

δt
∥

∥

∥

√
µD(wk+1

l )
∥

∥

∥

2

0,Ω
+

n
∑

k=0

δt
∥

∥

∥

√

α(vl · ν) wk+1
l

∥

∥

∥

2

0,Γ

≤ c(Ω)
∥

∥

∥vl − v
∥

∥

∥

1,Ω

n
∑

k=0

δt
∥

∥

∥vk+1
∥

∥

∥

1,Ω

∥

∥

∥wk+1
l

∥

∥

∥

1,Ω
.

We now observe that the sequence
∥

∥

∥wk+1
l

∥

∥

∥

1,Ω
=

∥

∥

∥vk+1
l
− vk+1

∥

∥

∥

1,Ω
is bounded independently of l since vn+1

l
= S (vl)

belongs toKR(Ω) with R = C0 for all n ∈ N such that (n+ 1)δt ≤ T , whatever l. Then, passing to the limit for l→ +∞
in the previous inequality, we get since

∥

∥

∥vl − v
∥

∥

∥

1,Ω
→ 0 that

∥

∥

∥wn+1
l

∥

∥

∥

1,Ω
=

∥

∥

∥S (vl) − S (v)
∥

∥

∥

1,Ω
→ 0. This shows that S is

a continuous map from KR(Ω) onto KR(Ω).

Then, as a consequence of Schauder’s fixed-point theorem, e.g. [17], the application S has a fixed point in

KR(Ω), still denoted by vn+1 ∈ W. Hence, for this fixed point with v = vn+1, the corresponding solution vn+1, pn+1 in

W × L2(Ω) to the scheme (9) is a solution to the discrete Stokes problem (6,7) and satisfies the energy estimate (8)

stated in Theorem 2.1. This concludes the proof.

Lemma 2.7 (Bound for the time derivative for the discrete problem (6,7) with d ≤ 3). For v0 ∈ L2(Ω), f ∈
L2(0,T ; L2(Ω)) and for all α(.) ≥ 0 a.e. on Γ given, let us consider a solution (vn+1, pn+1) in W× L2(Ω) to the discrete

Stokes problem (6,7) as stated in Theorem 2.6 with 0 < δt < min(1,T ). Then, there exists C1 = C1(Ω,T, µM , v0, f ) > 0

depending only on the data such that the following bound holds for all n ∈ N such that (n + 1)δt ≤ T:

n
∑

k=0

δt

∥

∥

∥

∥

∥

∥

vk+1 − vk

δt

∥

∥

∥

∥

∥

∥

4
3

W′
≤ C1(Ω,T, µM , v0, f ). (11)

Proof. From the weak form (7) with (i) in (3), we have for all ϕ ∈W:

〈

vk+1 − vk

δt
, ϕ

〉

W′,W

=

∫

Ω

vk+1 − vk

δt
· ϕ dx =

∫

Ω

f k+1 · ϕ dx −
∫

Ω

2µD(vk+1) : D(ϕ) dx − 1

2

∫

Γ

α(vk+1 · ν) vk+1 · ϕ ds.
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Let us give a bound for each term in the right-hand side for d = 3.
∫

Ω

f k+1 · ϕ dx ≤
∥

∥

∥ f k+1
∥

∥

∥

0,Ω

∥

∥

∥ϕ
∥

∥

∥

0,Ω
≤

∥

∥

∥ f k+1
∥

∥

∥

0,Ω

∥

∥

∥ϕ
∥

∥

∥

1,Ω
.

∫

Ω

2µD(vk+1) : D(ϕ) dx ≤ 2µM

∥

∥

∥D(vk+1)
∥

∥

∥

0,Ω

∥

∥

∥D(ϕ)
∥

∥

∥

0,Ω

≤ 2µM

∥

∥

∥D(vk+1)
∥

∥

∥

0,Ω

∥

∥

∥ϕ
∥

∥

∥

1,Ω
.

Using Lemma 2.2 and the bound (ii) in Lemma 2.3 with the symmetry of the scalar product in R
d, we have:

1

2

∫

Γ

α(vk+1 · ν) vk+1 · ϕ ds ≤ c(Ω)

2

∥

∥

∥vk+1
∥

∥

∥

1
2

0,Ω

∥

∥

∥vk+1
∥

∥

∥

3
2

1,Ω

∥

∥

∥ϕ
∥

∥

∥

1,Ω
.

With these bounds and
∥

∥

∥ϕ
∥

∥

∥

W
=

∥

∥

∥ϕ
∥

∥

∥

1,Ω
for all ϕ ∈W, we get for all k ∈ N such that (k + 1)δt ≤ T for d ≤ 3:

∥

∥

∥

∥

∥

∥

vk+1 − vk

δt

∥

∥

∥

∥

∥

∥

W′
≤

∥

∥

∥ f k+1
∥

∥

∥

0,Ω
+ 2µM

∥

∥

∥D(vk+1)
∥

∥

∥

0,Ω
+

c(Ω)

2

∥

∥

∥vk+1
∥

∥

∥

1
2

0,Ω

∥

∥

∥vk+1
∥

∥

∥

3
2

1,Ω
.

From the convexity of the function x :−→ x
4
3 on R+, we have for all a, b ≥ 0

(

a + b

2

)
4
3

≤ 1

2

(

a
4
3 + b

4
3

)

, and thus (a + b)
4
3 ≤ 2

1
3

(

a
4
3 + b

4
3

)

.

Then, we get using the first Korn inequality:

∥

∥

∥

∥

∥

∥

vk+1 − vk

δt

∥

∥

∥

∥

∥

∥

4
3

W′
≤ c

(

∥

∥

∥ f k+1
∥

∥

∥

4
3

0,Ω
+ (2µM)

4
3

∥

∥

∥D(vk+1)
∥

∥

∥

4
3

0,Ω
+ c1(Ω)

∥

∥

∥vk+1
∥

∥

∥

2
3

0,Ω

∥

∥

∥vk+1
∥

∥

∥

2

1,Ω

)

≤ c

(

∥

∥

∥ f k+1
∥

∥

∥

4
3

0,Ω
+ (2µM)

4
3

∥

∥

∥D(vk+1)
∥

∥

∥

4
3

0,Ω
+ c2(Ω)

∥

∥

∥vk+1
∥

∥

∥

2
3

0,Ω

(

∥

∥

∥vk+1
∥

∥

∥

2

0,Ω
+

∥

∥

∥D(vk+1)
∥

∥

∥

2

0,Ω

))

.

Hence, after multiplying by δt, summing up over k = 0 to n and using Hölder’s inequality with the stability

estimate (8) from Theorem 2.1, we get the desired bound.

3. Global solvability of the Stokes problem with (OBC|Γ) and uniqueness for d ≤ 3

In this section, we pass to the limit on the sequence of time consistent approximate solutions of our problem when

the time step δt tends to zero using Aubin-Lions sequential compactness theorem [24, Chap. 1.5].

3.1. Convergence of approximate solutions for δt → 0

For any integer N ∈ N, we set δt = δtN = T/(N + 1) such that δt → 0+ when N → +∞; further, we omit the index

N for sake of simplicity in the notations and just say δt → 0. Let us consider the partition of the interval [0,T ] formed

by the points tk = kδt for k = 0, · · · ,N + 1. By considering the solutions of the discrete scheme (6,7), let us construct

the sequences of approximate solutions (vδt) and (vδt) (for δt = δtN , N = 0, 1, 2, · · · ) which are functions from [0,T ]

into W defined by:

vδt(0) = v0 = v0, vδt(t) = vk+1, ∀t ∈]tk, tk+1], k = 0, · · · ,N

vδt(t) =
tk+1 − t

δt
vk +

t − tk

δt
vk+1, ∀t ∈ [tk, tk+1], k = 0, · · · ,N.

Thus, vδt is piecewise constant on [0,T ], vδt is piecewise linear such that vδt(tk) = vk for all k = 0, · · · ,N+1, continuous

in [0,T ], differentiable almost everywhere in [0,T ] and we have:

dvδt

dt
(t) =

vk+1 − vk

δt
, ∀t ∈]tk, tk+1[, k = 0, · · · ,N.

We also define the sequence ( f δt) of functions in L2(0,T ; L2(Ω)) by: f δt(t) = f k+1 for all t ∈]tk, tk+1], k = 0, · · · ,N,

which are piecewise constant on [0,T ].

Then, from the bounds (8) and (11), we have below the convergence results for these sequences.
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Theorem 3.1 (Convergence results for the sequences of approximate solutions (vδt), (vδt)). The sequences (vδt) and

(vδt) (δt = δtN = T/(N +1), N ∈ N) are both bounded, independently of δt, in the space L∞(0,T ; L2(Ω))∩ L2(0,T ; W)

and the sequence (
dvδt
dt

) is bounded in the space L
4
3 (0,T,W′) for d ≤ 3. We have also:

∥

∥

∥vδt − vδt
∥

∥

∥

L2(0,T ;L2(Ω))
−→ 0 when δt → 0.

Hence, there exists v ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; W) with dv
dt
∈ L

4
3 (0,T,W′) and v ∈ C([0,T ]; W′), v weakly

continuous from [0,T ] into L2(Ω) such that, up to subsequences still denoted by the same notations, we have as

δt = δtN → 0 when N → +∞:

(i) vδt ⇀ v and vδt ⇀ v in L∞(0,T ; L2(Ω)) weak-⋆

(ii) vδt ⇀ v and vδt ⇀ v in L2(0,T ; W) weakly

(iii)
dvδt

dt
⇀

dv

dt
in L

4
3 (0,T ; W′) weakly

(iv) vδt −→ v and vδt −→ v in L2(0,T ; L2(Ω)) strongly

(v) (vδt)|Γ −→ v|Γ and (vδt)|Γ −→ v|Γ in L2(0,T ; L2(Γ)) strongly

(vi) f δt −→ f in L2(0,T ; L2(Ω)) strongly.

Proof. The proof is standard from the works of [24, Chap. 4.1] and [26, Chap. III.4]. So, we just recall here the

main arguments and for more details, we refer the reader to [16, Chap. 8.7] where a similar situation is studied for

Navier-Stokes equations with homogeneous Dirichlet boundary conditions. Let us give some crucial hints in our case.

The boundedness of the sequences (vδt) and (vδt) in the spaces L∞(0,T ; L2(Ω)) and L2(0,T ; W) is an immediate

consequence of their definitions using the estimates from (8). The boundedness of the sequence (
dvδt
dt

) in the space

L
4
3 (0,T,W′) comes immediately from the estimate (11) in Lemma 2.7.

Moreover, we easily get using the estimate (8):

∫ T

0

∥

∥

∥vδt(t) − vδt(t)
∥

∥

∥

2

0,Ω
dt =

δt

3

N
∑

k=0

∥

∥

∥vk+1 − vk
∥

∥

∥

2

0,Ω
≤ C0 δt

3
.

This shows that (vδt − vδt) −→ 0 in L2(0,T ; L2(Ω)) as δt → 0 and thus (vδt) and (vδt) have the same limit v.

Then, from the boundedness of the sequences (vδt) and (vδt), the weak convergence follows, up to subsequences

with possibly two extractions, from the Banach-Alaoglu theorem [9]. Since the weak convergence implies conver-

gence in the sense of distributions inD′(]0,T [×Ω), the same weak weak limit is reached for each subsequence thanks

to the uniqueness of the limit of a sequence in the sense of distributions. Since the time derivative operator is contin-

uous in the distribution sense, the weak limit of
dvδt
dt

is necessarily dv
dt

in L
4
3 (0,T ; W′).

Finally, the strong convergence of the sequence (vδt) towards v in L2(0,T ; L2(Ω)), and thus also the strong con-

vergence of the sequence (vδt), follows from what precedes using Aubin-Lions compactness theorem [8, Theorem

II.5.15] since the injection of H1(Ω) into L2(Ω) is compact.

Besides, from a trace inequality which holds for d ≤ 3, we get with the Hölder inequality:

∫ T

0

∥

∥

∥vδt − v
∥

∥

∥

2

0,Γ
dt ≤ c(Ω)2

(∫ T

0

∥

∥

∥vδt − v
∥

∥

∥

2

0,Ω
dt

)

1
2
(∫ T

0

∥

∥

∥vδt − v
∥

∥

∥

2

1,Ω
dt

)

1
2

.

The first integral in the right-hand side tends to zero with the strong convergence of vδt in L2(0,T ; L2(Ω)) whereas the

second one remains bounded. Hence we have: (vδt)|Γ −→ v|Γ in L2(0,T ; L2(Γ)) strongly.

3.2. Proof of Theorem 1.1

3.2.1. Passing to the limit in the approximate problem (6,7) and existence result for the problem (1,2)

By using the definitions of (vδt), (vδt) and ( f δt), we can interpret the weak form (7) of the scheme (6) with a

time-dependent test function. With the regularity properties of (vδt), (vδt) and ( f δt) in Theorem 3.1, it makes sense to
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integrate in time over [0,T ] since we have v ∈ C([0,T ]; W′) from [8, Proposition II.5.10]. Hence, we have for all

ψ ∈ C∞c (]0,T [; W) since ψ is smooth in time:

∫ T

0

〈

dvδt

dt
, ψ(t)

〉

W′,W

dt +

∫ T

0

∫

Ω

2µD(vδt) : D(ψ) dx dt +
1

2

∫ T

0

∫

Γ

α(vδt · ν) vδt · ψ ds dt =

∫ T

0

∫

Ω

f δt(t) · ψ dx dt.

Now, using the convergence results in Theorem 3.1, we can pass to the limit of each term in the above equation as

δt → 0. The convergence is immediate in the linear terms using the weak limits. Let us deal with the non linear term

which is non standard and requires compactness. More precisely, we have with the triangular inequality

∣

∣

∣

∣

∣

∣

∫ T

0

∫

Γ

(

α(vδt · ν) vδt · ψ(t) − α(v · ν) v · ψ(t)
)

ds dt

∣

∣

∣

∣

∣

∣

≤
∫ T

0

∫

Γ

∣

∣

∣α(v · ν) (vδt − v) · ψ(t)
∣

∣

∣ ds dt +

∫ T

0

∫

Γ

∣

∣

∣ (α(vδt · ν) − α(v · ν)) vδt · ψ(t)
∣

∣

∣ ds dt.

Let us prove that each term in the right-hand side of this inequality tends to zero. For the first term, we use the

continuity of α(.) from Lemma 2.2 and the estimate (i) in Lemma 2.3. Then, by using Hölder’s inequality with
∥

∥

∥ψ(.)
∥

∥

∥

1,Ω
∈ L∞(]0,T [), it yields:

∫ T

0

∫

Γ

∣

∣

∣α(v · ν) (vδt − v) · ψ(t)
∣

∣

∣ ds dt ≤ c(Ω)
∥

∥

∥ψ
∥

∥

∥

L∞(0,T ;H1(Ω))

∥

∥

∥v
∥

∥

∥

L2(0,T ;H1(Ω))

∥

∥

∥vδt − v
∥

∥

∥

L2(0,T ;L2(Ω))

∥

∥

∥vδt − v
∥

∥

∥

L2(0,T ;H1(Ω))
.

It shows that this term tends to zero since
∥

∥

∥vδt − v
∥

∥

∥

L2(0,T ;L2(Ω))
→ 0 thanks to the strong convergence of vδt in

L2(0,T ; L2(Ω)) from Theorem 3.1, the other norms being bounded. For the second term, we use the Lipschitz conti-

nuity of α(.) from Lemma 2.2 and the estimate (i) in Lemma 2.3; we get

∫ T

0

∫

Γ

∣

∣

∣ (α(vδt · ν) − α(v · ν)) vδt · ψ(t)
∣

∣

∣ ds dt ≤ c(Ω)

∫ T

0

∥

∥

∥vδt − v
∥

∥

∥

1
2

0,Ω

∥

∥

∥vδt − v
∥

∥

∥

1
2

1,Ω

∥

∥

∥vδt
∥

∥

∥

1,Ω

∥

∥

∥ψ(t)
∥

∥

∥

1,Ω
dt.

Then with Hölder’s inequality and similarly as for the previous term, this term also tends to zero for the same argu-

ments. Hence, it follows that

∣

∣

∣

∣

∣

∣

∫ T

0

∫

Γ

α(vδt · ν) vδt · ψ(t) ds dt −
∫ T

0

∫

Γ

α(v · ν) v · ψ(t) ds dt

∣

∣

∣

∣

∣

∣

−→ 0 when δt → 0.

Since, for ψ(t) ∈ H1(Ω) we have the trace ψ(t)|Γ in L4(Γ) for d ≤ 3, this implies that: (α(vδt · ν) vδt)|Γ −→ α(v · ν) v|Γ in

L2(0,T ; L
4
3 (Γ)) weakly. Hence, we can pass above to the limit as δt → 0 and it yields for all ψ ∈ C∞c (]0,T [; W):

∫ T

0

〈

dv

dt
, ψ(t)

〉

W′,W

dt +

∫ T

0

∫

Ω

2µD(v) : D(ψ(t)) dx dt +
1

2

∫ T

0

∫

Γ

α(v · ν) v · ψ(t) ds dt =

∫ T

0

∫

Ω

f (t) · ψ(t) dx dt.

(12)

This shows that v ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; W), with
dv

dt
∈ L

4
3 (0,T,W′) and v ∈ C([0,T ]; W′), is a weak solution

to the nonlinear Stokes problem (1,2) for d ≤ 3 and we have v(0) = v0 in W′ and weakly in L2(Ω).

3.2.2. Energy inequality

To obtain the energy inequality, the usual technique consists in taking the lower limit as δt → 0 of the energy

estimate of the discrete scheme using the fact that the norm is lower semi-continuous for the weak topology in a

Banach space which is a consequence of the Banach-Steinhaus theorem; see [9].

By choosing the test function ϕ = δt vn+1 ∈W in (7), we get through classical calculations:

1

2

∥

∥

∥vn+1
∥

∥

∥

2

0,Ω
− 1

2

∥

∥

∥vn
∥

∥

∥

2

0,Ω
+

1

2

∥

∥

∥vn+1 − vn
∥

∥

∥

2

0,Ω
+ 2δt

∥

∥

∥

√
µD(vn+1)

∥

∥

∥

2

0,Ω
+

1

2
δt

∥

∥

∥

√

α(vn+1 · ν) vn+1
∥

∥

∥

2

0,Γ
= δt

∫

Ω

f n+1 · vn+1 dx.
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For any t ∈ [0,T ], let us choose the sequence of mesh steps defined by δt = δtN = t/(N + 1) for N ∈ N. Then, after

summing up the above equality for n = 0 to N and dropping the positive term
∥

∥

∥vn+1 − vn
∥

∥

∥

2

0,Ω
, we get the inequality:

1

2

∥

∥

∥vN+1
∥

∥

∥

2

0,Ω
+ 2

N
∑

n=0

δt
∥

∥

∥

√
µD(vn+1)

∥

∥

∥

2

0,Ω
+

1

2

N
∑

n=0

δt
∥

∥

∥

√

α(vn+1 · ν) vn+1
∥

∥

∥

2

0,Γ
≤ 1

2

∥

∥

∥v0

∥

∥

∥

2

0,Ω
+

N
∑

n=0

δt

∫

Ω

f n+1 · vn+1 dx.

Now using the definition of f n+1 and the sequence (vδt), we can interpret the previous inequality as below:

1

2

∥

∥

∥vδt(t)
∥

∥

∥

2

0,Ω
+ 2

∫ t

0

∥

∥

∥

√
µD(vδt)

∥

∥

∥

2

0,Ω
dτ +

1

2

∫ t

0

∥

∥

∥

√

α(vδt · ν) vδt
∥

∥

∥

2

0,Γ
dτ ≤ 1

2

∥

∥

∥v0

∥

∥

∥

2

0,Ω
+

∫ t

0

∫

Ω

f (τ) · vδt dx dτ.

Then, using the weak convergence results stated above in Theorem 3.1, we can take the lower limit of the previous

inequality which gives using the lower weak semi-continuity of the norm in a Banach space:

1

2

∥

∥

∥v(t)
∥

∥

∥

2

0,Ω
+ 2

∫ t

0

∥

∥

∥

√
µD(v)

∥

∥

∥

2

0,Ω
dτ +

1

2

∫ t

0

∥

∥

∥

√

α(v · ν) v
∥

∥

∥

2

0,Γ
dτ ≤ 1

2

∥

∥

∥v0

∥

∥

∥

2

0,Ω
+

∫ t

0

∫

Ω

f (τ) · v(τ) dx dτ.

This is the desired energy inequality (5) and for more details, we refer the reader to the proof in [8, Chap. IV.1.9] for

a similar situation.

3.2.3. Existence and regularity of the pressure field

The recovering of the pressure field in Ω is carried out in two steps. The first step is classical by using De

Rham’s theorem in H−1(Ω) at each time t ∈ [0,T ]. We follow with minor modifications the detailed proof given in

[8, Chap. IV.1.10] for the Navier-Stokes equations with homogeneous Dirichlet boundary condition. Hence, it gives

the existence of p0 ∈ W−1,∞(]0,T [; L2
0
(Ω)) such that the Stokes equation is satisfied in (0,T ) × Ω in the sense of

distributions, i.e. we have:
∂v

∂t
− div

(

2µD(v)
)

+ ∇p0 = f in D′ (]0,T [×Ω) .

Moreover, the domain Ω being connected, the pressure field p0 is unique as soon as the velocity field v is determined.

Second, we proceed similarly as in the proof of Theorem 2.5 for the stationary Stokes problem by using an ad hoc

divergence-free extension in W of any function in H
1
2 (Γ). Then, by testing the weak problem with any test function

ψ ∈ C∞c (]0,T [; W) and taking account of the previous equation, we get the time-dependent function CΓ ∈ L2(]0,T [)

such that the open boundary condition (2) is satisfied in the weak sense of L2(0,T ; H−
1
2 (Γ)) with the pressure field

p = p0 +CΓ ∈ W−1,∞(]0,T [; L2(Ω)).

This completes the proof of Theorem 1.1.

Remark 1 (On the uniqueness for the Stokes problem with (OBC|Γ) for d = 2). In dimension d = 2, we can show using

a refined trace estimate in Lemma 2.7 that the velocity time derivative dv
dt

only belongs to the space L2−ǫ(0,T ; W′) for

any 0 < ǫ < 1. This is due to the kinetic energy term on the boundary and, roughly speaking, because H1(Ω) is only

embedded in Lq(Ω) for all 2 ≤ q < +∞ and not in L∞(Ω), for d = 2. It follows that the uniqueness in 2-D, except for

the linear case when α(.) = 0, is not a priori ensured for this class of weak solutions.

Nevertheless, if v is a little bit more regular such that dv
dt
∈ L2(0,T ; W′), then the solution v ∈ C

(

[0,T ]; L2(Ω)
)

is

unique and does satisfy the so-called energy equality. But the existence of such a solution is not guaranteed and needs

a deeper analysis of this case.
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