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We study the existence of weak solutions to (E) (-∆) α u + g(u) = ν in a bounded regular domain Ω in R N (N ≥ 2) which vanish in R N \ Ω, where (-∆) α denotes the fractional Laplacian with α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some extra hypotheses. When g satisfies a subcritical integrability condition, we prove the existence and uniqueness of a weak solution for problem (E) for any measure. In the case where ν is Dirac measure, we characterize the asymptotic behavior of the solution. When g(r) = |r| k-1 r with k supercritical, we show that a condition of absolute continuity of the measure with respect to some Bessel capacity is a necessary and sufficient condition in order (E) to be solved.

Introduction

Let Ω ⊂ R N be an open bounded C 2 domain and g : R → R be a continuous function. We are concerned with the existence of weak solutions to the semilinear fractional elliptic problem

(-∆) α u + g(u) = ν in Ω, u = 0 in Ω c , (1.1) 
where α ∈ (0, 1), ν is a Radon measure such that Ω ρ β d|ν| < ∞ for some β ∈ [0, α] and ρ(x) = dist(x, Ω c ). The fractional Laplacian (-∆) α is defined by (-∆) α u(x) = lim

ǫ→0 + (-∆) α ǫ u(x),
where for ǫ > 0,

(-∆) α ǫ u(x) = - R N u(z) -u(x) |z -x| N +2α χ ǫ (|x -z|)dz (1.2)
and

χ ǫ (t) = 0, if t ∈ [0, ǫ],
1, if t > ǫ.

When α = 1, the semilinear elliptic problem

-∆u + g(u) = ν in Ω, u = 0 on ∂Ω, (1.3) 
has been extensively studied by numerous authors in the last 30 years. A fundamental contribution is due to Brezis [START_REF] Brezis | Some variational problems of the Thomas-Fermi type. Variational inequalities and complementarity problems[END_REF], Benilan and Brezis [START_REF] Ph | Nonlinear problems related to the Thomas-Fermi equation[END_REF], where ν is a bounded measure in Ω and the function g : R → R is nondecreasing, positive on (0, +∞) and satisfies the subcritical assumption: +∞ 1 (g(s) -g(-s))s -2 N-1 N-2 ds < +∞.

They proved the existence and uniqueness of the solution for problem (1.3). Baras and Pierre [START_REF] Baras | Singularité séliminables pour des équations semi linéaires[END_REF] studied (1.3) when g(u) = |u| p-1 u for p > 1 and ν is absolutely continuous with respect to the Bessel capacity C 2, p p-1

, to obtain a solution. In [START_REF] Véron | Elliptic equations involving Measures[END_REF] Véron extended Benilan and Brezis results in replacing the Laplacian by a general uniformly elliptic second order differential operator with Lipschitz continuous coefficients; he obtained existence and uniqueness results for solutions, when ν ∈ M(Ω, ρ β ) with β ∈ [0, 1] where M(Ω, ρ β ) denotes the space of Radon measures in Ω satisfying

Ω ρ β d|ν| < +∞, (1.4) 
M(Ω, ρ 0 ) = M b (Ω) is the set of bounded Radon measures and g is nondecreasing and satisfies the β-subcritical assumption:

+∞ 1 (g(s) -g(-s))s -2 N+β-1 N+β-2 ds < +∞.

The study of general semilinear elliptic equations with measure data have been investigated, such as the equations involving measures boundary data which was initiated by Gmira and Véron [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] who adapted the method introduced by Benilan and Brezis to obtain the existence and uniqueness of solution. This subject has been vastly expanded in recent years, see the papers of Marcus and Véron [START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case[END_REF][START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case[END_REF][START_REF] Marcus | Removable singularities and boundary traces[END_REF][START_REF] Marcus | The boundary trace and generalized B.V.P. for semilinear elliptic equations with coercive absorption[END_REF], Bidaut-Véron and Vivier [5], Bidaut-Véron, Hung and Véron [START_REF] Bidaut-Véron | Quasilinear Lane-Emden equations with absorption and measure data[END_REF]. Recently, great attention has been devoted to non-linear equations involving fractional Laplacian or more general integro-differential operators and we mention the reference [START_REF] Cabré | Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates[END_REF][START_REF] Caffarelli | An extension problem related to the fractional laplacian[END_REF][START_REF] Caffarelli | Regularity theory for fully non-linear integrodifferential equations[END_REF][START_REF] Chen | Large solution to elliptic equations involving fractional Laplacian[END_REF][START_REF] Chen | Classification of solutions for an integral equation[END_REF][START_REF] Li | Remark on some conformally invariant integral equations: the method for moving spheres[END_REF][START_REF] Ros-Oton | The Dirichlet problem for the fractional laplacian: regularity up to the boundary[END_REF][START_REF] Sire | Fractional laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result[END_REF]. In particular, the authors in [START_REF] Karisen | A duality approach to the fractional laplacian with measure data[END_REF] used the duality approach to study the equations of

(-∆) α v = µ in R N ,
where µ is a Radon measure with compact support. In [START_REF] Chen | Large solution to elliptic equations involving fractional Laplacian[END_REF] the authors obtained the existence of large solutions to equation

(-∆) α u + g(u) = f in Ω, (1.5) 
where Ω is a bounded regular domain. In [START_REF] Chen | Singular solutions of fractional elliptic equations with absorption[END_REF] we considered the properties of possibly singular solutions of (1.5) in punctured domain . It is a well-known fact [START_REF] Véron | Singular solutions of some nonlinear elliptic equations[END_REF] that for α = 1 the weak singular solutions of (1.5) in punctured domain are classified according the type of singularities they admits: either weak singularities with Dirac mass, or strong singularities which are the upper limit of solutions with weak singularities. One of our interests is to extend these properties to any α ∈ (0, 1) and furthermore to consider general Radon measures.

In this paper we study the existence and uniqueness of solutions of (1.1) in a measure framework. Before stating our main theorem we make precise the notion of weak solution used in this article.

Definition 1.1 We say that u is a weak solution of (1.1), if u ∈ L 1 (Ω), g(u) ∈ L 1 (Ω, ρ α dx) and Ω [u(-∆) α ξ + g(u)ξ]dx = Ω ξdν, ∀ξ ∈ X α , (1.6) 
where X α ⊂ C(R N ) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω, (ii) (-∆) α ξ(x) exists for all x ∈ Ω and |(-∆) α ξ(x)| ≤ C for some C > 0, (iii) there exist ϕ ∈ L 1 (Ω, ρ α dx) and ǫ 0 > 0 such that |(-∆) α ǫ ξ| ≤ ϕ a.e. in Ω, for all ǫ ∈ (0, ǫ 0 ].
We notice that for α = 1, the test space X α is used as C 1,L 0 (Ω), which has similar properties like (i) and (ii). The counter part for the Laplacian of assumption (iii) would be that the difference quotient ∇ x j ,h [u](.) := h -1 [∂ x j u(.+he j )-∂ x j u(.)] is bounded by an L 1 -function, which is true since

∇ x j ,h [u](x) = h -1 h 0 ∂ 2
x j ,x j u(x + se j )ds.

We denote by G the Green kernel of (-∆) α in Ω and by G[.] the Green operator defined by

G[f ](x) = Ω G(x, y)f (y)dy, ∀f ∈ L 1 (Ω, ρ α dx). (1.7)
For N ≥ 2, 0 < α < 1 and β ∈ [0, α], we define the critical exponent

k α,β = N N -2α , if β ∈ [0, N-2α N α], N +α N -2α+β , if β ∈ ( N-2α N α, α].
(1.8)

Our main result is the following:

Theorem 1.1 Assume Ω ⊂ R N (N ≥ 2) is an open bounded C 2 domain, α ∈ (0, 1), β ∈ [0, α]
and k α,β is defined by (1.8). Let g : R → R be a continuous, nondecreasing function, satisfying

g(r)r ≥ 0, ∀r ∈ R and ∞ 1 (g(s) -g(-s))s -1-k α,β ds < ∞.
(1.9)

Then for any ν ∈ M(Ω, ρ β ) problem (1.1) admits a unique weak solution u. Furthermore, the mapping: ν → u is increasing and

-G(ν -) ≤ u ≤ G(ν + ) a.e. in Ω (1.10)
where ν + and ν -are respectively the positive and negative part in the Jordan decomposition of ν.

We note that for α = 1 and β ∈ [0, 1), we have

k 1,β > N + β N -2 + β , (1.11) 
where k 1,β is given in (1.8) and the number in right hand side of (1.11) is from Theorem 3.7 in [START_REF] Véron | Elliptic equations involving Measures[END_REF]. Inspired by [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF][START_REF] Véron | Elliptic equations involving Measures[END_REF], the existence of solution could be extended in assuming that g : Ω × R → R is continuous and satisfies the (N, α, β)-weak-singularity assumption, that is, there exists r 0 > 0 such that

g(x, r)r ≥ 0, ∀(x, r) ∈ Ω × (R \ (-r 0 , r 0 )),
and

|g(x, r)| ≤ g(|r|), ∀(x, r) ∈ Ω × R, where g : [0, ∞) → [0, ∞) is continuous, nondecreasing and satisfies ∞ 1 g(s)s -1-k α,β ds < ∞.
We also give a stability result which shows that problem (1.1) is weakly closed in the space of measures M(Ω, ρ β ). In the last section we characterize the behaviour of the solution u of (1.1) when ν = δ a for some a ∈ Ω. We also study the case where g(r) = |r| k-1 r when k ≥ k α,β , which doesn't satisfy (1.9). We show that a necessary and sufficient condition in order a weak solution to problem

(-∆) α u + |u| k-1 u = ν in Ω, u = 0 in Ω c , (1.12) 
to exist where ν is a positive bounded measure is that ν vanishes on compact subsets K of Ω with zero C 2α,k ′ Bessel-capacity.

The paper is organized as follows. In Section 2 we give some properties of Marcinkiewicz spaces and obtain the optimal index k for which there holds

G(ν) M k (Ω,ρ γ dx) ≤ C ν M(Ω,ρ β ) . (1.13) 
We also gives some integration by parts formulas and prove a Kato's type inequalities. In Section 3, we prove Theorem 1.1. It Section 4 we give applications the cases where the measure is a Dirac mass and where the nonlinearity is a power function.

2 Linear estimates

The Marcinkiewicz spaces

We recall the definition and basic properties of the Marcinkiewicz spaces.

Definition 2.1 Let Ω ⊂ R N be an open domain and µ be a positive Borel measure in Ω. For κ > 1, κ ′ = κ/(κ -1) and u ∈ L 1 loc (Ω, dµ), we set

u M κ (Ω,dµ) = inf{c ∈ [0, ∞] : E |u|dµ ≤ c E dµ 1 κ ′ , ∀E ⊂ Ω Borel set} (2.1) and M κ (Ω, dµ) = {u ∈ L 1 loc (Ω, dµ) : u M κ (Ω,dµ) < ∞}. (2.2)
M κ (Ω, dµ) is called the Marcinkiewicz space of exponent κ or weak L κ space and . M κ (Ω,dµ) is a quasi-norm. The following property holds. Proposition 2.1 [START_REF] Ph | A semilinear elliptic equation in L 1 (R N )[END_REF][START_REF] Cignoli | An Introduction to Functional Analysis[END_REF] Assume 1 ≤ q < κ < ∞ and u ∈ L 1 loc (Ω, dµ). Then there exists C(q, κ) > 0 such that

E |u| q dµ ≤ C(q, κ) u M κ (Ω,dµ) E dµ 1-q/κ , for any Borel set E of Ω.
For α ∈ (0, 1) and β, γ ∈ [0, α] we set

k 1 (t) = γ α + N -(N -2α) γ α N -2α + t , k 2 (t) = γ + N -(N -2α) γ α N -2α + t t (2.3)
and

t α,β,γ = min{t ∈ [0, α] : k 2 (t) k 1 (t) ≥ β}. (2.4)
Remark 2.1 The quantity t α,β,γ is well defined, since

k 2 (α) k 1 (α) = γ + α N -(N -2α) γ α N -α γ α + N -(N -2α) γ α N -α = α ≥ β. Remark 2.2 The function t → k 1 (t) is decreasing in [0, α] with the follow- ing bounds k 1 (0) = N N -2α and k 1 (α) = N + γ N -α > 1. Remark 2.3 The function t → k 2 (t) k 1 (t) is increasing in [0, α], since k 2 (t) k 1 (t) ′ = [N -(N -2α) γ α ](N + γ) k 2 1 (t) > 0.
As a consequence (2.4) is equivalent to

t α,β,γ = max{0, t β }, (2.5) 
where

t β = βN -(N -2α)γ N -(N -3α + β) γ α . (2.6) is the solution of k 2 (t) k 1 (t) = β. Proposition 2.2 Let Ω ⊂ R N (N ≥ 2) be an open bounded C 2 domain and ν ∈ M(Ω, ρ β ) with β ∈ [0, α]. Then G[ν] M k α,β,γ (Ω,ρ γ dx) ≤ C ν M(Ω,ρ β ) , (2.7 
)

where γ ∈ [0, α], G[ν](x) = Ω G(x, y)dν(y)
where G is Green's kernel of (-∆) α and

k α,β,γ = N +γ N -2α+β , if γ ≤ Nβ N-2α , N N -2α , if not. (2.8)
Proof. For λ > 0 and y ∈ Ω, we denote

A λ (y) = {x ∈ Ω \ {y} : G(x, y) > λ} and m λ (y) = A λ (y) ρ γ (x)dx.
From [START_REF] Chen | Estimates on Green functions and poisson kernels for symmetric stable process[END_REF], there exists C > 0 such that for any (x, y)

∈ Ω × Ω, x = y, G(x, y) ≤ C min 1 |x -y| N -2α , ρ α (x) |x -y| N -α , ρ α (y) |x -y| N -α (2.9)
and

G(x, y) ≤ C ρ α (y) ρ α (x)|x -y| N -2α .
(2.10)

Therefore, if γ ∈ [0, α] and x ∈ A λ (y), there holds

ρ γ (x) ≤ Cρ γ (y) λ γ α |x -y| (N -2α) γ α . (2.11) Let t ∈ [0, α] be such that k 2 (t) k 1 (t) ≥ β, where k 1 (t) and k 2 (t) are given in (2.3), then G(x, y) ≤ C |x -y| N -2α 1-t α Cρ α (y) |x -y| N -α t α = Cρ t (y) |x -y| N -2α+t .
We observe that

A λ (y) ⊂ x ∈ Ω \ {y} : Cρ(y) t |x -y| N -2α+t > λ ⊂ D λ (y) where D λ (y) := x ∈ Ω : |x -y| < ( Cρ t (y) λ ) 1 N-2α+t
; together with (2.11), this implies

m λ (y) ≤ D λ (y) Cρ γ (y) λ γ α |x -y| (N -2α) γ α dx ≤ Cρ(y) k 2 (t) λ -k 1 (t) .
For any Borel set E of Ω, we have

E G(x, y)ρ γ (x)dx ≤ A λ (y) G(x, y)ρ γ (x)dx + λ E ρ γ (x)dx and A λ (y) G(x, y)ρ γ (x)dx = - ∞ λ sdm s (y) = λm λ (y) + ∞ λ m s (y)ds ≤ Cρ(y) k 2 (t) λ 1-k 1 (t) .
Thus,

E G(x, y)ρ γ (x)dx ≤ Cρ(y) k 2 (t) λ 1-k 1 (t) + λ E ρ γ (x)dx. By choosing λ = [ρ(y) -k 2 (t) E ρ γ (x)dx] -1 k 1 (t) , we have E G(x, y)ρ γ (x)dx ≤ Cρ(y) k 2 (t) k 1 (t) ( E ρ γ (x)dx) k 1 (t)-1 k 1 (t) .
Therefore,

E G(|ν|)(x)ρ γ (x)dx = Ω E G(x, y)ρ γ (x)dxd|ν(y)| ≤ C Ω ρ(y) k 2 (t) k 1 (t) d|ν(y)| E ρ γ (x)dx k 1 (t)-1 k 1 (t) ≤ C ν M(Ω,ρ β ) E ρ γ (x)dx k 1 (t)-1 k 1 (t) , since by our choice of t, k 2 (t) k 1 (t) ≥ β, which guarantees that Ω ρ(y) k 2 (t) k 1 (t) d|ν(y)| ≤ max Ω ρ k 2 (t) k 1 (t) -β Ω ρ(y) β d|ν(y)|.
As a consequence,

G(ν) M k 1 (t) (Ω,ρ γ dx) ≤ C ν M(Ω,ρ β ) . Therefore, k α,β,γ := max{k 1 (t) : t ∈ [0, α]} = k 1 (t α,β,γ ),
where t α,β,γ is defined by (2.4) and k α,β,γ is given by (2.8). We complete the proof.

We choose the parameter γ in order to make k α,β,γ the largest possible, and denote

k α,β = max γ∈[0,α] k α,β,γ . (2.12) 
Since γ → k α,β,γ is increasing, the following statement holds.

Proposition 2.3 Let N ≥ 2 and k α,β be defined by (2.12), then

k α,β = N N -2α , if β ∈ [0, N-2α N α], N +α N -2α+β , if β ∈ ( N-2α N α, α].
(2.13)

Non-homogeneous problem

In this subsection, we study some properties of the solution of the linear non-homogeneous, which will play a key role in the sequel. We assume that Ω ⊂ R N , N ≥ 2 is an open bounded domain with a C 2 boundary.

Lemma 2.1 (i)

There exists C > 0 such that for any ξ ∈ X α there holds

ξ C α ( Ω) ≤ C (-∆) α ξ L ∞ (Ω) (2.14) and ρ -α ξ C θ ( Ω) ≤ C (-∆) α ξ L ∞ (Ω) . (2.15)
where 0 < θ < min{α, 1 -α}. In particular, for

x ∈ Ω |ξ(x)| ≤ C (-∆) α ξ L ∞ (Ω) ρ α (x). (2.16) 
(ii) Let u be the solution of

(-∆) α u = f in Ω, u = 0 in Ω c , (2.17 
)

where f ∈ C γ ( Ω) for γ > 0. Then u ∈ X α .
Proof 

C > 0 such that C -1 ≤ η 1 ρ α ≤ C in Ω. (2.18)
In this expression the right-side follows [30, Th 1.2] and the left-hand side inequality follows from the maximum principle and [11, Th 1.2]. Since

-(-∆) α ξ L ∞ (Ω) ≤ (-∆) α ξ ≤ (-∆) α ξ L ∞ (Ω) in Ω,
it follows by the comparison principle,

-(-∆) α ξ L ∞ (Ω) η 1 (x) ≤ ξ(x) ≤ (-∆) α ξ L ∞ (Ω) η 1 (x).
which, together with (2.18), implies (2.16).

(ii) For r > 0, we denote

Ω r = {z ∈ Ω : dist(z, ∂Ω) > r}.
Since f ∈ C γ ( Ω), then by Corollary 1.6 part (i) and Proposition 1.1 in [START_REF] Ros-Oton | The Dirichlet problem for the fractional laplacian: regularity up to the boundary[END_REF], for θ ∈ [0, min{α, 1 -α, γ}), there exists C > 0 such that for any r > 0, we have

u C 2α+θ (Ωr) ≤ Cr -α-θ and u C α (R N ) ≤ C. Then for x ∈ Ω, letting r = ρ(x)/2, |δ(u, x, y)| ≤ Cr -α-θ |y| 2α+θ , ∀y ∈ B r (0) (2.19) and |δ(u, x, y)| ≤ C|y| α , ∀y ∈ R N ,
where δ(u, x, y) = u(x + y) + u(x -y) -2u(x). Thus,

|(-∆) α ǫ u(x)| ≤ 1 2 R N |δ(u, x, y)| |y| N +2α χ ǫ (|y|)dy ≤ 1 2 Br(0) |δ(u, x, y)| |y| N +2α dy + 1 2 B c r (0) |δ(u, x, y)| |y| N +2α dy ≤ Cr -α-θ 2 Br(0) 1 |y| N -θ dy + C 2 B c r (0) 1 |y| N +α dy ≤ Cρ(x) -α , x ∈ Ω, for some C > 0 independent of ǫ. Moreover, ρ -α is in L 1 (Ω, ρ α dx). Finally, we prove (-∆) α ǫ u → (-∆) α u as ǫ → 0 + pointwise. For x ∈ Ω, choosing ǫ ∈ (0, ρ(x)/2), then by (2.19), |(-∆) α u(x) -(-∆) α ǫ u(x)| ≤ 1 2 Bǫ(0) |δ(u, x, y)| |y| N +2α dy ≤ Cρ(x) -α-θ ǫ θ → 0, ǫ → 0 + .
The proof is complete.

The following Proposition is the Kato's type estimate for proving the uniqueness of the solution of (1.1).

Proposition 2.4 If ν ∈ L 1 (Ω, ρ α dx), there exists a unique weak solution u of the problem (-∆) α u = ν in Ω, u = 0 in Ω c . (2.20)
For any ξ ∈ X α , ξ ≥ 0, we have

Ω |u|(-∆) α ξdx ≤ Ω ξsign(u)νdx (2.21)
and

Ω u + (-∆) α ξdx ≤ Ω ξsign + (u)νdx, (2.22) 
We note here that for α = 1, the proof of Proposition 2.4 could be seen in [START_REF] Véron | Elliptic equations involving Measures[END_REF]Th 2.4]. For α ∈ (0, 1), we first prove some integration by parts formula.

Lemma 2.2 Assume u, ξ ∈ X α , then Ω u(-∆) α ξdx = Ω ξ(-∆) α udx.
(2.23)

Proof. Denote (-∆) α Ω,ǫ u(x) = - Ω u(z) -u(x) |z -x| N +2α χ ǫ (|x -z|)dz. (2.24)
By the definition of (-∆) α ǫ , we have

(-∆) α ǫ u(x) = - Ω u(z) -u(x) |z -x| N +2α χ ǫ (|x -z|)dz + u(x) Ω c χ ǫ (|x -z|) |z -x| N +2α dz = (-∆) α Ω,ǫ u(x) + u(x) Ω c χ ǫ (|x -z|) |z -x| N +2α dz.
We claim that

Ω ξ(x)(-∆) α Ω,ǫ u(x)dx = Ω u(x)(-∆) α Ω,ǫ ξ(x)dx, for u, ξ ∈ X α . (2.25)
By using the fact of

Ω Ω [u(z) -u(x)]ξ(x) |z -x| N +2α χ ǫ (|x -z|)dzdx = Ω Ω [u(x) -u(z)]ξ(z) |z -x| N +2α χ ǫ (|x -z|)dzdx,
we have

Ω ξ(x)(-∆) α Ω,ǫ u(x)dx = - 1 2 Ω Ω [ (u(z) -u(x))ξ(x) |z -x| N +2α + (u(x) -u(z))ξ(z) |z -x| N +2α ]χ ǫ (|x -z|)dzdx = 1 2 Ω Ω [u(z) -u(x)][ξ(z) -ξ(x)] |z -x| N +2α χ ǫ (|x -z|)dzdx.
Similarly, by the fact that u ∈ X α ,

Ω u(x)(-∆) α Ω,ǫ ξ(x)dx = 1 2 Ω Ω [u(z) -u(x)][ξ(z) -ξ(x)] |z -x| N +2α χ ǫ (|x -z|)dzdx.
Then (2.25) holds. In order to prove (2.23), we first notice that by (2.25),

Ω ξ(x)(-∆) α ǫ u(x)dx = Ω ξ(x)(-∆) α Ω,ǫ u(x)dx + Ω u(x)ξ(x) Ω c χ ǫ (|x -z|) |z -x| N +2α dzdx = Ω u(x)(-∆) α Ω,ǫ ξ(x)dx + Ω u(x)ξ(x) Ω c χ ǫ (|x -z|) |z -x| N +2α dzdx = Ω u(x)(-∆) α ǫ ξ(x)dx. (2.26) 
Since u and ξ belongs to X α , (-∆) α ǫ ξ → (-∆) α ξ and (-∆) α ǫ u → (-∆) α u and |u(-∆) α ǫ ξ| + |ξ(-∆) α ǫ u| ≤ Cϕ for some C > 0 and ϕ ∈ L 1 (Ω, ρ α dx). It follows by the Dominated Convergence Theorem lim

ǫ→0 + Ω ξ(x)(-∆) α ǫ u(x)dx = Ω ξ(x)(-∆) α u(x)dx
and lim

ǫ→0 + Ω (-∆) α ǫ ξ(x)u(x)dx = Ω (-∆) α ξ(x)u(x)dx.
Letting ǫ → 0 + of (2.26) we conclude that (2.23) holds.

For 1 ≤ p < ∞ and 0 < s < 1, W s,p (Ω) is the set of ξ ∈ L p (Ω) such that Ω Ω |ξ(x) -ξ(y)| p |x -y| N +sp dydx < ∞. (2.27)
This space is endowed with the norm

ξ W s,p (Ω) = Ω |ξ(x)| p dx + Ω Ω |ξ(x) -ξ(y)| p |x -y| N +sp dydx 1 p . (2.28) 
Furthermore, if Ω is bounded, the following Poincaré inequality holds [35, p 134].

Ω |ξ(x)| p dx 1 p ≤ C Ω Ω |ξ(x) -ξ(y)| p |x -y| N +sp dydx 1 p , ∀ξ ∈ C ∞ c (Ω).
(2.29)

Lemma 2.3 Let u ∈ X α and γ be C 2 in the interval u( Ω) and satisfy γ(0) = 0 , then u ∈ W α,2 (Ω), γ • u ∈ X α and for all x ∈ Ω, there exists z x ∈ Ω such that

(-∆) α (γ • u)(x) = (γ ′ • u)(x)(-∆) α u(x) - γ ′′ • u(z x ) 2 Ω (u(y) -u(x)) 2 |y -x| N +2α dy. (2.30)
Proof. Since u ∈ C( Ω) vanishes in Ω c , γ • u shares the same properties. By (2.14), for any x and y in Ω

(u(x) -u(y)) 2 ≤ C|x -y| 2α (-∆) α u 2 L ∞ (Ω) . Then u ∈ W α,2 (Ω). Similarly γ • u ∈ W α,2 (Ω). Furthermore (γ • u)(y) -(γ • u)(x) = (γ ′ • u)(x) (u(y) -u(x)) + u(y) u(x) (u(y) -t)γ ′′ (t)dt.
By the mean value theorem, there exists some τ ∈ [0, 1] such that

u(y) u(x) (u(y) -t)γ ′′ (t)dt = γ ′′ (τ u(y) + (1 -τ )u(x)) 2 (u(y) -u(x)) 2 .
Since γ ′′ is continuous and u is continuous in Ω,

u(y) u(x) (u(y) -t)γ ′′ (t)dt ≤ γ ′′ • u L ∞ ( Ω) 2 (u(y) -u(x)) 2
and by (2.14),

|y-x|>ǫ u(y) u(x) (u(y) -t)γ ′′ (t)dt dy |y -x| N +2α ≤ γ ′′ • u L ∞ 2 Ω (u(y) -u(x)) 2 dy |y -x| N +2α . Notice also that τ u(y) + (1 -τ )u(x) ∈ u( Ω) := I, therefore min t∈I γ ′′ (t) ≤ γ ′′ (τ u(y) + (1 -τ )u(x)) ≤ max t∈I γ ′′ (t), thus min t∈I γ ′′ (t) 2 Ω (u(y) -u(x)) 2 |y -x| N +2α dy ≤ Ω u(y) u(x) (u(y) -t)γ ′′ (t)dt dy |y -x| N +2α ≤ max t∈I γ ′′ (t) 2 Ω (u(y) -u(x)) 2 |y -x| N +2α dy.
Since γ ′′ is continuous, there exists t 0 ∈ I such that

Ω u(y) u(x) (u(y) -t)γ ′′ (t)dt dy |y -x| N +2α = γ ′′ (t 0 ) 2 Ω (u(y) -u(x)) 2 |y -x| N +2α dy
and since u is continuous in R N and vanishes in Ω c , there exists z x ∈ Ω such that t 0 = u(z x ), which ends the proof.

Proof of Proposition 2.4. Uniqueness. Let w be a weak solution of

(-∆) α w = 0 in Ω w = 0 in Ω c . (2.31)
If ω is a Borel subset of Ω and η ω,n the solution of

(-∆) α η ω,n = ζ n in Ω η ω,n = 0 in Ω c , (2.32) 
where

ζ n : Ω → [0, 1] is a C 1 ( Ω) function such that ζ n → χ ω in L ∞ ( Ω) as n → ∞.
Then by Lemma 2.1 part (ii), η ω,n ∈ X α and Ω wζ n dx = 0.

Then passing the limit of n → ∞, we have

ω wdx = 0.
This implies w = 0.

Existence and estimate (2.21). For δ > 0 we define an even convex function φ δ by

φ δ (t) = |t| -δ 2 , if |t| ≥ δ, t 2 2δ , if |t| < δ/2. (2.33) Then for any t, s ∈ R, |φ ′ δ (t)| ≤ 1, φ δ (t) → |t| and φ ′ δ (t) → sign(t) when δ → 0 + . Moreover φ δ (s) -φ δ (t) ≥ φ ′ δ (t)(s -t). (2.34) 
Let {ν n } be a sequence functions in C 1 ( Ω) such that lim n→∞ Ω

|ν n -ν|ρ α dx = 0.

Let u n be the corresponding solution to (2.20) with right-hand side ν n , then by Lemma 2.1, u n ∈ X α and by Lemmas 2.2, 2.3, for any δ > 0 and ξ ∈ X α , ξ ≥ 0,

Ω φ δ (u n )(-∆) α ξdx = Ω ξ(-∆) α φ δ (u n )dx ≤ Ω ξφ ′ δ (u n )(-∆) α u n dx = Ω ξφ ′ δ (u n )ν n dx.
(2.35)

Letting δ → 0, we obtain 

Ω |u n |(-∆) α ξdx ≤ Ω ξsign(u n )ν n dx ≤ Ω ξ|ν n |dx. ( 2 
ν ∈ L 1 (Ω, ρ β dx) G[ν] W 2α-γ,p (Ω) ≤ c p ν L 1 (Ω,ρ β dx)
(2.39)

where γ = β + N p ′ if β > 0 and γ > N p ′ if β = 0. Proof.
We use Stampacchia's duality method [START_REF] Stampacchia | Some limit cases of L p -estimates for solutions of second order elliptic equations[END_REF] and put u

= G[ν]. If ψ ∈ C ∞ c ( Ω), then Ω ψ(-∆) α udx ≤ Ω |ν||ψ|dx ≤ sup Ω |ρ -β ψ| Ω |ν|ρ β dx ≤ ψ C β ( Ω) ν L 1 (Ω,ρ β dx) .
( 

with γ = β + N p ′ if β > 0 and γ > N p ′ if β = 0. Therefore, Ω ψ(-∆) α udx ≤ C ψ W γ,p ′ (Ω) ν L 1 (Ω,ρ β dx) , (2.41) 
which implies that the mapping ψ → Ω ψ(-∆) α udx is continuous on W γ,p ′ (Ω) and thus

(-∆) α u W -γ,p (Ω) ≤ C ν L 1 (Ω,ρ β dx) . (2.42) Since (-∆) -α is an isomorphism from W -γ,p (Ω) into W 2α-γ,p (Ω), it follows that u W 2α-γ,p (Ω) ≤ C ν L 1 (Ω,ρ β dx) .
(2.43) Proposition 2.6 Under the assumptions of Proposition 2.5 the mapping

ν → G[ν] is compact from L 1 (Ω, ρ β dx) into L q (Ω) for any q ∈ [1, N N +β-2α
). Proof. By [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]Th 6.5] the embedding of W 2α-γ,p (Ω) into L q (Ω) is compact, this ends the proof.

Proof of Theorem 1.1

Before proving the main we give a general existence result in L 1 (Ω, ρ α dx).

Proposition 3.1 Suppose that Ω is an open bounded C 2 domain of R N (N ≥ 2)
, α ∈ (0, 1) and the function g : R → R is continuous, nondecreasing and rg(r) ≥ 0 for all r ∈ R. Then for any f ∈ L 1 (Ω, ρ α dx) there exists a unique weak solution u of (1.1) with ν = f . Moreover the mapping f → u is increasing.

Proof.

Step 1: Variational solutions. If w ∈ L 2 (Ω), we denote by w its extension by 0 in Ω c and by W α,2 c (Ω) the set of function in L 2 (Ω) such that

w 2 W α,2 c (Ω) := R N | ŵ| 2 (1 + |x| α )dx < ∞,
where ŵ is the Fourier transform of w. For ǫ > 0 we set

J(w) = 1 2 R N (-∆) α 2 w 2 dx + Ω (j(w) + ǫw 2 )dx, with domain D(J) = {w ∈ W α,2 c (R N ) s.t. j(w) ∈ L 1 (Ω)} and j(s) = s 0 g(t)dt. Furthermore since there holds J(w) ≥ σ w 2 W α,2 c
for some σ > 0, the subdifferential ∂J of J is a maximal monotone in the sense of Browder-Minty (see [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] and the references therein) which satisfies R(∂J) = L 2 (Ω). Then for any f ∈ L 2 (Ω) there exists a unique u ǫ in the domain D(∂J) such that ∂J(u ǫ ) = f . Since for any ψ ∈ W α,2 c (Ω)

R N (-∆) α 2 w (-∆) α 2 ψdx = (4π) α R N ŵ ψ|x| 2α dx = Ω ψ(-∆) α wdx, ∂J(u ǫ ) = (-∆) α u ǫ + g(u ǫ ) + 2ǫu = f, with u ǫ ∈ W 2α,2 c
(Ω) such that g(u ǫ ) ∈ L 2 (Ω). This is also a consequence of [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]Cor 2.11]. If f is assumed to be bounded, then u ∈ C α (Ω) by [START_REF] Ros-Oton | The Dirichlet problem for the fractional laplacian: regularity up to the boundary[END_REF]Prop 1.1]. Note that more delicate variational formulations can be found in [START_REF] Hajeij | Existence of minimizers of functionals involving the fractional gradient in the absence of compactness[END_REF], [START_REF] Hajeij | Variational problems related to some fractional kinetic equations[END_REF].

Step 2: L 1 solutions. For n ∈ N * we denote by u n,ǫ the solution of

(-∆) α u n,ǫ + g(u n,ǫ ) + 2ǫu n,ǫ = f n in Ω u n,ǫ = 0 in Ω c (3.1)
where

f n = sgn(f ) min{n, |f |}. By (2.36) with ξ = η 1 , Ω (|u n,ǫ | + (2ǫ|u n,ǫ | + |g(u n,ǫ )|)η 1 ) dx ≤ Ω |f n |η 1 dx ≤ Ω |f |η 1 dx, (3.2)
and, for ǫ ′ > 0 and m ∈ N * ,

Ω |u n,ǫ -u m,ǫ ′ | + |g(u n,ǫ ) -g(u m,ǫ ′ )|η 1 dx ≤ Ω |f n -f m | + 2ǫ|u n,ǫ | + 2ǫ ′ |u m,ǫ ′ | η 1 dx. (3.3) Since f n → f in L 1 (Ω, ρ α dx), {u n,ǫ } and {g • u n,ǫ } are Cauchy filters in L 1
(Ω) and L 1 (Ω, ρ α dx) respectively. Set u = lim n→∞,ǫ→0 u n,ǫ , we derive from the following identity valid for any ξ ∈ X α

Ω (u n,ǫ (-∆) α ξ + g(u n,ǫ )ξ) dx = Ω (f n -ǫu n,ǫ ) ξdx
that u is a solution of (1.1). Uniqueness follows from (2.36)-(3.3), since for any f and f ′ in L 1 (Ω, ρ α dx), the any couple (u, u ′ ) of weak solutions with respective right-hand side f and f ′ satisfies

Ω |u -u ′ | + |g(u) -g(u ′ )|η 1 dx ≤ Ω |f -f ′ |η 1 dx. (3.4) 
Finally, the monotonicity of the mapping f → u follows from (2.22) thanks to which (3.4) is transformed into

Ω (u -u ′ ) + + (g(u) -g(u ′ )) + η 1 dx ≤ Ω (f -f ′ ) + η 1 dx. (3.5) 
Proof of Theorem 1.1. Uniqueness follows from (3.4). For existence we define

C β ( Ω) = {ζ ∈ C( Ω) : ρ -β ζ ∈ C( Ω)} endowed with the norm ζ C β ( Ω) = ρ -β ζ C( Ω) .
We consider a sequence {ν n } ⊂ C 1 ( Ω) such that ν n,± → ν ± in the duality sense with C β ( Ω), which means

lim n→∞ Ω ζν n,± dx = Ω ζdν ± for all ζ ∈ C β ( Ω). It follows from the Banach-Steinhaus theorem that ν n M(Ω,ρ β ) is bounded independently of n, therefore Ω (|u n | + |g(u n )|η 1 ) dx ≤ Ω |ν n |η 1 dx ≤ C. (3.6) 
Therefore g(u n ) M(Ω,ρ α ) is bounded independently of n. For ǫ > 0, set

ξ ǫ = (η 1 + ǫ) β α -ǫ β α
, which is concave in the interval η(ω). Then, by Lemma 2.3 part (ii),

(-∆) α ξ ǫ = β α (η 1 + ǫ) β-α α (-∆) α η 1 - β(β -α) α 2 (η 1 + ǫ) β-2α α Ω (η 1 (y) -η 1 (x)) 2 |y -x| N +2α dy ≥ β α (η 1 + ǫ) β-α α ,
and

ξ ǫ ∈ X α . Since Ω (|u n |(-∆) α ξ ǫ + |g(u n )|ξ ǫ ) dx ≤ Ω ξ ǫ d|ν n |, we obtain Ω |u n | β α (η 1 + ǫ) β-α α + |g(u n )|ξ ǫ dx ≤ Ω ξ ǫ d|ν n |.
If we let ǫ → 0, we obtain

Ω |u n | β α η β-α α 1 + |g(u n )|η β α 1 dx ≤ Ω η β α 1 d|ν n |.
By Lemma 2.3, we derive the estimate

Ω |u n |ρ β-α + |g(u n )|ρ β dx ≤ C ν n M(Ω,ρ β ) ≤ C ′ . (3.7) 
Since

u n = G[ν n -g(u n )]
, it follows by (2.7), that

u n M k α,β (Ω,ρ β dx) ≤ ν n -g(u n ) M(Ω,ρ β ) , (3.8) 
where k α,β is defined by (2.13). By Corollary 2.6 the sequence {u n } is relatively compact in the L q (Ω) for 1 ≤ q < N N +β-2α . Therefore there exist a sub-sequence {u n k } and some u ∈ L 1 (Ω) ∩ L q (Ω) such that u n k → u in L q (Ω) and almost every where in Ω. Furthermore g(u n k ) → g(u) almost every where. Put g(r) = g(|r|) -g(-|r|) and we note that |g(r)| ≤ g(|r|) for r ∈ R and g is nondecreasing. For λ > 0, we set

S λ = {x ∈ Ω : |u n k (x)| > λ} and ω(λ) = S λ ρ β dx. Then for any Borel set E ⊂ Ω, we have E |g(u n k )|ρ β dx = E∩S c λ |g(u n k )|ρ β dx + E∩S λ |g(u n k )|ρ β dx ≤ g(λ) E ρ β dx + S λ g(|u n k |)ρ β dx ≤ g(λ) E ρ β dx - ∞ λ g(s)dω(s). But ∞ λ g(s)dω(s) = lim T →∞ T λ g(s)dω(s). Since u n k ∈ M k α,β (Ω, ρ β dx), ω(s) ≤ cs -k α,β and - T λ g(s)dω(s) = -g(s)ω(s) s=T s=λ + T λ ω(s)dg(s) ≤ g(λ)ω(λ) -g(T )ω(T ) + c T λ s -k α,β dg(s) ≤ g(λ)ω(λ) -g(T )ω(T ) + c T -k α,β g(T ) -λ -k α,β g(λ) + c k α,β + 1 T λ s -1-k α,β g(s)ds.
By assumption (1.9) there exists

{T n } → ∞ such that T -k α,β n g(T n ) → 0 when n → ∞. Furthermore g(λ)ω(λ) ≤ cλ -k α,β g(λ), therefore - ∞ λ g(s)dω(s) ≤ c k α,β + 1 ∞ λ s -1-k α,β g(s)ds.
Notice that the above quantity on the right-hand side tends to 0 when λ → ∞. The conclusion follows: for any ǫ > 0 there exists λ > 0 such that

c k α,β + 1 ∞ λ s -1-k α,β g(s)ds ≤ ǫ 2
and δ > 0 such that

E ρ β dx ≤ δ =⇒ g(λ) E ρ β dx ≤ ǫ 2 .
This proves that {g

• u n k } is uniformly integrable in L 1 (Ω, ρ β dx). Then g • u n k → g • u in L 1 (Ω, ρ β dx) by Vitali convergence theorem. Letting n k → ∞ in the identity Ω (u n k (-∆) α ξ + ξg • u n k ) dx = Ω ν n k ξdx
where ξ ∈ X α , it infers that u is a weak solution of (1.1). The right-hand side of estimate (1.9) follows from the fact that v n,+ := G[ν n,+ ] satisfies (-∆) α v n,+ + g(v n,+ ) = ν n,+ + g(v n,+ ) ≥ ν n Therefore v n,+ ≥ u n by Proposition 3.1. Letting n → ∞ yields to (1.10). The left-hand side is proved similarly.

To prove the mapping ν → u is increasing. Let ν 1 , ν 2 ∈ M(Ω, ρ β ) and ν 1 ≥ ν 2 , then there exist two sequences {ν 1,n } and {ν 2,n } in C ∞ ( Ω) such that ν 1,n ≥ ν 2,n and

ν i,n → ν i as n → ∞, i = 1, 2.
Let u i,n be the unique solution of (1.1) with ν i,n and u i be the unique solution of (1.1) with ν i where i = 1, 2. Then u 1,n ≥ u 2,n . Moveover, by uniqueness u i,n convergence to u i in L 1 (Ω) for i = 1 and i = 2. Then we have u 1 ≥ u 2 .

Corollary 3.1 Under the hypotheses of Theorem 1.1, we further assume that {ν n } is a sequence of measures in M(Ω, ρ β ) and ν ∈ M(Ω, ρ β ) such that for any ξ ∈ C β ( Ω),

Ω ξdν n → Ω ξdν as n → ∞.
Then the sequence {u n } of weak solutions to

(-∆) α u n + g • u n = ν n in Ω, u n = 0 in Ω c , (3.9) 
converges to the solution u of (1.1) in L q (Ω) for 1 ≤ q < N N +β-2α and {g • u n } converges to g • u in L 1 (Ω, ρ β dx).

Proof. The method is an adaptation of [START_REF] Véron | Existence and Stability of Solutions of General Semilinear Elliptic Equations with Measure Data[END_REF]. Since ν n → ν in the duality sense of C β (Ω), there exists M > 0 such that

ν n M(Ω,ρ β ) ≤ M, ∀n ∈ N.
Therefore (3.7) and (3.8) hold (but with u n solution of (3.9)). The above proof shows that {g • u n } is uniformly integrable in L 1 (Ω, ρ β dx) and {u n } relatively compact in L q (Ω) for 1 ≤ q < N N +β-2α . Thus, up to a subsequence {u n k } ⊂ {u n }, u n k → u, and u is the weak solution of (1.1). Since u is unique, u n → u as n → ∞. Remark 3.1 Under the hypotheses of Theorem 1.1, we assume ν ≥ 0, then

G(ν) -G(g(G(ν))) ≤ u ≤ G(ν).
(3.10)

Indeed, since g is nondecreasing and u ≤ G(ν), then Then problem (1.1) admits a unique positive weak solution u such that

u = G(ν) -G(g(u)) ≥ G(ν) -G(g(G(ν))).
lim x→0 u(x)|x| N -2α = C, (4.2) 
for some C > 0.

Remark 4.1 We note here that a weak solution u of (1.1) with ν

= δ 0 satisfies (-∆) α u + g(u) = 0 in Ω \ {0}, u = 0 in R N \ Ω. ( 4.3) 
The asymptotic behavior (4.2) is one of the possible singular behaviors of solutions of (4.3) given in [START_REF] Chen | Singular solutions of fractional elliptic equations with absorption[END_REF].

Before proving Theorem 4.1, we give an auxiliary lemma.

Lemma 4.1 Assume that g : [0, ∞) → [0, ∞) is continuous, nondecreasing and (1.9) holds with k α,β > 1. Then

lim s→∞ g(s)s -k α,β = 0. Proof. Since 2s s g(t)t -1-k α,β dt ≥ g(s)(2s) -1-k α,β 2s s dt = 2 -1-k α,β g(s)s -k α,β
and by (1.9),

lim s→∞ 2s s g(t)t -1-k α,β dt = 0. Then lim s→∞ g(s)s -k α,β = 0.
The proof is complete.

Proof of Theorem 4.1. Existence, uniqueness and positiveness follow from Theorem 1.1 with β = 0. For (4.2), we shall use (1.10). From [START_REF] Chen | Solutions of fractional equations involving sources and Radon measures[END_REF] there holds,

0 < C |x| N -2α -G(x, 0) < C ρ(0) N -2α , x ∈ Ω \ {0}. (4.4) 
for some C > 0 dependent of N and α. Since

G(δ 0 )(x) = G(x, 0) < C |x| N -2α , x ∈ Ω \ {0}, then 0 ≤ G(g(G(δ 0 )))(x)|x| N -2α ≤ Ω 1 |x -y| N -2α g( C |y| N -2α )dy|x| N -2α ≤ Ω 1 |e x -y| N -2α g( C (|x||z|) N -2α )dz|x| N = |x| N Ω∩B 1/2 (ex) 1 |e x -y| N -2α g( C (|x||z|) N -2α )dz +|x| N Ω∩B c 1/2 (ex) 1 |e x -y| N -2α g( C (|x||z|) N -2α )dz := A 1 (x) + A 2 (x), x ∈ Ω \ {0},
where e x = x/|x|. By Lemma 4.1,

A 1 (x) ≤ |x| N g( 2 N -2α C |x| N -2α ) B 1/2 (ex) 1 |e x -y| N -2α dz → 0 as |x| → 0,
and by (1.9),

A 2 (x) ≤ C|x| N B R (0) g( C (|x||z|) N -2α )dz ≤ C ∞ R 1/(N-2α) |x| g(Cs)s -1-N N-2α ds → 0 as |x| → 0, where R > 0 such that B R (0) ⊃ Ω. That is lim |x|→0 G(g(G(δ 0 )))(x)|x| N -2α = 0. ( 4.5) 
We plug (4.4) and (4.5) into (3.10), then (4.2) holds.

The power case

If g(s) = |s| k-1 s with k ≥ 1, then (1.9) is satisfied if 1 ≤ k < k α,β
where k α,β defined by (2.13) is called the critical exponent with limit values k α,0 = N N -2α

and k α,α = N +α N -α . If we consider the problem

(-∆) α u + |u| k-1 u = ν in Ω, u = 0 in Ω c , (4.6) 
then if 1 < k < k α,β it is solvable for any ν ∈ M(Ω, ρ β ), but it may not be the case if k ≥ k α,β . As in the case α = 1, the sharp solvability of (4.6) is associated to a concentration property of the measure ν and this concentration is expressed by the mean of Bessel capacities. If k > 1 and k ′ = k k-1 , we define for any compact set K ⊂ Ω, Since ξ ≥ χ K it follows from (2.30) that Then, by standard regularity result on the Riesz potential (-∆) -α in R N , 

C Ω 2α,k ′ (K) = inf{ φ k ′ W 2α,k ′ (Ω) : φ ∈ C ∞ c (Ω), 0 ≤ φ ≤ 1, φ ≡ 1 on K}. ( 4 
Ω k ′ φ k ′ -1 u(-∆) α φ + φ k ′ u k dx ≥ ν(K).
Ω φ k ′ -1 u(-∆) α φdx ≤ Ω φ k ′ u k dx 1 k R N |(-∆) α φ| k ′ dx 1 k ′ ≤ C ′ Ω φ k ′ u k dx 1 k ′ φ W 2α,k ′ (R N ) ≤ C ′ Ω φ k ′ u k dx 1 k ′ φ W 2α,k ′ (Ω) .
C φ W 2α,k ′ (Ω) Ω φ k ′ u k dx 1 k + Ω φ k ′ u k dx ≥ ν(K). (4.12) 
If C Ω 2α,k ′ (K) = 0, there exists a sequence {φ n } ⊂ C ∞ c (Ω) such that 0 ≤ φ n ≤ 1 and φ n = 1 on K and φ n W 2α,k ′ (Ω) → 0 as n → ∞. Furthermore K has zero Lebesgue measure and φ n → 0 almost everywhere. If we replace φ by φ n in (4.12) and let n → ∞ we obtain ν(K) = 0. by (1.10). This implies that the convergence holds in L 1 (Ω). Since ν ∈ W -2α,k (Ω), G[ν] ∈ L k (Ω), it infers that

|T n (u n )| k-1 T n (u n ) = (T n (u n )) k ≤ (G[ν]) k .
Since for any ξ ∈ X α there holds we can let n → ∞ and conclude that u is a solution of (4.6), unique by (3.4). Next we assume that (4.8) holds. By a result of Feyel and de la Pradelle [START_REF] Feyel | Topologies fines et compactifications associées à certains espaces de Dirichlet[END_REF] (see also [START_REF] Maso | On the integral representation of certain local functionals[END_REF]), there exists an increasing sequence {ν n } ⊂ W -2α,k (Ω) ∩ M b + (Ω) which converges to ν in the weak sense of measures. This implies that the sequence {u n } of weak solutions of This can be obtained by using the fact that the solutions of (4.6) with righthand side ν + and -ν -are respectively a supersolution and a subsolution of (4.6). It is not clear whether it is also a necessary condition.

4 Applications 4 . 1 Theorem 4 . 1

 44141 The case of a Dirac massIn this subsection we characterize the asymptotic behavior of a solution near a singularity created by a Dirac mass. Assume that Ω is an open, bounded and C 2 domain of R N (N ≥ 2) with 0 ∈ Ω, α ∈ (0, 1), ν = δ 0 and the function g : [0, ∞) → [0, ∞) is continuous, nondecreasing and (1.9) holds for k α

. 7 ). 8 )Proof. 1 -

 781 Then C 2α,k ′ is an outer measure or capacity in Ω extended to Borel sets by standard processes. Our result is the following in the case of bounded measuresTheorem 4.2 Assume Ω is an open bounded C 2 domain in R N and k > 1.Then problem (4.6) can be solved with a nonnegative bounded measure ν if and only if ν satisfies on compact subsets K ⊂ ΩC Ω 2α,k ′ (K) = 0 =⇒ ν(K) = 0. (4The condition is necessary. Assume u is a weak solution and let K ⊂ Ω be compact. Let φ ∈ C ∞ c (R N ) such that 0 ≤ φ ≤ 1 and φ(x) = 1 for all x ∈ K, and set ξ = φ k ′ , then ξ ∈ X α and Ω u(-∆) α ξ + u k ξ dx = Ω ξdν.

29 ,

 29 Th 5.4], there exists φ∈ W 2α,k ′ (R N ) such that φ⌊ Ω = φ and φ W 2α,k ′ (R N ) ≤ C φ W 2α,k ′ (Ω)

2 -

 2 The condition is sufficient. We first assume that ν ∈ W -2α,k (Ω)∩ M b + (Ω); for n ∈ N, we denote by u n the solution of(-∆) α u + |T n (u)| k-1 T n (u) = ν in Ω u = 0 in Ω c (4.13)where T n (r) = sign(r) min{n, |r|}. Such a solution exists by Theorem 1.1, is nonnegative and the sequence {u n } is decreasing and converges to some nonnegative u since {T n (r)} is increasing on R + . Furthermore0 ≤ u n ≤ G[ν],

Ω

  u n (-∆) α ξ + (T n (u n )) k ξ dx =

(

  -∆) α u n + u k n = ν n in Ω u n = 0 in Ω c (4.15)is increasing with limit u. Taking η 1 := G[1] as a test function in the weak formulation, we haveΩ u n + u k n η 1 dx = Ω η 1 dν n ≤ Ω η 1 dν. Therefore u n → u in L 1 (Ω) ∩ L k (Ω, ρ α dx).Letting n → ∞ we deduce that u satisfies (4.6). Remark 4.2 If ν is a signed bounded measure a sufficient condition for solving (4.6) is C Ω 2α,k ′ (K) = 0 =⇒ |ν|(K) = 0. (4.16)