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Abstract. The signature of a permutation σ is a word p(σ) ⊆ {U,D}∗

whose ith letter is U when σ goes “up” (i.e. σ(i) > σ(i + 1)) and is D
when σ goes “down” (i.e. σ(i) < σ(i+1)). Combinatorics of permutations
with a prescribed signature is a quite well explored topics. Languages of
signatures permit to express a broad number of classes of permutations
(e.g. the permutations without two consecutive downs). Here we state
and address the two problems of counting and randomly generating in
the set p−1(L) of permutations whose signature is in a given regular lan-
guage L ⊆ {U,D}∗. First we give an algorithm that computes a closed
form formula for the exponential generating function of p−1(L). Then we
give an algorithm that generates randomly the n-length permutations of
p
−1(L) in a uniform manner i.e. all the permutations of a given length

with a signature in L are equally probable to be returned. Both contri-
butions are based on a geometric interpretation of a subclass of timed
regular languages.

1 Introduction

The signature of a permutation σ = σ1 · · ·σn is the word w = w1 · · ·wn−1 ∈
{U,D}n−1 with wi = D when σ goes “down” (σi > σi+1), and wi = U when it
goes “up” (σi < σi+1).

Generating all the permutations with a prescribed signature or simply count
them are two classical combinatorial topics (see e.g. [11] and reference therein).

A very well studied example of permutations given by their signatures are the
so-called alternating (or zig-zag, or down-up) permutations (see [9] for a survey).
Their signatures belong to the language expressed by the regular expression
(DU)∗(D + ǫ) (i.e. they satisfy σ1 > σ2 < σ3 > σ4...).

Such a definition of class of permutations in terms of a language of signatures
is in fact a novelty of the present paper. To a language L ⊆ {U,D}∗, we asso-
ciate the class p−1(L) of permutations whose signature is in L. Many classes of
permutations can be expressed in that way (e.g. alternating permutations, those
without 2 consecutive downs, those with an even number of downs, etc.).

⋆ The present paper is a long version of an article submitted to MFCS 2013.
⋆⋆ The support of Agence Nationale de la Recherche under the project EQINOCS

(ANR-11-BS02-004) is gratefully acknowledged.



We state and address the two problems of counting and randomly generating
when the language of signatures is regular.

We propose Algorithm 1 which takes as its input a regular language L and
returns a closed form formula for the exponential generating function (EGF) of
p−1(L) i.e. a formal power series

∑

an
zn

n! where the nth coefficient an counts the
permutations of length n with signature in L. With such an EGF, it is easy to
recover the number an and some estimation of the growth rate of an (see [7] for
an overview of analytic combinatorics).

The random generation is done by an algorithm described in Theorem 4.
The regular language of signatures L together with n the size of permutation to
generate are given in input and the output are random permutations of size n
whose signatures are in L with equal probability to be returned.

Our theory is based on a geometric interpretation of timed regular languages
initiated in [3]. In that paper the authors introduce the concept of volume and
entropy of timed regular languages as well as recurrent equations on timed lan-
guages and their volume. With these authors, we have defined and characterize
volume generating function of timed language in [2]. In this latter paper a link
between enumerative combinatorics and timed regular languages was foreseen.
Here we establish such a link. In fact the passage from a class of permutations to
a timed language is in two steps. First we associate order and chain polytopes to
signatures which are particular cases of Stanley’s poset polytopes [10]. Then we
interpret the chain polytopes of a signature w as the set of delays which together
with w forms a timed word of a well chosen timed language.

Paper structure. In section 2 we expose the problem statements. In section
3 we establish the link between the classes of permutations associated with lan-
guages of signatures and timed languages of a particular form. We address the
two problems in section 4 and discuss our results and perspectives in the last
section. Proofs and detailed examples are given in the appendix.

Submitted version. The present paper is a long version of an article submitted
to MFCS 2013.

2 Two problem statements

All along the paper we use the two letter alphabet {U,D} whose elements must
be read as “up” and “down”. Words of {U,D}∗ are called signatures. For n ∈ N

we denote [n] = {1, . . . , n} and by Sn the set of permutation of [n]. We also
use the one line notation of permutations e.g. σ = 231 means that σ(1) = 2,
σ(2) = 3, σ(3) = 1.

Let n be a positive integer. The signature of a permutation σ = σ1 · · ·σn is
the word u = u1 · · ·un−1 ∈ {U,D}n−1 denoted by p(σ) such that for i ∈ [n],
σi < σi+1 iff ui = U (we speak of an “up”, also known as an ascent) and
σi > σi+1 iff ui = D (we speak of a “down”, also known as a descent) e.g.
p(21354) = p(32451) = DUUD.
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This statistics appears in the literature under several different names and
forms such as descent set, ribbon diagram, etc. The usual definition of signature
of a permutation is an n-tuple of +1 (“up”) and −1 (”down“). Here we use
words to express in a very convenient way constraints on permutations in terms
of languages. More precisely we are interested in p−1(L) = {σ | p(σ) ∈ L}:
the class of permutations with a signature in L ⊆ {U,D}∗. Given a language
L we denote by Ln the sub-language of L restricted to words of length n. The
exponential generating function of p−1(L) is

EGF [p−1(L)](z) =
∑

σ∈p−1(L)

z|σ|

|σ|! =
∑

n≥1

|p−1(Ln−1)|
zn

n!
=

∑

u∈L

|p−1(u)| z|u|+1

(|u|+ 1)!
.

Example 1. Consider as a running example the class Cex of permutation without
two consecutive downs. Then3 Cex = S0 ∪ p−1(Lex) where Lex is the language
expressed by the regular expression (U +DU)∗(D+ ǫ). The theory developed in
the paper4 permits to find the exponential generating function of Cex:

EGF (Cex)(z) =
3 cos(z

√
3/2) +

√
3 sin(z

√
3/2)

[2 cos(z
√
3/2)− 1][2 cos(z

√
3/2) + 1]

ez/2

The following Taylor expansion gives the cardinalities of sets of n-length permu-
tations of Cex for n ∈ N e.g. there are 5 permutations of length 3 in Cex.

EGF (Cex)(z) = 1 + z + 2
z2

2!
+ 5

z3

3!
+ 17

z4

4!
+ 70

z5

5!
+ 349

z6

6!
+ 2017

z7

7!
+ . . .

Now we state the two problems solved in the paper.

Problem 1. Design an algorithm which takes as input a regular language L ⊆
{U,D}∗ and returns a closed form formula for EGF (p−1(L))

Problem 2. Design an algorithm which takes as input a regular language L ⊆
{U,D}∗ and a positive integer n and returns a random permutation σ uniformly
in p−1(Ln−1) i.e. such that the probability for each σ ∈ p−1(Ln−1) to be returned
is 1/|p−1(Ln−1)|.

3 A timed and geometric approach

In section 3.1 we introduce a sequence of sets On(L) ⊆ [0, 1]n and see how the
two problems posed can be reformulated as computing the volume generating
function of the sequence (On(L))n≥1 and generating points uniformly in On(L).
Then we define timed languages L′ associated to L as well as its volume (section
3.2) and describe a volume preserving transformation between On(L) and L

′
n.

3 The unique permutation on the empty set has no signature and thus S0 6⊆ p
−1(L)

for any language L of signature.
4 Detailed examples are given in the appendix.
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3.1 Order sets of a language of signatures (On(L))n≥1

We say that a collection of polytopes (S1, · · · , Sn) is an almost disjoint partition
of a set A if A is the union of Si and they have pairwise a null volume intersection.
In this case we write S =

⊔n
i=1 Si.

The set {(ν1, . . . , νn) ∈ [0, 1]n | 0 ≤ νσ−1

1

≤ . . . ≤ νσ−1

n
≤ 1} is called the

order simplex [10]5 of σ and denoted by O(σ) e.g. ν = (0.3, 0.2, 0.4, 0.5, 0.1)
belongs to O(32451) since ν5 ≤ ν2 ≤ ν1 ≤ ν3 ≤ ν4 and (32451)−1 = 52134. The
set O(σ) for σ ∈ Sn forms an almost disjoint partition of [0, 1]n. By symmetry
all the order simplices of permutations have the same volume which is 1/n!.

If ν is uniformly sampled in [0, 1]n then it falls in any O(σ) with probability
1/n!. To retrieve σ from ν it suffices to use a sorting algorithm. In this optic, we
will denote by sort(ν) the permutation σ returned by the sorting algorithm on
ν i.e. such that 0 ≤ νσ−1

1

≤ . . . ≤ νσ−1

n
≤ 1.

The signature of a vector ν ∈ [0, 1]n is the word sg(ν) = p(sort(ν)) i.e. such
that νi < νi+1 iff ui = U and νi > νi+1 iff ui = D. e.g. p(0.3, 0.2, 0.4, 0.5, 0.1) =
DUUD. The order polytope [10] of a signature u ∈ {U,D}n−1 is the polytope
O(u) = {ν ∈ [0, 1]n | sg(ν) = u}. It is clear that the collection of order simplices
O(σ) with all σ having the same signature u form an almost disjoint partition
of the order polytope O(u): O(u) =

⊔

σ∈p−1(u) O(σ) (e.g. O(DUU) = O(2134)⊔
O(3124) ⊔ O(4123)). Passing to volume we get:

Vol(O(u)) =
∑

σ∈p−1(u)

Vol(O(σ)) =
|p−1(u)|

n!
(1)

Let L be a language of signatures and n ≥ 1, then the family (O(u))u∈Ln−1

forms an almost disjoint partition of a subset of [0, 1]n called the nth order set
of L and denoted by On(L):

On(L) =
⊔

u∈Ln−1

O(u) =
⊔

σ∈p−1(Ln−1)

O(σ) = {ν ∈ [0, 1]n | sg(ν) ∈ Ln−1}. (2)

For volumes we get:

Vol(On(L)) =
∑

u∈Ln−1

Vol(O(u)) =
∑

σ∈p−1(Ln−1)

Vol(O(σ)) =
|p−1(Ln−1)|

n!
(3)

Reformulating the two problems with the geometric approach As a
consequence of 3, Problem 1 can be reformulated as computing the volume gen-
erating function (VGF) of the sequence O(L) =def (On(L))n≥1:

V GF (O(L))(z) =def

∑

n≥1

Vol(On(L))z
n = EGF (p−1(L))(z) (4)

5 Order simplices, order and chain polytopes of signatures defined here are particular
cases of Stanley’s order and chain polytopes.
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Problem 2 can also be treated using order polytopes On(L). Indeed it suffices
to generate uniformly a vector ν ∈ On(L) and then sort it to get a permutation
σ = sort(ν). As the simplices O(σ) for σ ∈ p−1(Ln) form an almost disjoint
partition of On(L) and all these simplices have the same volume 1/n!, they are
equally probable to receive the random vector ν, and thus all σ ∈ p−1(Ln) have
the same probability to be chosen.

We have seen with (2) that permutations of a fixed length n fits well with
the nth order set. However, it is not clear how to fit the sequence of order sets
(when n varies) with the dynamics of the language L. It is easier to handle a
timed language L since its sequence of volume (Vol(Ln))n∈N satisfy a recursive
equation [3,2]. We will find a volume preserving transformation between order
sets O(n) and timed languages (Ln)n∈N and hence reduce Problem 1 to the
computing of the ordinary generating function of (Vol(Ln))n∈N. For the second
problem, by generating uniformly a timed word in Ln and applying the volume
preserving transformation we will get a uniform random point in On(L).

3.2 Timed semantic of a language of signatures:
(

L
′
n

)

n∈N

This section is inspired by timed automata theory and designed for non experts.
We adopt a non standard6 and self-contained approach based on the notion of
clock languages introduced by [6] and used in our previous work [2].

Timed languages, their volumes and their generating functions An
alphabet of timed events is the product R+×Σ where Σ is a finite alphabet. The
meaning of a timed event (ti, wi) is that ti is the time delay before the event wi.
A timed word is just a word of timed events and a timed language a set of timed
words. Adopting a geometric point of view, a timed word is a vector of delays
(t1, . . . , tn) ∈ R

n together with a word of events w = w1 · · ·wn ∈ Σn. We adopt
the following convention, we write (t, w) the timed word (t1, w1) · · · (tn, wn) with
t = (t1, · · · , tn) and w ∈ Σn (n ≥ 1). Continuing with the same convention, given
a timed language L ⊆ (R+ × Σ)∗, then the timed language restricted to words
of length n, An can be seen as a formal union of sets

⊎

w∈Σn L
′
w × {w} where

L
′
w = {t ∈ R

n | (t, w) ∈ L} is the set of delay vectors that together with w form
a timed word of L′. In the sequel we will only consider languages L

′ for which
every L

′
w is volume measurable. To such a L

′
n one can associate a sequence of

volumes and a VGF as follows:

Vol(L′
n) =

∑

w∈Σn

Vol(Aw); V GF (L)(z) =
∑

w∈Σ∗

Vol(Aw)z
|w| =

∑

n∈N

Vol(L′
n)z

n

The clock semantic of a signature. A clock is a non-negative real variable.
Here we only consider two clocks bounded by 1 and denoted by xU and xD. A
clock word is a tuple whose component are a starting clock vector (xU

0 , x
D
0 ) ∈

6 We refer the reader to [1] for a standard approach of timed automata theory.
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[0, 1], a timed word (t1, a1) · · · (tn, an) ∈ ([0, 1] × {U,D})∗ and an ending clock

vector (xU
n , x

D
n ) ∈ [0, 1]2, it is denoted by (xU

0 , x
D
0 )

(t1,a1)···(tn,an)−−−−−−−−−−→ (xU
n , x

D
n ).

Two clock words x0
w−→ x1 and x2

w
′

−−→ x3 are said to be compatible if

x2 = x1, in this case their product is (x0
w−→ x1) · (x2

w
′

−−→ x3) = x0
ww

′

−−−→ x3.
A clock language is a set of clock words. The product of two clock languages L
and L′ is

L · L′ = {c · c′ | c ∈ L, c′ ∈ L′, c and c′ compatible}. (5)

The clock languages7 L(U) (resp. L(D)) associated to an up (resp. a down) is

the set of clock words of the form (xU , xD)
(t,U)−−−→ (xU+t, 0) (resp. (xU , xD)

(t,D)−−−→
(0, xD+t)) and such that xU+t ∈ [0, 1], xD+t ∈ [0, 1] (and by definition of clocks
and delays xU ≥ 0, xD ≥ 0, t ≥ 0). These definitions extends inductively to all
signatures L(u1 · · ·un) = L(u1) · · · L(un) (using the product of clock languages
as defined in 5).

Example 2. (0, 0)
(0.7,D)(0.2,U)(0.2,U)(0.5,D)−−−−−−−−−−−−−−−−−−→ (0, 0.5) ∈ L(DUUD) since

(0, 0)
(0.7,D)−−−−→ (0, 0.7) ∈ L(D); (0, 0.7)

(0.2,U)−−−−→ (0.2, 0) ∈ L(U);

(0.2, 0)
(0.2,U)−−−−→ (0.4, 0) ∈ L(U); (0.4, 0)

(0.5,U)−−−−→ (0, 0.5) ∈ L(D).

The timed semantic of a language of signatures. The timed polytope

associated to a signature w ∈ {U,D}∗ is Pw =def {t | (0, 0)
(t,w)−−−→ y ∈

L(w) for some y ∈ [0, 1]2} e.g. (0.7, 0.2, 0.2, 0.5, 0.1) ∈ PDUUDU . The defini-
tion of such a timed polytope will be clarified in proposition 1 and its following
example. The timed semantic of a language of signatures L′ is

L = {(t, w) | t ∈ Pw and w ∈ L′} = ∪w∈L′Pw × {w}.

This language restricted to words of length n is L′
n = ∪w∈L′

n
Pw×{w}, its volume

is Vol(L′
n) =

∑

w∈L′ Vol(Pw).
The chain polytope [10] of a signature u is the set C(u) of vectors t ∈ [0, 1]n

such that for all i < j ≤ n and l ∈ {U,D}, wi · · ·wj−1 = lj−i ⇒ ti+ . . .+ tj ≤ 1.

Proposition 1. Given a word u ∈ {U,D}∗ and l ∈ {U,D} then the timed
polytope of ul is the chain polytope of u: Pul = C(u).

Example 3. A vector (t1, t2, t3, t4, t5) ∈ [0, 1]5 belongs to PDUUDU = C(DUUD)
iff t1 + t2 ≤ 1, t2 + t3 + t4 ≤ 1, t4 + t5 ≤ 1 iff 1 − t1 ≥ t2 ≤ t2 + t3 ≤ 1 −
t4 ≥ t5 iff (1 − t1, t2, t2 + t3, 1 − t4, t5) ∈ O(DUUD). One can check this fact
on examples given before: (0.7, 0.2, 0.2, 0.5, 0.1) ∈ PDUUDU corresponds to the
vector (0.3, 0.2, 0.4, 0.5, 0.1) ∈ O(DUUD).

7 A reader acquainted with timed automata would have noticed that the clock lan-
guage L(U) (resp. L(D)) corresponds to a transition of a timed automaton where
the guards xU ≤ 1 and xD ≤ 1 are satisfied and where xD (resp. xU is reset).
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The purpose of the following section is to give the general formula for the cor-
respondence between timed polytopes and order polytopes we have foreseen in
the previous example.

3.3 Volume preserving transformation between L
′
n

and On(L).

Let n be a positive integer. We define for w = ul with u ∈ {U,D}n−1 and
l ∈ {U,D} a volume preserving function (t1, · · · , tn) 7→ (ν1, · · · , νn) the chain
polytope C(u) = Pul to the order polytopeO(u). This is a simple case of Theorem
2.1 of [8].

Let w ∈ {U,D}n and n = |w|. Let j ∈ [n] and i be the index such that
wi · · ·wj−1 is a maximal ascending or descending block i.e. i is minimal such

that wi · · ·wj−1 = lj−i with l ∈ {U,D}∗. If wj = d we define νj = 1 −∑j
k=i tk

and νj =
∑j

k=i tk otherwise.

Proposition 2. The mapping φul : (t1, · · · , tn) 7→ (ν1, · · · , νn) is a volume
preserving transformation from C(u) = Pul to O(u). It can be computed in linear

time using the following recursive characterization:

∣

∣

∣

∣

ν1 = t1 if w1 = U
ν1 = 1− t1 if w1 = D

and

for i ≥ 2:

∣

∣

∣

∣

∣

∣

∣

∣

νi = νi−1 + ti if wi−1wi = UU ;
νi = ti if wi−1wi = DU ;
νi = 1− ti if wi−1wi = UD;
νi = νi−1 − ti if wi−1wi = DD.

Proposition 2 links the timed polytope of a signature of length n+1 and the
order polytopes of a signature of length n. We correct this mismatch of length
using prolongation of languages. We say that a language L′ is a prolongation of
a language L whenever the truncation of the last letter w1 . . . wn 7→ w1 . . . wn−1

is a bijection between L′ and L. Every language L has prolongations e.g. L′ = Ll
for l ∈ {U,D} are prolongations of L.

Now we can extend proposition 2 to a language of signatures.

Theorem 1. Let L ⊆ {U,D}∗ and L
′ be the timed semantic of a prolongation of

L then for all n ∈ N, the following function is a volume preserving transformation
between L

′
n and On(L). Moreover it is computable in linear time.

φ : L
′
n → On(L)

(t, w) 7→ φw(t)
(6)

As a consequence, the two problems can be solved if we know how to compute
the VGF of a timed language L

′ and how to generate timed vector uniformly
in L

′
n. A characterization of the VGF of a timed language as a solution of a

system of differential equations is done in our previous work [2]. Nevertheless
the equations of this article were quite uneasy to handle and did not give a closed
form formula for the VGF. To get more precise and simple equations than in [2]
we work with a novel class of timed languages involving two kinds of transitions
S and T .

7



3.4 The S-T (timed) language encoding.

The S-T -encoding We consider the finite alphabet {S, T} whose elements
must be respectively read as straight and turn. A word w′

1 · · ·w′
n ∈ {S, T}∗ is

the S-T -encoding of type l ∈ {U,D} of a word w1 · · ·wn ∈ {U,D}∗ whenever
for every i ∈ [n], w′

i = S if wi = wi−1 and w′
i = T otherwise, with convention

that w0 = l. We denote by stl(w) the S-T -encoding of a word w ∈ {U,D}∗. The
mapping stl is invertible with inverse defined by st−1

l (w′
1 · · ·w′

n) = w1 · · ·wn

where for every i ∈ [n], wi = wi−1 if w′
i = S and wi 6= wi−1 otherwise, with

convention that w0 = l. Notion of S-T -encodings can be extended naturally to
languages. e.g. stU [(U + DU)∗] = (S + TT )∗. We call an S-T -automaton, a
deterministic finite state automaton with transition alphabet {S, T}.

Timed semantic and S-T -encoding In the following we define clock and
timed languages similarly to what we have done in section 3.2. Here we need
only one clock x that remains bounded by 1. We define the clock languages

associated to S by L(S) = {x (t,S)−−−→ x + t | x ∈ [0, 1], t ∈ [0, 1 − x]} and the

clock language associated to T by L(T ) = {x (t,T )−−−→ t | x ∈ [0, 1], t ∈ [0, 1 − x]}.
Let L′′ ⊆ {S, T}∗ we denote by L′′(x) the timed language starting from x:

L′′(x) = {(t, w) | ∃y ∈ [0, 1], x
(t,w)−−−→ y ∈ L(w), w ∈ L′′}. The timed semantic of

L′′ ⊆ {S, T}∗ is L′′(0).
The S-T -encodings yields a natural volume preserving transformation be-

tween timed languages:

Proposition 3. Let L′ ⊆ {U,D}∗, l ∈ {U,D}, L′ be the timed semantic of L′

and L
′′ be the timed semantic of stl(L

′) then the function (t, w) 7→ (t, st−1
l (w))

is a volume preserving transformation from L
′′
n to L

′
n.

Using notation and results of Theorem 1 and Proposition 3 we get a volume
preserving transformation from L

′′
n to On(L).

Theorem 2. The function (t, w) 7→ φ
st

−1

l
(w)(t) is a volume preserving trans-

formation from L
′′
n to On(L) computable in linear time. In particular

Vol(L′′
n) =

|p−1(Ln−1)|
n!

for n ≥ 1, and V GF (L′′)(z) = EGF (p−1(L))(z)

Thus to solve problem 1 it suffices to characterize the VGF of an S-T -automaton.

4 Solving the two problems

4.1 Characterization of the VGF of an S-T -automaton.

In this section we characterize precisely the VGF of the timed language recog-
nized by an S-T -automaton. This solve Problem 1.

We have defined just above timed language L′′(x) parametrized by an ini-
tial clock vector x. Given an S-T -automaton, we can also consider the intial
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state as a parameter and write Kleene like systems of equations on parametric
language Lp(x) (similarly to [2]). More precisely, let A = {{S, T}, Q, i, F, δ} be
S-T -automaton. To every state p ∈ Q we denote by Lp ⊆ {S, T}∗ the language
starting from p i.e. recognized by Ap =def {{S, T}, Q, p, F, δ}. We adopt the
convention that Lδ(p,l) is empty when δ(p, l) is undefined and the corresponding
generating function is null. Then for every p ∈ Q, we have a parametric language
equation:

Lp(x) =
[

∪t≤1−x(t, S)Lδ(p,S)(x+ t)
]

∪
[

∪t≤1−x(t, T )Lδ(p,T )(t)
]

∪ (ǫ if p ∈ F )
(7)

Passing to volume generating functions fp(x, z) =def V GF (Lp(x))(z) (as in [2])
we get:

fp(x, z) = z

∫ 1

x

fδ(p,S)(s, z)ds+ z

∫ 1−x

0

fδ(p,T )(t, z)dt+ (1 if p ∈ F ) (8)

In matrix notation:

f(x, z) = zMS

∫ 1

x

f(s, z)ds+ zMT

∫ 1−x

0

f(t, z)dt+ F (9)

where f(x, z),
∫ 1

x
f(s, z)ds and

∫ 1−x

0
f(t, z)dt are the column vectors whose coor-

dinates are respectively the fp(x, z),
∫ 1

x
fp(s, z)ds and

∫ 1−x

0
fp(t, z)dt for p ∈ Q.

The pth coordinate of the column vector F is 1 if p ∈ F and 0 otherwise. The
Q×Q-matrices MS and MT are the adjacency matrices corresponding to letter
S and T i.e. for l ∈ {S, T}, Ml(p, q) = 1 if δ(p, l) = q, 0 otherwise.

Equation (9) is equivalent to the differential equation:

∂

∂x
f(x, z) = −zMSf(x, z)− zMTf(1− x, z) (10)

with boundary condition
f(1, z) = F . (11)

Equation (10) is equivalent to the following linear homogeneous system of ordi-
nary differential equations with constant coefficients:

∂

∂x

(

f(x, z)
f(1− x, z)

)

= z

(

−MS −MT

MT MS

)(

f(x, z)
f(1− x, z)

)

. (12)

whose solution is of the form
(

f(x, z)
f(1− x, z)

)

= exp

[

xz

(

−MS −MT

MT MS

)](

f(0, z)
f(1, z)

)

(13)

Taking x = 1 in (13) and using the boundary condition (11) we obtain:

F = A1(z)f(0, z) +A2(z)F
f(0, z) = A3(z)f(0, z) +A4(z)F

(14)

9



Algorithm 1 Computation of the generating function

1: Compute an S-T -automaton A for an extension of L and its corresponding adja-
cency matrices MT and MS ;

2: Compute

(

A1(z) A2(z)
A3(z) A4(z)

)

=def exp

[

z

(

−MS −MT

MT MS

)]

;

3: Compute f(0, z) = [A1(z)]
−1[I −A2(z)]F (or f(0, z) = [I −A3(z)]

−1A4(z)F );
4: return the component of f(0, z) corresponding to the initial state of A.

where

(

A1(z) A2(z)
A3(z) A4(z)

)

= exp

[

z

(

−MS −MT

MT MS

)]

. In particular when z = 0,

A1(0) = I−A3(0) = I and thus the two continuous functions z 7→ detA1(z) and
z 7→ det(I − A3(z)) are positive in a neighbourhood of 0. We deduce that the
inverses of the matrices A1(z) and I−A3(z) are well defined in a neighbourhood
of 0 and thus both rows of (14) permits to express f(0, z) with respect to F :

f(0, z) = [A1(z)]
−1[I −A2(z)]F

f(0, z) = [I −A3(z)]
−1A4(z)F

(15)

Finally the coordinate of the column vector f(0, z) associated to the initial state
gives the expected VGF. To sum up we have:

Theorem 3. Given a regular language L ⊆ {U,D}∗, one can compute the ex-
ponential generating function EGF (p−1(L))(z) using Algorithm 1.

Some comments about the algorithm. In line 1, several choices are left to
the user: the prolongation L′ of the language L, the type of the S-T -encoding
and the automaton that realizes the S-T -encoding. These choices should be
made such that the output automaton has a minimal number of states or more
generally such that the matrices MT and MS are the simplest possibles. Expo-
nentiation of matrices is implemented in most of computer algebra systems.

4.2 An algorithm for problem 2

Now we can solve problem 2 using a uniform sampler of timed words (Algorithm
2), the volume preserving transformation of Theorem 2 and a sorting algorithm.

Theorem 4. Let L ⊆ {U,D}∗ and L
′′ be the timed semantic of a S-T -encoding

of type l (for some l ∈ {U,D}) of a prolongation of L. The following algorithm
permits to achieve a uniform sampling of permutation in p−1(Ln−1). i.e. For
σ ∈ p−1

n (L), the probability that the permutation σ is returned is 1/|p−1(Ln−1)|.

1. Choose uniformly an n-length timed word (t, w) ∈ L
′′
n using Algorithm 2;

2. Return sort(φ
st

−1

l
(w)(t)).

10



Algorithm 2 Recursive uniform sampler of timed words

1: x0 ← 0; q0 ← initial state;
2: for k = 1 to n do

3: Compute mk = vqk−1,n−(k−1)(xk−1) and pS =
∫ 1

xk−1

vδ(qk−1,S),n−k(y)dy/mk;

4: b← BERNOULLI(pS); (return 1 with probability pS and 0 otherwise)
5: if b = 1 then

6: wk ← S; qk ← δ(qk−1, S);
7: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
8: tk ← the unique solution in [0, 1−xk−1] of

1
mkpS

∫ xk−1+tk
xk−1

vqk,n−k(y)dy−r = 0;

9: xk ← xk−1 + tk;
10: else

11: wk ← T ; qk ← δ(qk−1, T );
12: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
13: tk ← the unique solution in [0, 1−xk−1] of

1
mk(1−pS)

∫ tk
0

vqk,n−k(y)dy−r = 0;
14: xk ← tk;
15: end if

16: end for

17: return (t1, w1)(t2, w2) . . . (tn, wn)

Uniform sampling of timed words. Recursive formulae (16) and (17) are
freely inspired by those of [3] and of our previous work [2]. They are the key
tools to design a uniform sampler of timed word. This algorithm is a lifting
from the discrete case of the so called recursive method (see [5] for a recall and
an improvement of the recursive method in the context of random generation
of word of a regular language; see also reference therein for application of the
recursive method to more general combinatoric classes). For all q ∈ Q, n ∈ N and
x ∈ [0, 1] we denote by Lq,n(x) the language Lq(x) restricted to n-length timed
word. The languages Lq,n(x) can be recursively defined as follow: Lq,0(x) = ǫ if
q ∈ F and Lq,0 = ∅ otherwise;

Lq,n+1(x) =
[

∪t≤1−x(t, S)Lδ(q,S),n(x+ t)
]

∪
[

∪t≤1−x(t, T )Lδ(q,T ),n(t)
]

. (16)

For q ∈ Q and n ≥ 0, we denote by vq,n the function x 7→ Vol[Lq,n(x)] from
[0, 1] to R

+. Each function vq,n is a polynomial of degree less or equal n that
can be computed recursively using the recurrence formula: vq,0(x) = 1q∈F and

vq,n+1(x) =

∫ 1

x

vδ(q,S),n(y)dy +

∫ 1−x

0

vδ(q,T ),n(y)dy. (17)

The polynomials vq,n(x) play a key role for the uniform sampler, they permit
also to retrieve directly the terms of the wanted VGF: Vol(L′′

n) = vq0,n(0) where
q0 is the initial state of the S-T automaton.

Theorem 5. Algorithm 2 is a uniform sampler of timed words of L′′
n i.e. for all

volume measurable subset A ⊆ L
′′
n, the probability that the returned timed word

falls in A is Vol(A)/Vol(L′′
n).
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Some comments about the algorithm. Algorithm 2 requires a precomputing
of all functions vq,k for q ∈ Q and k ≤ n done by Algorithm 3 below (see
also proposition 4 for the complexity). The expressions in lines 8 and 13 are
polynomials increasing in [x, 1] (the derivative is the integrand which is positive
on (x, 1)). Finding the root of such a polynomial can be done numerically and
efficiently with a controlled error using a numerical scheme such as the Newton’s
method.

Algorithm 3 Preprocessing for Algorithm 2

1: for p ∈ Q do

2: define vp,0(x) = 1p∈F .
3: for k = 1 to n do

4: compute vp,k(x) using (17).
5: end for

6: end for

Proposition 4. Algorithm 3 has space and time complexity 0(|Q|n2). Its bit
space complexity is 0(|Q|n3).

Proof. The polynomial vq,m is of degree m, it has O(m) coefficients. Therefore
the time and space complexity are 0(

∑n
m=1 |Q|m) = O(|Q|n2).

Magnitudes of coefficients of vq,m behave like 2mH where H is the entropy of
the timed language (see [3]) and thus one needs O(m) bits to store them. This
explains why an extra factor n appears when dealing with bit space complexity.

5 Discussion and perspectives

We have stated and solved the problem of counting and uniform sampling of
permutations with signature in a given regular language of signatures. The timed
semantic of such a language is a particular case of timed regular languages (i.e.
recognized by timed automata [1]). However, with the approach used, timed
languages can be defined from any kind of languages of signatures. A challenging
task for us is to treat the case of context free languages of signatures. For this we
shall use as in our previous works [2,4] volume of languages parametrized both
by a starting and an ending state.

Volumes and languages parametrized both by a starting and an ending state
would also be useful to gain a linear factor in the time and space complexity
of the preprocessing stage of the present setting (Algorithm 3). Indeed they are
needed to adapt the divide and conquer algorithm of [5].

Our work can also benefit to timed automata community. Indeed, we have
proposed a uniform sampler for a particular class of timed languages. An ongoing
work is to adapt this algorithm to all deterministic timed automata with bounded
clocks using recursive equations of [3]. A uniform sampler of timed word would

12



be useful to solve the proportional model checking problem introduced in our
previous work [4].

A toy implementation of the algorithms is available on-line http://www.

liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm.
Proofs and examples are given in the appendix
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Appendix

A Some proof details

Proof of Proposition 1

Let w = ul i.e. for all i ∈ [n − 1] wi = ui and wn = l. Lul ⊆ C(u)) Let
(t1, . . . , tn) ∈ Lw i.e. there exist value of clocks xa

k (a ∈ {U,D}, k ∈ [n]) such

that xU
0 = xD

0 = 0 and (xU
k−1, x

D
k−1)

(tk,wk)−−−−−→ (xU
k , x

D
k ) ∈ L(wk). Let i < j ≤ n

and a ∈ {U,D} such that wi · · ·wj−1 = aj−i, then for k ∈ {i, . . . , j − 1}, xa
k =

xa
k−1 + tk by definition of L(a). Then xa

j−1 = xa
i−1 + ti + . . . + tj−1. Moreover

xa
j−1 + tj ≤ 1 by definition of L(wj) and thus ti + . . .+ tj−1 + tj ≤ xa

i−1 + tj ≤ 1
which is the wanted inequality.

C(u) ⊆ Lul) Let (t1, . . . , tn) ∈ C(u). We show inductively that for every a ∈
{U,D}, the condition xa

j−1 + tj ≤ 1 is satisfied and thus that xa
j can be defined

( xa
j = xa

j−1 + tj if wj = a and xa
j = 0 otherwise). For this we suppose that

clock values xa
0 , . . . , x

a
j−1 are well defined. Let lr(xa, j) be the maximal index

before transition j such that wlr(xa,j) 6= a. Necessarily wlr(xa,j)+1 . . . wj = aj−i

and thus tlr(xj)+1 + . . . + tj ≤ 1 by definition of C(u). This latter sum is equal
to xa

j−1 + tj ≤ 1 and thus the condition on xa imposed by L(uj) is satisfied.

Proof of proposition 2

The function φul is a volume preserving transformation since it is a linear func-
tion given by a unimodular (i.e. an integer matrix having determinant +1 or
−1) matrix. Indeed φul(t) = ν iff ν⊤ = Mult

⊤+b with for all j ∈ [n]: if wj = U
(resp. wj = D) then the jth rows of the matrix Mul as 1 (resp. −1) between
coordinates i and j included and the jth rows of b is 0 (resp. −1). One can see
that Mul is upper triangular and has only 1 and −1 on its diagonal and thus
is unimodular. Now we prove that ν = φult belongs to On(u) for t ∈ C(u). We
show that the two conditions (C-1) and (C-2) below are equivalents. Then, we
will be done since (C-1) is the definition of (t1, · · · , tn) ∈ C(u) while (C-2) is
equivalent to ν1, . . . , νn ∈ O(u):

(C-1) for all i < j ≤ n and l ∈ {U,D}, ui · · ·uj−1 = lj−i ⇒ ti + . . .+ tj ≤ 1;

(C-2) for all i < j ≤ n, ui · · ·uj−1 = U j−i ⇒ νi ≤ . . . ≤ νj ≤ 1 and ui · · ·uj−1 =
Dj−i ⇒ νj ≤ . . . ≤ νi ≤ 1.

Let i < j ≤ n and ui · · ·uj−1 = U j−i then the following chain of inequalities
[0 ≤ νi = ti ≤ . . . ≤ νj−1 = ti + . . . + tj−1 ≤ νj = (1 − tj or ti + . . . + tj) ≤ 1]
is equivalent to ti + . . . + tj ≤ 1. The case of downs can be proved in a similar
way by applying x 7→ 1− x to the preceding inequalities. ⊓⊔



Proof of Theorem 4

For all σ ∈ p−1
n (L), the probability p(σ) that the output is σ is the probabil-

ity to choose a timed word (t, w) such that sort[φst−1(w)(t)] = σ. Since the
timed words are uniformly sampled this probability is equal to Vol({(t, w) |
sort[φw(t)] = σ})/Vol(L′′

n) which is equal to Vol({ν | sort(ν) = σ})/Vol(L′′
n)

since the mapping (t, w) 7→ φst−1(w)(t) is a volume preserving transforma-
tion. The numerator is the volume of the order simplex associated to σ which
is Vol(O(σ)) = 1/n!; the denominator Vol(L′′

n) is |p−1(Ln−1)|/n! by virtue
of Theorem 2. We get the expected result p(σ) = (1/n!)/(|p−1(Ln−1)|/n!) =
1/|p−1(Ln−1)|. ⊓⊔

More details about Algorithm 2, sketch of proof of Theorem 5.

One can first check that for all k ∈ [n], (qk−1, xk−1)
(tk,wk)−−−−−→ (qk, xk) ∈ L(wk)

and that w1 · · ·wn ∈ L′′.
We denote by p[(t1, w1) · · · (tn, wn)] the density of probability of the timed

word (t1, w1) · · · (tn, wn) ∈ L
′′ to be returned. The algorithm is a uniform sam-

pler if it assign the same density of probability to all timed words of L′′ i.e.
p[(t1, w1) · · · (tn, wn)] = 1/Vol(L′′).

During the kth loop, wk and tk are chosen, knowing qk−1, xk−1 and the
index k, according to a density of probability (implicitly defined by the algo-
rithm) and denoted by pk[(tk, wk) | qk−1, xk−1]. The new general state (qk, xk)
is (deterministically) defined using qk−1, xk−1, tk, wk. The following chain rule
applied

p[(t1, w1) · · · (tn, wn)] =

n
∏

k=1

pk[(tk, wk) | qk−1, xk−1] (18)

We show that

pk[(tk, wk) | qk−1, xk−1] =
mk+1

mk
=

vqk,n−k(xk)

vqk−1,n−(k−1)(xk−1)
(19)

The choice of (tk, wk) is done in two steps: we chose first wk (and thus qk) and
then tk. We write this

pk[(tk, wk) | qk−1, xk−1] = pk[wk | qk−1, xk−1]pk[tk | qk, xk−1] (20)

We have that pk[S | qk−1, xk−1] = pS and pk[T | qk−1, xk−1] = 1−pS since b = 1
iff wk = S.

In both cases (b = 0 or 1) the delay tk is sampled using the so called inverse
sampling method. This method state that to sample a random variable according
to a probability density function (PDF) p(t) (here p(t) = pk[t | qk, xk−1]) it
suffices to uniformly sampled a random number in [0, 1] and define t such that
∫ t

0
p(t′)dt′ = r, the latter integral is known as the cumulative density function 8

(CDF) associated to p.

8 Its inverse (t function of r) is known as the quantile function.
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When b = 1 (and thus wk = S), the CDF used in the algorithm is t 7→
∫ t

0
vqk,n−k(xk−1 + t′)/pSmkdt

′. Its corresponding PDF is pk[tk | qk, xk−1] =
vqk,n−k(xk−1+ tk)/pSmk = mk+1/pSmk. Multiplying by pk[S | qk−1, xk−1] = pS
we get (19).

When b = 0 (and thus wk = T ), a similar reasoning permits to prove (19)
which is then true in both cases.

Plugging (19) in (18), we get the expected result:

p[(t1, w1) · · · (tn, wn)] =

∏n
k=1 mk+1
∏n

k=1 mk
=

mn+1

m1
=

vqn,0(xn)

vq0,n(0)
=

1

Vol(L′′
n)

.

B Examples

In section B.1 we show how Algorithm 1 applies to the classical example of
alternating permutations. In section B.2 we apply this algorithm to what we call
up-up-down-down permutations. In section B.3 we treat the running example
given in the article.

B.1 The alternating permutations

p q

U

D

T

Fig. 1. An automaton for (UD)∗(U + ǫ) and its S-T encoding of type D

The class of alternating permutation is9 Alt = S0 ∪ p−1[(UD)∗(U + ǫ)]. It
is well known since the 19th century and the work of Désiré André that

EGF (Alt)(z) = tan(z) + sec(z) (sec(z) = 1/ cos(z)).

Several different proof of this results can be found in [9]. Here we give a novel
proof based on the application of Algorithm 1 on (UD)∗(U + ǫ).

A prolongation of (UD)∗(U+ǫ) is (UD)∗(UD+U). We add ǫ to the language
to add 1 to its VGF, indeed

EGF (Alt)(z) = 1 + V GF [(UD)∗(UD + U)](z) = V GF [(UD)∗(U + ǫ)](z)

The S-T encoding of type D of (UD)∗(ǫ + U) is just S∗ which is recognized
by the one loop automaton depicted on the right of figure 1 . Thus MS = (1),

9 Abusing the notation, we confuse regular expressions with the regular language they
express
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MT = (0) and we must compute exp(zM) =
∑

n∈N
znMn/n! withM =

(

0 1
−1 0

)

Computation of exp(zM) is easy since M is unipotent: M0 = I2 M2 = −I2,
M2 = −M , M3 = I2,M

4 = M ,. . . Then for all k ≥ 0:

M2k =

(

(−1)k 0
0 (−1)k

)

; M2k+1 =

(

0 (−1)2k

(−1)2k+1 0

)

Therefore exp(zM) =
∑

n∈N
znMn/n! =

(

cos(z) − sin(z)
sin(z) cos(z)

)

By definitionA1(z) =

cos(z), A2(z) = − sin(z) and we thus we can conclude:

EGF (Alt)(z) = A1(z)
−1(1−A2(z)) =

1

cos(z)
+ tan(z).

B.2 The up-up-down-down permutations

1 2

4 3

U

U

D

D

1 2

4 3

U

U

D

D

1, 3 2, 4

T

S

Fig. 2. From left to right: automata for L, L′, stD(L′)

Alternating permutations (treated above) of odd lengths are sometimes called
up-down permutations. Here we compute the exponential generating function of
up-up-down-down permutations i.e. those with signature in L = (UUDD)∗(UU+
ǫ). The language L′ = (UUDD)∗(UUD + U) is an extension of L. Its S-
T -encoding of type D is stD(L′) = (TS)∗T . This latter languages is recog-
nized by the S-T -automaton depicted on figure 2. Its adjacency matrices are

MS =

(

0 0
1 0

)

, MT =

(

0 1
0 0

)

and the row vector of final state is F =

(

0
1

)

. Let

M =

(

−MS −MT

MT MS

)

. One more time computation of exp(zM) is easy since M

is unipotent10:

M =









0 0 0 −1
−1 0 0 0
0 1 0 0
0 0 1 0









;M2 =









0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0









;M3 =









0 −1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0









;M4 = I4.

10 This is the case for all cyclic automaton
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Thus if we denote by fi(z) =
∑+∞

n=0 z
4n+i/(4n+ i)! for i ∈ {0, 1, 2, 3} we have:

exp zM = f0(z)I + f1(z)M + f2(z)M
2 + f3(z)M

3 and

A1(z) =

(

f0(z) −f3(z)
−f1(z) f0(z)

)

;A2(z) =

(

f2(z) −f1(z)
f3(z) f2(z)

)

.

The function fi can be expressed with trigonometric function:

f0(z) = [cosh(z) + cos(z)]/2; f1(z) = [sinh(z) + sin(z)]/2;
f2(z) = [cosh(z)− cos(z)]/2; f3(z) = [sinh(z)− sin(z)]/2.

We have

[I2 −A2(z)]F =

(

f1(z)
1− f2(z)

)

and thus
(

fp(z)
fq(z)

)

=

(

f0(z) −f3(z)
−f1(z) f0(z)

)−1 (
f1(z)

1− f2(z)

)

.

Using Cramer formula we get fp(z) = [f1(z)f0(z) + f3(z)(1 − f2(z))]/[f
2
0 (z) +

f1(z)f3(z)]. After straightforward simplifications we obtain the wanted result:

f(z) = fp(z) = (sinh z − sin z + sin(z) cosh z + sinh(z) cos z)/(1 + cos(z) cosh z).

B.3 The running example detailed

p q

D

U

U

p q

D

U

U

p q

T

S

T

Fig. 3. From left to right automata for Lex, Lex′ = Lex.{U} ∪ {ǫ}, Lex′′ = stU (L
ex′)

Consider again the class Cex of permutation without two consecutive downs.
Then Cex = S0∪p−1((U+DU)∗(D+ǫ)). A prolongation of (U+DU)∗(D+ǫ). is
(U+DU)∗U . As for alternating permutations we add the word ǫ to this language
to add 1 to the final generating function, thus we get the language (U +DU)∗

recognized by the automaton depicted in the middle of figure 3. Its S-T encoding
of type U is (S + TT )∗ which is recognized by the automaton depicted on the

right of figure 3. Its adjacency matrices are MS =

(

0 1
1 0

)

, MT =

(

1 0
0 0

)

and

the row vector of final state is F =

(

1
0

)

. Let M =

(

−MS −MT

MT MS

)

. We will
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solve directly the differential equation (10) with boundary condition (11), i.e.
the system

∂fp
∂x

(x, z) = −zfp(x, z)dy − zfq(1− x, z)dy; (21)

∂fq
∂x

(x, z) = −zfp(1− x, z). (22)

with boundary conditions fp(1, z) = 1; fq(1, z) = 0 Equation (21) taken in x = 1

ensures that
∂fp
∂x (1, z) = −zfp(0, z) − zfq(1, z) = −zfp(0, z). Thus we have the

boundary condition

fp(1, z) = 1; (23)

∂fp
∂x

(1, z) = −zfp(0, z). (24)

Differentiating (21) and replacing
∂fq
∂x (1− x, z) using (22) we get:

∂2fp
∂x2

(x, z) = −z
∂fp
∂x

− z2fp(x, z); (25)

Solution are of the form: fp(x, z) = e−zx/2
[

a(z) cos(
√
3zx/2) + b(z) sin(

√
3zx/2)

]

with a(z) and b(z) to be determined using boundary conditions (23) and (24)
i.e. a(z) and b(z) satisfies:

a(z) cos(
√
3z/2) + b(z) sin(

√
3z/2) = ez/2 (26)

a(z) +
√
3b(z) = 0; (27)

Solving this system we get:

a(z) = ez/2
√
3/d(z) (28)

b(z) =
[

ez/2/2− cos(z
√
3/2)

]

/d(z) (29)

where d(z) = cos(z
√
3/2)

√
3−sin(z

√
3/2) = [3 cos2(z

√
3/2)−sin2(z

√
3/2)]/[cos(z

√
3/2)

√
3+

sin(z
√
3/2)]. The numerator of this fraction is equal to 4 cos2(z

√
3/2) − 1 =

(2 cos2(z
√
3/2)− 1)(2 cos2(z

√
3/2) + 1) Finally the generating function is

EGF (Cex)(z) = fp(0, z) = a(z) =
3 cos(z

√
3/2) +

√
3 sin(z

√
3/2)

[2 cos(z
√
3/2)− 1][2 cos(z

√
3/2) + 1]

ez/2
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