
HAL Id: hal-00820373
https://hal.science/hal-00820373v1

Preprint submitted on 4 May 2013 (v1), last revised 2 Oct 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting and generating permutations using timed
languages (long version)

Nicolas Basset

To cite this version:
Nicolas Basset. Counting and generating permutations using timed languages (long version). 2013.
�hal-00820373v1�

https://hal.science/hal-00820373v1
https://hal.archives-ouvertes.fr

Counting and generating permutations using
timed languages (long version) ⋆ ⋆⋆

Nicolas Basset1,2

1 LIGM, University Paris-Est Marne-la-Vallée and CNRS, France.
2 LIAFA, University Paris Diderot and CNRS, France

nbasset@liafa.univ-paris-diderot.fr

Abstract. The signature of a permutation σ is a word p(σ) ⊆ {U,D}∗

whose ith letter is U when σ goes “up” (i.e. σ(i) > σ(i + 1)) and is D
when σ goes “down” (i.e. σ(i) < σ(i+1)). Combinatorics of permutations
with a prescribed signature is a quite well explored topics. Languages of
signatures permit to express a broad number of classes of permutations
(e.g. the permutations without two consecutive downs). Here we state
and address the two problems of counting and randomly generating in
the set p−1(L) of permutations whose signature is in a given regular lan-
guage L ⊆ {U,D}∗. First we give an algorithm that computes a closed
form formula for the exponential generating function of p−1(L). Then we
give an algorithm that generates randomly the n-length permutations of
p
−1(L) in a uniform manner i.e. all the permutations of a given length

with a signature in L are equally probable to be returned. Both contri-
butions are based on a geometric interpretation of a subclass of timed
regular languages.

1 Introduction

The signature of a permutation σ = σ1 · · ·σn is the word w = w1 · · ·wn−1 ∈
{U,D}n−1 with wi = D when σ goes “down” (σi > σi+1), and wi = U when it
goes “up” (σi < σi+1).

Generating all the permutations with a prescribed signature or simply count
them are two classical combinatorial topics (see e.g. [11] and reference therein).

A very well studied example of permutations given by their signatures are the
so-called alternating (or zig-zag, or down-up) permutations (see [9] for a survey).
Their signatures belong to the language expressed by the regular expression
(DU)∗(D + ǫ) (i.e. they satisfy σ1 > σ2 < σ3 > σ4...).

Such a definition of class of permutations in terms of a language of signatures
is in fact a novelty of the present paper. To a language L ⊆ {U,D}∗, we asso-
ciate the class p−1(L) of permutations whose signature is in L. Many classes of
permutations can be expressed in that way (e.g. alternating permutations, those
without 2 consecutive downs, those with an even number of downs, etc.).

⋆ The present paper is a long version of an article submitted to MFCS 2013.
⋆⋆ The support of Agence Nationale de la Recherche under the project EQINOCS

(ANR-11-BS02-004) is gratefully acknowledged.

We state and address the two problems of counting and randomly generating
when the language of signatures is regular.

We propose Algorithm 1 which takes as its input a regular language L and
returns a closed form formula for the exponential generating function (EGF) of
p−1(L) i.e. a formal power series

∑

an
zn

n! where the nth coefficient an counts the
permutations of length n with signature in L. With such an EGF, it is easy to
recover the number an and some estimation of the growth rate of an (see [7] for
an overview of analytic combinatorics).

The random generation is done by an algorithm described in Theorem 4.
The regular language of signatures L together with n the size of permutation to
generate are given in input and the output are random permutations of size n
whose signatures are in L with equal probability to be returned.

Our theory is based on a geometric interpretation of timed regular languages
initiated in [3]. In that paper the authors introduce the concept of volume and
entropy of timed regular languages as well as recurrent equations on timed lan-
guages and their volume. With these authors, we have defined and characterize
volume generating function of timed language in [2]. In this latter paper a link
between enumerative combinatorics and timed regular languages was foreseen.
Here we establish such a link. In fact the passage from a class of permutations to
a timed language is in two steps. First we associate order and chain polytopes to
signatures which are particular cases of Stanley’s poset polytopes [10]. Then we
interpret the chain polytopes of a signature w as the set of delays which together
with w forms a timed word of a well chosen timed language.

Paper structure. In section 2 we expose the problem statements. In section
3 we establish the link between the classes of permutations associated with lan-
guages of signatures and timed languages of a particular form. We address the
two problems in section 4 and discuss our results and perspectives in the last
section. Proofs and detailed examples are given in the appendix.

Submitted version. The present paper is a long version of an article submitted
to MFCS 2013.

2 Two problem statements

All along the paper we use the two letter alphabet {U,D} whose elements must
be read as “up” and “down”. Words of {U,D}∗ are called signatures. For n ∈ N

we denote [n] = {1, . . . , n} and by Sn the set of permutation of [n]. We also
use the one line notation of permutations e.g. σ = 231 means that σ(1) = 2,
σ(2) = 3, σ(3) = 1.

Let n be a positive integer. The signature of a permutation σ = σ1 · · ·σn is
the word u = u1 · · ·un−1 ∈ {U,D}n−1 denoted by p(σ) such that for i ∈ [n],
σi < σi+1 iff ui = U (we speak of an “up”, also known as an ascent) and
σi > σi+1 iff ui = D (we speak of a “down”, also known as a descent) e.g.
p(21354) = p(32451) = DUUD.

2

This statistics appears in the literature under several different names and
forms such as descent set, ribbon diagram, etc. The usual definition of signature
of a permutation is an n-tuple of +1 (“up”) and −1 (”down“). Here we use
words to express in a very convenient way constraints on permutations in terms
of languages. More precisely we are interested in p−1(L) = {σ | p(σ) ∈ L}:
the class of permutations with a signature in L ⊆ {U,D}∗. Given a language
L we denote by Ln the sub-language of L restricted to words of length n. The
exponential generating function of p−1(L) is

EGF [p−1(L)](z) =
∑

σ∈p−1(L)

z|σ|

|σ|! =
∑

n≥1

|p−1(Ln−1)|
zn

n!
=

∑

u∈L

|p−1(u)| z|u|+1

(|u|+ 1)!
.

Example 1. Consider as a running example the class Cex of permutation without
two consecutive downs. Then3 Cex = S0 ∪ p−1(Lex) where Lex is the language
expressed by the regular expression (U +DU)∗(D+ ǫ). The theory developed in
the paper4 permits to find the exponential generating function of Cex:

EGF (Cex)(z) =
3 cos(z

√
3/2) +

√
3 sin(z

√
3/2)

[2 cos(z
√
3/2)− 1][2 cos(z

√
3/2) + 1]

ez/2

The following Taylor expansion gives the cardinalities of sets of n-length permu-
tations of Cex for n ∈ N e.g. there are 5 permutations of length 3 in Cex.

EGF (Cex)(z) = 1 + z + 2
z2

2!
+ 5

z3

3!
+ 17

z4

4!
+ 70

z5

5!
+ 349

z6

6!
+ 2017

z7

7!
+ . . .

Now we state the two problems solved in the paper.

Problem 1. Design an algorithm which takes as input a regular language L ⊆
{U,D}∗ and returns a closed form formula for EGF (p−1(L))

Problem 2. Design an algorithm which takes as input a regular language L ⊆
{U,D}∗ and a positive integer n and returns a random permutation σ uniformly
in p−1(Ln−1) i.e. such that the probability for each σ ∈ p−1(Ln−1) to be returned
is 1/|p−1(Ln−1)|.

3 A timed and geometric approach

In section 3.1 we introduce a sequence of sets On(L) ⊆ [0, 1]n and see how the
two problems posed can be reformulated as computing the volume generating
function of the sequence (On(L))n≥1 and generating points uniformly in On(L).
Then we define timed languages L′ associated to L as well as its volume (section
3.2) and describe a volume preserving transformation between On(L) and L

′
n.

3 The unique permutation on the empty set has no signature and thus S0 6⊆ p
−1(L)

for any language L of signature.
4 Detailed examples are given in the appendix.

3

3.1 Order sets of a language of signatures (On(L))n≥1

We say that a collection of polytopes (S1, · · · , Sn) is an almost disjoint partition
of a set A if A is the union of Si and they have pairwise a null volume intersection.
In this case we write S =

⊔n
i=1 Si.

The set {(ν1, . . . , νn) ∈ [0, 1]n | 0 ≤ νσ−1

1

≤ . . . ≤ νσ−1

n
≤ 1} is called the

order simplex [10]5 of σ and denoted by O(σ) e.g. ν = (0.3, 0.2, 0.4, 0.5, 0.1)
belongs to O(32451) since ν5 ≤ ν2 ≤ ν1 ≤ ν3 ≤ ν4 and (32451)−1 = 52134. The
set O(σ) for σ ∈ Sn forms an almost disjoint partition of [0, 1]n. By symmetry
all the order simplices of permutations have the same volume which is 1/n!.

If ν is uniformly sampled in [0, 1]n then it falls in any O(σ) with probability
1/n!. To retrieve σ from ν it suffices to use a sorting algorithm. In this optic, we
will denote by sort(ν) the permutation σ returned by the sorting algorithm on
ν i.e. such that 0 ≤ νσ−1

1

≤ . . . ≤ νσ−1

n
≤ 1.

The signature of a vector ν ∈ [0, 1]n is the word sg(ν) = p(sort(ν)) i.e. such
that νi < νi+1 iff ui = U and νi > νi+1 iff ui = D. e.g. p(0.3, 0.2, 0.4, 0.5, 0.1) =
DUUD. The order polytope [10] of a signature u ∈ {U,D}n−1 is the polytope
O(u) = {ν ∈ [0, 1]n | sg(ν) = u}. It is clear that the collection of order simplices
O(σ) with all σ having the same signature u form an almost disjoint partition
of the order polytope O(u): O(u) =

⊔

σ∈p−1(u) O(σ) (e.g. O(DUU) = O(2134)⊔
O(3124) ⊔ O(4123)). Passing to volume we get:

Vol(O(u)) =
∑

σ∈p−1(u)

Vol(O(σ)) =
|p−1(u)|

n!
(1)

Let L be a language of signatures and n ≥ 1, then the family (O(u))u∈Ln−1

forms an almost disjoint partition of a subset of [0, 1]n called the nth order set
of L and denoted by On(L):

On(L) =
⊔

u∈Ln−1

O(u) =
⊔

σ∈p−1(Ln−1)

O(σ) = {ν ∈ [0, 1]n | sg(ν) ∈ Ln−1}. (2)

For volumes we get:

Vol(On(L)) =
∑

u∈Ln−1

Vol(O(u)) =
∑

σ∈p−1(Ln−1)

Vol(O(σ)) =
|p−1(Ln−1)|

n!
(3)

Reformulating the two problems with the geometric approach As a
consequence of 3, Problem 1 can be reformulated as computing the volume gen-
erating function (VGF) of the sequence O(L) =def (On(L))n≥1:

V GF (O(L))(z) =def

∑

n≥1

Vol(On(L))z
n = EGF (p−1(L))(z) (4)

5 Order simplices, order and chain polytopes of signatures defined here are particular
cases of Stanley’s order and chain polytopes.

4

Problem 2 can also be treated using order polytopes On(L). Indeed it suffices
to generate uniformly a vector ν ∈ On(L) and then sort it to get a permutation
σ = sort(ν). As the simplices O(σ) for σ ∈ p−1(Ln) form an almost disjoint
partition of On(L) and all these simplices have the same volume 1/n!, they are
equally probable to receive the random vector ν, and thus all σ ∈ p−1(Ln) have
the same probability to be chosen.

We have seen with (2) that permutations of a fixed length n fits well with
the nth order set. However, it is not clear how to fit the sequence of order sets
(when n varies) with the dynamics of the language L. It is easier to handle a
timed language L since its sequence of volume (Vol(Ln))n∈N satisfy a recursive
equation [3,2]. We will find a volume preserving transformation between order
sets O(n) and timed languages (Ln)n∈N and hence reduce Problem 1 to the
computing of the ordinary generating function of (Vol(Ln))n∈N. For the second
problem, by generating uniformly a timed word in Ln and applying the volume
preserving transformation we will get a uniform random point in On(L).

3.2 Timed semantic of a language of signatures:
(

L
′
n

)

n∈N

This section is inspired by timed automata theory and designed for non experts.
We adopt a non standard6 and self-contained approach based on the notion of
clock languages introduced by [6] and used in our previous work [2].

Timed languages, their volumes and their generating functions An
alphabet of timed events is the product R+×Σ where Σ is a finite alphabet. The
meaning of a timed event (ti, wi) is that ti is the time delay before the event wi.
A timed word is just a word of timed events and a timed language a set of timed
words. Adopting a geometric point of view, a timed word is a vector of delays
(t1, . . . , tn) ∈ R

n together with a word of events w = w1 · · ·wn ∈ Σn. We adopt
the following convention, we write (t, w) the timed word (t1, w1) · · · (tn, wn) with
t = (t1, · · · , tn) and w ∈ Σn (n ≥ 1). Continuing with the same convention, given
a timed language L ⊆ (R+ × Σ)∗, then the timed language restricted to words
of length n, An can be seen as a formal union of sets

⊎

w∈Σn L
′
w × {w} where

L
′
w = {t ∈ R

n | (t, w) ∈ L} is the set of delay vectors that together with w form
a timed word of L′. In the sequel we will only consider languages L

′ for which
every L

′
w is volume measurable. To such a L

′
n one can associate a sequence of

volumes and a VGF as follows:

Vol(L′
n) =

∑

w∈Σn

Vol(Aw); V GF (L)(z) =
∑

w∈Σ∗

Vol(Aw)z
|w| =

∑

n∈N

Vol(L′
n)z

n

The clock semantic of a signature. A clock is a non-negative real variable.
Here we only consider two clocks bounded by 1 and denoted by xU and xD. A
clock word is a tuple whose component are a starting clock vector (xU

0 , x
D
0) ∈

6 We refer the reader to [1] for a standard approach of timed automata theory.

5

[0, 1], a timed word (t1, a1) · · · (tn, an) ∈ ([0, 1] × {U,D})∗ and an ending clock

vector (xU
n , x

D
n) ∈ [0, 1]2, it is denoted by (xU

0 , x
D
0)

(t1,a1)···(tn,an)−−−−−−−−−−→ (xU
n , x

D
n).

Two clock words x0
w−→ x1 and x2

w
′

−−→ x3 are said to be compatible if

x2 = x1, in this case their product is (x0
w−→ x1) · (x2

w
′

−−→ x3) = x0
ww

′

−−−→ x3.
A clock language is a set of clock words. The product of two clock languages L
and L′ is

L · L′ = {c · c′ | c ∈ L, c′ ∈ L′, c and c′ compatible}. (5)

The clock languages7 L(U) (resp. L(D)) associated to an up (resp. a down) is

the set of clock words of the form (xU , xD)
(t,U)−−−→ (xU+t, 0) (resp. (xU , xD)

(t,D)−−−→
(0, xD+t)) and such that xU+t ∈ [0, 1], xD+t ∈ [0, 1] (and by definition of clocks
and delays xU ≥ 0, xD ≥ 0, t ≥ 0). These definitions extends inductively to all
signatures L(u1 · · ·un) = L(u1) · · · L(un) (using the product of clock languages
as defined in 5).

Example 2. (0, 0)
(0.7,D)(0.2,U)(0.2,U)(0.5,D)−−−−−−−−−−−−−−−−−−→ (0, 0.5) ∈ L(DUUD) since

(0, 0)
(0.7,D)−−−−→ (0, 0.7) ∈ L(D); (0, 0.7)

(0.2,U)−−−−→ (0.2, 0) ∈ L(U);

(0.2, 0)
(0.2,U)−−−−→ (0.4, 0) ∈ L(U); (0.4, 0)

(0.5,U)−−−−→ (0, 0.5) ∈ L(D).

The timed semantic of a language of signatures. The timed polytope

associated to a signature w ∈ {U,D}∗ is Pw =def {t | (0, 0)
(t,w)−−−→ y ∈

L(w) for some y ∈ [0, 1]2} e.g. (0.7, 0.2, 0.2, 0.5, 0.1) ∈ PDUUDU . The defini-
tion of such a timed polytope will be clarified in proposition 1 and its following
example. The timed semantic of a language of signatures L′ is

L = {(t, w) | t ∈ Pw and w ∈ L′} = ∪w∈L′Pw × {w}.

This language restricted to words of length n is L′
n = ∪w∈L′

n
Pw×{w}, its volume

is Vol(L′
n) =

∑

w∈L′ Vol(Pw).
The chain polytope [10] of a signature u is the set C(u) of vectors t ∈ [0, 1]n

such that for all i < j ≤ n and l ∈ {U,D}, wi · · ·wj−1 = lj−i ⇒ ti+ . . .+ tj ≤ 1.

Proposition 1. Given a word u ∈ {U,D}∗ and l ∈ {U,D} then the timed
polytope of ul is the chain polytope of u: Pul = C(u).

Example 3. A vector (t1, t2, t3, t4, t5) ∈ [0, 1]5 belongs to PDUUDU = C(DUUD)
iff t1 + t2 ≤ 1, t2 + t3 + t4 ≤ 1, t4 + t5 ≤ 1 iff 1 − t1 ≥ t2 ≤ t2 + t3 ≤ 1 −
t4 ≥ t5 iff (1 − t1, t2, t2 + t3, 1 − t4, t5) ∈ O(DUUD). One can check this fact
on examples given before: (0.7, 0.2, 0.2, 0.5, 0.1) ∈ PDUUDU corresponds to the
vector (0.3, 0.2, 0.4, 0.5, 0.1) ∈ O(DUUD).

7 A reader acquainted with timed automata would have noticed that the clock lan-
guage L(U) (resp. L(D)) corresponds to a transition of a timed automaton where
the guards xU ≤ 1 and xD ≤ 1 are satisfied and where xD (resp. xU is reset).

6

The purpose of the following section is to give the general formula for the cor-
respondence between timed polytopes and order polytopes we have foreseen in
the previous example.

3.3 Volume preserving transformation between L
′
n

and On(L).

Let n be a positive integer. We define for w = ul with u ∈ {U,D}n−1 and
l ∈ {U,D} a volume preserving function (t1, · · · , tn) 7→ (ν1, · · · , νn) the chain
polytope C(u) = Pul to the order polytopeO(u). This is a simple case of Theorem
2.1 of [8].

Let w ∈ {U,D}n and n = |w|. Let j ∈ [n] and i be the index such that
wi · · ·wj−1 is a maximal ascending or descending block i.e. i is minimal such

that wi · · ·wj−1 = lj−i with l ∈ {U,D}∗. If wj = d we define νj = 1 −∑j
k=i tk

and νj =
∑j

k=i tk otherwise.

Proposition 2. The mapping φul : (t1, · · · , tn) 7→ (ν1, · · · , νn) is a volume
preserving transformation from C(u) = Pul to O(u). It can be computed in linear

time using the following recursive characterization:

∣

∣

∣

∣

ν1 = t1 if w1 = U
ν1 = 1− t1 if w1 = D

and

for i ≥ 2:

∣

∣

∣

∣

∣

∣

∣

∣

νi = νi−1 + ti if wi−1wi = UU ;
νi = ti if wi−1wi = DU ;
νi = 1− ti if wi−1wi = UD;
νi = νi−1 − ti if wi−1wi = DD.

Proposition 2 links the timed polytope of a signature of length n+1 and the
order polytopes of a signature of length n. We correct this mismatch of length
using prolongation of languages. We say that a language L′ is a prolongation of
a language L whenever the truncation of the last letter w1 . . . wn 7→ w1 . . . wn−1

is a bijection between L′ and L. Every language L has prolongations e.g. L′ = Ll
for l ∈ {U,D} are prolongations of L.

Now we can extend proposition 2 to a language of signatures.

Theorem 1. Let L ⊆ {U,D}∗ and L
′ be the timed semantic of a prolongation of

L then for all n ∈ N, the following function is a volume preserving transformation
between L

′
n and On(L). Moreover it is computable in linear time.

φ : L
′
n → On(L)

(t, w) 7→ φw(t)
(6)

As a consequence, the two problems can be solved if we know how to compute
the VGF of a timed language L

′ and how to generate timed vector uniformly
in L

′
n. A characterization of the VGF of a timed language as a solution of a

system of differential equations is done in our previous work [2]. Nevertheless
the equations of this article were quite uneasy to handle and did not give a closed
form formula for the VGF. To get more precise and simple equations than in [2]
we work with a novel class of timed languages involving two kinds of transitions
S and T .

7

3.4 The S-T (timed) language encoding.

The S-T -encoding We consider the finite alphabet {S, T} whose elements
must be respectively read as straight and turn. A word w′

1 · · ·w′
n ∈ {S, T}∗ is

the S-T -encoding of type l ∈ {U,D} of a word w1 · · ·wn ∈ {U,D}∗ whenever
for every i ∈ [n], w′

i = S if wi = wi−1 and w′
i = T otherwise, with convention

that w0 = l. We denote by stl(w) the S-T -encoding of a word w ∈ {U,D}∗. The
mapping stl is invertible with inverse defined by st−1

l (w′
1 · · ·w′

n) = w1 · · ·wn

where for every i ∈ [n], wi = wi−1 if w′
i = S and wi 6= wi−1 otherwise, with

convention that w0 = l. Notion of S-T -encodings can be extended naturally to
languages. e.g. stU [(U + DU)∗] = (S + TT)∗. We call an S-T -automaton, a
deterministic finite state automaton with transition alphabet {S, T}.

Timed semantic and S-T -encoding In the following we define clock and
timed languages similarly to what we have done in section 3.2. Here we need
only one clock x that remains bounded by 1. We define the clock languages

associated to S by L(S) = {x (t,S)−−−→ x + t | x ∈ [0, 1], t ∈ [0, 1 − x]} and the

clock language associated to T by L(T) = {x (t,T)−−−→ t | x ∈ [0, 1], t ∈ [0, 1 − x]}.
Let L′′ ⊆ {S, T}∗ we denote by L′′(x) the timed language starting from x:

L′′(x) = {(t, w) | ∃y ∈ [0, 1], x
(t,w)−−−→ y ∈ L(w), w ∈ L′′}. The timed semantic of

L′′ ⊆ {S, T}∗ is L′′(0).
The S-T -encodings yields a natural volume preserving transformation be-

tween timed languages:

Proposition 3. Let L′ ⊆ {U,D}∗, l ∈ {U,D}, L′ be the timed semantic of L′

and L
′′ be the timed semantic of stl(L

′) then the function (t, w) 7→ (t, st−1
l (w))

is a volume preserving transformation from L
′′
n to L

′
n.

Using notation and results of Theorem 1 and Proposition 3 we get a volume
preserving transformation from L

′′
n to On(L).

Theorem 2. The function (t, w) 7→ φ
st

−1

l
(w)(t) is a volume preserving trans-

formation from L
′′
n to On(L) computable in linear time. In particular

Vol(L′′
n) =

|p−1(Ln−1)|
n!

for n ≥ 1, and V GF (L′′)(z) = EGF (p−1(L))(z)

Thus to solve problem 1 it suffices to characterize the VGF of an S-T -automaton.

4 Solving the two problems

4.1 Characterization of the VGF of an S-T -automaton.

In this section we characterize precisely the VGF of the timed language recog-
nized by an S-T -automaton. This solve Problem 1.

We have defined just above timed language L′′(x) parametrized by an ini-
tial clock vector x. Given an S-T -automaton, we can also consider the intial

8

state as a parameter and write Kleene like systems of equations on parametric
language Lp(x) (similarly to [2]). More precisely, let A = {{S, T}, Q, i, F, δ} be
S-T -automaton. To every state p ∈ Q we denote by Lp ⊆ {S, T}∗ the language
starting from p i.e. recognized by Ap =def {{S, T}, Q, p, F, δ}. We adopt the
convention that Lδ(p,l) is empty when δ(p, l) is undefined and the corresponding
generating function is null. Then for every p ∈ Q, we have a parametric language
equation:

Lp(x) =
[

∪t≤1−x(t, S)Lδ(p,S)(x+ t)
]

∪
[

∪t≤1−x(t, T)Lδ(p,T)(t)
]

∪ (ǫ if p ∈ F)
(7)

Passing to volume generating functions fp(x, z) =def V GF (Lp(x))(z) (as in [2])
we get:

fp(x, z) = z

∫ 1

x

fδ(p,S)(s, z)ds+ z

∫ 1−x

0

fδ(p,T)(t, z)dt+ (1 if p ∈ F) (8)

In matrix notation:

f(x, z) = zMS

∫ 1

x

f(s, z)ds+ zMT

∫ 1−x

0

f(t, z)dt+ F (9)

where f(x, z),
∫ 1

x
f(s, z)ds and

∫ 1−x

0
f(t, z)dt are the column vectors whose coor-

dinates are respectively the fp(x, z),
∫ 1

x
fp(s, z)ds and

∫ 1−x

0
fp(t, z)dt for p ∈ Q.

The pth coordinate of the column vector F is 1 if p ∈ F and 0 otherwise. The
Q×Q-matrices MS and MT are the adjacency matrices corresponding to letter
S and T i.e. for l ∈ {S, T}, Ml(p, q) = 1 if δ(p, l) = q, 0 otherwise.

Equation (9) is equivalent to the differential equation:

∂

∂x
f(x, z) = −zMSf(x, z)− zMTf(1− x, z) (10)

with boundary condition
f(1, z) = F . (11)

Equation (10) is equivalent to the following linear homogeneous system of ordi-
nary differential equations with constant coefficients:

∂

∂x

(

f(x, z)
f(1− x, z)

)

= z

(

−MS −MT

MT MS

)(

f(x, z)
f(1− x, z)

)

. (12)

whose solution is of the form
(

f(x, z)
f(1− x, z)

)

= exp

[

xz

(

−MS −MT

MT MS

)](

f(0, z)
f(1, z)

)

(13)

Taking x = 1 in (13) and using the boundary condition (11) we obtain:

F = A1(z)f(0, z) +A2(z)F
f(0, z) = A3(z)f(0, z) +A4(z)F

(14)

9

Algorithm 1 Computation of the generating function

1: Compute an S-T -automaton A for an extension of L and its corresponding adja-
cency matrices MT and MS ;

2: Compute

(

A1(z) A2(z)
A3(z) A4(z)

)

=def exp

[

z

(

−MS −MT

MT MS

)]

;

3: Compute f(0, z) = [A1(z)]
−1[I −A2(z)]F (or f(0, z) = [I −A3(z)]

−1A4(z)F);
4: return the component of f(0, z) corresponding to the initial state of A.

where

(

A1(z) A2(z)
A3(z) A4(z)

)

= exp

[

z

(

−MS −MT

MT MS

)]

. In particular when z = 0,

A1(0) = I−A3(0) = I and thus the two continuous functions z 7→ detA1(z) and
z 7→ det(I − A3(z)) are positive in a neighbourhood of 0. We deduce that the
inverses of the matrices A1(z) and I−A3(z) are well defined in a neighbourhood
of 0 and thus both rows of (14) permits to express f(0, z) with respect to F :

f(0, z) = [A1(z)]
−1[I −A2(z)]F

f(0, z) = [I −A3(z)]
−1A4(z)F

(15)

Finally the coordinate of the column vector f(0, z) associated to the initial state
gives the expected VGF. To sum up we have:

Theorem 3. Given a regular language L ⊆ {U,D}∗, one can compute the ex-
ponential generating function EGF (p−1(L))(z) using Algorithm 1.

Some comments about the algorithm. In line 1, several choices are left to
the user: the prolongation L′ of the language L, the type of the S-T -encoding
and the automaton that realizes the S-T -encoding. These choices should be
made such that the output automaton has a minimal number of states or more
generally such that the matrices MT and MS are the simplest possibles. Expo-
nentiation of matrices is implemented in most of computer algebra systems.

4.2 An algorithm for problem 2

Now we can solve problem 2 using a uniform sampler of timed words (Algorithm
2), the volume preserving transformation of Theorem 2 and a sorting algorithm.

Theorem 4. Let L ⊆ {U,D}∗ and L
′′ be the timed semantic of a S-T -encoding

of type l (for some l ∈ {U,D}) of a prolongation of L. The following algorithm
permits to achieve a uniform sampling of permutation in p−1(Ln−1). i.e. For
σ ∈ p−1

n (L), the probability that the permutation σ is returned is 1/|p−1(Ln−1)|.

1. Choose uniformly an n-length timed word (t, w) ∈ L
′′
n using Algorithm 2;

2. Return sort(φ
st

−1

l
(w)(t)).

10

Algorithm 2 Recursive uniform sampler of timed words

1: x0 ← 0; q0 ← initial state;
2: for k = 1 to n do

3: Compute mk = vqk−1,n−(k−1)(xk−1) and pS =
∫ 1

xk−1

vδ(qk−1,S),n−k(y)dy/mk;

4: b← BERNOULLI(pS); (return 1 with probability pS and 0 otherwise)
5: if b = 1 then

6: wk ← S; qk ← δ(qk−1, S);
7: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
8: tk ← the unique solution in [0, 1−xk−1] of

1
mkpS

∫ xk−1+tk
xk−1

vqk,n−k(y)dy−r = 0;

9: xk ← xk−1 + tk;
10: else

11: wk ← T ; qk ← δ(qk−1, T);
12: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
13: tk ← the unique solution in [0, 1−xk−1] of

1
mk(1−pS)

∫ tk
0

vqk,n−k(y)dy−r = 0;
14: xk ← tk;
15: end if

16: end for

17: return (t1, w1)(t2, w2) . . . (tn, wn)

Uniform sampling of timed words. Recursive formulae (16) and (17) are
freely inspired by those of [3] and of our previous work [2]. They are the key
tools to design a uniform sampler of timed word. This algorithm is a lifting
from the discrete case of the so called recursive method (see [5] for a recall and
an improvement of the recursive method in the context of random generation
of word of a regular language; see also reference therein for application of the
recursive method to more general combinatoric classes). For all q ∈ Q, n ∈ N and
x ∈ [0, 1] we denote by Lq,n(x) the language Lq(x) restricted to n-length timed
word. The languages Lq,n(x) can be recursively defined as follow: Lq,0(x) = ǫ if
q ∈ F and Lq,0 = ∅ otherwise;

Lq,n+1(x) =
[

∪t≤1−x(t, S)Lδ(q,S),n(x+ t)
]

∪
[

∪t≤1−x(t, T)Lδ(q,T),n(t)
]

. (16)

For q ∈ Q and n ≥ 0, we denote by vq,n the function x 7→ Vol[Lq,n(x)] from
[0, 1] to R

+. Each function vq,n is a polynomial of degree less or equal n that
can be computed recursively using the recurrence formula: vq,0(x) = 1q∈F and

vq,n+1(x) =

∫ 1

x

vδ(q,S),n(y)dy +

∫ 1−x

0

vδ(q,T),n(y)dy. (17)

The polynomials vq,n(x) play a key role for the uniform sampler, they permit
also to retrieve directly the terms of the wanted VGF: Vol(L′′

n) = vq0,n(0) where
q0 is the initial state of the S-T automaton.

Theorem 5. Algorithm 2 is a uniform sampler of timed words of L′′
n i.e. for all

volume measurable subset A ⊆ L
′′
n, the probability that the returned timed word

falls in A is Vol(A)/Vol(L′′
n).

11

Some comments about the algorithm. Algorithm 2 requires a precomputing
of all functions vq,k for q ∈ Q and k ≤ n done by Algorithm 3 below (see
also proposition 4 for the complexity). The expressions in lines 8 and 13 are
polynomials increasing in [x, 1] (the derivative is the integrand which is positive
on (x, 1)). Finding the root of such a polynomial can be done numerically and
efficiently with a controlled error using a numerical scheme such as the Newton’s
method.

Algorithm 3 Preprocessing for Algorithm 2

1: for p ∈ Q do

2: define vp,0(x) = 1p∈F .
3: for k = 1 to n do

4: compute vp,k(x) using (17).
5: end for

6: end for

Proposition 4. Algorithm 3 has space and time complexity 0(|Q|n2). Its bit
space complexity is 0(|Q|n3).

Proof. The polynomial vq,m is of degree m, it has O(m) coefficients. Therefore
the time and space complexity are 0(

∑n
m=1 |Q|m) = O(|Q|n2).

Magnitudes of coefficients of vq,m behave like 2mH where H is the entropy of
the timed language (see [3]) and thus one needs O(m) bits to store them. This
explains why an extra factor n appears when dealing with bit space complexity.

5 Discussion and perspectives

We have stated and solved the problem of counting and uniform sampling of
permutations with signature in a given regular language of signatures. The timed
semantic of such a language is a particular case of timed regular languages (i.e.
recognized by timed automata [1]). However, with the approach used, timed
languages can be defined from any kind of languages of signatures. A challenging
task for us is to treat the case of context free languages of signatures. For this we
shall use as in our previous works [2,4] volume of languages parametrized both
by a starting and an ending state.

Volumes and languages parametrized both by a starting and an ending state
would also be useful to gain a linear factor in the time and space complexity
of the preprocessing stage of the present setting (Algorithm 3). Indeed they are
needed to adapt the divide and conquer algorithm of [5].

Our work can also benefit to timed automata community. Indeed, we have
proposed a uniform sampler for a particular class of timed languages. An ongoing
work is to adapt this algorithm to all deterministic timed automata with bounded
clocks using recursive equations of [3]. A uniform sampler of timed word would

12

be useful to solve the proportional model checking problem introduced in our
previous work [4].

A toy implementation of the algorithms is available on-line http://www.

liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm.
Proofs and examples are given in the appendix

Acknowledgements.

I thank Eugene Asarin, Aldric Degorre and Dominique Perrin for sharing moti-
vating discussions.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
2. Asarin, E., Basset, N., Degorre, A., Perrin, D.: Generating functions of timed

languages. In: MFCS. pp. 124–135. LNCS 7464 (2012)
3. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: Analytic

approach. In: FORMATS. pp. 13–27. LNCS 5813 (2009)
4. Basset, N.: A maximal entropy stochastic process for a timed automaton (2013),

to appear in ICALP’13
5. Bernardi, O., Giménez, O.: A linear algorithm for the random sampling from reg-

ular languages. Algorithmica 62(1-2), 130–145 (2012)
6. Bouyer, P., Petit, A.: A Kleene/Büchi-like theorem for clock languages. Journal of

Automata, Languages and Combinatorics 7(2), 167–186 (2002)
7. Flajolet, P., Sedgewick, R.: Analytic combinatorics. Camb. Univ. press (2009)
8. Hibi, T., Li, N.: Unimodular equivalence of order and chain polytopes. arXiv

preprint arXiv:1208.4029 (2012)
9. Stanley, R.P.: A survey of alternating permutations. Contemp. Math 531, 165–196

(2010)
10. Stanley, R.: Two poset polytopes. Discrete & Computational Geometry 1(1), 9–23

(1986)
11. Szpiro, G.G.: The number of permutations with a given signature, and the expec-

tations of their elements. Discrete Mathematics 226(1), 423–430 (2001)

13

http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm
http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm

Appendix

A Some proof details

Proof of Proposition 1

Let w = ul i.e. for all i ∈ [n − 1] wi = ui and wn = l. Lul ⊆ C(u)) Let
(t1, . . . , tn) ∈ Lw i.e. there exist value of clocks xa

k (a ∈ {U,D}, k ∈ [n]) such

that xU
0 = xD

0 = 0 and (xU
k−1, x

D
k−1)

(tk,wk)−−−−−→ (xU
k , x

D
k) ∈ L(wk). Let i < j ≤ n

and a ∈ {U,D} such that wi · · ·wj−1 = aj−i, then for k ∈ {i, . . . , j − 1}, xa
k =

xa
k−1 + tk by definition of L(a). Then xa

j−1 = xa
i−1 + ti + . . . + tj−1. Moreover

xa
j−1 + tj ≤ 1 by definition of L(wj) and thus ti + . . .+ tj−1 + tj ≤ xa

i−1 + tj ≤ 1
which is the wanted inequality.

C(u) ⊆ Lul) Let (t1, . . . , tn) ∈ C(u). We show inductively that for every a ∈
{U,D}, the condition xa

j−1 + tj ≤ 1 is satisfied and thus that xa
j can be defined

(xa
j = xa

j−1 + tj if wj = a and xa
j = 0 otherwise). For this we suppose that

clock values xa
0 , . . . , x

a
j−1 are well defined. Let lr(xa, j) be the maximal index

before transition j such that wlr(xa,j) 6= a. Necessarily wlr(xa,j)+1 . . . wj = aj−i

and thus tlr(xj)+1 + . . . + tj ≤ 1 by definition of C(u). This latter sum is equal
to xa

j−1 + tj ≤ 1 and thus the condition on xa imposed by L(uj) is satisfied.

Proof of proposition 2

The function φul is a volume preserving transformation since it is a linear func-
tion given by a unimodular (i.e. an integer matrix having determinant +1 or
−1) matrix. Indeed φul(t) = ν iff ν⊤ = Mult

⊤+b with for all j ∈ [n]: if wj = U
(resp. wj = D) then the jth rows of the matrix Mul as 1 (resp. −1) between
coordinates i and j included and the jth rows of b is 0 (resp. −1). One can see
that Mul is upper triangular and has only 1 and −1 on its diagonal and thus
is unimodular. Now we prove that ν = φult belongs to On(u) for t ∈ C(u). We
show that the two conditions (C-1) and (C-2) below are equivalents. Then, we
will be done since (C-1) is the definition of (t1, · · · , tn) ∈ C(u) while (C-2) is
equivalent to ν1, . . . , νn ∈ O(u):

(C-1) for all i < j ≤ n and l ∈ {U,D}, ui · · ·uj−1 = lj−i ⇒ ti + . . .+ tj ≤ 1;

(C-2) for all i < j ≤ n, ui · · ·uj−1 = U j−i ⇒ νi ≤ . . . ≤ νj ≤ 1 and ui · · ·uj−1 =
Dj−i ⇒ νj ≤ . . . ≤ νi ≤ 1.

Let i < j ≤ n and ui · · ·uj−1 = U j−i then the following chain of inequalities
[0 ≤ νi = ti ≤ . . . ≤ νj−1 = ti + . . . + tj−1 ≤ νj = (1 − tj or ti + . . . + tj) ≤ 1]
is equivalent to ti + . . . + tj ≤ 1. The case of downs can be proved in a similar
way by applying x 7→ 1− x to the preceding inequalities. ⊓⊔

Proof of Theorem 4

For all σ ∈ p−1
n (L), the probability p(σ) that the output is σ is the probabil-

ity to choose a timed word (t, w) such that sort[φst−1(w)(t)] = σ. Since the
timed words are uniformly sampled this probability is equal to Vol({(t, w) |
sort[φw(t)] = σ})/Vol(L′′

n) which is equal to Vol({ν | sort(ν) = σ})/Vol(L′′
n)

since the mapping (t, w) 7→ φst−1(w)(t) is a volume preserving transforma-
tion. The numerator is the volume of the order simplex associated to σ which
is Vol(O(σ)) = 1/n!; the denominator Vol(L′′

n) is |p−1(Ln−1)|/n! by virtue
of Theorem 2. We get the expected result p(σ) = (1/n!)/(|p−1(Ln−1)|/n!) =
1/|p−1(Ln−1)|. ⊓⊔

More details about Algorithm 2, sketch of proof of Theorem 5.

One can first check that for all k ∈ [n], (qk−1, xk−1)
(tk,wk)−−−−−→ (qk, xk) ∈ L(wk)

and that w1 · · ·wn ∈ L′′.
We denote by p[(t1, w1) · · · (tn, wn)] the density of probability of the timed

word (t1, w1) · · · (tn, wn) ∈ L
′′ to be returned. The algorithm is a uniform sam-

pler if it assign the same density of probability to all timed words of L′′ i.e.
p[(t1, w1) · · · (tn, wn)] = 1/Vol(L′′).

During the kth loop, wk and tk are chosen, knowing qk−1, xk−1 and the
index k, according to a density of probability (implicitly defined by the algo-
rithm) and denoted by pk[(tk, wk) | qk−1, xk−1]. The new general state (qk, xk)
is (deterministically) defined using qk−1, xk−1, tk, wk. The following chain rule
applied

p[(t1, w1) · · · (tn, wn)] =

n
∏

k=1

pk[(tk, wk) | qk−1, xk−1] (18)

We show that

pk[(tk, wk) | qk−1, xk−1] =
mk+1

mk
=

vqk,n−k(xk)

vqk−1,n−(k−1)(xk−1)
(19)

The choice of (tk, wk) is done in two steps: we chose first wk (and thus qk) and
then tk. We write this

pk[(tk, wk) | qk−1, xk−1] = pk[wk | qk−1, xk−1]pk[tk | qk, xk−1] (20)

We have that pk[S | qk−1, xk−1] = pS and pk[T | qk−1, xk−1] = 1−pS since b = 1
iff wk = S.

In both cases (b = 0 or 1) the delay tk is sampled using the so called inverse
sampling method. This method state that to sample a random variable according
to a probability density function (PDF) p(t) (here p(t) = pk[t | qk, xk−1]) it
suffices to uniformly sampled a random number in [0, 1] and define t such that
∫ t

0
p(t′)dt′ = r, the latter integral is known as the cumulative density function 8

(CDF) associated to p.

8 Its inverse (t function of r) is known as the quantile function.

15

When b = 1 (and thus wk = S), the CDF used in the algorithm is t 7→
∫ t

0
vqk,n−k(xk−1 + t′)/pSmkdt

′. Its corresponding PDF is pk[tk | qk, xk−1] =
vqk,n−k(xk−1+ tk)/pSmk = mk+1/pSmk. Multiplying by pk[S | qk−1, xk−1] = pS
we get (19).

When b = 0 (and thus wk = T), a similar reasoning permits to prove (19)
which is then true in both cases.

Plugging (19) in (18), we get the expected result:

p[(t1, w1) · · · (tn, wn)] =

∏n
k=1 mk+1
∏n

k=1 mk
=

mn+1

m1
=

vqn,0(xn)

vq0,n(0)
=

1

Vol(L′′
n)

.

B Examples

In section B.1 we show how Algorithm 1 applies to the classical example of
alternating permutations. In section B.2 we apply this algorithm to what we call
up-up-down-down permutations. In section B.3 we treat the running example
given in the article.

B.1 The alternating permutations

p q

U

D

T

Fig. 1. An automaton for (UD)∗(U + ǫ) and its S-T encoding of type D

The class of alternating permutation is9 Alt = S0 ∪ p−1[(UD)∗(U + ǫ)]. It
is well known since the 19th century and the work of Désiré André that

EGF (Alt)(z) = tan(z) + sec(z) (sec(z) = 1/ cos(z)).

Several different proof of this results can be found in [9]. Here we give a novel
proof based on the application of Algorithm 1 on (UD)∗(U + ǫ).

A prolongation of (UD)∗(U+ǫ) is (UD)∗(UD+U). We add ǫ to the language
to add 1 to its VGF, indeed

EGF (Alt)(z) = 1 + V GF [(UD)∗(UD + U)](z) = V GF [(UD)∗(U + ǫ)](z)

The S-T encoding of type D of (UD)∗(ǫ + U) is just S∗ which is recognized
by the one loop automaton depicted on the right of figure 1 . Thus MS = (1),

9 Abusing the notation, we confuse regular expressions with the regular language they
express

16

MT = (0) and we must compute exp(zM) =
∑

n∈N
znMn/n! withM =

(

0 1
−1 0

)

Computation of exp(zM) is easy since M is unipotent: M0 = I2 M2 = −I2,
M2 = −M , M3 = I2,M

4 = M ,. . . Then for all k ≥ 0:

M2k =

(

(−1)k 0
0 (−1)k

)

; M2k+1 =

(

0 (−1)2k

(−1)2k+1 0

)

Therefore exp(zM) =
∑

n∈N
znMn/n! =

(

cos(z) − sin(z)
sin(z) cos(z)

)

By definitionA1(z) =

cos(z), A2(z) = − sin(z) and we thus we can conclude:

EGF (Alt)(z) = A1(z)
−1(1−A2(z)) =

1

cos(z)
+ tan(z).

B.2 The up-up-down-down permutations

1 2

4 3

U

U

D

D

1 2

4 3

U

U

D

D

1, 3 2, 4

T

S

Fig. 2. From left to right: automata for L, L′, stD(L′)

Alternating permutations (treated above) of odd lengths are sometimes called
up-down permutations. Here we compute the exponential generating function of
up-up-down-down permutations i.e. those with signature in L = (UUDD)∗(UU+
ǫ). The language L′ = (UUDD)∗(UUD + U) is an extension of L. Its S-
T -encoding of type D is stD(L′) = (TS)∗T . This latter languages is recog-
nized by the S-T -automaton depicted on figure 2. Its adjacency matrices are

MS =

(

0 0
1 0

)

, MT =

(

0 1
0 0

)

and the row vector of final state is F =

(

0
1

)

. Let

M =

(

−MS −MT

MT MS

)

. One more time computation of exp(zM) is easy since M

is unipotent10:

M =

0 0 0 −1
−1 0 0 0
0 1 0 0
0 0 1 0

;M2 =

0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

;M3 =

0 −1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

;M4 = I4.

10 This is the case for all cyclic automaton

17

Thus if we denote by fi(z) =
∑+∞

n=0 z
4n+i/(4n+ i)! for i ∈ {0, 1, 2, 3} we have:

exp zM = f0(z)I + f1(z)M + f2(z)M
2 + f3(z)M

3 and

A1(z) =

(

f0(z) −f3(z)
−f1(z) f0(z)

)

;A2(z) =

(

f2(z) −f1(z)
f3(z) f2(z)

)

.

The function fi can be expressed with trigonometric function:

f0(z) = [cosh(z) + cos(z)]/2; f1(z) = [sinh(z) + sin(z)]/2;
f2(z) = [cosh(z)− cos(z)]/2; f3(z) = [sinh(z)− sin(z)]/2.

We have

[I2 −A2(z)]F =

(

f1(z)
1− f2(z)

)

and thus
(

fp(z)
fq(z)

)

=

(

f0(z) −f3(z)
−f1(z) f0(z)

)−1 (
f1(z)

1− f2(z)

)

.

Using Cramer formula we get fp(z) = [f1(z)f0(z) + f3(z)(1 − f2(z))]/[f
2
0 (z) +

f1(z)f3(z)]. After straightforward simplifications we obtain the wanted result:

f(z) = fp(z) = (sinh z − sin z + sin(z) cosh z + sinh(z) cos z)/(1 + cos(z) cosh z).

B.3 The running example detailed

p q

D

U

U

p q

D

U

U

p q

T

S

T

Fig. 3. From left to right automata for Lex, Lex′ = Lex.{U} ∪ {ǫ}, Lex′′ = stU (L
ex′)

Consider again the class Cex of permutation without two consecutive downs.
Then Cex = S0∪p−1((U+DU)∗(D+ǫ)). A prolongation of (U+DU)∗(D+ǫ). is
(U+DU)∗U . As for alternating permutations we add the word ǫ to this language
to add 1 to the final generating function, thus we get the language (U +DU)∗

recognized by the automaton depicted in the middle of figure 3. Its S-T encoding
of type U is (S + TT)∗ which is recognized by the automaton depicted on the

right of figure 3. Its adjacency matrices are MS =

(

0 1
1 0

)

, MT =

(

1 0
0 0

)

and

the row vector of final state is F =

(

1
0

)

. Let M =

(

−MS −MT

MT MS

)

. We will

18

solve directly the differential equation (10) with boundary condition (11), i.e.
the system

∂fp
∂x

(x, z) = −zfp(x, z)dy − zfq(1− x, z)dy; (21)

∂fq
∂x

(x, z) = −zfp(1− x, z). (22)

with boundary conditions fp(1, z) = 1; fq(1, z) = 0 Equation (21) taken in x = 1

ensures that
∂fp
∂x (1, z) = −zfp(0, z) − zfq(1, z) = −zfp(0, z). Thus we have the

boundary condition

fp(1, z) = 1; (23)

∂fp
∂x

(1, z) = −zfp(0, z). (24)

Differentiating (21) and replacing
∂fq
∂x (1− x, z) using (22) we get:

∂2fp
∂x2

(x, z) = −z
∂fp
∂x

− z2fp(x, z); (25)

Solution are of the form: fp(x, z) = e−zx/2
[

a(z) cos(
√
3zx/2) + b(z) sin(

√
3zx/2)

]

with a(z) and b(z) to be determined using boundary conditions (23) and (24)
i.e. a(z) and b(z) satisfies:

a(z) cos(
√
3z/2) + b(z) sin(

√
3z/2) = ez/2 (26)

a(z) +
√
3b(z) = 0; (27)

Solving this system we get:

a(z) = ez/2
√
3/d(z) (28)

b(z) =
[

ez/2/2− cos(z
√
3/2)

]

/d(z) (29)

where d(z) = cos(z
√
3/2)

√
3−sin(z

√
3/2) = [3 cos2(z

√
3/2)−sin2(z

√
3/2)]/[cos(z

√
3/2)

√
3+

sin(z
√
3/2)]. The numerator of this fraction is equal to 4 cos2(z

√
3/2) − 1 =

(2 cos2(z
√
3/2)− 1)(2 cos2(z

√
3/2) + 1) Finally the generating function is

EGF (Cex)(z) = fp(0, z) = a(z) =
3 cos(z

√
3/2) +

√
3 sin(z

√
3/2)

[2 cos(z
√
3/2)− 1][2 cos(z

√
3/2) + 1]

ez/2

19

	Counting and generating permutations using timed languages (long version)

