
`p-norm Multiple Kernel Learning with Low-Rank Kernels

A. Rakotomamonjy1,∗, S. Chanda2,∗

Abstract

Kernel-based learning algorithms are well-known to poorly scale to large-scale applications. For such large tasks, a

common solution is to use low-rank kernel approximation. Several algorithms and theoretical analyses have already

been proposed in the literature, for low-rank Support Vector Machine or low-rank Kernel Ridge Regression but not for

multiple kernel learning. This work bridges this gap by addressing the problem of scaling `p-norm multiple kernel for

large learning tasks using low-rank kernel approximations. Our contributions stand on proposing a novel optimization

problem, which takes advantage of the low-rank kernel approximations and on introducing a proximal gradient algo-

rithm for solving that optimization problem. We also provide partial theoretical results on the impact of the low-rank

approximations over the kernel combination weights. Experimental evidences show that the proposed approach scales

better than the SMO-MKL algorithm for tasks involving about several hundred thousands of examples. Experimental

comparisons with interior point methods also prove the efficiency of the algorithm we propose.

1. Introduction

Kernel methods such as Support Vector Machines or Kernel Rigde Regression have now become classical tools for

classification or regression problems. In these methods, the choice of the kernel is of primary importance for achieving

good performances. Multiple kernel learning (MKL) is a learning framework that transfers the choice of the kernel

from the practitioner to the algorithm since the latter provides as outputs a learned linear combination of some base

kernels and a decision function [18, 4].

Since the last few years, the literature on MKL have been flourishing and many efforts have been spent on proposing

and analyzing novel regularizers for kernel combinations [26, 15, 12]. Improving the learning algorithm computational

efficiency [23, 24, 28, 1, 25, 27] has also been on the focus of many interests. While these works have pushed the

boundaries of multiple kernel learning method scalability, we believe that some efforts are still needed for making

MKL capable of better handling large-scale learning problems.

One common way for handling large-scale problems in kernel methods is to consider low-rank approximation of

the kernel matrix and to take advantage of this approximation for accelerating the learning process [30, 9, 17]. As

∗Corresponding author
Email address: alain.rakotomamonjy@insa-rouen.fr (A. Rakotomamonjy)

1Complete postal address : LITIS EA4108, University of Rouen, Avenue de l’université, 76800 Saint Etienne du Rouvray, France.
2Complete postal address : Department of Computer Science and Media Technology, Gjovik University College, Gjovik-2815, Norway

Preprint submitted to Elsevier June 10, 2014

an example, for Kernel ridge regression, the Woodbury matrix inversion formula [11] makes it easy to derive that

efficient algorithm. For SVM, Fine et al. [10] have proposed an interior point optimization method that can leverage

on the low-rank kernel approximation. A recent work has also considered kernel approximation for multiple fisher

discriminant analysis [29]. However, in this latter work, the kernel weights are not learned according to the data and

the problem at hand, but defined according to the quality of the kernel approximation. While kernel matrix low-rank

approximations are often computed without any supervision on the labels, some works also proposed to improve the

kernel approximation by taking into account distance or similarity constraints over the training examples [16] or even

by considering their labels [3]. In this work, we propose to make a another leap towards the goal of very large-

scale multiple kernel learning. For this purpose, we develop an algorithm which is able to benefit from low-rank

approximation of the base kernels used in a multiple kernel learning framework instead of directly learning a single

low-rank kernel as in [16, 3]. In particular, we focus on `p-norm MKL because of its theoretical soundness [14] and

because it has been proven to be useful in some practical applications [15]. Within this context of `p-norm MKL, we

make the following contributions :

• we introduce a novel framework for MKL with low-rank kernels and we adapt, in a non-trivial way, a recently

proposed technique for convex optimization to this problem of multiple kernel learning with low-rank kernels.

By exhibiting a trick on projection on affine sets, we are able to drastically reduce the computational complexity

of our algorithm. In addition, our approach is parallelizable, a property that comes from the nature of the

algorithm itself as it is essentially based on matrix-vector multiplications.

• we provide a theoretical result that bounds the difference between the minimizer of the MKL problem with the

exact kernel and and the one with low-rank kernel approximation, of each component of the MKL decision

function. This bound gives us intuitions on how the kernel approximations impact the weights in the kernel

linear combination.

• We empirically demonstrate that our algorithm for solving the low-rank optimization problem is more efficient

than interior point methods. In addition, we show that our MKL with low-rank kernel approach can be signifi-

cantly faster than state-of-the-art `p MKL solvers such as the SMO-MKL algorithm [28] while providing similar

performance accuracies.

2. Framework

We introduce in this section the multiple kernel learning framework we are interested in. Let us consider a classifi-

cation learning problem from data {xi, yi}`i=1 where xi belongs to some input space X and yi = {+1,−1} denoting

the class label of examples {xi}. We denote Y as the diagonal matrix composed from the label vector.

In a multiple kernel learning framework which involves a linear combination of m kernels, one looks for a decision

function of the form f(x) =
∑m
k=1 fk(x) + b with each function fk ∈ HKk

, HKk
being the RKHS associated with

2

Algorithm 1 Alternate optimization algorithm for `p MKL
1: set k=1, initialize the kernel weights {dk}k
2: repeat
3: optimize an SVM with kernel

∑
k dkKk

4: update {dk} according to Equation 3
5: until convergence is met

positive definite kernel Kk. One way to learn these functions fk(·) is to solve the following MKL primal problem as

first proposed in [31] and [23] and extended by Kloft et al. [15] :

min
dk≥0,fk,b,ξi≥0

∑m
k=1

‖fk‖2HKk

dk
+ C

∑`
i=1 ξi

s.t yi
∑
k fk(xi) + yib ≥ 1− ξi ∀i

‖d‖2p ≤ 1

(1)

where each dk regularizes the squared norm of fk in the objective function. Hence, a smaller dk indicates a smoother

fk. The p-norm constraint on the weight vector d controls the amplitudes of {dk} while the choice of p eventually

enforces the kernel linear combination to be sparse (p = 1), non-sparse (p > 1) or have equal weights (p =∞).

Problem (1) is usually solved by considering an alternating optimization strategy which consists in optimizing a

slave problem with respect to {fk}k with fixed weights {dk} and then in optimizing the weights while the functions

fk are fixed [15]. This alternating strategy, depicted in Algorithm 1, has been proved to be efficient owing to several

features. The first one is that the slave problem boils down to be an SVM problem where the kernel matrix is a fixed

combination of kernels
minα

1
2α
>Y
(∑

k dkKk

)
Yα− 1>α

st y>α = 0

0 ≤ αi ≤ C

(2)

and thus off-the-shelf efficient SVM solvers can be used. The other point is that the optimization with respect to a

weight dk admits a closed-form solution :

dk =
‖fk‖

2
p+1

HKk

(
∑m
k=1 ‖fk‖

2p
p+1

HKk
)

1
p

∀k (3)

where fk(·) = dk
∑`
i=1 αiyiKk(xi, ·).

Although this strategy can be made further efficient, by for instance interleaving the SVM and the weight opti-

mization solvers [15], it still suffers because of the size of kernel matrix, when large-scale learning problems are in

play. The SMO-MKL algorithm [28] departs from this alternating optimization strategy and instead solves the dual of

a modified version of Problem (1). A very nice feature of this latter algorithm is that it can handle large-scale problems

since kernel matrix entries can be computed on the fly.

One way to deal with such large-scale training datasets in kernel-based learning algorithms is to resort to low-rank

kernel approximation of the kernel matrix. Several methods are available for performing low-rank approximation of

3

a semi-definite positive matrix including Nystrom methods [30, 17] or Incomplete Choleski decomposition [11]. In

this study, we will consider Nystrom method that we briefly remind in what follows. Suppose we want to approximate

a positive definite Gram matrix K. A rank−R Nystrom approximation K̃ of K is obtained by randomly sampling

Nn training examples among all available ones and by defining K̃ = CW†
RC
> = VV>, where C is the matrix

formed by the columns of the matrix K related to the Nn samples, W is the Gram matrix of those examples, W†
R

being the pseudo-inverse of the best rank-R approximation of W with R ≤ Nn and V a matrix of size ` × R so

that V = CLD−
1
2 with D the diagonal matrix of size R × R composed of the largest R eigenvalues of W and L

the matrix of the corresponding eigenvectors. Computational complexity of the Nystrom method is dominated by the

pseudo-inverse computation which is O(N3
n).

The impact of the kernel approximation on the kernel method performance is of course of interest, since using low-

rank approximation boils down in trading some computational efforts against eventually some losses of generalization

performances. For some families of kernel methods, these impacts have been formally analyzed [8, 2]. In this paper,

we have addressed algorithmic issues and have studied the impact of the kernel approximation on the minimizer of

problem (2) on which the weight dk depends. The theoretical study of the low-rank approximation impact on the

performances is left for future works. However, our experimental results show that when the rank of the approximation

becomes sufficiently large, the loss in generalization performances can become small compared to the use of the full

kernel matrix.

Our contribution stands on developing an algorithm for large-scale multiple kernel learning by taking advantage of

the low-rank decomposition of the base kernels. The algorithm we propose in the sequel follows the classical trend

in MKL which consists in optimizing alternatively the inner SVM problem with fixed kernel weights and then in

optimizing these weights while keeping the SVM optimization variables fixed. Hence, our main objective is to solve

efficiently problem (2) given that we are provided with some Nystrom low-rank approximations {Vk}mk=1 or all the

{Ck} and {Wk} of all base kernels {Kk}mk=1. For the sake of clarity and simplicity, we suppose that all {Vk} are of

the same dimensions.

3. Algorithms

There exists two ways for solving the SVM problem (2) given low-rank kernel approximations. Indeed, the sum

of kernel can either be approximated as a sum of low-rank kernels or as a low-rank approximation of
∑
k dkKk, that

needs to be computed at each MKL iteration. This section presents the most efficient one when used within a MKL

framework, which is based on approximating each kernel once and then in considering the sum of these low-rank

kernels.

The approach is based on the idea that low-rank approximation of each single kernel can be computed beforehand

and the sum of kernel Kd is then approximated as the weighted sum of low-rank approximation of each single kernel.

4

Formally, we consider the following approximation :

Kd =

m∑
k=1

dkKk ≈
m∑
k=1

dkCkW
†
kC
>
k =

m∑
k=1

dkVkV
>
k

From this kernel approximation, Problem (2) boils down to be

minα
1
2α
>Y
(∑

k dkVkV
>
k

)
Yα− 1>α

st y>α = 0

0 ≤ αi ≤ C

(4)

and each ‖fk‖2HKk
can be obtained as :

‖fk‖2HKk
= dkα

>YVkV
>
k Yα (5)

Let us highlight that Problem (4), because of the sum of kernels, does not fit into the framework introduced by Fine

et al. [10] for solving a low-rank kernel SVM. Indeed, because of the linear combination of kernels, the low-rank

property may be lost as the rank of
∑
k dkVkV

>
k is upper bounded by

∑
k rank(VkV

>
k). Hence, the gain achieved

through the rank−R approximation of each Vk may be spoiled (for instance, one can easily construct a rank−1 kernel

approximation of the each VkV
>
k which sum

∑
kVkV

>
k is of rank m.) Note that while SMO-MKL can be fed with

the set of {VkV
>
k } kernels, it is not able to take computational advantage of these low-rank approximations since

each approximate kernel will still be considered as a full Gram matrix. This can be easily experimentally verified. Our

objective is thus to derive an algorithm that is able to leverage from the low-rank approximations {Vk} of all base

kernel matrices.

For this purpose, we propose an equivalent formulation of Problem (4) by introducing some auxiliary variables and

additional equality constraints :

minα,{γk}mk=1

1
2

∑m
k=1 γ

>
k γk − 1>α

γk =
√
dkV

>
k Yα ∀k ∈ 1, · · · ,m

y>α = 0

0 ≤ αi ≤ C ∀i ∈ 1, · · · , `

(6)

This optimization problem is a quadratic programming problem withR×m+` variables,R×m+1 equality constraints

and 2` inequality constraints, thus when the number ` of training examples is large, we have to face with a pretty large-

scale problem. We can resort to classical QP solvers that handle such large-scale problems, for instance interior point

methods [21]. However, in this work, we depart from this classical route by using a proximal gradient algorithm for

solving problem (6). In the next paragraphs, we first describe the algorithm before giving its motivations. Indeed, as

they are related to computational complexities, they will be clearer after the algorithm exposition.

The proximal method that we are considering here is the generalized forward-backward splitting algorithm [22]

which is tailored for minimizing the sum of an arbitrarily large number of convex functions as in

min
z
F0(z) +

M∑
i=1

Fi(z)

5

where one of these functions (here F0) is smooth with gradient Lipschitz of constant L while the others here the

{Fi}Mi=1 are possibly non-smooth but whose proximal operators can be simply computed [7].

The Generalized Forward-Backward (GFB) splitting algorithm [22] follows the same principle as the Forward-

Backward splitting [6] in the sense that, at a given iteration, with an iterate zn, it first takes an explicit gradient step

and then makes a implicit step where proximal operators are computed. The main feature of the Generalized Forward-

Backward (GFB) splitting algorithm is that, since we have several proximal operators related to the constraints or

regularizers to compute, these computations are applied in parallel on some auxiliary variables {Zi}. These vari-

ables are finally averaged so as to yield the next iterate zn+1. The following (simplified) proposition makes the GFB

algorithm explicit :

Proposition 1. [22, Th 2.1] Let {Fi}Mi=0 be M +1 convex lower semi-continuous functions of Rd such that a standard

domain qualification holds and such that the set of minimizers of
∑M
i=0 Fi(z) is not empty. Set {Zi}Mi=1 ∈ Rd,

z0 = 1
M

∑M
i=1 Zi and build at each iteration n ≥ 0

Zi ← Zi + λn
(
proxMζnFi

(2zn − Zi − ζn∇F0(zn))− zn
)

for all i ∈ 1, · · · ,M , and

zn+1 ←
1

M

M∑
i=1

Zi

with ζn ∈ (0, 2
L) and λn ∈ (0, 1], then every sequence {zn} generated by this algorithm weakly converges towards a

minimizer of F0 +
∑M
i=1 Fi.

Note that this algorithm is exactly the forward-backward splitting algorithm when M = 1 and in the same way, it

is robust to noise on the proximal operators and on the gradient computation under weak conditions on the noise.

By defining the vector z = [γ1; γ2; · · · ; γm;α], with z ∈ RR×m+` we can see that this GFB algorithm can be

straightforwardly applied to our problem by choosing F0(z) as the objective function 1
2

∑
k γk>γk − 1>α of problem

(6). The constraints in that problem can form our functions F1 and F2 by choosing F1(z) = IbL≤z≤bU
the indicator

function on the box constraints delimited at each coordinate by the coordinates of bL and bU (in our case, we have

bL = 0 and bU = C) and F2(z) = IAz=0, the indicator function on an affine set defined by a matrix A. In our case, A

is the matrix of size (R×m+ 1)× (R×m+ `) defining the linear equality constraints as given in Problem (6). The

proximal operators of F1(·) and F2(·) are simple to derive and in particular, we have :

proxIA ·=0
(v) = v −A>(AA>)−1Av

Computing the term A>(AA>)−1A involved in the proximal operator, at a cost of the order of O(m3R3 +

m2R2`), is the main burden of the algorithm, although it is computed only once. Applying the proximal operator to

a vector v involves about O(m2R2) multiplications. Hence, because of the matrix inversion, the number of equality

constraints is critical as it introduces a cubic dependency with respect to the number of kernels. In order to break down

6

this complexity, we take advantage of one property of the GFB algorithm. Indeed, since this algorithm can handle any

number of constraints and by noticing that the following simple but essential equality holds

IAz=0 =
∑
j=1

IACj,:
z=0

where the {Cj} forms a partition of the row index of A, one can consider the constraints in problem (6) as the

intersection of the m + 2 sets defined by : {γk =
√
dkV

>
k Yα}mk=1, α>y = 0 and 0 � α � C1. Basically, we have

splitted the matrix A in submatrices Ak which applies only on some components of z. Under this novel perspective,

Problem (6) still fits into the framework of the generalized forward-backward splitting [22]. However, we now have

m+ 1 affine sets and a box constraint on which we have to project the vector z. The m affine sets related to the linear

constraints {γk =
√
dkV

>
k Yα}mk=1, are formally defined as

IAkz=0

with, for k ∈ 1, · · · ,m

Ak =
[
0 · · · IR · · · 0 −

√
dkV

>
k Y

]
(7)

with IR being an identity matrix of size R×R. The constraint related to α>y = 0 is defined as

Am+1 =
[
0 · · · 0 · · · 0 y>

]
since the optimization variables are [γ1; γ2; · · · ; γm;α].

Because of its peculiar structure, proxIAk·=0
(z) leaves unchanged all components but γk and α. The computational

complexity for computing A>k (AkA
>
k)
−1Ak is now of the compelling order of O(R3 + R2`). And since we have to

compute this proximal operator m times, the complexity is now only linear in m. A detailed instantiation of our non-

trivial application of the GFB algorithm to our particular problem is given in Algorithm 2. In this algorithm, PbL,bU (·)

defines the projection on the box constraints defined by the lowest coordinate bL and highest coordinate bU . Note that

in practice we have set the step size ζn to 1 for all iterations since the Lipschitz constant of F0 is 1.

Remark 1. According to Raguet et al. [22, Th 2.1], the sequence {zn} can be made strongly convergent to the

minimizer of Problem (6) if its objective function is uniformly convex. This can be easily achieved through the addition

of a term η
2α
>α with η > 0 at the expense of slightly perturbing the original problem.

Remark 2. In the above algorithm, we have decided to split the original linear equality constraints in m affine sets as

they are naturally related to a given low-rank kernel approximation. However, we could have chosen different number

of sets. For instance, the extreme case is the case where a proximal operator is associated to a single linear equality

constraint making the computation of the related (AkAk)
−1 in O(1 + `). The number of proximal operators involved

in the for-loop of the algorithm is now R ·m but each application of the proximal operator only costs O(1 + `). The

drawback of this approach is that the memory complexity drastically increases since we have to store all the copies

7

Algorithm 2 Efficient adaptation of the Generalized Forward-Backward for SVM with sum of low-rank kernels
1: Input : {Vk}k matrices so that Kk ≈ VkV

>
k .

2: set ζn = 1, λ = 1
3: initialize auxiliary variables {Zi}m+2

i=1 to random values where each Zi is a vector of size R×m+ `

4: set z0 = 1
M+2

∑M+2
i=1 Zi.

5: set [γ0;α0] = z0
6: precompute Ak and A>k (AkA

>
k)
−1 for k = 1, · · · ,m+ 1

7: n← 0
8: repeat
9: ∇F0 = [γn;−1]

10: % Compute the forward-backward steps related to the constraints {γk =
√
dkV

>
k Yα}mk=1

11: for i = 1→ m do
12: z′n = 2zn − Zi − ζn∇F0

13: Zi ← Zi + λ(proxIAi·=0
(z′n)− zn)

14: end for
15: % Compute the forward-backward step related to the constraint α>y = 0
16: z′n = 2zn − Zm+1 − ζn∇F0

17: Zm+1 ← Zm+1 + λ(proxIAm+1·=0
(z′)− z)

18: % Compute the forward-backward step related to the box constraint
19: z′n = 2zn − Zm+2 − ζn∇F0

20: Zm+2 ← PbL,bU
(z′n)

21: % Define the next iterate of z as the average of the auxiliary variables
22: zn+1 = 1

m+2

∑m+2
i=1 Zi

23: [γn+1;αn+1] = zn+1

24: n← n+ 1
25: until convergence is met

{Zi}, which would be in (R ·m+`)×R ·m. In addition, while the computational complexity of each proximal operator

is small, we have no guarantee regarding the number of iterations needed by the global algorithm to converge towards

a solution. Hence a trade-off has be made. We have not thoroughly analyzed this issue in this work and have left it for

future works.

This possibility of splitting the linear constraints and then in dealing with each constraint separately is one of

the main reason that makes us prefer the Generalized Forward-Backward algorithm over a standard interior-point

approach. Indeed, for instance, in the interior-point approach proposed by Mehrotra [19], at each iteration, one needs

to solve several linear systems of the size of the number of linear constraints (in our case R × m). While a careful

implementation, using for instance a Choleski factorization and a proper use of the diagonal Hessian, helps in reducing

computational complexity, the cubic dependency in the number of kernels can hardly be avoided.

Let us emphasize that from our experimental study of interior point and proximal methods, when an accurate

solution of problem (6) is needed, IP methods may do a better job as they tends to provide (slightly) lower objective

values. However, following the lines of Bottou and Bousquet [5], in large-scale machine learning settings, finding an

approximate solution of the optimization problem is sufficient, and in this situation, we advocate the use of proximal

gradient methods as they are far more efficient.

8

4. Analysis

Our objective in this section is to derive some theoretical understandings of the kernel approximation impact on the

SVM problem (2) and thus on the multiple kernel learning. Similar analyses have already been carried out by Fine et

al. [10] and Cortes et al. [8]. The former work proposed a bound on the variation of the SVM optimization problem

objective value when the kernel is replaced by an approximated one. The latter one instead, analyzed how the decision

function f(x) varies with respect to the Frobenius norm of kernel difference. In our work, we focus our interest on

the norm difference between the minimizer of the exact SVM problem (2) and the minimizer of the approximated one

(4). We justify our interest for the vector α as it plays a major role in the computation of the weights dk (see Equation

(3)). While we agree that bounding ‖α − α′‖ does not tell how |dk − d′k| varies, it provides a partial result that gives

us some intuitions about the key components in the kernel approximation that help in reducing the norm difference.

Proposition 2. Suppose that Kd =
∑
k dkKk is positive definite. Denote K′k as a low-rank approximation of Kk.

Denote α? as the solution of problem (2) and α′ the solution of the same problem but with kernel K′d =
∑
k dkK

′
k.

Then, we have,

‖α? − α′‖2 ≤
√

2s

λmin
(8)

where λmin is the smallest eigenvalue of Kd and s is so that

s = max
α:y>α=0,0≤αi≤C

1

2
‖α‖22

(∥∥∑
k

dk(K
′
k −Kk)

∥∥
F

)
The complete proof is given in the supplementary material. It relies on bounds on variation of minimizers of

perturbed strictly positive definite quadratic programming problems [20]. This proposition gives us the intuition that

the impact of the low-rank kernel approximation is controlled by one term independent of the approximation (λmin)

and by the Frobenius norm of the kernel difference.

5. Numerical experiments

The objectives of these experiments are three-fold. At first, we want to provide empirical evidences that in large-

scale situations the low-rank MKL method we propose is faster than the state of the art algorithm SMO-MKL while

yielding to similar performances as long as the kernel approximations are accurate enough. Secondly, we provide

support that proximal gradient algorithms are more efficient than interior points methods for solving problem (6).

Finally, experiments depicting the gain in efficiency brought by our non-trivial application of the GFB algorithm

compared to its naive implementation have also been reported.

5.1. General settings

Computations have been carried out on a 16-core Intel Xeon E5530@2.4 GHz machine with 24 GB of memory. All

the codes have been written in Matlab and have been run on a single core of the above machine. For the SMO-MKL,

we have used the C implementation of the authors.

9

Data sets # examples Dimension comments
svmguide 1 7089 4
mushrooms 8124 112

magic 19020 10
pokerhand 25010 10 class 0 against all

codrna 59535 8
seismic 78823 50 class 3 against all

adult 48842 14
ijcnn1 141691 22

Table 1: Dataset statistics

We have considered datasets from the UCI and Libsvm repository and their statistics are summarized in Table 1.

For each of these datasets, we have randomly split 70% − 30% the examples in training and test sets. 50 Gaussian

kernels, with bandwidth σ ranging logarithmically from 100 to 102, have been considered. Since we are interested in

relative performances, we have arbitrarily set C = 1000, which is a value that yields good accuracies. For SMO-MKL,

we used the default stopping criterion and all its default parameter. Stopping criterion of our MKL algorithm is based

on the maximal variation of the weights between two iterations, which should be lower than 10−4. For our approach,

the inner low-rank SVM algorithm is stopped when the relative variation of its objective value is lower than 10−4 or

when 3000 iterations have been reached.

5.2. Comparing with SMO-MKL

For supporting our claims, we have evaluated the computational speed (including the time for computing low-rank

kernels) of our algorithm as well as the accuracy of the resulting decision function with respect to the rank of the kernel

approximations. We show that for large-scale datasets our low-rank multiple kernel algorithm is more efficient than

SMO-MKL while achieving similar or slightly worse performances. Note that the setting we are interested in is the

large-scale number of examples/few kernels ones and in such a situation SMO-MKL is more efficient than the spectral

projected gradient MKL [13].

Averaged performances (accuracy and running time) over 5 runs and increasing quality of approximation are re-

ported in Figure 1 and Figure 2 for p = 2 and in Figure 3 and Figure 4 for sparse multiple kernel learning with p = 1.1.

Note that we have chosen this latter value since SMO-MKL is not able to handle the exact sparse case p = 1. For

the smallest datasets, running time comparison is in favour of the SMO-MKL, and we explain this fact through the

advantage brought by the C implementation and the memory cache handling. As soon as, the number of examples is

larger than 105 , our algorithm can be significantly faster (up to an order of magnitude in some cases) while achieving

similar performances. Similar behaviors are observed for p = 1.1, and this can be expected as p does not influence the

problem (6) we are solving.

Scalability with respects to the number of kernels is reported in Figure 5. Again, running time is in favour of our

low-rank approach.

10

5.3. Proximal gradient vs interior-point

For all experiments described above, we were not looking for a precise solution of the optimization problem but as

advocated by Bottou et al. [5], we were searching for approximate solutions of the problem (6).

The next experiments provide some empirical evidences on our claim regarding efficiency of the gradient proximal

algorithm with respects to interior point (IP) methods for solving problem (6), at least for the precision we looked for.

The interior point method we have considered is similar to the one proposed by Fine et al. [10]. We have implemented

a Mehrotra predictor-corrector algorithm [19] but capable of handling a larger number of equality constraints. A

careful attention has also been brought to the fact that the Hessian matrix of problem (6) is diagonal. Despite this, we

emphasize that two linear systems involving a dense R × R positive definite matrix has to be solved at each iteration

making the method computationally very expensive.

Remind that the stopping criterion of our low-rank SVM problem is based on relative variation of the objective

value that should be lower than 10−4. For the sake of fair comparison, we have early stopped the IP methods when

the difference between their objective value and the one of the proximal method is less than 0.1%. Note that at this

precision the infinite norm of the difference of the two minimizers is in the order of 10−6 . The experimental set-up is

the same as for the large-scale experiments except that the rank R has been set to 500 so as to emphasize the difference

in running times and that we have considered only 10 kernels and we have arbitrarily set dk = 1
m . We have compared

these two methods on their efficiency for solving problem (6). Figure 6 depicts the running time of both algorithms as

the number of training examples increases. We note that GFB is always more efficient with a gain factor varying from

1.1 to 8.

5.4. Splitting equality constraints

One of our contribution is to propose a non-trivial use of the GFB algorithm for solving our learning problem

(6). This contribution is based on the idea that splitting the constraints in several blocks lead to reduce computational

complexity. In what follows, we provide empirical supports of this fact.

The running time of two GFB algorithms, one which considers all linear constraints of problem (6) at once and one

which splits the constraints (as described in Algorithm 2) have been reported in Figure 7. Again, we note the drastic

gain in efficiency brought by our specific GFB approach compared to a naive GFB. We gain about 1 to 3 order of

magnitude in efficiency.

6. Conclusion

The paper addresses the problem of large-scale MKL learning. In a large-scale setting, kernel methods usually

resort to low-rank approximation of the original Gram matrices. In this work, we make the hypothesis that our base

kernels for MKL are low-rank approximations of the original ones. We propose a novel MKL optimization problem

which takes advantage of such approximations as well as a gradient proximal algorithm for solving the the related

problem. Partial theoretical results dealing with the impact of the kernel approximation on the kernel combination

11

weights are also provided as well as empirical evidences on the better scalability of our approaches compared to state-

of-the-art MKL solvers.

As for future work, we plan to apply our work to real-world large-scale problems related to computer visions and

audio signal classifications.

12

[1] J. Aflalo, A. Ben-Tal, C. Bhattacharyya, J. Saketha Nath, and S. Raman. Variable sparsity kernel learning. Journal

of Machine Learning Research, 12:565–592, 2011.

[2] F. Bach. Sharp analysis of low-rank kernel matrix approximations. In Proceedings of the International Conference

on Learning Theory, 2013.

[3] F. Bach and M. Jordan. Predictive low-rank decomposition for kernel methods. In Proceedings of the 22nd

International Conference on Machine Learning, 2005.

[4] F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In

Proceedings of the 21st International Conference on Machine Learning, pages 41–48, 2004.

[5] L. Bottou and O. Bousquet. The trade-offs of large scale learning. In Advances in Neural Information Processing

Systems, volume 20. MIT Press, Cambridge, MA, 2008.

[6] P. Combettes and V. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale Modeling and

Simulation, 4:1168–1200, 2005.

[7] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In H. H. Bauschke, R. Bu-

rachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, editors, Fixed-Point Algorithms for Inverse

Problems in Science and Engineering. Springer-Verlag, 2010.

[8] C. Cortes, M. Mohri, and A. Talwalkar. On the impact of kernel approximation on learning accuracy. In Confer-

ence on Artificial Intelligence and Statistics, pages 113–120, 2010.

[9] P. Drineas and M.W. Mahoney. On the nyström method for approximating a gram matrix for improved kernel-

based learning. The Journal of Machine Learning Research, 6:2153–2175, 2005.

[10] S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel representations. The Journal of Machine

Learning Research, 2:243–264, 2002.

[11] G.H. Golub and C.F. Van Loan. Matrix computations, volume 3. Johns Hopkins University Press, 1996.

[12] C. Hinrichs, V. Singh, J. Peng, and S.C. Johnson. Q-mkl: Matrix-induced regularization in multi-kernel learning

with applications to neuroimaging. In Advances in Neural Information Processing Systems, 2012.

[13] A. Jain, SVN Vishwanathan, and M. Varma. Spg-gmkl: generalized multiple kernel learning with a million

kernels. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 750–758. ACM, 2012.

[14] M. Kloft and G. Blanchard. On the convergence rate of p-norm multiple kernel learning. Journal of Machine

Learning Research, 13:2465–2501, 2012.

13

[15] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. lp-norm multiple kernel learning. Journal of Machine Learning

Research, 12:953–997, 2011.

[16] B. Kulis, M. Sustik, and I. Dhillon. Learning low-rank kernel matrices. In Proceedings of the 23rd International

Conference on Machine Learning, 2006.

[17] S. Kumar, M. Mohri, and A. Talwalkar. Sampling methods for the nyström method. The Journal of Machine

Learning Research, 98888:981–1006, 2012.

[18] G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. Jordan. Learning the kernel matrix with semi-

definite programming. Journal of Machine Learning Research, 5:27–72, 2004.

[19] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on optimization,

2(4):575–601, 1992.

[20] HX Phu and VM Pho. Some properties of boundedly perturbed strictly convex quadratic functions. Optimization,

61(1):67–88, 2012.

[21] F.A. Potra and S.J. Wright. Interior-point methods. Journal of Computational and Applied Mathematics,

124(1):281–302, 2000.

[22] H. Raguet, J. Fadili, and G. Peyré. Generalized forward-backward splitting. SIAM Journal of Imaging Sciences,

to appear, 2013.

[23] A. Rakotomamonjy, F. Bach, Y. Grandvalet, and S. Canu. SimpleMKL. Journal of Machine Learning Research,

9:2491–2521, 2008.

[24] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. Journal of Machine

Learning Research, 7(1):1531–1565, 2006.

[25] T. Suzuki and R. Tomioka. SpicyMKL : A fast algorithm for multiple kernel learning with thousands of kernels.

Machine Learning, 85:77–108, 2011.

[26] M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy. Composite kernel learning. Machine Learning Journal,

79(1-2):73–103, 2010.

[27] X. Tian, G. Gasso, and S. Canu. A multiple kernel framework for inductive semi-supervised svm learning.

Neurocomputing, 90:46–58, 2012.

[28] S.V.N Vishwanathan, Z. Sun, N. Theera-Ampornpunt, and M. Varma. Multiple kernel learning and the smo

algorithm. In Advances in Neural Information Processing Systems 23, 2010.

14

[29] Z. Wang, W. Jie, and D. Gao. A novel multiple nystrm-approximating kernel discriminant analysis. Neurocom-

puting, 119(0):385 – 398, 2013.

[30] C.K.I. Williams and M. Seeger. Using the nystrom method to speed up kernel machines. Advances in neural

information processing systems, pages 682–688, 2001.

[31] A. Zien and C.S. Ong. Multiclass Multiple Kernel Learning. In Proceedings of the 24th International Conference

on Machine Learning (ICML 2007), pages 1191–1198, 2007.

7. Appendix

7.1. Proof of proposition 2

Let us first introduce the theorem which bounds the norm difference between the minimizer of a strictly convex

quadratic programming problem and its perturbed version.

Theorem 1. [20, Corollary 4.2] Let α? be the solution of strictly convex quadratic programming problem (P)

min
α∈C

1

2
α>Qα+ c>α

with Q a positive definite matrix R`×`, c a vector of R` and C a non-empty convex set. Let α′ be any global infimizer

the perturbed version of this problem, where the perturbation stands in adding a function p(α) to the objective function,

then the following inequality holds

‖α? − α′‖2 ≤
√

2s

λmin

with λmin being the smallest eigenvalue of the matrix Q and s is so that supα∈C |p(α)| ≤ s <∞.

Consider now α? as the solution of Problem (2) and α′ the solution of problem

min
α:y>α=0,0≤αi≤C

1

2
α>YK′dYα− 1>α (9)

where K′d =
∑
k dkK

′
k, with K′k a low-rank approximation of Kk. Note that the above problem (9) is a perturbed

version of Problem (2) with the following perturbation

p(α) =
1

2
α>Y(K′d −Kd)Yα

From the definition of s, in our specific case, we have

∞ > s ≥ supα:y>α=0,C≥αi≥0
1

2
α>Y(K′d −Kd)Yα

Let us now show that such s exists and that it can be upper-bounded by a term depending on ‖K′d −Kd‖F .

First note that the perturbation function p(·) is continuous and that the constraints is subset of a closed subset of

R`. Hence there exists s′ so that

supα:y>α=0,0≤αi≤C |p(α)| ≤ max0≤αi≤C |p(α)| = s′ <∞

15

Now, the following inequalities provide us with an upper-bound on p(α).

2|p(α)| =
∣∣∣α>Y(K′d −Kd)Yα

∣∣∣
=

∣∣∣tr(Yαα>Y(K′d −Kd))
∣∣∣

≤ ‖Yαα>Y‖F ‖K′d −Kd‖F

= ‖α‖22‖K′d −Kd‖F

Hence, we can choose s as

s = maxα:y>α=0,C≥αi≥0
1

2
‖α‖22(‖K′d −Kd‖F)

Then from Theorem 1 and the definition of s, we get the desired inequality given in Equation (8).

16

0 50 100 150 200
0.85

0.9

0.95

1

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

svmguide1 #examples =4962

SumLowRank

SMO−MKL

0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(svmguide1)

0 50 100 150 200
0.8

0.85

0.9

0.95

1

1.05

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

mushrooms #examples =5686

SumLowRank

SMO−MKL

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(mushrooms)

0 50 100 150 200
0.65

0.7

0.75

0.8

0.85

0.9

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

magic #examples =13314

SumLowRank

SMO−MKL

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

4000

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(magic)

0 50 100 150 200
0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

pokerhandtrainbin #examples =17507

SumLowRank

SMO−MKL

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

Rank of the kernel approximation

R
u
n
n
in

g
 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(poker)

Figure 1: Comparing accuracy and running time of a SMO-MKL and our low-rank MKL (SumLowRank) algorithm for different datasets from
increasing size. In this experiments, we have set p = 2. For each data set, the top panel reports the accuracy rate with respect to the rank of kernel
approximations while the bottom one shows the running time with respect to rank of the approximation.

17

0 50 100 150 200
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

adult #examples =34189

SumLowRank

SMO−MKL

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(adult)

0 50 100 150 200
0.75

0.8

0.85

0.9

0.95

1

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

codrna #examples =41674

SumLowRank

SMO−MKL

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(codrna)

0 50 100 150 200
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

seismicbin #examples =55176

SumLowRank

SMO−MKL

0 50 100 150 200
0

1

2

3

4

5

6

7
x 10

4

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(seismic†)

0 50 100 150 200
0.7

0.75

0.8

0.85

0.9

0.95

1

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

ijcnn1 #examples =99183

SumLowRank

SMO−MKL

0 50 100 150 200
0

1

2

3

4

5

6

7

8
x 10

4

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(ijcnn1)

Figure 2: Comparing accuracy and running time of a SMO-MKL and our low-rank MKL (SumLowRank) algorithm for different datasets from
increasing size. In this experiments, we have set p = 2. For each data set, the top panel reports the accuracy rate with respect to the rank of kernel
approximations while the bottom one shows the running time with respect to rank of the approximation. † For the Seismic dataset, we have compared
the performances for 10 kernels since the SMO-MKL did not converge after 48 hours of computations for 50 kernels.

18

0 50 100 150 200
0.85

0.9

0.95

1

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

svmguide1 #examples =4962

SumLowRank

SMO−MKL

0 50 100 150 200
0

50

100

150

200

250

300

Rank of the kernel approximation

R
u
n
n
in

g
 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(svmguide1)

0 50 100 150 200
0.8

0.85

0.9

0.95

1

1.05

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

mushrooms #examples =5686

SumLowRank

SMO−MKL

0 50 100 150 200
0

100

200

300

400

500

600

Rank of the kernel approximation

R
u
n
n
in

g
 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(mushrooms)

0 50 100 150 200
0.65

0.7

0.75

0.8

0.85

0.9

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

magic #examples =13314

SumLowRank

SMO−MKL

0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(magic)

0 50 100 150 200
0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

pokerhandtrainbin #examples =17507

SumLowRank

SMO−MKL

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

4000

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(poker)

Figure 3: Comparing accuracy and running time of a SMO-MKL and our low-rank MKL (SumLowRank) algorithm for different datasets from
increasing size. In this experiments, we have set p = 1.1 and the number of kernels to 20. For each data set, the top panel reports the accuracy rate
with respect to the rank of kernel approximations while the bottom one shows the running time with respect to rank of the approximation.

19

0 50 100 150 200
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

adult #examples =34189

SumLowRank

SMO−MKL

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Rank of the kernel approximation

R
u
n
n
in

g
 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(adult)

0 50 100 150 200
0.75

0.8

0.85

0.9

0.95

1

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

codrna #examples =41674

SumLowRank

SMO−MKL

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(codrna)

0 50 100 150 200
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

seismicbin #examples =55176

SumLowRank

SMO−MKL

0 50 100 150 200
0

2

4

6

8

10

12
x 10

4

Rank of the kernel approximation

R
u

n
n

in
g

 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(seismic)

0 50 100 150 200
0.7

0.75

0.8

0.85

0.9

0.95

1

Rank of the kernel approximation

A
c
c
u
ra

c
y
 r

a
te

ijcnn1 #examples =99183

SumLowRank

SMO−MKL

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

Rank of the kernel approximation

R
u
n
n
in

g
 t
im

e
 (

s
)

SumLowRank

SMO−MKL

(ijcnn1)

Figure 4: Comparing accuracy and running time of a SMO-MKL and our low-rank MKL (SumLowRank) algorithm for different datasets from
increasing size. In this experiments, we have set p = 1.1 and the number of kernels to 20. For each data set, the top panel reports the accuracy rate
with respect to the rank of kernel approximations while the bottom one shows the running time with respect to rank of the approximation.

20

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

Number of kernels

R
u
n
n
in

g
 t
im

e
 (

s
)

magic

SumLowRank

SMO−MKL

(magic)

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

Number of kernels

R
u

n
n

in
g

 t
im

e
 (

s
)

adult

SumLowRank

SMO−MKL

(adult)

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

Number of kernels

R
u
n
n
in

g
 t
im

e
 (

s
)

codrna

SumLowRank

SMO−MKL

(codrna)

Figure 5: Running time with respect to the number of kernels of our low-rank MKL and the SMO-MKL. Rank of approximations have been fixed to
100 so that both algorithms provide similar performance accuracies.

0.5 1 1.5 2 2.5

x 10
4

10
1

10
2

Rank of approx R=500 N
n
=1000

Number of training examples

R
u
n
n
in

g
 t
im

e
 (

s
)

GFB

IP

1 2 3 4 5 6 7 8

x 10
4

10
1

10
2

10
3

Rank of approx R=500 N
n
=1000

Number of training examples

R
u

n
n

in
g

 t
im

e
 (

s
)

GFB

IP

(adult) (ijcnn1)

Figure 6: Comparing running time of an Mehrotra predictor-corrector IP method and a generalized forward backward algorithm for respectively
solving problem ((6)) and its equivalent formulation. The number of kernels is m = 10 and each kernel has been approximated using rank-500
matrices

0 1000 2000 3000 4000 5000
10

0

10
1

10
2

10
3

Rank of approx R=500 N
n
=1000

Number of training examples

R
u
n
n
in

g
 t
im

e
 (

s
)

GFB merged constraints

GFB

0 1000 2000 3000 4000 5000
10

0

10
1

10
2

10
3

Rank of approx R=500 N
n
=1000

Number of training examples

R
u
n
n
in

g
 t
im

e
 (

s
)

GFB merged constraints

GFB

(adult) (ijcnn1)

Figure 7: Comparing running time of two usages of the generalized forward backward algorithm solving for problem (6). GFB merged constraints
and GFB respectively refer to a naive implementation generalized forward-backward algorithm which handles all constraints at once and a GFB as
described in Algorithm 2. The number of kernels is m = 20 and each kernel has been approximated using rank-500 matrices. All of these results in
5001 linear constraints to deal with.

21

	Introduction
	Framework
	Algorithms
	Analysis
	Numerical experiments
	General settings
	Comparing with SMO-MKL
	Proximal gradient vs interior-point
	Splitting equality constraints

	Conclusion
	Appendix
	Proof of proposition 2

