¢,-norm Multiple Kernel Learning with Low-Rank
Kernels

Anonymous Author(s)
Affiliation
Address
email

Abstract

Kernel-based learning algorithms are well-known to poorly scale to large-scale
applications. For such large tasks, a common solution is to use low-rank ker-
nel approximation. While several algorithms and theoretical analyses have al-
ready been proposed in the literature, for low-rank Support Vector Machine or
low-rank Kernel Ridge Regression, this work addresses the problem of scaling
£,-norm multiple kernel for large learning tasks using low-rank kernel approx-
imations. Our contributions stand on proposing a novel optimization problem,
which takes advantage of the low-rank kernel approximations and on introducing
a proximal gradient algorithm for solving two different forms of that problem. We
also provide theoretical results on the impact of the low-rank approximations over
the kernel combination weights. Experimental evidences show that the proposed
approaches scale better than the SMO-MKL algorithm for tasks involving about
several hundred thousands of examples.

1 Introduction

Kernel methods such as Support Vector Machines or Kernel Rigde Regression have now become
classical tools for classification or regression problems. In these methods, the choice of the kernel
is of primary importance for achieving performances. Multiple kernel learning (MKL) is a learning
framework that transfers the choice of the kernel from the practitioner to the algorithm since the
latter provides a learned linear combination of some bases kernels and a decision function[13} 3.

Since the last few years, the literature on MKL have been flourishing and many efforts have been
spent on proposing and analyzing novel regularizers for kernel combinations [22}|11}9]. Improving
the learning algorithm computational efficiencies [19} 20} 23| [1} 21] have also been on the focus of
many interests. While these works have pushed the boundaries of the scalability of multiple kernel
learning methods, we believe that some efforts are still needed for making MKL capable of handling
large learning problems.

One common way for handling large-scale problems in kernel methods is to consider low-rank ap-
proximation of the kernel matrix and to take advantages of this approximation for accelerating the
learning process [24, 16| [12]. As an example, for Kernel ridge regression, the Woodbury matrix in-
version formula [8] makes it easy to derive that efficient algorithm. For SVM, (author?) 7] have
proposed an interior point optimization method that can profit from the low-rank kernel approxima-
tion. In this work, we propose to make a leap towards the goal of very large-scale multiple kernel
learning by developing algorithms which are able to benefit from low-rank approximation of the
base kernels used in a multiple kernel learning framework. In particular, we focus on £,-norm MKL
because of its theoretical soundness [10] and because it has been proven to be useful in some prac-
tical applications [11]]. Within this context of £, norm MKL, we make the following contributions :

e we introduce a framework for MKL with low-rank kernels and propose a proximal gradient
algorithm for solving the learning problem. By exhibiting a trick on projection on affine
sets, we are able to drastically reduce the computational complexity of our algorithm. In
addition, our approach is parallelizable, a property that comes from the nature of the algo-
rithm itself and because the approach is essentially based on matrix-vector multiplications.

e we provide a theoretical result that bounds the difference between norms, for the exact ker-
nel and its low-rank kernel approximation, of each component of the MKL decision func-
tion. This bound gives us intuitions on how the kernel approximation impact the weights
in the kernel linear combination.

e We empirically demonstrate that our MKL with low-rank kernel approach can be signifi-
cantly faster than state-of-the-art £, MKL solvers such as the SMO-MKL algorithm. For
instance, we are able to solve a MKL problem with 10 kernels and about 100 thousands
examples or 5 kernels and 500 thousands examples in about than half an hour.

2 Framework
We introduce in this section the multiple kernel learning framework we are interested in.

2.1 MKL framework

We consider a classification learning problem from data {x;, y; }Y_, where x; belongs to some input
space X and y; = {+1, —1} denoting the class label of examples {x; }. We denote as Y the diagonal
matrix composed from the label vector.

In a multiple kernel learning framework, which involves a linear combination of m kernels, one
looks for a decision function of the form f(x) = >_;" | fx(x) + b with each function f}, € Hk,,
Hxk, being the RKHS associated with positive definite kernel K. One way to learn these func-
tions fx(-) is to solve the following MKL primal problem as first proposed by (author?) [26] and
(author?) [19] and extended by (author?) [[11] :

. kaH%{Kk
aohezo Sk d T Onk (1)
with Yi > fru(xi) Fyb>1-& Vi
Idfl; <1

where each dj; regularizes the squared norm of fj in the objective function. Hence, the smaller dy,
is, the smoother fj, should be. The p-norm constraint on the weight vector d controls the amplitudes
of {d } while the choice of p eventually enforces the kernel linear combination to be sparse (p = 1),
non-sparse (p > 1) or have equal weights (p = oo). Problem (I)) is usually solved by considering
an alternating optimization strategy which consists in optimizing a slave problem with respects to
{fr} with fixed weights {d} and then in optimizing the weights while the functions fj, are fixed
[11L25.[15]. This alternating strategy, depicted in Algorithm[I] has been proved to be efficient owing
to several features. The first one is that the slave problem boils down to be an SVM problem where
the kernel matrix is a fixed combination of kernels

. I + T
min -« Y(deKk)Ya -1 «)
ayTa=0,C>a;>0 2 .

and thus off-the-shelf efficient SVM solvers can be used. The other point is that the optimization
with respects to a weight dj, admits a closed-form solution :

2
1fillzed

m el

(Zk:l kaHHKk)p

where fi.(-) = dg Ele a;y; Ky (x;,). Although this strategy can be made further efficient, by for
instance interleaving the SVM and the weight optimization solvers [[11]], it still suffers because of
the kernel matrix size, when large-scale learning problems are in play. The SMO-MKL algorithm
of (author?) [23]] departs from this alternating optimization strategy and instead solves the dual of

d, = 3)

Algorithm 1 Alternate optimization for £, MKL

1: set k=1, initialize the kernel weights {dj }
2: repeat

3: optimize an SVM with kernel » , d Ky,
4: update {d;} according to Equation 3]

5: until convergence is met

a modified version of Problem (I). A very nice feature of this latter algorithm is that it can handle
large-scale problems since kernel matrix entries can be computed on the fly.

One way to deal with such large-scale training datasets in kernel-based learning algorithms is to
resort to low-rank kernel approximation of the kernel matrix. Several methods are available for
performing low-rank approximation of a semi-definite positive matrix including Nystrom methods
[24.12] or Incomplete Choleski decomposition [8]]. In this study, we will consider Nystrom method
that we briefly remind in what follows. Suppose we want to approximate a positive definite Gram
matrix K. A rank— R Nystrom approximation K of K is obtained by randomly sampling N,, train-
ing examples among all available ones and by defining

K=CwWiLCcT=vvT

where C is the matrix formed by the columns of the matrix K related to the V,, samples, W is the
Gram matrix of those examples, W}z being the pseudo-inverse of the best rank- R approximation of
W with R < N,, and V a matrix of size £ x R so that V = CLD with D the diagonal matrix
of size R x R composed of the largest R eigenvalues of W and L the matrix of the corresponding
eigenvectors. Computational complexity of the Nystrom method is dominated by the pseudo-inverse
computation which is O(N?).

The impact of the kernel approximation on the kernel method’s performance is of course of inter-
est, since using low-rank approximation boils down in trading some computational efforts against
eventually some losses of generalization performances. For some families of kernel methods, these
impacts have been formally analyzed by (author?) [S] and (author?) [2]. In this paper, we have
addressed algorithmic issues and have studied the impact of the approximation on the norm of || fx ||,
on which the weight d;, depends. We have left for future works the theoretical study of the low-rank
approximation on the performances. However, our experimental results show that when the rank of
the approximation becomes sufficiently large, the loss in generalization performances can become
small compared to the use of the full kernel matrix.

Our contribution is thus to develop algorithms for large-scale multiple kernel learning by taking
advantage of the low-rank decomposition of the base kernels. The algorithms we propose in the
sequel follow the classical trend in MKL which consists in optimizing alternatively the inner SVM
problem with fixed kernel weights and then in optimizing these weights while keeping the SVM
optimization variables fixed. Hence, our main objective is to solve efficiently problem (2)) given that
we are provided with some Nystrom low-rank approximations {V,}7*, or all the {Cj,} and {W}
of all base kernels {Kj } 7" ;. For a sake of clarity and simplicity, we suppose that all V, are of the
same dimensions.

3 Algorithms

There exists two ways for solving the SVM problem given low-rank kernel approximations.
Indeed, the sum of kernel can either be approximated as a sum of low-rank kernels or as a low-rank
approximation of), d;,K;, that needs be computed at each iteration. This section introduces these
two algorithms we have proposed for solving the MKL problem with low-rank kernels. The merits
and disavantages of both approaches will also be discussed.

3.1 Sum of low-rank approximation

The first approach we devise is based on the idea that low-rank approximation of each single kernel
can be computed beforehand and the sum of kernel K is then approximated as the weighted sum of

low-rank approximation of each single kernel. Formally, we consider the following approximation :

Ko=) diKp~ > diCiWIC] = dpVi V)
k=1 k=1 k=1

From this kernel approximation, Problem (2)) boils down to be

min, %QTY(Zk dekV,;r)Yoz —1Ta
st yla=0 “)
and each || f H%Kk can be obtained as :
i, = draYViV{Ya 5)

Let us highlight that Problem (4), because of the sum of kernels, does not fit into the framework
introduced by (author?) [7] for solving a low-rank kernel SVM. In addition, because of the lin-
ear combination of kernels, the low-rank property may have been spoiled. Indeed, the rank of
>, di Vi V] is upper bounded by >, rank(V V). Our objective is thus to derive an algorithm
that is able to leverage from the low-rank approximations {V} of all base kernel matrices.

For this purpose, we propose an equivalent formulation of Problem (@) by introducing some auxiliary
variables and additional equality constraints :

min()‘7{’¥k} %22;1 'V];F’Yk -1Ta
Ve = Vdp Vi Ya Vkel,---,m
yla=0
0<o,<C Viel,--- ¢

(6)

This optimization problem is a quadratic programming problem with R x m + ¢ variables, R x m+1
equality constraints and 2¢ inequality contraints, thus when the number ¢ of training examples is
large, we have to face with a pretty large-scale problem. We can resort to classical QP solvers
that handle such large-scale problems, for instance interior point methods [17]. However, in this
work, we depart from this classical route by using instead a proximal gradient algorithm for solving
problem (6). After having described the algorithm, we will make clearer the reasons for this choice.

The proximal method we are considering is the generalized forward-backward splitting algorithm
(18] which is tailored for minimizing the sum of arbitrarily large number of convex functions Fy(z)+
Zi]\il F;(z) where one of these functions (here Fy) is smooth and gradient Lipschitz of constant L
while the others are (possibly) non-smooth but whose proximal operators can be simply computed.
The Generalized Forward-Backward (GFB) splitting algorithm [18]] follows the same principle as
the Forward-Backward splitting in the sense that at a given iteration with an iterate z,, it first takes
an explicit gradient step and then makes a implicit step where proximal operators are computed. The
main feature of the Generalized Forward-Backward (GFB) splitting algorithm is that since we have
several proximal operators related to the constraints or regularizers to compute, these computations
are applied in parallel on some auxiliary variables. These variables are finally averaged so as to yield
the next iterate z,,4 1. The following (simplified) proposition makes the GFB algorithm explicit :

Proposition 1 (18 Th 2.1] Let {F;}M be M + 1 convex lower semi-continuous functions of R¢
such that a standard domain qualification holds and such that the set of minimizers of Zi]\io Fi(z)
is not empty. Set {Z;}}1, € R%, 2y = & Zf\il Z; and build at each iteration n > 0

Zi— Zi + M\, (mequF1, (22, — Z; — (W V Fo(zn)) — zn)

foralliel,--- M, and
M

Zpt1 < %ZZZ

i=1
with ¢, €]0, %[and X\, €]0,1], then every sequence {z,} generated by this algorithm weakly
s M
converges towards a minimizer of » ;_, F;.

Note that this algorithm is exactly the forward-backward splitting algorithm when M = 1 and in the
same way, it is robust to noise on the proximal operators and on the gradient computations as long
as the noise norm series converge.

By defining the vector z = [y1;72; - ; Vm; @] We can see that this GFB algorithm can be straight-
forwardly applied to our problem by choosing Fo(z) = >, v Tv; — 1" o, Fi(2) = Ib, <z<by
the indicator function on the box constraints delimited at each coordinate by the coordinates of by,
and by and F5(z) = Ia,—0, the indicator function on an affine set defined by the matrix A. In our
case, A is the matrix of size (R x m + 1) x (R x m + £) defining the linear equality constraints
as given in Problem (6). The proximal operators of Fi(-) and Fy(-) are simple to derive and in
particular, we have :

proxy, _, (v)=v— AT(AAT)*lAV

Computing the term AT(AAT)~'A involved in the proximal operator, at a cost of the order of
O(m3R3 + m?R2(), is the main burden of the algorithm, although it is computed only once. Ap-
plying the proximal operator to a vector v involves about O(m? R?) multiplications. Hence, because
of this matrix inversion needed for the projection on the affine set, the number of equality constraints
is critical as it introduces a cubic dependency with respect to the number of kernels. In order to break
down this complexity, we take advantage of one property of the GFB algorithm. Indeed, since this
algorithm can handle any number of constraints and by noticing that the following equality holds

]IAz:(] = E I[ACJ,:z:()
Jj=1

where the {C;} forms a partition of the row index of A, one can consider the constraints in
problem @ as the intersection of the sets defined by : {y; = \/@V,IYQ}Z‘ZP a'y = 0and
0 = a =% C'1. Basically, we have splitted the matrix A in submatrices A which applies only on
some components of z. Under this novel perspective, Problem () still fits into the framework of the
generalized forward-backward splitting [18]]. However, we now have m + 1 affine sets on which we
have to project the vector z and a box constraint. The affine sets we are interesting in, are formally
defined as

]IAkZZO
with, fork e 1,--- ,'m
Ap=[0] [Ig |- [0] VA VY] ™
with I being an identity matrix of size R x R and
Ampr=[0]- [0]O[yT"]

Because of its peculiar structure prox;, (z) leaves unchanged all components but 7, and a.. The
=

computational complexity for computing A (AxA[])1 Ay is of the order of O(R? + R%(). And,
since we have to compute this proximal operator m times, the complexity is now only linear in m.
A detailed instantiation of the GFB algorithm to our particular problem is given in Algorithm 2]

Remark 1 According to (author?) [[I8l Th 2.1], the sequence {z,,} can be made strongly conver-
gent to the minimizer of Problem (6)) if its objective function is uniformly convex. This can be easily
achieved through the addition of a term gaTa with > 0 at the expense of slightly perturbing the
original problem.

Remark 2 In the above algorithm, we have decided to split the original linear equality constraints
in m affine sets as they are naturally related to a given low-rank kernel approximation. However,
we could have chosen different number of sets. For instance, the extreme case is the case where
a proximal operator is associated to a single linear equality constraint making the computation of
the related (AxAy)~t in O(1 + (). The number of proximal operators involved in the for-loop
of the algorithm is now R - m but each application of the proximal operator only costs O(1 +
¢). The drawback of this approach is that the memory complexity drastically increases since we
have to store all the copies {Z;}, which would be in (R - m + £) x R - m. In addition, while the
computational complexity of each proximal operator is small, nothing is guaranteed regarding the
number of iterations needed by the global algorithm to converge towards a solution. Hence a trade-
off has be made. We have not thoroughly analyzed this issue in this work and have left it for future
works.

Algorithm 2 Generalized forward-backward for SVM with sum of low-rank kernels

1: Input : {V}, matrices so that K ~ V; V.
2:set(p <1L,A=1

3: initialize auxiliary variables {Z; }/"2.

4: initialize zp = ﬁ > Zi

5. precompute Ay, and A} (AxAf) "L k=1,,m+2
6: n<+0

7: repeat

8: Vf= h/n; _1]

9: fori=1— mdo
10: z, =22, —7Z;— Vf
11: Zi— Z; +)\(proxHA’_:O(z;) —Zy)
12: end for l

13: Z/n = 22" - Zm+1 - Cnvf

14: Zpmi1 ¢ Zmg1 +)\(proxHAmﬂ_:U (z') —z)
15: 2, =22, — Zpmio — VS

16: Lt — PbL7bU (Z;L)

+2
17: Zpy1 — ﬁ 221 Zz
18: [Ynt1; Qnt1] = Znga

190 n<+<n-+1
20: until convergence is met

This possibility of splitting the linear constraints and then in dealing with each constraint separately
is one of the main reason that makes us prefer the Generalized Forward-Backward algorithm to a
standard interior-point approach. Indeed, for instance, in the interior-point approach proposed by
(author?) [14]], at each iteration, one needs to solve several linear systems of size of the linear
constraints (in our case R x m). While a careful implementation, using for instance a Choleski
factorization and a proper use of the diagonal Hessian, helps in reducing computational complexity,
the cubic dependency in the number of kernels can hardly be avoided.

Let us emphasize that from our experimental study of interior point and proximal methods, when
an accurate solution of problem (6)) is needed, IP methods may do a better job as it tends to provide
(slightly) lower objective values. However, following the lines of (author?) [4], in large-scale ma-
chine learning settings, finding an approximate solution of the problem may be sufficient, and in this
situation, we advocate the use of proximal gradient methods.

3.2 Low-rank decomposition of kernel sum

As we have at our disposal all the matrices {Cy} and {W} of all the base kernels, we can also
consider the other way around approach which consists in building a Nystrom approximation of the

kernel Kq = >°;*, d;,Kj. Hence, we can obtain the following approximation K, of K4

Kd ~ Kd = CdW;RCd = Vdvg
where C, and WJ; , are defined as above but apply to the sum of kernels instead of a single kernel.
V,isaf x R matrix.

From this kernel approximation, Problem (2) boils down to be

1
. min_ >O§aTYVdeYa—1Ta (8)
ay ! a=0,0>0;>

and each || fi H%Kk can still be written as in Equation H

Note that the optimization problem (8) has exactly the same structure than problem (). Applying
the same problem transformation leads to an optimization problem similar to (6) where the number
of linear constraints is limited to R + 1 instead of m x R + 1. Because of this similarity, we have
also applied a generalized forward backward algorithm to solve it.

Because of the lower number of constraints, we can expect that the resolution of each problem (8]
costs less than problem (@). However, at each iteration of the MKL algorithm, we have to perform
an eigendecomposition of the matrix), d K}, of size N,, x N,,. Hence, we expect this approach
to be effective especially when the number of sampled columns N,, is small.

Remark 3 We could have also solved Problem (8) using a low-rank SVM approach as the one
proposed by (author?) [|7]. For the same reasons as above, the latter method is slower than our GFB
approach and some experimental analysis, provided in the supplementary material, also corrobate
this findings

4 Analysis

Our objective in this section is to derive some theoretical understandings of the kernel approximation
impact on the multiple kernel learning. Similar analyses have already been carried out by (author?)
[7] and (author?) [5] for SVM. The former work proposed a bound on the variation of the SVM opti-
mization problem objective value when the kernel is replaced by an approximated one. The latter one
instead, analyzed how the decision function f(x) varies with respect to the Frobenius norm of kernel
difference. In our work, we focus our interest on the variation of || fi||3x, — I f% HHK@ , where fj,
and f; are respectively defined as fi.(x) = di Y, iy K (%, %), fr.(x) = di >, iy K (%, %)
with K, being a given approximation of K;, and Hk; the corresponding RKHS. We justify our
interest on the norm of || fi[[3, since it plays a major role in the computation of the weights dj.

While we agree that bounding ||| fi |, — [1f7 14, ‘ does not tell how |dj, — dj,| varies, it provides
k

a partial result that gives us some intuitions about the key components in the kernel approximations
that help in reducing the norm difference.

Proposition 2 Suppose that K; = Zk dp Ky is positive definite. Denote as Kk a low-rank ap-

proximation of Ky, and K| = K. + eI with € being a small positive value. Denote as o the
solution of problem @) and o' the solution of the same problem but with kernel K/, = >, d;, K}, =

>k d Ky, + %I, withe* = ¢ >k k. There exists two constants Mk, and My so that :

2s

(©))

1 illrse, = 1t | < (Ve + Mgy
K

)\min
where Apin is the smallest eigenvalue of K4 and s so that

1 ~
5= max *Ha“%(Hde(K’“_Kk)"F+E*)
k

aryTa=0,0<a; <C 2

Proof : (sketch) The complete proof in given in the supplementary material. It relies on two main
intermediate results : norm equivalence in finite dimensional spaces and bounds on variation of
minimizers of perturbed strictly positive definite quadratic programming problems [16]. From the
norm equivalence, we show that

1 kllerse, = el by, | < (M, + My)l = o]l (10)

where My and My are the upper bound constants of some norm equivalence, which means that
for all u € RY, we have
vk, y < Mx,|lullz and [uflgzyx;y < Mk, [[ull2

with ”qui vk, y being the norm induced by the kernel YK Y. Then, a pertubation result from

the work of (author?) [16] tells us that there exists a constant s, that depends on the perturbation,
so that

o= o'l < /2
2= /\min
which, combined with Equation (I0) leads to the inequality that concludes the proof. []

Accuracy rate

(o] Rank|
. %KL Jr-1-3
100 0 2

20 40 60 80
Rank of the kernel approximation

o ,H, ____________ % _____________ ,H. % + %

Ko R B LowRankSum
< 1000] O SsumLowRank
=%= MKL

Accuracy rate
2
3

4B LowRankSum
O SumLowRank|
% MKL

100 0 80 100

0 40 60 80 40
Rank of the kernel approximation Rank of the kernel approximation

LowRankSum|
200| SumLowRank
180] =% MKL

o - é
40| e Q *
LowRankSum L C TR PP rra T aetert FEELEE 3
0.62 SumLowRank| 20f e
=%=MKL -
o L OO

0 20 80 100 0

40 60 20 40 60 80
Rank of the kemel approximation Rank of the kernel approximation

Figure 1: Comparing accuracy and running time of a plain MKL and our two low-rank MKL al-
gorithms for small-scale learning problems. (left column) accuracy rate with respect to the rank
of kernel approximations. (right column) running time with respect to rank of the approximation.
(from top to bottom) the German, Splice and Yeast datasets involving respectively 800, 2540 and
1187 training examples and 20 kernels.

This proposition gives us the intuition that the impact of the low-rank kernel approximation is con-
trolled by one term independent of the approximation (A;,;,) and by the Frobenius norm of the
kernel difference.

Note that this theoretical result applies to our problem only when ¢ goes towards 0. The introduction
of ¢ is mandatory so as to render K}, positive definite, which implies the uniqueness of o’ and the
existence of the norm || - |[k; .

5 Numerical experiments

The main objective of our experiments is to provide empirical evidences that (i) in large-scale situa-
tions the low-rank MKL methods we propose are significantly faster than state of the art algorithms
like the SMO-MKL and (ii) they can yield to performances similar to those of usual MKL methods,
if the kernel approximation is accurate enough. An experiment providing a proof of concept about
the multithreading capabilities of our algorithms has also been reported. Some other experiments,
depicted in the supplementary material have also been carried out in order to prove that IP methods
are less efficient than our proximal gradient algorithms, at least for the precision we are looking for.

All computations have been carried out on a 16-core Intel Xeon machine with 24 GB of memory.
All the codes have been written in Matlab and run on a single core of the above machine. For the
SMO-MKL, we have used the C' implementation of the authors. All reported results consider p = 1
for our MKL approaches and p = 1.1 for the SMO-MKL so as to keep the learning problem smooth.
Similar results as those presented below have been obtained with p = 2 but not reported due to space
constraints.

Rank of approx R=100 N, =1000 Rank of approx R=100 N, =1000

LowRankSum|
4500 ‘SumLowRank|

%= SMO-MKL K
4000] o 8000

= 9000

3500 X 7000
6000

ime (5)

o 5000
£ 4000
3000)
2000)

1000

25 3 35 7]] 10
Number of raining examples w10t Number of training examples. 10t

(adult) (ijennl)

Rank of approx R=100 N, =800

10000)

8000

6000

Running time (s)

4000)

2000

25 a5

3 35 4
Number of raining examples ¢

(covertype)

Figure 2: Running time with respect to the number of training examples of our two low-rank MKL
algorithms and the SMO-MKL for large-scale learning problems.

Algorithms

Dataset SumLR LowRS SMO
adult 8392+ 0.3 8398+03 84.07+04
ijennl 92.36 0.0 9231 +£0.1 99.23 4+0.1
cover 7491 £0.2 74.84+0.2 -

Table 1: Comparing accuracy for large-scale problems. C' has been set to 1000 and 80% of the
examples have been used as training examples and the rest for testing.

5.1 Accuracy with respect to low-rank kernel approximation

We have investigated the impact of low-rank kernel approximation on the decision function accuracy.
For this purpose, we have compared the accuracy of our algorithms, denoted as SumLR (for the one
that considers sum of low-rank kernel) and LowRS (for the one which approximates the sum of
kernel at each iteration), to the one of a MKL which uses an analytical updates of the weigths {d}}
[25}[11]]. We have considered three small-scale datasets from the UCI repository : German, Splice
and Yeast. For each of these datasets, we have randomly split 80% — 20% the examples in training
and test set. 20 Gaussian kernels, with bandwidth o ranging logarithmically from 10° to 10,
have been pre-computed. Since we are interested in relative performances, we have arbitrarily set
C = 1000, which is a value that yields good accuracies. Stopping criterion of all MKL algorithms
are based on the maximal variation of the weights between two iterations, which should be lower
than 10~*. For our approaches, the inner low-rank SVM algorithm is stopped when the relative
variation of its objective value is lower than 10~ or when 3000 iterations have been reached.

Averaged performances (accuracy and running time) over 20 runs and increasing quality of approx-
imation are reported in Figure[I] As expected, the accuracy of our algorithms increases along with
the rank of the kernel approximations. We can see that for most problems, approximating each base
kernel with a rank-100 kernel is enough for achieving accuracy similar to those provided by the full
kernels. The worst situation is obtained for the Splice dataset as a slight loss of accuracy occurs
(about 2%. Regarding running time, we note that the sum of low-rank kernel approach is more
efficient than the two other algorithms except in few situations for the Yeast dataset.

5.2 Running time in large-scale settings

We now turn our attention on large-scale learning problems where the base kernel matrices can not
be pre-computed as they do no fit in memory. In such a situation, we resort to algorithms such as

Rank of approx R=100 N =1000 Rank of approx R=100 N, =1000

=B LowRankSum
%= LowRankSum M
14001 - Suy

1200

(s)

£ 1000]

im

ning i

B0Of e gguamm

600

400

25 3 35 4
Number of training examples Y10t

Figure 3: Comparing gain in running time when allowing multithreading and parallel computing in
the large-scale setting experiments (left) Adult. (right) ijcnnl

the SMO-MKL which computes the kernel entries on the fly. We now compare the efficiency of this
algorithm to our approach.

For these experiments, we have considered the following UCI datasets : Adult, I[jcnnl, and Cover-
type. Note that we have turned the last dataset into a binary classification problem by considering
class 1 against all others. We followed exactly the same experimental set-up as above except that we
have considered only 10 different bandwidths (in the same range) of the Gaussian kernel. For the
Covertype problem, due to memory constraints, we have reduced the number of sampled columns
N, to 800.

For each dataset and algorithm, running time averaged over 5 iterations of have been plotted with
respect to the number of training examples in Figure[2] The first two plots depict the results achieved
on adult and ijcnnl. Both of our approaches are significantly faster than SMO-MKL and the gain in
efficiency increases along with the number of training examples. For instance, for adult, with 38 K
training examples, our SumLR algorithm is nearly an order of magnitude faster while for ijcnni,
with 110K examples, it is about 5 times more efficient.

For the Covertype dataset, results of the SMO-MKL have not been reported because the algorithm
did not converge after 48 hours even for 200K training examples. With our algorithms, we were
able to solve the learning problems in about half an hour for 230K examples and less than an hour
for 400K examples using the SumLR approach. To the best of our knowledge, this is a state-of-the-
art efficiency result for £, multiple kernel learning. The large increase in running time occuring at
460K examples for LowRS is due to some memory swapping.

One may argue that this gain in efficiency has to be pondered by some losses in accuracy of the
classifier. Table[l]compares the accuracy rate of for these 3 algorithms using 80% of training exam-
ples and the rest for testing. We can remark that for adult this loss is nearly neglectable while for
ijennl, it goes up to 7%. For Covertype, the comparison is again in our favor since the SMO-MKL
has output any results. Hence, on a given (tight) budget of time, it seems preferable to consider our
low-rank MKL approaches.

5.3 On the influence of parallelization

We also provide some results showing that our algorithms can benefit from multithreading or parallel
computations. For this experiment, we have replicated the large-scale experiments but allowed
Matlab to use its multithreading capabilities as well as its parallel computing framework through the
parfor instruction while computing lines 9 to 12 of Algorithm 2]

Figure [3] shows the gain in performance yielded by multi-threading and parallel computing for our
two approaches. We remark that this gain is rather small but effective especially for large number
of training examples. Careful analysis of the running time brought to our attention that the parallel
computing framework of Matlab does not provide us any gain in efficiency. We thus conjecture that
a better handling (with appropriate tools) of the parallel computing will help us to further improve
the global computational efficiency of our algorithm.

10

6 Conclusion

The paper addresses the problem of large-scale MKL learning when the base kernels are low-rank
approximation of the original ones. We propose a novel optimization problem which takes advantage
of such approximations as well as two gradient proximal algorithms for solving two versions of the
problem.

Theoretical results on the impact of the kernel approximation on the kernel combination weights are
also provided as well as empirical evidences on the better scalability of our approaches compared to
state-of-the-art MKL solvers.

11

References

[1] J. Aflalo, A. Ben-Tal, C. Bhattacharyya, J. Saketha Nath, and S. Raman. Variable sparsity
kernel learning. Journal of Machine Learning Research, 12:565-592, 2011.

[2] F. Bach. Sharp analysis of low-rank kernel matrix approximations. Technical report, INRIA
HAL-00723365, 2012.

[3] F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO
algorithm. In Proceedings of the 21st International Conference on Machine Learning, pages
41-48, 2004.

[4] L. Bottou and O/ Bousquet. The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems, volume 20. MIT Press, Cambridge, MA, 2008.

[5] C. Cortes, M. Mohri, and A. Talwalkar. On the impact of kernel approximation on learning
accuracy. In Conference on Artificial Intelligence and Statistics, pages 113—-120, 2010.

[6] P. Drineas and M.W. Mahoney. On the nystrom method for approximating a gram matrix for
improved kernel-based learning. The Journal of Machine Learning Research, 6:2153-2175,
2005.

[7] S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel representations. The
Journal of Machine Learning Research, 2:243-264, 2002.

[8] G.H. Golub and C.F. Van Loan. Matrix computations, volume 3. Johns Hopkins University
Press, 1996.

[9] C. Hinrichs, V. Singh, J. Peng, and S.C. Johnson. Q-mkl: Matrix-induced regularization in
multi-kernel learning with applications to neuroimaging. In Advances in Neural Information
Processing Systems, 2012.

[10] M. Kloft and G. Blanchard. On the convergence rate of p-norm multiple kernel learning.
Journal of Machine Learning Research, 13:2465-2501, 2012.

[11] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. Ip-norm multiple kernel learning. Journal
of Machine Learning Research, 12:953-997, 2011.

[12] S. Kumar, M. Mohri, and A. Talwalkar. Sampling methods for the nystrom method. The
Journal of Machine Learning Research, 98888:981-1006, 2012.

[13] G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. Jordan. Learning the kernel
matrix with semi-definite programming. Journal of Machine Learning Research, 5:27-72,
2004.

[14] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on
optimization, 2(4):575-601, 1992.

[15] J.S. Nath, G. Dinesh, S. Raman, C. Bhattacharyya, A. Ben-Tal, and K.R. Ramakrishnan. On the
algorithmics and applications of a mixed-norm based kernel learning formulation. Advances
in neural information processing systems, 22:844—-852, 2009.

[16] HX Phu and VM Pho. Some properties of boundedly perturbed strictly convex quadratic
functions. Optimization, 61(1):67-88, 2012.

[17] F.A. Potra and S.J. Wright. Interior-point methods. Journal of Computational and Applied
Mathematics, 124(1):281-302, 2000.

[18] H. Raguet, J. Fadili, and G. Peyré. Generalized forward-backward splitting. arXiv preprint
arXiv:1108.4404, 2011.

[19] A. Rakotomamonjy, F. Bach, Y. Grandvalet, and S. Canu. SimpleMKL. Journal of Machine
Learning Research, 9:2491-2521, 2008.

[20] S. Sonnenburg, G. Ritsch, C. Schifer, and B. Scholkopf. Large scale multiple kernel learning.
Journal of Machine Learning Research, 7(1):1531-1565, 2006.

[21] T. Suzuki and R. Tomioka. SpicyMKL : A fast algorithm for multiple kernel learning with
thousands of kernels. Machine Learning, to appear, 2011.

[22] M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy. Composite kernel learning. Machine
Learning Journal, 79(1-2):73-103, 2010.

12

[23] S.V.N Vishwanathan, Z. Sun, N. Theera-Ampornpunt, and M. Varma. Multiple kernel learning
and the smo algorithm. In Advances in Neural Information Processing Systems 23, 2010.

[24] C.K.I. Williams and M. Seeger. Using the nystrom method to speed up kernel machines.
Advances in neural information processing systems, pages 682—688, 2001.

[25] Z. Xu, R. Jin, H. Yang, I. King, and M. Lyu. Simple and efficient multiple kernel learning by
group lasso. In Proc. of 27th International Conference on Machine Learning, pages 1-8, 2010.

[26] A. Zien and C.S. Ong. Multiclass Multiple Kernel Learning. In Proceedings of the 24th
International Conference on Machine Learning (ICML 2007), pages 1191-1198, 2007.

13

	Introduction
	Framework
	MKL framework

	Algorithms
	Sum of low-rank approximation
	Low-rank decomposition of kernel sum

	Analysis
	Numerical experiments
	Accuracy with respect to low-rank kernel approximation
	Running time in large-scale settings
	On the influence of parallelization

	Conclusion

