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Abstract

Objective: To assess the feasibility of lung cancer diagnosis using fibered confocal fluorescence microscopy

(FCFM) imaging technique and scattering features for pattern recognition.

Methods: FCFM imaging technique is a new medical imaging technique for which interest has yet to be

established for diagnosis. This paper addresses the problem of lung cancer detection using FCFM images and,

as a first contribution, assesses the feasibility of computer-aided diagnosis through these images. Towards this

aim, we have built a pattern recognition scheme which involves a feature extraction stage and a classification

stage. The second contribution relies on the features used for discrimination. Indeed, we have employed the

so-called scattering transform for extracting discriminative features, which are robust to small deformations

in the images. We have also compared and combined these features with classical yet powerful features like

local binary patterns (LBP) and their variants denoted as local quinary patterns (LQP).

Results: We show that scattering features yielded to better recognition performances than classical features

like LBP and their LQP variants for the FCFM image classification problems. Another finding is that

LBP-based and scattering-based features provide complementary discriminative information and, in some

situations, we empirically establish that performance can be improved when jointly using LBP, LQP and

scattering features.

Conclusions: In this work we analyze the joint capability of FCFM images and scattering features for lung

cancer diagnosis. The proposed method achieves a good recognition rate for such a diagnosis problem. It also

performs well when used in conjunction with other features for other classical medical imaging classification

problems.
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analysis, fibered confocal fluorescence microscopy imaging, bronchoscopy.

1. Introduction

Lung cancer is one of the most widespread forms of cancer and a major cause of premature death. Survival of

lung cancer is highly associated with early diagnosis [1]. It follows that it is of primary importance to develop

methods to help to diagnose cancer. Numerous imaging methods have been developed in order to improve the

detection of these early cancerization stages [2]. Medical imaging tools for lung cancer diagnosis are mostly

based on inspections of the lung and the chest [3] using X-ray-based systems including computed tomography

[4, 5]. For centrally located lung cancer, bronchoscopy is an essential tool for diagnosis. Until recently, the

early diagnosis of lung cancer relied primarily on a rough inspection of the bronchial mucosae during an

endoscopic procedure and on pathology examination of biopsy samples. Classic fiberoptic bronchoscopy, using

white-light illumination, has repeatedly shown a low sensitivity for the detection of the early - presumably

curable - lesions such as carcinoma in situ [6]. In particular, some techniques have emerged over the past five

years that extend the field of exploration of bronchoscopy to the distal lung and to the cellular level, among

which fibered confocal fluorescence microscopy (FCFM) [7, 8].

The FCFM technique (also referred to as probe-based confocal laser endomicroscopy, especially in gastroin-

testinal imaging) is based on the principle of fluorescence confocal microscopy, where the microscope objective

is replaced by a fiberoptic miniprobe, made of thousands of fiber cores. The miniprobe can be introduced

into the 2 mm working channel of a flexible bronchoscope to produce in vivo endomicroscopic imaging of the

human respiratory tract in real time. This very promising technique, whose applications for lung exploration

are currently under investigation, can replace lung biopsy in the future and may prove to be helpful in the

diagnosis of a number of diseases [7]. FCFM has other challenging applications, such as the imaging of colonic

polyps in gastroenterology, for which image retrieval and classification works are ongoing [9]. FCFM imaging

is thus able to provide in vivo cellular images of the lung; for this reason, it opens the road to novel methods

for early diagnosis of lung diseases including cancer. This is one of the objectives of this paper: to assess the

feasibility of computer-aided lung cancer detection based on FCFM images.

Computer-aided diagnosis systems for lung diseases or cancer based on imaging usually involve image pro-

cessing techniques and machine learning approaches. Many approaches focus on nodule detection in chest

radiographs [10, 11] or in computed tomography (CT) [12–14]. CT is often coupled with advanced numerical

techniques for extracting relevant features from the images as well as with state-of-the-art classifiers [15, 16].

Usually, the systems are based upon a two-stage approach: feature extraction and classifier training [11, 17].

The first stage aims at building relevant features that help in discriminating tissues while in the second stage,
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the classifier learns from examples to automatically assign a class, typically normal or abnormal, from a set of

features extracted from an image. These features are frequently related to texture of the images [17–19]. They

thus may be described by means of the local binary patterns (LBP)[20] which are known to be competitive

texture feature extractor [21–24]. Other classical features can also be generated from gray level co-occurence

matrices (GLCM) [25], and they often achieve state-of-the-art recognition performance [14, 26, 27] . However,

we depart from this mainstream use of LBP for texture features and instead investigate the benefit of using

a novel wavelet-based transform, named scattering transform, for building discriminative texture features.

Scattering transform can be understood as successive applications of a wavelet-based linear filtering followed

by a modulus operator and a local averaging. This cascade of wavelet transform and non-linearity operators

makes the scattering transform locally invariant to translation and stable to small deformations (shear,

rotations or any other displacement field) [28–30]. Here, stability to deformations means that the norm of

the difference between the scattering transform of an image and its deformed version is bounded by a term

which depends on the norm of the image and a constant depending on the deformation. Therefore, this

theoretical property guarantees that the scattering representation of an image does not change too much

if the image is deformed, which is a positive property for reducing intra-class variability in classification

problems. As such, features resulting from this transform are expected to be more effective than a classical

wavelet transform. The other objective of this work is to assess the relevance of scattering features for lung

cancer detection in images. As the FCFM dataset we use is novel, we have also evaluated the value of these

features on other well-known, publicly available medical image datasets (the 2D-Hela and the Pap smear

datasets).

As far as we know, this work presents the first application of scattering transform to medical images. The

contributions we present are three-fold :

• First, we assess the feasibility of lung cancer diagnosis from FCFM images. FCFM imaging is a rather

recent imaging technique and its importance and applicability are yet to be explored. In this paper,

we show that this image modality can help detecting lung cancer.

• Second, we show that scattering coefficients are highly discriminative features for this FCFM-based

lung cancer classification problem. When compared to one of the state-of-the-art features, the LBP

feature, and its recent variant local quinary pattern (LQP) [24], they achieve strongly competitive

results, yielding the best discrimination performance. Comparisons with GLCM-based features also

show that scattering features are efficient.

• Finally, in order to achieve insight on the discriminative power of scattering representation, we further

analyze its behavior on two other medical image classification problems. The findings suggest that i)
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the choice of the wavelet has an effective impact on the classification performance, ii) a generative clas-

sifier adapted to scattering features does not perform necessarily better than a standard discriminative

classifier like a support vector machine (SVM), iii) coupling LBP or LQP and scattering features by

concatenation may further enhance classification performances, and iv) fusing classifiers trained with

single LBP, LQP and scattering features yield to slightly better performances than a single classifier

trained with concatenated features.

The paper is organized as follows. Section 2 briefly presents the FCFM imaging technique as well as the

image dataset used in the experiments. A discussion on the scattering transform is given in Section 3. This

section also briefly recalls how LBP and LQP features are constructed and shortly introduces the classifier

that is used for learning a decision function. Experimental analyses are reported in Section 4.

2. Materials

FCFM bronchi images are acquired by the application of a probe tip onto the bronchial wall. Even if

cancer significantly alters the bronchial epithelial layer, the absence of epithelial cell visualization does not

allow FCFM to differentiate between the different grades of progression of the pre-cancer bronchial lesions

such as metaplasia, dysplasia and carcinoma in situ. To be successfully applied to the exploration of pre-

cancer/cancer bronchial epithelial layer, the FCFM technique needs to be coupled with the use of a nontoxic

fluorophore, such as methylene blue (MB). To give a fluorescent signal, MB needs to be excited around 660

nm, and is therefore accessible to FCFM imaging using this excitation wavelength. After topical application

of methylene blue and 660 nm excitation wavelength, the technique allows the direct visualization of cell

nuclei, as shown in Figure 1. Future studies using this technique could make it possible to differentiate

normal, premalignant and malignant alterations at the microscopic level. If this strategy is successful, FCFM

may become a very powerful technique for in vivo diagnosis of early malignant and premalignant conditions of

the bronchial tree. Therefore, the aim in this paper is to provide the clinician with a computer aided-diagnosis

(CAD) tool, in order to help him to analyze these new images and detect cancer lesions.

Towards this purpose, we have acquired a set of FCFM images from healthy volunteers as well as from

patients diagnosed with bronchial squamous cell carcinoma. The confocal endomicroscopy system used to

produce the FCFM images (Cellvizio; Mauna Kea Technologies, Paris, France) is commercially available. It

uses very thin and flexible miniprobes (300 µm to 2 mm in diameter) that can contain up to 30,000 compacted

microfibers. The main advantages of this design are its very small size and the flexibility of the probe that

can reach the more distal part of the lungs, as well as the high speed image acquisition that helps to avoid

artifacts due to tissue movement. Specific miniprobes for bronchial and alveolar imaging have a diameter

of 1 mm that can enter the working channel of any adult bronchoscope. These miniprobes have a depth of
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Figure 1: In vivo imaging of the normal epithelial layer after topical application of 0.1% methylene blue, and 660 nm illumination,
of a healthy bronchus (left) and a bronchial squamous cell carcinoma (right). Note how cell nuclei are more visible on the healthy
image than on the cancer image.

Figure 2: Examples of images from the fibered confocal fluorescence microscopy dataset showing the class variability: non-cancer
images (top row) and cancer images (bottom row)

focus of 0 to 50 µm and a lateral resolution of 3 µm, for a field of view of 600 µm. This system produces

endomicroscopic imaging in real time at 9 to 12 frames/second [7].

FCFM images for the dataset are obtained by extracting the largest inscribed square from the originally

circular images delivered by the system. The dataset is composed of 103 images taken from 8 healthy

volunteers, and 70 images from 7 patients with diagnosed bronchial squamous cell carcinoma. Note that

these 70 images have been acknowledged by experts as presenting characteristics of squamous cell carcinoma.

Image sizes originally vary from 190 × 190 pixels to 288 × 288 pixels, but have been resized to 128× 128 for

a more efficient application of the scattering transform. Figure 2 depicts several examples of images of the

two classes, showing that intra-class variability can be important.
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Figure 3: Diagram of a scattering transform of an image f . For this example, we have supposed that J = 2 and the 2-
dimensional wavelet transform is obtained from 4 wavelets {ψi}4i=1 with two angles of rotation and two distinct frequencies.
All points represent an image obtained from successive applications of UJ . The grey points, which are averaged versions of a
given U [p]f , are the elements of the transform that are gathered together, after a possible subsampling, to form the scattering
transform at depths m = 0, m = 1 and m = 2. Note that because only paths with frequency-decreasing wavelet are of interest,
only 4 paths out of the 16 will be finally retained for m = 2. (best viewed in color).

3. Methods

3.1. Scattering representation of images

Scattering transform has recently been introduced by Bruna et al. [28] in order to build representations of

images and signals that are stable to deformations. Informally, a scattering transform recursively applies a

cascade of wavelet decomposition and modulus operator and in some sense, it mimics convolutional neural

networks as it cascades several layers of filtering [31]. We will now provide a more formal definition of the

scattering representation of an image. More details can be found in [28, 32].

Let ψj,γ(x) be a directional wavelet at a scale j, defined as:

ψj,γ(x) = 22jψ(2jRγx) x ∈ R2

where Rγ is a rotation matrix of angle γ and ψ a two-dimensional wavelet. Note that negative and positive

values of j respectively correspond to dilation and contraction of the mother wavelet ψ. For the sake of

simplicity, wavelet parameters j and γ are gathered into a single parameter λ. Let us also define φ2J (x) =

2−2Jφ(2−Jx), J ≥ 0 as an averaging spatial window obtained by dilating a function φ. The scattering

transform of an image f of size 2J × 2J is obtained from the computation of high-order wavelet coefficients

by recursively applying an averaging, a wavelet transform and a modulus operator to the wavelet modulus

coefficients obtained at a lower level.

In order to properly define such a transform, we first introduce the operator which computes the modulus
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(a) original (b) spectrum (c) m = 1 (d) m = 2

Figure 4: Examples of non-cancer (top) and cancer images (bottom) with their representations. From left to right, (a) the
original image. (b) its spectrum. (c) m = 1 scattering coefficients (d) m = 2 scattering coefficients. The original image is of
size 128× 128 and we have chosen L = 4 and J = 7. The scattering coefficient representation shows, for m = 1, the amplitude
of SJ [p]f where each quadrant of the diagram is related to a wavelet with a given direction and scale. Wavelet direction and
scale divides the diagram respectively according to its radial axis and radius. For m = 2, each quadrant is again subdivided
according to directions and scales of wavelet at the level m = 2.

wavelet transform and the averaging as:

UJf(x) =
{
f ? φ2J (x); {|f ? ψλ(x)}|λ∈ΛJ

}
where ? is the convolution operator and ΛJ the set of j and γ defining a 2D wavelet transform at scale J .

Note that UJf(x) is composed of the pointwise value at a pixel coordinate x of an averaged version of f ,

the f ? φ2J (x) part, and the modulus pointwise values of the image convolved with a set of wavelet {ψλ}.

UJf(x) is thus a vector of R|ΛJ |+1.

Applying UJ to the output |f ? ψλ1 | (which is an image), with λ1 ∈ ΛJ , gives the following set of coefficients{
|f ? ψλ1 | ? φ2J (x);

{∣∣|f ? ψλ1 | ? ψλ(x)
∣∣}
λ∈ΛJ

}
This latter set of coefficients is denoted as a two-level cascade of modulus wavelet transform and forms the

basis of the so-called scattering transform. Indeed, the coefficients of a scattering transform are obtained by

cascading several times the UJ operator.

Formally, let us assume we are looking for the scattering coefficients of order m at a scale 2J . We denote

by m the order of the cascade and we define p as a sequence p = {λ1, λ2, · · · , λm} of m wavelet parameters,

where each λi belongs to ΛJ . p can thus be understood as a specific path of length m among the |ΛJ |m

7



possible ones available in the set denoted as ΛmJ . A path p defines an unique wavelet modulus cascade output

U [p]f = |||f ? ψλ1
| ? ψλ2

| · · · | ? ψλm |

Note that for a given p, U [p]f is an image obtained by successively convolving f with a wavelet ψλ and by

taking the modulus of the resulting coefficient. By averaging these coefficients at the scale 2J , we can define

SJ [p]f = U [p]f ? φ2J

with SJ [∅]f := f ? φ2J . We can thus interpret SJ [p]f as an averaged version of the wavelet modulus cascade

coefficients U [p]f . After convolution with φ2J , the output is usually subsampled at intervals 2J . This means

that if the image size is 2J the averaging produces a single coefficient and thus SJ [p]f is a single coefficient

obtained as the average of U [p]f over the whole image.

From all these equations, we can now define the scattering transform SJ [ΛmJ ] of f at order m and scale 2J

as the set of coefficients

SJ [ΛmJ ]f = {SJ [p]f}p∈ΛmJ

which also includes the scattering coefficients of f at lower order.

Another insight on scattering transform can be gained by explicitly exhibiting the cascading scheme involving

UJ [32]. Let us first remark that UJf can be rewritten as

UJf = {S[∅]f, U [Λ1
J ]f}

where U [Λ1
J ]f = {U [p]f}p∈Λ1

J
. U [Λ1

J ]f is thus the set of all wavelet modulus coefficients, since p is of length

1 and consequently Λ1
J = ΛJ . SJ [Λ1

J ] can now be obtained by averaging these images through φ2J . This can

be done by applying UJ to U [Λ1
J ]f , yielding:

UJU [Λ1
J ]f = {UJU [p]f}p∈Λ1

J

= {SJ [Λ1
J ]f, U [Λ2

J ]f}

Hence, by iteratively applying this scheme to sequences p of length m′ ≤ m, all the scattering coefficients

at order m can be retrieved. Figure 3 gives a schematic representation of this scheme, for which an efficient

algorithm can be found in [32].

We can also see from this diagram that the number of resulting coefficients can rapidly grow with respect to

m. However, because some paths p lead to negligible coefficients (those of increasing-frequency), they can be

omitted while computing the transform [32]. Hence, according to Bruna et al., for an image with N×N pixels,

scattering transform leads to a novel representation at depth m of size N22−2J
∑m
i=0 L

i

 J

i

, L being the
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number of rotations applied to the wavelet, where the sum counts the number of paths with decreasing

frequency and the term N22−2J counts the number of coefficients after averaging and subsampling. Hence,

if J is chosen so that N = 2J , which means that the averaging with φ2J applies on the whole image, only

a single coefficient results from the averaging and the subsampling. This considerably reduces the number

of coefficients in the scattering transform at the expense of losing some spatial resolution. The number of

paths is illustrated in Figure 3, where 4 wavelets with 2 different frequencies (f1 and f2 with f1 > f2) and 2

different rotations are used. For m = 1, the number of paths with decreasing frequencies is 4 (i.e. all possible

paths). For m = 2, we still have 4 interesting paths, only the two of the form {f2, f1} times the two angles

of rotation.

The strengths of scattering representation for classification problems come from several properties it is en-

dowed with. Among those of paramount importance, we can mention the following ones:

• Its stability to small deformations. Let us assume a small, spatial or iconic (i.e., image intensity

related) deformation is applied to an image. The scattering representation of the deformed image is

expected not to differ much from the one of the original image [30, 32]. This is essential in classification

tasks since images from same classes are supposed to live in a smooth manifold and thus, we expect a

representation to also vary smoothly. Note that in this work, we will not carry out experiments that

support this claim on robustness to deformation.

• The modulus operator and the averaging step provide local translation invariance to the representation.

This local invariance acts at the level of the scaling 2J . Hence, if φ2J covers the whole image, we have

a scattering representation that is fully translation invariant at the cost of poor spatial resolution.

• Under mild conditions on the wavelet, it can be shown [32] that the norm of the scattering coefficients

is equal to the one of the original signal and that most signal energy can be retrieved by considering

scattering transform of depth m = 3.

• The scattering transform also bears an interesting property related to textures that can be considered as

a stationary process. Indeed, Bruna et al. have proved that scattering coefficients provide information

about high-order statistical moments of textures. Hence, scattering representation has the ability to

discriminate textures that have similar moments, up to a certain order.

For the sake of representation, Bruna and Mallat introduced a polar representation of the scattering transform

that can handle depth up to m = 2. As shown in Figure 4, the plot uses a gray-scale for representing coefficient

amplitudes in regions depending on the scale and rotation angle of the wavelets. We remark in this figure

that the scattering representations discriminate quite well between the normal and the cancer FCFM lung

image examples, and that a good discriminative power of the resulting features may be expected.
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3.2. Local binary pattern and variants

Since the objective is to assess whether scattering coefficients can be useful for medical imaging texture clas-

sification problems, we have compared their discriminative power with those of classical texture descriptors,

namely the Local Binary Patterns, as well as their recent variants. These LPB have been popularized by

Ojala et a. [20] and have been extensively used for image classification problems [21] [33]. In this work, we

have used them as baseline features for comparison.

The LBP is a texture operator that extracts some local information from the neighborhood of a given pixel.

In the original LBP formulation, this neighborhood is defined as a circle of radius R around the pixel. The

LBP operator assigns to that center pixel a label obtained by comparing the gray value of each neighbor

with the one of the center. The binary number resulting from the concatenation of all 0 or 1 output by the

comparison forms the label of the center pixel. Formally, the LBP pattern for a given pixel is defined as:

LBP (c, P ) =

P−1∑
p=0

σ(Ip − Ic)2p

where σ(u) = 1 if u ≥ 0 and 0 otherwise, Ip and Ic being respectively the gray value of one of the P neighbor

pixels and the center pixel. The LBP texture feature is defined as the histogram of the labels assigned to all

image pixels. More details on LBP features may be obtained in these references [20, 21].

The variants of LBP consider different codings of the gray level difference. Instead of a binary pattern, a

quinary one involving 2 thresholds is used in [24]. For this pattern, the coding of the difference is as follows:

σ(u) =



2 u ≥ τ2
1 τ1 ≤ u ≤ τ2
0 −τ1 ≤ u ≤ τ1
−1 −τ2 ≤ u ≤ −τ1
−2 u ≤ −τ2

The quinary pattern is then transformed into 4 binary patterns and the resulting histograms are concatenated

together to form a feature vector. One of the claimed advantages of considering these codings compared to

the binary ones is their better robustness to noise [24].

3.3. Classification scheme

For evaluating the discriminative power of the scattering coefficients and the LBP features, we have employed

the following simple classification scheme.

Suppose we have {x̃i, yi}ni=1 images and their associated labels for learning a decision function f(·) that

predicts the label of an unseen image x̃. For this purpose, a feature vector xi is computed from each image
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Figure 5: Examples of images from the hela dataset, “actin” class (left) and “endosome” class (right)

x̃i, the features being obtained either through a scattering transform or the computation of LBP. For binary

classification problems (yi = ±1), the decision function is chosen to be an SVM-based decision function [34].

It is defined as

f(x) =

n∑
i=1

αiyiK(x,xi) + b

where K(x,x′) is a positive-definite kernel function such as the Gaussian kernel e−
‖x−x′‖22

2σ2 and {αi}ni=1 being

the solution of the quadratic programming problem

maxα
∑
i αi −

1
2

∑
i,j αiαjyiyjK(xi,xj)

st
∑
i αiyi = 0

0 ≤ αi ≤ C, ∀i

C is a parameter that penalizes mis-classified examples during the learning procedure.

When a multi-class problem is in play, a one-against-one SVM has been deployed using the same training

procedure as above for each binary classification problem.

4. Experimental results and discussions

The aims of the experimental results are two-fold. Primarily, we want to empirically evaluate the efficiency

of scattering-operator-based features on classical and well-known medical imaging classification problems.

Afterwards, we focus on the FCFM dataset and provide an in-depth empirical analysis of scattering features

for this lung imaging cancer detection problem. The Matlab code used for producing these results is available

on the author’s website1.

4.1. Description of image datasets

In order to better understand the generic discrimination power of the scattering transform features, we have

also benchmarked their performances on the 2D-Hela dataset and Pap smear dataset (both available online2)

1https://sites.google.com/site/alainrakotomamonjy/home/publication/CodeScattLung.zip, last accessed April 1st 2014
2http://labs.fme.aegean.gr/decision/downloads last accessed January 27 2014.
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Figure 6: Examples of images from the pap smear dataset normal (left) abnormal (right)

in addition to the FCFM images.

The 2D-Hela dataset is a cell phenotype multi-class, image classification problem [35]. It consists of a 10-class

problem, each class being composed of a number of images ranging from 73 to 98 for a total of 862 images.

For this problem, images have been resized to 382 × 382. Some examples of images are presented in Figure

5. We note that in these images the texture seems to be located at the fine scales.

The Pap smear dataset aims at detecting pre-malignant cells extracted from the uterine cervix [36, 37].

The original dataset includes 7 different classes which can be grouped into normal and abnormal classes,

composed of respectively 242 and 675 images of size 128 × 128. We have thus turned the problem into a

binary classification problem. Some examples of cell images are presented in Figure 6. Unlike the 2D-Hela

dataset, the texture energy of Pap smear dataset images is located at coarse scales.

We have focused interest on these datasets as they serve as reference datasets on texture-based image classi-

fication problems [21]. Note that images have not been pre-processed before feature extraction.

4.2. Experimental set-up

Scattering representations of images have been obtained by means of the Matlab toolbox3 provided by Bruna

et al. [28]. Parameters of the scattering transforms have been fixed as follows. The number of orientations |γ|

as well as the representation depth m have been set by default to 4 and 2. The scale J is adapted according

to image size and will be reported for each experimental analysis.

Different features will be compared throughout the experiments. We do not make any specific choice on the

wavelet for the scattering representation but instead, we will investigate their specific discriminative power.

The extraction of LBP features also relies on a Matlab code available online4. In order to enrich the LBP

representation, we have concatenated the normalized histogram obtained from neighbourhoods of radius 1,

2 and 4 with a respective sampling of 8, 16 and 24 pixels on the circle. We have also built rotation invariant

3http://www.di.ens.fr/data/software last accessed January 27 2014.
4http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab last accessed January 27 2014.
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uniform LBP features and uniform LBP of respective sizes 54 and 857. For the LQP features, we have

proceeded similarly as above. The Matlab code we used is the companion code5 of the works of Paci et al.

[24]. Here, we have concatenated the features obtained from neighborhood of radius 1 and 2 with 8 and 16

pixels on the circle. For each neighbourhood, the quinary patterns yielded from several values of threshold

τ1 and τ2 have been computed. In these experiments τ1 takes value from 1, 3, · · · , 9 while τ2 ranges from

τ1 + 2, τ1 + 4, · · · , 11.

Once the features have been obtained, they are fed to a classifier which is a Gaussian kernel Support Vector

Machine [34]. In order to evaluate the couple feature-classifier, we ran 30 trials where each trial consists of

a random split of the available examples in training examples and test examples. Sizes of the split will vary

from 30% to 80% of the number of examples. The SVM hyperparameters have been tuned by means of a

validation step which randomly splits the training examples 50% − 50% into a learning and validation sets.

Parameters are the kernel bandwidth σ and the SVM slack parameter C. They are tuned respectively in the

range [0.01, 0.1, · · · , 1000] and [1, 2.5, 5, 7.5, 10, 12.5, 15, 25, 30, 35]. This random split is performed 5 times

and the best averaged result defines the best SVM hyperparameters. Finally, a SVM with these optimal

hyperparameters is learned based on the full training examples and evaluated on the test set. Performances

are then averaged over the 30 trials. Statistically significant differences in performances have been evaluated

according to a Wilcoxon signrank test at a level of 0.05.

In the experiment with the FCFM dataset, performances are evaluated according to the area under roc curve

(AUC) which is a more significant performance criterion than accuracy for medical classification problems.

For Pap-smear and 2D Hela, we have respectively used AUC and the classification accuracy in order to be

consistent with some recently published works [21, 24].

While the 2D Hela and Pap smear datasets do not contain any information about patients, the FCFM

dataset has these information. Consequently, for the in-depth analysis of this dataset, we will consider a

leave-one-patient-out (LOPO) evaluation procedure.

4.3. On the choice of the wavelet for scattering features

The first experiment consists in evaluating the discriminative power of scattering features obtained from

different wavelets in the scattering transform.

Parameters for the scattering representation have been set as m = 2 and L = 4. These default values are

expected to already provide a good classification accuracy since with paths of that depth, the scattering

transform captures most of the image energy. The scaling factor J is chosen to fit the entire image, which

5http://bias.csr.unibo.it/nanni/TernaryCoding.rar last accessed January 27 2014.
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Figure 7: Influence of the wavelet on the classification performances for increasing ratio of training examples. Pap-smear
dataset (top-left), 2-dimensional Hela dataset (top-right), FCFM images (bottom).

means that from each sequence p, only a single coefficient is obtained, resulting in a full translation invariance

at the expense of a complete loss of spatial resolution.

Performances of the different scattering features obtained from different wavelets for the 3 datasets of interest

are depicted in Figure 7. Results can be interpreted as follows: first, we can note that for all datasets, the

best performing wavelet is the Spline wavelet. For the Pap smear and the FCFM datasets, these differences

in performance are statistically significant (p-value < 10−3). Except for this trend, it is difficult to extract a

general behaviour of the wavelet on the scattering feature performances as wavelet performances vary with

the dataset. This suggests that while Spline wavelet can be a good default choice, it is preferable to consider

the type of wavelet as a parameter to be optimized, for a problem at hand.

4.4. Affine classifier vs SVM

As suggested by Bruna et al. [32], an affine classifier may perform better than a discriminative classifier like

SVM for scattering features. The goal in the next experiment is to compare the performance of an SVM
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classifier to one of such generative affine classifiers. For this affine classifier, the predicted label depends

on the subspace (we have one subspace per class) which best approximates the scattering feature vector

representing a novel image to classify. Formally, the assigned label of a novel vector x is defined as:

argmax
k=1,··· ,NC

‖x− PAk(x)‖2

where NC is the number of possible classes and PAk(x) is the projection of x on the subspace spanned by

the d′ largest eigenvectors of the empirical covariance matrix of the training examples of class k. For the

experiment we have kept the setting as above, and we have found the best dimension d′ by a cross-validation

procedure over the values [10, 20, · · · , 100]. The wavelet used in the scattering transform is now the Spline

wavelet, since it is the best performing one for all considered datasets.

Because the affine classifier directly assigns a class to a novel example, reported results are based on clas-

sification accuracy. As shown in Figure 8, the SVM classifier performs better than the affine one. Indeed,

performances of the SVM are always higher than those of the affine classifier, with statistical significance

(p-value < 10−3), except when both are trained on a small number of examples.

4.5. Comparing scattering features, local binary patterns and local quinary patterns

This experiment aims at comparing the discriminative power of LBP, LQP and scattering representations

obtained from a Spline wavelet. We have also concatenated LBP and scattering as well as LQP and scattering,

so as to evaluate their joint discriminative powers. Experimental set-up is similar as above and the averaged

performances over 30 random split of the examples are reported in Figure 9.

Performances on the Pap smear dataset are reported in the top-left panel of Figure 9. We note that scattering

features lead to better performance than LBP features, and these differences in performance are statistically

significant when the ratio of training examples is larger than 0.6. On the contrary, the LQP features perform

better than the scattering features, with statistically significant differences when the ratio of training examples

is smaller than 0.6. Combining LBP and LQP features with scattering yields in this case to enhanced

performances ranging from 2% to 4% of AUC (p-value ≈ 10−5) compared to the use of scattering features.

For the 2D Hela dataset (top-right panel in Figure 9), rotation invariant LBP and LQP perform better than

scattering features with statistically significant difference (p-value < 10−3). For this problem too, feature

combination increases performance (p-value ≈ 10−2 when large ratio of training examples are considered)

compared to the single use of LBP features. As far as we know, the best reported performance on this dataset

reaches 95.3% of recognition rate [38]. While this latter work uses a slightly different protocol than the one we

use, making results incomparable, they achieve this state-of-the-art result by considering a classical texture

feature and a multiresolution approach. We thus believe that integrating the proposed features into such a

multiresolution framework may further improve classification accuracy.
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Figure 8: On the impact of the classifier when using Spline-wavelet-based scattering features for increasing number of training
examples. Pap-smear dataset (top-left), 2-dimensional Hela dataset (top-right), FCFM images (bottom).

For the FCFM dataset of interest, we first note that the recognition problem is easier than the two previous

ones, since both LBP, LQP and scattering coefficients achieved AUC above 0.94 for a sufficiently large ratio

of training/test examples. When 80% of the dataset is used as training examples, all LBP and LQP features

yield to an AUC of 0.97 whereas scattering features achieve AUC of 0.98. Interestingly, the scattering features

perform better than LBP and LQP with statistical differences (p-value < 10−2) for all ratio of training/test

examples. Although performances are already excellent, slight performance gains can still be achieved by

combining LBP or LQP to scattering features, though the differences are not statistically significant.

These are encouraging results since the scattering representation parameters have been set by default and

not tuned to each dataset. In addition, the LBP and LQP features we used are enriched as several features

resulting from different parametrizations of the feature extractor have been concatenated. These results,

while far from being exhaustive, lead us to believe that the scattering representations achieve discriminative

power at least similar to state-of-the art methods like LBP and its variants. Interestingly, the fusion of the

two types of features leads to enhanced performances for the three problems we consider. This suggests
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Figure 9: Comparing performances of different local binary pattern, local quinary pattern features and scattering features for
the three datasets. Pap-smear dataset (top-left), 2-dimensional Hela dataset (top-right), FCFM images (bottom). LBP RIU
and LQP RIU are related to rotation invariant uniform LBP and LQP whereas LBP U depicts uniform LBP.

that these features bring complementary information that are essential for classification. In what follows, we

provide intuitions on why and when these two types of features are expected to be complementary and have

to be combined.

Note that we have also tested gray-level co-occurence matrix features but since their performances are poor

(always lower than 84%, 61% and 96.5% respectively for pap-smear, 2-dimensional hela and the fibered confocal

fluorescence microscopy datasets), we have not included them in the figures for a sake of readability.

4.6. Fusing classifiers trained on different wavelet scattering features

Following the idea of combining features, we have investigated the performances of fused classifiers where

each classifier is trained on each of the four different wavelets used for building scattering features. We have

analyzed the performances of three different fusion rules, namely the sum, max and median rules which

respectively consider the sum, the maximum and the median of the SVM scores output by the four classifiers

of each one-vs-one scheme.
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Figure 10: Comparing performances of different fusion rules (maximum, median and sum) of classifiers trained on different
wavelet scattering features. Pap-smear dataset (top-left). 2D Hela dataset (top-right). FCFM images (bottom). Results of the
best performing classifier trained on a single wavelet (Spline) scattering feature is also reported.

Figure 10 reports the results we obtain and compares the performances of these fused classifiers to those

obtained with the Spline scattering features. The results are somewhat disappointing since a fused classifier

yields to a statistically significantly better performance than the best single feature only for the 2D Hela

dataset. For the FCFM dataset of interest, the single Spline scattering features achieves higher performances.

4.7. Fusing classifiers trained on local binary pattern, local quinary pattern and scattering

In this experiment, we conducted the same fusing classifier protocols as mentioned above, but instead the

classifiers are trained respectively on rotation invariant LBP, rotation invariant LQP and Spline scattering

features. Figure 11 shows more encouraging results. Indeed, for the Pap-smear dataset, the sum rule fused

classifier yields to slightly better performances than the combination of LQP and scattering (with p-value

ranging from 10−3 to 0.13).

The most impressive gain in performance is obtained for the 2D Hela dataset. The sum rule classifier performs

better than LQP and scattering with about 3% gain in classification accuracy. For this problem, the median
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Figure 11: Comparing performances of different fusion rules (maximum, median and sum) of classifiers trained on Spline wavelet
scattering feature, LBP and LQP (top-left) Pap-smear dataset. (top-right) 2D Hela dataset. (bottom) FCFM images. Results
of the best performing classifier trained on a single wavelet (Spline) scattering feature and trained on LQP+Scattering are also
reported.

rule classifier also improves performances. For the FCFM dataset, results are less clear. We can conclude

that the sum and median rule classifiers tend to achieve better performances than the Spline scattering and

the LQP and scattering features. However, these differences in performance are not statistically significant.

From this experiment, we may conclude that fusing the three classifiers trained on LBP, LQP and scattering

features using the sum rule seems to yield to consistently slightly better performances than concatenated

LQP and scattering features.

4.8. Discussions on local binary patterns (and their variants) and scattering features

The results we have reported above show that LBP and scattering features are both capable of encoding

discriminative information for texture classification and it seems that the information they deliver are com-

plementary. Remember that LBP and LQP capture very local information and they operate at the finest

scale of the images. Typically, a binary pattern in the LBP encodes the variation of grey level around a

given pixel and in these experiments, we have considered a pixel neighbourhood which has at most a 4 pixel
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radius. Locality of the grey level variation information is then lost by computing the histogram of the binary

patterns. While spatial information is lost, there is the advantage of providing translation invariant features

and of compacting the discriminative information, reducing thus the risk of overfitting. Unlike LBP, scatter-

ing features are extracted at all scales (from the finest to the coarsest) and thus capture more discriminative

information than LBP or LQP, especially if this information is located at coarse scales. Another advantage

of scattering features is their robustness to deformation, at the contrary of LBP. However, for scattering

representations, these discriminative features have to be estimated from few examples and thus they have to

be estimated consistently. This can be done by considering large values of J at the expense of loss of spatial

information [32].

From these discussions, the conclusions we may gather from the differences in LBP and scattering representa-

tion are that if the discriminative information in the textures is located in the coarsest scales, then scattering

representations should be more efficient than LBP. However, if they are located at the finest scales, then

LBP may be an appropriate tool for capturing these discriminative information. These conclusions are in

agreement with the results shown in Figure 9. Indeed, according to the image examples provided in Figure

2, 5 and 6, we can consider that for both the Pap smear and FCFM datasets, discriminative features are at

coarse scales whereas for 2D Hela, they are located at finer scales. In accordance, LBP and LQP features

are more discriminative for the latter dataset than for the two former ones. Also from this perspective,

the gain in performances obtained when using both features can also be considered likely as they provide

complementary information. Indeed, we may conclude that LBP has a better capability of discriminating

fine-scale (at pixel level) textures than dyadic wavelets. However, we suggest other practitioners to validate

the benefit of combining these features by means of a validation scheme.

4.9. In-depth analysis of performances on fibered confocal fluorescence microscopy dataset

In order to get a better insight on how scattering representations performs on the FCFM dataset of interest,

we have run two experiments. The first one provides some detailed performances of the method in a LOPO

setting while the second one explores the influence of the scattering representation parameters.

4.9.1. Leave-one-patient-out experimental-setup

Since we use a LOPO setting, performances reported in this subsection do not include standard deviation as

each image has been used once in the test set. In order to select the model parameters, a second validation

stage of LOPO has been run and hyperparameters have been selected as the best performing one in this

stage. A SVM with a Gaussian kernel has been used as a classifier.
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Table 1: Influence of the scattering representation parameters on the image correct classification rate. The first row of each cell
gives the parameter value. The second one is the leave-one-patient-out image recognition rate (RR) in (%) and the last one is
the dimensionality dim of the problem.

Default parameters m = 2, J = 7, L = 4

J : 4 5 6 7
RR : 68.79 77.46 77.46 80.35
dim : 7232 2896 1060 365
L : 2 4 6 8
RR : 74.57 80.35 80.35 80.35
dim : 99 365 799 1401
m : 1 2 3 4
RR : 78.03 80.35 78.61 75.14
dim : 29 365 2605 11565

4.9.2. Influence of the scattering transform parameters

Performances for different choices of the scattering transform parameters are reported in Table 1. We observe

that most of them lead to performances ranging from 68% to 81%. We can note that a slight decrease of

performance appears when m = 3 or L = 2, L being the number of angular rotations in the wavelet

transform. For m = 3, we conjecture that this poor performance, although still valuable, is caused by the

curse of dimensionality since more than 2600 features have been generated by the scattering transform. For

L = 2, we imagine that this decrease is due to a low number of rotations, which does not allow for powerful

discrimination. For m = 4, the number of features (up to 11000) makes the the problem harder and the

classifier slightly overfits.

The scale of the averaging J also seems to have an impact on the classifier performances. Discriminative

patterns are thus non-spatially localized since a global averaging over the full scale of the images results in

equivalent performance than a more localized averaging. It also appears to us that the number of wavelet

directions L has a slight influence on the performances with variations ranging from 74% to 81%.

Interestingly, for this dataset, the best performance is achieved for m = 2, L = {4, 6, 8} and J = 7. Hence,

it seems that paths of depth m = 2 are sufficient to extract all relevant discriminative information from the

images and that the averaging scale is the most critical parameter.

Note that for this problem, the computational burden needed to classify an image is essentially due to the

scattering transform. This latter takes less than 1 second and about ten seconds for respectively m = 2 and

m = 4 on a Linux machine with an Intel i5 processor clocked at 2.5 GHz.
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Table 2: Performances in (%) on the FCFM dataset in a leave-one-patient-out context of the scattering and local binary pattern
features. Recognition rate (RR) has been computed with respect to all images (173) while other rates (TPR, TNR, FPR, FNR)
have been computed with respect to the number of patients. Scattering parameters are J = 7, L = 4, and m = 2.

Image RR At patient level
Features Reco. rate TPR TNR FPR FNR

LBP 77.46 100.00 62.50 37.50 0.00
Scattering 79.77 100.00 75.00 25.00 0.00
LBP+Scatt. 79.19 100.00 75.00 25.00 0.00

4.9.3. Comparison with local binary pattern

Table 2 provides a performance comparison with LBP in a LOPO setting (we have omitted LQP since they

do not perform better than LBP for this dataset). Two kinds of performance measures have been reported.

The first one evaluates the number of images correctly classified as presenting normal or abnormal tissues,

denoted as Image RR. The second performance criterion gives the true positive, true negative, false positive

and false negative rate of patients. For this, we have assigned to a patient the label of the majority class

obtained from his images. A positive patient refers to a patient considered as presenting cancer lung tissues.

We call this classification at “a patient level” to distinguish from the classification at “an image level” which

consists of assigning a label to an image of a patient independently to the others. Note that “at a patient

level”, we have only 15 examples (patients) to classify.

Results show that in this LOPO context, LBP and scattering coefficients provide similar results with a slight

advantage to the scattering transform at the image classification level and at the patient classification level.

For the scattering transform ( with J = 7, L = 4 and m = 2), we can achieve a recognition performance of

about 80% at the image level and only two patients are incorrectly diagnosed as having abnormal tissues out

of the 15 patients. These are very encouraging results as no false negative has been detected. Figure 12 shows

examples of misclassified images of one false-positive patient. Visually, they are difficult to differentiate from

the abnormal tissues presented in Figure 2.

Note that for this LOPO analysis, combining LBP and scattering features does not lead to enhanced perfor-

mance. After careful analysis of the results, we found out that this loss in performance is essentially due to

one patient for which the combination induces overfitting and poorer performances than using LBP alone. We

suspect that such overfitting occurs mainly because of the LOPO context in which data from one patient may

follow a different distribution than those of the other patients. Such phenomenon can be avoided by either

employing machine learning techniques able to handle covariate shift and to perform domain adaptation, or

by building a dataset with a larger number of patients.
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Figure 12: Examples of mis-classified images from one of the false positive patient.

5. Conclusions

The objective was to assess the feasibility of lung cancer diagnosis with FCFM imaging techniques. We have

shown that when features obtained from scattering transform are extracted from these images, it is possible

to learn a classifier able to achieve image recognition rate score as high as 80% in a Leave-One-Patient-Out

setting. Similar performances, although slightly less successful, can also be obtained using classical feature

extraction techniques such as Local Binary Patterns. Interestingly, scattering transform based feature leads

to classifiers which achieve no false negative error. These findings urge us to build a larger dataset involving

more patients in the protocol so as to confirm this promising result.

Analysis on other medical imaging datasets also corroborate the fact that scattering features are competitive

discriminative features for texture classification problems and that they should be integrated in the set of

tools to be considered when addressing such problems. We also conclude that LBP, LQP and scattering

features seem, in many situations, to provide complementary discriminative information to the classifiers,

resulting in enhanced performances when used together either by concatenation or by classifier fusion.

Future works essentially focus on possible refinements of FCFM images for detecting lung cancer. We plan to

investigate whether it is possible to correctly recognize the different grades of progression of the pre-cancer

bronchial lesions such as metaplasia, dysplasia and carcinoma in situ. Solving this challenging problem

naturally raises the problem of the discriminative features to be considered.

Another important point to address is raised by the protocol used for acquiring FCFM images. Because of the

lack of control of the miniprobe, its positioning also affects the orientation and the positioning of the image,

and thus introduces rotation, scale and shear variabilities among the images. Hence, we believe that it is of

primary interest to go beyond features that are translation-invariant but that are also invariant to several

other transformations. One possible direction to investigate is a specific and adapted scattering transform

like those theoretically introduced in [30].

In conclusion, we want to state that FCFM imaging is still a recent technology compared to the more

established CT imaging. Hence, its full potential is yet to be explored and many advances will still need to
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be made before it can be considered a gold standard for lung examination. Regarding its clinical use, over

more than 200 FCFM examinations have been performed in the Rouen University Hospital, and none of them

has induced serious complications due to the in-vivo examination. Regarding its practicability, the FCFM

procedure adds ten minutes to a standard endoscopy and the probe cost, which is usable for 20 examinations,

is about 6000 euros. Taking into account all these parameters as well as the diagnostic capabilites of FCFM

imaging help us to understand the progress that needs to be made before the FCFM procedure can become

a gold standard. This work contributes to such efforts as it validates the automated diagnosis feasibility of

lung cancer from FCFM images.
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