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Optimal control of crystallization of alpha-lactose monohydrate *

We present a mathematical model for solvated crystallization of α-lactose monohydrate in semi-batch mode. The process dynamics are governed by conservation laws including population, molar and energy balance equations. We present and discuss the model and then control the process with the goal to privilege the production of small particles in the range between 10 -5 and 10 -4 µm. We compare several specific and unspecific cost functions leading to optimal strategies with significantly different effects on product quality. Control inputs are temperature, feed rate, and the choice of an appropriate crystal seed.

Introduction

Crystallization is the unitary operation of formation of solid crystals from a solution. In process engineering crystallization is an important separation process used in chemical, pharmaceutical, food, material and semiconductor industries. Mathematical models are described by conservation laws with population, molar and energy balance equations. Crystallizers can be operated either in batch, semi-batch or continuous mode. Semi-batch crystallization is widely used in the pharmaceutical and fine chemical industry for the production of solids in a variety of operating modes.

Crystallization processes are described by balance equations, including a population balance for the particle size distribution, a molar balance for the distribution of solute, and an energy balance equation to model thermodynamic phenomena. In the food-processing industry, there has been a growing interest in the crystallization of lactose in recent years [START_REF] Mcleod | Nucleation and growth of Alpha lactose Monohydrate PhD Thesis[END_REF][START_REF] Mimouni | Cristallisation du Lactose et épaississement dans les Lactosérums concentrés[END_REF][START_REF] Mimouni | Isothermal batch crystallisation of alpha-lactose: A kinetic model combining mutarotation, nucleation and growth steps[END_REF]. In this paper we study a model of solvated crystallization of α-lactose monohydrate, which includes four interacting populations, one of them aging, in tandem with an energy balance. Two forms of lactose (α-and β-lactose) exist simultaneously in aqueous solution, the exchange being governed by mutarotation. Based on mathematical modeling the process is optimized in order to maximize the particle mass in a given small size range L low ≤ L ≤ L high .

Crystallization and precipitation processes are modeled as highly nonlinear and complex dynamical systems. This makes it interesting to simulate, control and optimize these processes in order to enhance product quality in various situations [START_REF] Randolph | Theorie of particulate processes[END_REF][START_REF] Rawling | Modelling and control of crystallizers[END_REF]. In order to control crystallization processes, Hu and Rohani [START_REF] Hu | Optimal control of a batch cooling seeded crystallizer[END_REF] have studied different heuristic cooling methods such as linear cooling, natural cooling and controlled cooling. In this study we control of the process of formation of α-lactose crystals in such a way that the growth of very large crystals is avoided and the bulk of crystal mass occurs in a small particle range between 10 -5 and 10 -4 µm. In order to achieve this goal we use optimal control of the process in semi-batch mode by variations of temperature, feed rate, and also by an appropriate choice of the crystal seed, and based on a variety of different figure of merit functions.

Dynamic model of process

In this section the dynamic model of semi-batch crystallization of α-lactose monohydrate is described by presenting the population, molar and energy balance equations.

Population balance equation:

The population balance equation is a first-order PDE

∂ ∂t (V (t)n(L, t)) + V (t)G (c α (t), c β (t), T (t)) ∂n(L, t) ∂L = V (t) ṅ(L, t) ± , (1) 
where n(L, t) is the distribution of α-lactose crystals, c α (t), c β (t) are the dimensionless concentrations of α-and β-lactose in the liquid phase, V (t) is the volume of slurry in the crystallizer, a dependent variable given in [START_REF] Bock | A multiple shooting algorithm for direct solution of optimal control problems[END_REF], G (c α , c β , T ) is the temperature-dependent growth coefficient of α-crystals, assumed independent of crystal size L, and the right hand side represents source and sink terms. We add the boundary condition

n(0, t) = B (c α (t), c β (t), T (t)) G (c α (t), c β (t), T (t)) , (2) 
and the initial condition

n(L, 0) = n 0 (L), (3) 
where n 0 (L) is the crystal seed. It is convenient to introduce the moments of the crystal size distribution function

µ ν (t) = ∞ 0 n(L, t)L ν dL, ν = 0, 1, . . . ,
which allows to break (1) into an infinite sequence of ODEs if the source and sink terms may be neglected. In the present situation this amounts to neglecting agglomeration and also attrition effects. Using (2) we obtain the equations

dµ ν (t) dt + V ′ (t) V (t) µ ν (t) -νG (c α (t), c β (t), T (t)) µ ν-1 (t) = 0, (4) 
ν = 1, 2, . . . , in tandem with

dµ 0 (t) dt + V ′ (t) V (t) µ 0 (t) -B (c α (t), c β (t), T (t)) = 0. ( 5 
)
The initial conditions are then

µ ν (0) = ∞ 0 n 0 (L)L ν dL, ν = 0, 1, . . . .

Solvent mass balance:

dm H 2 O (t) dt = (R -1 -1)3k v ρ cry G (c α (t), c β (t), T (t)) V (t)µ 2 (t) + q H 2 O (t) (6) 
Here m H 2 O is the mass of water in the aqueous solution, which changes due to feed, q H 2 O , and due to the integration of water molecules into the α-crystals. The constant R = M cry /M α = 1.0525 is the ratio of the molar masses of the solid and liquid phases of α-lactose.

Concentration of α-lactose:

The dimensionless concentration of α-lactose c α in the solution is defined as m α = c α m H 2 O and satisfies the differential equation

dc α (t) dt = 1 m H 2 O (t) [c α (t)(1 -R -1 ) -R -1 ] dm cry (t) dt -k 1 (T (t))c α (t) + k 2 (T (t))c β (t) (7) 
+ (c + α (t) -c α (t)) q H 2 O (t) m H 2 O (t) .
Here m cry is the crystal mass in the slurry, c + α is the feed rate of α lactose during the semi-batch phase, and k 1 (T ), k 2 (T ) are the temperature dependent mutarotation exchange rates between αand β-lactose in the liquid phase.

Concentration of β-lactose:

The dimensionless concentration of β-lactose c β is defined as m β = c β m H 2 O and satisfies the differential equation

dc β (t) dt = c β (t) m H 2 O (t) (1 -R -1 ) dm cry (t) dt + k 1 (T (t))c α (t) -k 2 (T (t))c β (t) (8) 
+ c + β (t) -c β (t) q H 2 O (t) m H 2 O (t) .
Energy balance: The temperature hold system describes the interaction between crystallizer temperature, the temperature of the jacket, and the control signal, to which the internal heat balance due to enthalpy is added. We have

dT (t) dt = P 1 (t) -P 2 (t)(T (t) -T ref ) -∆H dm cry (t) dt + UA(t) (T jacket (t) -T (t)) (9) 
+ q H 2 O (t) C p H 2 O + C p α c α (0) + C p β c β (0) (T feed -T ref )
where

dT jacket (t) dt = -0.0019(T jacket (t) -T sp (t)) (10) 
was obtained through identification of the system. Here T (t) is the temperature of the slurry, T ref = 25 0 C a constant reference temperature, T feed the temperature of feed, which is the temperature of H 2 O in this case, assumed constant in this study, T jacket (t) is the temperature of the crystallizer jacket, and T sp (t) is the set point temperature, which is used as a control input to regulate T jacket (t), and therefore indirectly T (t) via the heat exchange between the envelope and the crystallizer through the contact surface A(t), which is determined through

V (t). The constants C p H 2 O , C p α , C p β
are the specific heat capacities. We have

P 1 (t) -1 = m H 2 O (t)C p H 2 O + m α (t)C p α + m β (t)C p β + m cry (t)C p cry , P 2 (t) = dm H 2 O (t) dt C p H 2 O + dm α (t) dt C p α + dm β (t) dt C p β + dm cry (t) dt C p H 2 O , with m α = c α m H 2 O , m β = c β m H 2 O .
Mutarotation: The mutarotation exchange coefficients k 1 , k 2 are temperature dependent and are determined as

k 2 (T ) = k 0 • exp(-E/(R • (T + 273.15))), k m (T ) = 1.64 -0.0027 • T, k 1 (T ) = k 2 (T ) • k m (T ).
The equilibrium of mutarotation therefore occurs at

c α,sat,eq (T ) = 10.9109 • exp(0.02804 • T ) 100(1 + k m (T )) , F (T ) = 0.0187 • exp(0.0236 • T ), c α,sat (c β , T ) = c α,sat,eq (T ) -F (T )(c β -k m (T ) ×c α,sat,eq (T )).
Nucleation rate: The nucleation rate is based on a phenomenological law

B(c α , c β , T ) = k b exp   - B 0 (T + 273.15) 3 ln 2 cα cα,sat(c β ,T )  
as is the growth rate Growth rate:

G(c α , c β , T ) = k g (c α -c α,sat (c β , T )) .
Volume: The total volume of slurry V (t) is a dependent variable, which can be expressed as a function of the states c α , c β and m H 2 O through

V (t) = m H 2 O (t) 1 -k v µ 3 (t) ρ -1 lac,α c α (t) + ρ -1 lac,β c β (t) + ρ -1 H 2 O . (11) 
Therefore

dV (t) dt = 3k v G(c α (t), c β (t), T (t))V (t)µ 2 (t) + dm H 2 O (t) dt ρ -1 lac,α c α (t) + ρ -1 lac,β c β (t) + ρ -1 H 2 O + m H 2 O (t) ρ -1 lac,α dc α (t) dt + ρ -1 lac,β dc β (t) dt .
Crystal mass: The total crystal mass satisfies the equation 

dm cry (t) dt = 3k v ρ cry G(c α (t), c β (t), T (t))V (t)µ 2 (t). ( 12 

Optimal control problem

The benefit of the moment approach is that we may choose a finite number of moment equation to replace [START_REF] Randolph | Theorie of particulate processes[END_REF]. Our present approach is to retain a sufficient number of moments so that the salient features of the seed n 0 (L) may be captured by these moments, and in our experiments we decided 

µ 3 0.0812 T 70 0 C µ 4 1.681210 -5 T jacket 20 0 C µ 5 3.609410 -9
Table 3: Initial values for study 1

In this work, we compare between several policies :

• Policy 1 : We fix the values of the set-point temperature T sp = 15[ 0 C] and the feed rate of solvent q H 2 O = 0.0056[Kg/h]. This policy is referred to as constant in the figures.

• Policy 2 : Here we fix the value of the feed rate of solvent q H 2 O = 0.0056[Kg/h], while the set-point temperature T sp (t) starts at T sp (0) = 15[ 0 C] and decreases linearly. This policy is called linear in the figures.

• Policy 3 : We control the set-point temperature u 1 (t) = T sp (t) and also the feed rate of solvent u 2 (t) = q H 2 O (t) using various objectives. This policy is called optimal in the figures.

Scenario 1

Our first control problem minimizes the weighted mean size diameter d 43 = µ 4 µ 3 at fixed final time t f = 11000 seconds. This is cast as the optimization program

minimize d 43 (t f ) = µ 4 (t f ) µ 3 (t f ) subject to dynamics (4) -(12) 0 ≤ V (t) ≤ V max 0 0 C ≤ T (t) ≤ 70 0 C c α (t) ≥ c α,sat (c β (t), T (t)) 0 0 C ≤ T sp (t) ≤ 40 0 C 0 ≤ q H 2 O (t) ≤ 0.1 (13) 
The control variables are set-point temperature u 1 (t) = T sp (t) and feed rate of water u 2 (t) = q H 2 O (t). The percentages ċ+ α and ċ+ β of lactose in the feed are kept constant.

Scenario 2

Our second control problem minimizes the nucleation rate B(c α , c β , T ) at the fixed final time t f = 11000 seconds. This is cast as the optimization program minimize B(t f ) subject to constraints of (13)

The control variables are again T sp and q H 2 O .

Scenario 3

Our third control problem minimizes the coefficient of variation CV at the fixed final time t f = 11000 seconds. This is the optimization program minimize

CV (t f ) = µ 3 (t f )µ 5 (t f ) (µ 4 (t f )) 2 -1 subject to constraints of (13) (15) 
The control variables are again T sp and q H 2 O .

In Figures 2,3 we present results obtained with the optimal regulation of set-point temperature u 1 = T sp and feed rate u 2 = q H 2 O and compare these to more standard scenarios, where temperature and feed rate are fixed or follow simple heuristic profiles proposed in the literature. In Figure 4 we present the optimal crystal size distribution obtained from minimization of the weighted mean size diameter d 43 in (13) compared with standard scenarios. Figure 5 shows the crystal size distribution for the optimal control of nucleation rate B and coefficient of variation CV compared to the more standard scenarios. The optimal profile for the nucleation rate shows the existence of two peaks which indicates the existence of two populations of crystals.

In Figure 6 we present the evolution of solubility of α-lactose and the temperature of the crystallizer by comparing several scenarios. The profile of solubility shows an early peak, which In Figure 7 we present the evolution of nucleation rate B and growth rate G in comparison between the several scenarios. At the beginning of the profile of nucleation rate B, we note the highest peak in case of minimization of weighted mean size diameter d 43 .

In Figure 8 we present the coefficient of variation CV and volume of crystallizer in comparison the five policies constant (dashed black), linear (magenta), optimal with B (blue), optimal with CV (red) and optimal with d 43 (black continuous) for t final fixed. for CV (red), optimal for d 43 (black continuous), for t final fixed. Comparison of the five policies constant (dashed black), linear (magenta), optimal for B (blue), optimal for CV (red), optimal for d 43 (black continuous), for t final fixed.

Scenario 4

The next extension is to add the moments of n 0 (L) as unknown parameters, the idea being that a suitable choice of the initial seed of given mass should give even better results. We decide to fix the total mass of crystal seed as k v V 0 ρ cry 

Notice that (17) may be solved by standard software, see e.g. Borwein et al. [START_REF] Borwein | On the convergence of moment problems[END_REF], [START_REF] Borwein | Maximum entropy reconstruction using derivative information part 2: computational results[END_REF].

Scenario 5

The natural figure of merit to maximize the crystal mass within a certain range L 1 ≤ L ≤ L 2 of small particle sizes is max

L 2 L 1 L 3 n(L, t f )dL (18) 
at the final time t f , but this objective is not directly accessible in the moment approach. Substrates like B, CV, d 43 are non-specific and must be expected to give only a crude approximation of (18).

We therefore propose the following more sophisticated strategy, which is compatible with the moment approach.

We define a target particle size distribution n 1 (L), which has a bulk in the range [L 1 , L 2 ], normalized to satisfy

ν 3 = ∞ 0 L 3 n 1 (L)dL = 1.
Then we compute as many of its moments ν 0 , . . . , ν N as we wish to use, where as before N = 5 in our tests. The optimization program we now solve is minimize

N i=0 w i (µ i (t f ) -µ 3 (t f )ν i ) 2
subject to constraints of ( 13)

t f ≤ t max (19) 
where the w i are suitably chosen weights. Notice that the least squares objective of (19) tries to bring the moments of n(L, t f ) as close as possible to the moments of the function µ 3 (t f )n 1 (L), which has the correct shape, and has the same total crystal mass as n(L, t f ). Here the final time is considered free. 

Method

For our testing we have used the solver ACADO [START_REF] Ariens | ACADO Toolkit User's Manual[END_REF] based on a semi-direct single or multipleshooting strategy, including automatic differentiation, based ultimately on the semi-direct multipleshooting algorithm of Bock and Pitt [START_REF] Bock | A multiple shooting algorithm for direct solution of optimal control problems[END_REF]. ACADO is a self-contained public domain software environment written in C++ for automatic control and dynamic optimization.

Alternatively, we also use the solver PSOPT [12], which is a public domain extension of the NLP-slover IPOPT [START_REF] Wachter | On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming[END_REF] or SNOPT [START_REF] Gill | SNOPT: An SQP algorithm for Large-Scale Constrained Optimization[END_REF] and is based on pseudospectral optimization which uses Legendre or Cheybyshev polynomials and discretization based on Gauss-Lobatto nodes.

A difficulty with both solvers is the strong dependence of convergence and solutions on the initial guess, as must be expected in a local optimization context. Our testing shows that it is often mandatory to have a simulated study (x init , u init ) available to start the optimization from that point. This initial guess may use parameters from a previous optimization study, which give already a decent cost in the present study. In some cases homotopy techniques, using for instance t f as a parameter, have to be used.

Once optimal controls u * = (T * ref , q * H 2 O ) have been computed in any one of the scenarios, we use the full crystallizer model ( 1), ( 2), ( 6) -( 10) to simulate the system, using an initial seed n 0 (L) which produces the initial moments µ ν (0). In those cases where the moments of the initial seed are parameters, which are also optimized, we use the optimal µ * = (µ * 0 , . . . , µ * N ) to compute an estimation n * 0 (L) of the optimal crystal seed with these moments using [START_REF] Borwein | On the convergence of moment problems[END_REF] and [START_REF] Borwein | Maximum entropy reconstruction using derivative information part 2: computational results[END_REF]. The final stage in each experiment is a simulation of the full population balance model using the optimal (T * sp , q * H 2 O , n 0 (L) * ), obtained from the moment-based optimal control problem.

Conclusion

We have presented and tested several control strategies which allow to maximize the crystal mass of particles of small size, typically in a range of 10 -5 -10 -4 µm. Our approach was compared to more standard heuristic control policies used in the literature to regulate temperature and feed rate in semi-batch mode. Our simulated numerical results show that it is beneficial to apply optimal control strategies in semi-batch solvated crystallization of α-lactose monohydrate.
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 1 Figure 1: Solvated crystallization of α-lactose monohydrate with complex population dynamics featuring one aging and three ageless populations. Exchange rates depend on temperature. Controls are feed rate in semi-batch mode, temperature of envelope, and the distribution of the crystal seed. Based on mathematical modeling the process is optimized in order to maximize the particle

Figure 2 :

 2 Figure 2: Optimal set-point temperature profile u 1 = T sp for minimization of the three criteria B, CV and d 43 with fixed final time t f .

Figure 3 :

 3 Figure 3: Optimal feed profile u 2 = q H 2 O for minimization of the three criteria B, d 43 and CV with fixed final time t f .

Figure 4 :

 4 Figure 4: Final crystal size distribution L → n(L, t f ) displayed for minimization of B (blue) and CV (red) compared with linear (magenta) and constant (dashed black) policies for fixed final time t final . Right hand image shows zoom on range [10 2.1 , 10 2.6 ].

Figure 5 :

 5 Figure 5: Final crystal size distribution L → n(L, t f ) for minimizing d 43 (black solid), compared with linear (magenta) and constant (black dashed) policies for fixed final time t final . Right hand image shows zoom on range [10 2.1 , 10 2.6 ].
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 6 Figure 6: Left image compares solubility, right image compares temperature of crystallizer for

Figure 7 :

 7 Figure7: Left image compares growth rate, right image compares crystal mass for the five policies constant (dashed black), linear (magenta), optimal with B (blue), optimal with CV (red), optimal with d 43 (black continuous) for t final fixed.

Figure 9 Figure 8 :

 98 Figure 9 compares the profiles of overall crystals mass and of the weighted mean size diameter d 43 in all scenarios.

Figure 9 :

 9 Figure 9: Evolution of weighted mean size diameter d 43 left, evolution of crystal mass right.
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  0 n 0 (L)L 3 dL = 0.1kg. That leads to the optimization program minimize d 43 subject to constraints of (14)µ 3 (0) = ∞ 0 n 0 (L)L 3 dL = 0.0812 (16)where now T ref (t), q H 2 O (t) and µ 0 (0), µ 1 (0), µ 2 (0), µ 4 (0), µ 5 (0) are optimization variables.The interesting point of this program is that once the optimal solution (T * ref , q * H 2 O , µ * ν ) is reached, we need to reconstruct a function n * 0 (L) such that its moments 0, . . . , 5 coincide withµ * 0 , µ * 1 , µ * 2 , µ * 3 = 0.0812, µ * 4 ,µ * 5 . This can be achieved by solving the maximum entropy function reconstruction problem minimize ∞ 0 n 0 (L) log n 0 (L)dL subject to ∞ 0 L ν n 0 (L)dL = µ * ν , ν = 0, . . . , 5.

Figure 10 :

 10 Figure 10: Scenario 5: Different initial seeds n 0 (L) shown on the left lead to different products n(L, t f ) on the right. Blue uses µ 3 (0) = 0.291, magenta uses µ 3 (0) = 0.401.

Table 1 :

 1 Numerical constants

	)

Table 2 :

 2 Units of dynamic quantities to retain the moments µ 0 , . . . , µ 5 . The remaining states of the system dynamics are then m H 2 O , m cry , c α , c β , T , T jacket . The control inputs are u 1 = T sp and u 2 = q H 2 O .

	n(L, t) ♯/m.m 3	particle size distribution
	m α (t)	kg	mass of α-lactose in solution
	m β (t)	kg	mass of β-lactose in solution
	V (t)	kg		volume of slurry
	A(t)	m 2		contact surface
	µ 0 1.24051 10	m H 2 O 0.92kg
	µ 1 2.176710 6	c α	0.359
	µ 2	409.2491	c β	0.521