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Optimal control of crystallization of alpha-lactose

monohydrate∗

A. Rachah† D. Noll† F. Espitalier‡ F. Baillon†

Abstract

We present a mathematical model for solvated crystallization of α-lactose monohydrate

in semi-batch mode. The process dynamics are governed by conservation laws including

population, molar and energy balance equations. We present and discuss the model and then

control the process with the goal to privilege the production of small particles in the range

between 10−5 and 10−4
µm. We compare several specific and unspecific cost functions leading

to optimal strategies with significantly different effects on product quality. Control inputs

are temperature, feed rate, and the choice of an appropriate crystal seed.

1 Introduction

Crystallization is the unitary operation of formation of solid crystals from a solution. In process

engineering crystallization is an important separation process used in chemical, pharmaceutical,

food, material and semiconductor industries. Mathematical models are described by conserva-

tion laws with population, molar and energy balance equations. Crystallizers can be operated

either in batch, semi-batch or continuous mode. Semi-batch crystallization is widely used in the

pharmaceutical and fine chemical industry for the production of solids in a variety of operating

modes.

Crystallization processes are described by balance equations, including a population balance

for the particle size distribution, a molar balance for the distribution of solute, and an energy

balance equation to model thermodynamic phenomena. In the food-processing industry, there has
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‡Ecole des Mines d’Albi, Centre Rapsodee, Albi, France

1

http://www.ieee.org/publications_standards/publications/rights/reqperm.html


been a growing interest in the crystallization of lactose in recent years [4, 5, 7]. In this paper we

study a model of solvated crystallization of α-lactose monohydrate, which includes four interacting

populations, one of them aging, in tandem with an energy balance. Two forms of lactose (α- and

β-lactose) exist simultaneously in aqueous solution, the exchange being governed by mutarotation.
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Figure 1: Solvated crystallization of α-lactose monohydrate with complex population dynamics

featuring one aging and three ageless populations. Exchange rates depend on temperature. Con-

trols are feed rate in semi-batch mode, temperature of envelope, and the distribution of the crystal

seed. Based on mathematical modeling the process is optimized in order to maximize the particle

mass in a given small size range Llow ≤ L ≤ Lhigh.

Crystallization and precipitation processes are modeled as highly nonlinear and complex dy-

namical systems. This makes it interesting to simulate, control and optimize these processes in

order to enhance product quality in various situations [1, 2]. In order to control crystallization

processes, Hu and Rohani [3] have studied different heuristic cooling methods such as linear cool-

ing, natural cooling and controlled cooling. In this study we control of the process of formation

of α-lactose crystals in such a way that the growth of very large crystals is avoided and the bulk

of crystal mass occurs in a small particle range between 10−5 and 10−4µm. In order to achieve

this goal we use optimal control of the process in semi-batch mode by variations of temperature,

feed rate, and also by an appropriate choice of the crystal seed, and based on a variety of different

figure of merit functions.

2 Dynamic model of process

In this section the dynamic model of semi-batch crystallization of α-lactose monohydrate is de-

scribed by presenting the population, molar and energy balance equations.
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Population balance equation: The population balance equation is a first-order PDE

∂

∂t
(V (t)n(L, t)) + V (t)G (cα(t), cβ(t), T (t))

∂n(L, t)

∂L
= V (t)ṅ(L, t)±, (1)

where n(L, t) is the distribution of α-lactose crystals, cα(t), cβ(t) are the dimensionless concentra-

tions of α- and β-lactose in the liquid phase, V (t) is the volume of slurry in the crystallizer, a

dependent variable given in (11), G (cα, cβ, T ) is the temperature-dependent growth coefficient of

α-crystals, assumed independent of crystal size L, and the right hand side represents source and

sink terms. We add the boundary condition

n(0, t) =
B (cα(t), cβ(t), T (t))

G (cα(t), cβ(t), T (t))
, (2)

and the initial condition

n(L, 0) = n0(L), (3)

where n0(L) is the crystal seed. It is convenient to introduce the moments of the crystal size

distribution function

µν(t) =

∫

∞

0

n(L, t)LνdL, ν = 0, 1, . . . ,

which allows to break (1) into an infinite sequence of ODEs if the source and sink terms may be

neglected. In the present situation this amounts to neglecting agglomeration and also attrition

effects. Using (2) we obtain the equations

dµν(t)

dt
+

V ′(t)

V (t)
µν(t)− νG (cα(t), cβ(t), T (t))µν−1(t) = 0, (4)

ν = 1, 2, . . . , in tandem with

dµ0(t)

dt
+

V ′(t)

V (t)
µ0(t)−B (cα(t), cβ(t), T (t)) = 0. (5)

The initial conditions are then

µν(0) =

∫

∞

0

n0(L)L
νdL, ν = 0, 1, . . . .

Solvent mass balance:

dmH2O(t)

dt
= (R−1 − 1)3kvρcryG (cα(t), cβ(t), T (t))V (t)µ2(t) + qH2O(t) (6)

Here mH2O is the mass of water in the aqueous solution, which changes due to feed, qH2O, and due

to the integration of water molecules into the α-crystals. The constant R = Mcry/Mα = 1.0525 is

the ratio of the molar masses of the solid and liquid phases of α-lactose.
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Concentration of α-lactose: The dimensionless concentration of α-lactose cα in the solution is

defined as mα = cαmH2O and satisfies the differential equation

dcα(t)

dt
=

1

mH2O(t)
[cα(t)(1−R−1)− R−1]

dmcry(t)

dt
− k1(T (t))cα(t) + k2(T (t))cβ(t) (7)

+ (c+α (t)− cα(t))
qH2O(t)

mH2O(t)
.

Here mcry is the crystal mass in the slurry, c+α is the feed rate of α lactose during the semi-batch

phase, and k1(T ), k2(T ) are the temperature dependent mutarotation exchange rates between α-

and β-lactose in the liquid phase.

Concentration of β-lactose: The dimensionless concentration of β-lactose cβ is defined as mβ =

cβmH2O and satisfies the differential equation

dcβ(t)

dt
=

cβ(t)

mH2O(t)
(1− R−1)

dmcry(t)

dt
+ k1(T (t))cα(t)− k2(T (t))cβ(t) (8)

+
(

c+β (t)− cβ(t)
) qH2O(t)

mH2O(t)
.

Energy balance: The temperature hold system describes the interaction between crystallizer

temperature, the temperature of the jacket, and the control signal, to which the internal heat

balance due to enthalpy is added. We have

dT (t)

dt
= P1(t)

[

− P2(t)(T (t)− Tref)−∆H
dmcry(t)

dt
+ UA(t) (Tjacket(t)− T (t)) (9)

+ qH2O(t)
(

Cp
H2O

+ Cp
αcα(0) + Cp

βcβ(0)
)

(Tfeed − Tref)

]

where

dTjacket(t)

dt
= −0.0019(Tjacket(t)− Tsp(t)) (10)

was obtained through identification of the system. Here T (t) is the temperature of the slurry, Tref =

250C a constant reference temperature, Tfeed the temperature of feed, which is the temperature of

H2O in this case, assumed constant in this study, Tjacket(t) is the temperature of the crystallizer

jacket, and Tsp(t) is the set point temperature, which is used as a control input to regulate Tjacket(t),

and therefore indirectly T (t) via the heat exchange between the envelope and the crystallizer

through the contact surface A(t), which is determined through V (t). The constants Cp
H2O

, Cp
α, C

p
β

are the specific heat capacities. We have

P1(t)
−1 = mH2O(t)C

p
H2O

+mα(t)C
p
α +mβ(t)C

p
β +mcry(t)C

p
cry,

P2(t) =
dmH2O(t)

dt
Cp

H2O
+

dmα(t)

dt
Cp

α +
dmβ(t)

dt
Cp

β +
dmcry(t)

dt
Cp

H2O
,
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with mα = cαmH2O, mβ = cβmH2O.

Mutarotation: The mutarotation exchange coefficients k1, k2 are temperature dependent and are

determined as

k2(T ) = k0 · exp(−E/(R · (T + 273.15))),

km(T ) = 1.64− 0.0027 · T, k1(T ) = k2(T ) · km(T ).

The equilibrium of mutarotation therefore occurs at

cα,sat,eq(T ) =
10.9109 · exp(0.02804 · T )

100(1 + km(T ))
,

F (T ) = 0.0187 · exp(0.0236 · T ),

cα,sat(cβ, T ) = cα,sat,eq(T )− F (T )(cβ − km(T )

×cα,sat,eq(T )).

Nucleation rate: The nucleation rate is based on a phenomenological law

B(cα, cβ, T ) = kb exp



−
B0

(T + 273.15)3 ln2
(

cα
cα,sat(cβ ,T )

)





as is the growth rate

Growth rate:

G(cα, cβ, T ) = kg (cα − cα,sat(cβ, T )) .

Volume: The total volume of slurry V (t) is a dependent variable, which can be expressed as a

function of the states cα, cβ and mH2O through

V (t) =
mH2O(t)

1− kvµ3(t)

[

ρ−1
lac,αcα(t) + ρ−1

lac,βcβ(t) + ρ−1
H2O

]

. (11)

Therefore

dV (t)

dt
= 3kvG(cα(t), cβ(t), T (t))V (t)µ2(t) +

dmH2O(t)

dt

[

ρ−1
lac,αcα(t) + ρ−1

lac,βcβ(t) + ρ−1
H2O

]

+mH2O(t)

(

ρ−1
lac,α

dcα(t)

dt
+ ρ−1

lac,β

dcβ(t)

dt

)

.

Crystal mass: The total crystal mass satisfies the equation

dmcry(t)

dt
= 3kvρcryG(cα(t), cβ(t), T (t))V (t)µ2(t). (12)
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R 1.0525 – ratio of molar masses

kv 0.523598 – volumic shape factor

ρcry 1545 kg ·m−3 crystal density

ρlac,α 1545 kg ·m−3 α-lactose density

ρlac,β 1590 kg ·m−3 β-lactose density

ρH2O 1000 kg ·m−3 water density

∆H -43.1 kJ/kg heat of crystallization

U 300 kJ/m2.h.K heat transfert coefficient

k0 2.25 · 108 s−1 kinetic mutarotation

constant

Tref 25 0C reference temperature

Cp
H2O

4180.5 J/kg/K heat capacity H2O

Cp
cry 1251 J/kg/K heat capacity

α-lactose monohydrate

Cp
α 1193 J/kg/K heat capacity α-lactose

Cp
β 1193 J/kg/K heat capacity β-lactose

B0 5.83 nucleation constant

Rg 18.314 J/K/mol universal gas constant

kg 10 · 1010 m · s−1 growth rate coefficient

kb 1.18 · 10−7 ♯ ·m−3s−1 birth rate coefficient

tf 11000 s final time for study 1

c+α 0.521 kg/kg water fraction of α-lactose in feed

c+β 0.359 kg/kg water fraction of β-lactose in feed

V0 0.0015 m3 initial volume

Vmax 0.01 m3 maximum volume

Table 1: Numerical constants

3 Optimal control problem

The benefit of the moment approach is that we may choose a finite number of moment equation to

replace (1). Our present approach is to retain a sufficient number of moments so that the salient

features of the seed n0(L) may be captured by these moments, and in our experiments we decided

6



n(L, t) ♯/m.m3 particle size distribution

mα(t) kg mass of α-lactose in solution

mβ(t) kg mass of β-lactose in solution

V (t) kg volume of slurry

A(t) m2 contact surface

Table 2: Units of dynamic quantities

to retain the moments µ0, . . . , µ5. The remaining states of the system dynamics are then mH2O,

mcry, cα, cβ, T , Tjacket. The control inputs are u1 = Tsp and u2 = qH2O.

µ0 1.2405110 mH2O 0.92kg

µ1 2.1767106 cα 0.359

µ2 409.2491 cβ 0.521

µ3 0.0812 T 700C

µ4 1.681210−5 Tjacket 200C

µ5 3.609410−9

Table 3: Initial values for study 1

In this work, we compare between several policies :

• Policy 1 : We fix the values of the set-point temperature Tsp = 15[ 0C] and the feed rate of

solvent qH2O = 0.0056[Kg/h]. This policy is referred to as constant in the figures.

• Policy 2 : Here we fix the value of the feed rate of solvent qH2O = 0.0056[Kg/h], while the

set-point temperature Tsp(t) starts at Tsp(0) = 15[ 0C] and decreases linearly. This policy is

called linear in the figures.

• Policy 3 : We control the set-point temperature u1(t) = Tsp(t) and also the feed rate of

solvent u2(t) = qH2O(t) using various objectives. This policy is called optimal in the figures.
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3.1 Scenario 1

Our first control problem minimizes the weighted mean size diameter d43 =
µ4

µ3

at fixed final time

tf = 11000 seconds. This is cast as the optimization program

minimize d43(tf ) =
µ4(tf )

µ3(tf )

subject to dynamics (4)− (12)

0 ≤ V (t) ≤ Vmax

00C ≤ T (t) ≤ 700C

cα(t) ≥ cα,sat(cβ(t), T (t))

00C ≤ Tsp(t) ≤ 400C

0 ≤ qH2O(t) ≤ 0.1

(13)

The control variables are set-point temperature u1(t) = Tsp(t) and feed rate of water u2(t) =

qH2O(t). The percentages ċ+α and ċ+β of lactose in the feed are kept constant.

3.2 Scenario 2

Our second control problem minimizes the nucleation rate B(cα, cβ, T ) at the fixed final time

tf = 11000 seconds. This is cast as the optimization program

minimize B(tf )

subject to constraints of (13)
(14)

The control variables are again Tsp and qH2O.

3.3 Scenario 3

Our third control problem minimizes the coefficient of variation CV at the fixed final time tf =

11000 seconds. This is the optimization program

minimize CV (tf ) =
µ3(tf )µ5(tf)

(µ4(tf))2
− 1

subject to constraints of (13)

(15)

The control variables are again Tsp and qH2O.

In Figures 2, 3 we present results obtained with the optimal regulation of set-point temperature

u1 = Tsp and feed rate u2 = qH2O and compare these to more standard scenarios, where temperature

and feed rate are fixed or follow simple heuristic profiles proposed in the literature.
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Figure 2: Optimal set-point temperature profile u1 = Tsp for minimization of the three criteria

B, CV and d43 with fixed final time tf .
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Figure 3: Optimal feed profile u2 = qH2O for minimization of the three criteria B, d43 and CV

with fixed final time tf .

In Figure 4 we present the optimal crystal size distribution obtained from minimization of the

weighted mean size diameter d43 in (13) compared with standard scenarios. Figure 5 shows the

crystal size distribution for the optimal control of nucleation rate B and coefficient of variation

CV compared to the more standard scenarios. The optimal profile for the nucleation rate shows

the existence of two peaks which indicates the existence of two populations of crystals.

In Figure 6 we present the evolution of solubility of α−lactose and the temperature of the

crystallizer by comparing several scenarios. The profile of solubility shows an early peak, which
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Figure 4: Final crystal size distribution L 7→ n(L, tf ) displayed for minimization of B (blue) and

CV (red) compared with linear (magenta) and constant (dashed black) policies for fixed final time

tfinal. Right hand image shows zoom on range [102.1, 102.6].
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Figure 5: Final crystal size distribution L 7→ n(L, tf ) for minimizing d43 (black solid), compared

with linear (magenta) and constant (black dashed) policies for fixed final time tfinal. Right hand

image shows zoom on range [102.1, 102.6].

correspond to a sharp decrease in the temperature profile of the crystallizer. Comparison between

the cost functions shows that the highest peak occurs when minimizing the weighted mean size

diameter d43. In the case of minimization of nucleation rate B, we see the existence of two peaks

which correspond with two peaks on crystal size distribution profile.

In Figure 7 we present the evolution of nucleation rate B and growth rate G in comparison

between the several scenarios. At the beginning of the profile of nucleation rate B, we note the

highest peak in case of minimization of weighted mean size diameter d43.

In Figure 8 we present the coefficient of variation CV and volume of crystallizer in comparison
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Figure 6: Left image compares solubility, right image compares temperature of crystallizer for

the five policies constant (dashed black), linear (magenta), optimal with B (blue), optimal with

CV (red) and optimal with d43 (black continuous) for tfinal fixed.
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Figure 7: Left image compares growth rate, right image compares crystal mass for the five

policies constant (dashed black), linear (magenta), optimal with B (blue), optimal with CV (red),

optimal with d43 (black continuous) for tfinal fixed.

between all objectives and scenarios. The volume profiles show that optimization of different cost

functions may lead to fairly different ways of filling the crystallizer in the semi-batch phase. For

instance, filling in the linear policy occurs much faster than for minimization of the coefficient of

variation, which gives the slowest filling.

Figure 9 compares the profiles of overall crystals mass and of the weighted mean size diameter

d43 in all scenarios.
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Figure 8: Evolution of coefficient of variation CV (t) left, evolution of volume V (t) right. Com-

parison of the five policies constant (dashed black), linear (magenta), optimal for B (blue), optimal

for CV (red), optimal for d43 (black continuous), for tfinal fixed.
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Figure 9: Evolution of weighted mean size diameter d43 left, evolution of crystal mass right.

Comparison of the five policies constant (dashed black), linear (magenta), optimal for B (blue),

optimal for CV (red), optimal for d43 (black continuous), for tfinal fixed.

3.4 Scenario 4

The next extension is to add the moments of n0(L) as unknown parameters, the idea being that

a suitable choice of the initial seed of given mass should give even better results. We decide to fix

the total mass of crystal seed as kvV0ρcry
∫

∞

0
n0(L)L

3dL = 0.1kg. That leads to the optimization
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program

minimize d43

subject to constraints of (14)

µ3(0) =

∫

∞

0

n0(L)L
3dL = 0.0812

(16)

where now Tref(t), qH2O(t) and µ0(0), µ1(0), µ2(0), µ4(0), µ5(0) are optimization variables.

The interesting point of this program is that once the optimal solution (T ∗

ref , q
∗

H2O
, µ∗

ν) is reached,

we need to reconstruct a function n∗

0(L) such that its moments 0, . . . , 5 coincide with µ∗

0, µ
∗

1, µ
∗

2, µ
∗

3 =

0.0812, µ∗

4, µ
∗

5. This can be achieved by solving the maximum entropy function reconstruction

problem

minimize

∫

∞

0

n0(L) log n0(L)dL

subject to

∫

∞

0

Lνn0(L)dL = µ∗

ν , ν = 0, . . . , 5.
(17)

Notice that (17) may be solved by standard software, see e.g. Borwein et al. [8], [9].

3.5 Scenario 5

The natural figure of merit to maximize the crystal mass within a certain range L1 ≤ L ≤ L2 of

small particle sizes is

max

∫ L2

L1

L3n(L, tf )dL (18)

at the final time tf , but this objective is not directly accessible in the moment approach. Substrates

like B,CV, d43 are non-specific and must be expected to give only a crude approximation of (18).

We therefore propose the following more sophisticated strategy, which is compatible with the

moment approach.

We define a target particle size distribution n1(L), which has a bulk in the range [L1, L2],

normalized to satisfy

ν3 =

∫

∞

0

L3n1(L)dL = 1.

Then we compute as many of its moments ν0, . . . , νN as we wish to use, where as before N = 5 in

our tests. The optimization program we now solve is

minimize
N
∑

i=0

wi (µi(tf)− µ3(tf )νi)
2

subject to constraints of (13)

tf ≤ tmax

(19)

13



where the wi are suitably chosen weights. Notice that the least squares objective of (19) tries to

bring the moments of n(L, tf) as close as possible to the moments of the function µ3(tf )n1(L),

which has the correct shape, and has the same total crystal mass as n(L, tf ). Here the final time

is considered free.

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7
x 10

14

L (µ m)

In
iti

al
 c

ry
st

al
 s

iz
e 

di
st

rib
ut

io
n 

[n
br

e/
m

.m
3 ]

 

 

Initial CSD 1
Initial CSD 2

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3
x 10

16

L (µ m)

F
in

al
 c

ry
st

al
 s

iz
e 

di
st

rib
ut

io
n 

[n
br

e/
m

.m
3 ]

 

 

Final CSD 1
Final CSD 2

Figure 10: Scenario 5: Different initial seeds n0(L) shown on the left lead to different products

n(L, tf ) on the right. Blue uses µ3(0) = 0.291, magenta uses µ3(0) = 0.401.

4 Method

For our testing we have used the solver ACADO [10] based on a semi-direct single or multiple-

shooting strategy, including automatic differentiation, based ultimately on the semi-direct multiple-

shooting algorithm of Bock and Pitt [11]. ACADO is a self-contained public domain software

environment written in C++ for automatic control and dynamic optimization.

Alternatively, we also use the solver PSOPT [12], which is a public domain extension of the

NLP-slover IPOPT [13] or SNOPT [14] and is based on pseudospectral optimization which uses

Legendre or Cheybyshev polynomials and discretization based on Gauss-Lobatto nodes.

A difficulty with both solvers is the strong dependence of convergence and solutions on the

initial guess, as must be expected in a local optimization context. Our testing shows that it is

often mandatory to have a simulated study (xinit, uinit) available to start the optimization from

that point. This initial guess may use parameters from a previous optimization study, which give

already a decent cost in the present study. In some cases homotopy techniques, using for instance

tf as a parameter, have to be used.

Once optimal controls u∗ = (T ∗

ref , q
∗

H2O
) have been computed in any one of the scenarios, we use

the full crystallizer model (1), (2), (6) – (10) to simulate the system, using an initial seed n0(L)

14



which produces the initial moments µν(0). In those cases where the moments of the initial seed

are parameters, which are also optimized, we use the optimal µ∗ = (µ∗

0, . . . , µ
∗

N) to compute an

estimation n∗

0(L) of the optimal crystal seed with these moments using [8] and [9].

The final stage in each experiment is a simulation of the full population balance model using

the optimal (T ∗

sp, q
∗

H2O
, n0(L)

∗), obtained from the moment-based optimal control problem.

5 Conclusion

We have presented and tested several control strategies which allow to maximize the crystal mass

of particles of small size, typically in a range of 10−5 − 10−4µm. Our approach was compared to

more standard heuristic control policies used in the literature to regulate temperature and feed rate

in semi-batch mode. Our simulated numerical results show that it is beneficial to apply optimal

control strategies in semi-batch solvated crystallization of α-lactose monohydrate.
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