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modules are typical algebraic structures with several interacting operations. Their structural and homological study is therefore quite involved. We develop the machinery of braided systems, tailored for handling such multioperation situations. Our construction covers the above examples (as well as Poisson algebras, Yetter-Drinfel ′ d modules, and several other structures, treated in separate publications). In spite of this generality, graphical tools allow an efficient study of braided systems, in particular of their representation and homology theories. These latter naturally recover, generalize, and unify standard homology theories for bialgebras and Hopf (bi)modules (due to Gerstenhaber-Schack, Panaite-S ¸tefan, Ospel, Taillefer); and the algebras encoding their representation theories (Heisenberg double, algebras X , Y , Z of Cibils-Rosso and Panaite). Our approach yields simplified and conceptual proofs of the properties of these objects.

Introduction

In [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF] we developed representation and (co)homology theories for braided objects in a monoidal category C (e.g., C = Vect k ). We interpreted associative / Lie algebras and self-distributive structures as braided objects, and could thus apply our theories to them. As a result, we unified classical constructions into one, and explained their otherwise mysterious similarities. The aim of this article is to extend the braided approach to more complicated algebraic structures.

Concretely, an object V in C is called braided when endowed with a morphism σ : V ⊗2 → V ⊗2 satisfying the Yang-Baxter equation (YBE ) σ 1 σ 2 σ 1 = σ 2 σ 1 σ 2 , where σ 1 = σ ⊗ Id V and σ 2 = Id V ⊗σ. For instance, in [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF] we showed that a unital associative algebra is braided, with σ Ass (v ⊗ w) = 1 ⊗ v • w. However, this one-objectone-morphism setting is very restrictive. For instance, a bialgebra comes with several operations: (co)multiplication and (co)unit. Its Gerstenhaber-Shack (co)homology is defined on Hom(H ⊗n , H ⊗m ) ≃ H ⊗m ⊗ (H * ) ⊗n and involves two objects, H and H * (here H is finite-dimensional). A way out is to consider a family of objects (V 1 , . . . , V r ) in C endowed with morphisms σ i,j : V i ⊗ V j → V j ⊗ V i , i j, satisfying the colored braided system → algebraic structure braiding components σ i,j ↔ operations colored YBEs ⇔ defining relations braided morphisms ≃ structural morphisms BrSyst r (C) ←֓ Structure(C) braided modules ⊇ usual modules braided complexes ⊇ usual complexes Table 1: Braided interpretation for algebraic structures version of the YBE on all tensor products V i ⊗ V j ⊗ V k with i j k. This is what we call a rank r braided system, a notion central to this article. The r = 2 case recovers the W XZ-systems of Hlavatý-Šnobl [START_REF] Hlavatý | Solution of the Yang-Baxter system for quantum doubles[END_REF], motivated by the concept of quantum doubles. They classified such systems in dimension 2 and studied their symmetries.

Sections 2-3 extend the representation and (co)homology theories of braided objects to braided systems. Multi-versions of braided modules and braided (co)chain complexes are defined; the latter take the former as coefficients. Further sections explore braided systems encoding various algebraic structure, in the sense of Table 1. The row BrSyst r (C) ←֓ Structure(C) means that the categories of the algebraic structures we work with (e.g., bialgebras in C) are recovered as subcategories of the category of rank r braided systems in C. Properties of our structures and their (co)homologies are then deduces from general results on braided systems.

The braided systems considered here are composed of unital associative algebras (UAAs) (V i , µ i , ν i ), with as diagonal braiding components σ i,i the associativity braidings σ Ass = ν i ⊗ µ i . In Section 4 we study such systems, and relate them to braided tensor products of algebras ← -

V = V r ⊗ • • • ⊗ V 1 .
Concretely, we show that morphisms ξ i,j for i < j complete the associativity braidings σ i,i into a braided system structure if and only if they define an associative multiplication on ← -V by

µ← - V = (µ r ⊗ • • • ⊗ µ 1 )ξ 2r-2 1,2 (ξ 2r-4 2,3 ξ 2r-3 1,3 ) • • • (ξ 2 r-1,r • • • ξ r-1
2,r ξ r 1,r ), where ξ p i,j denotes the morphism ξ i,j applied at positions p and p + 1. Rank 2 braided tensor products are at the heart of Majid's braided geometry [START_REF] Majid | Quasitriangular Hopf algebras and Yang-Baxter equations[END_REF][START_REF] Majid | Free braided differential calculus, braided binomial theorem, and the braided exponential map[END_REF][START_REF] Majid | Algebras and Hopf algebras in braided categories[END_REF]. They provide an algebra analogue of the product of two spaces in noncommutative geometry. A pleasant consequence of Majid's work is the construction of new examples of non-commutative non-cocommutative Hopf algebras as bicross products, which are particular cases of braided tensor products.

The case of general r independently appeared in two different frameworks: [START_REF] Ospel | Tressages et théories cohomologiques pour les algèbres de Hopf[END_REF][START_REF] Taillefer | Cohomology theories of Hopf bimodules and cup-product[END_REF] Table 2: Braided interpretation of the algebra and the bialgebra structures

Our main contribution is a treatment of all the conditions ensuring the associativity of µ← - V in terms of YBEs: associativity of µ i ⇐⇒ YBE on

V i ⊗ V i ⊗ V i compatibility between ξ i,j & µ i ⇐⇒ YBE on V i ⊗ V i ⊗ V j compatibility between ξ i,j & µ j ⇐⇒ YBE on V i ⊗ V j ⊗ V j    new compatibilities between the ξ ⇐⇒ YBE on V i ⊗ V j ⊗ V k known
This entirely braided interpretation is made possible by our associativity braiding. Among its advantages is the applicability of the braided (co)homology machinery to braided tensor products of algebras; this turns out to be fruitful in our examples.

Sections 5-7 explore braided systems of UAAs encoding generalized two-sided crossed products (as defined by Bulacu, Panaite, and Van Oystaeyen [START_REF] Bulacu | Generalized diagonal crossed products and smash products for quasi-Hopf algebras[END_REF]) and finite-dimensional k-linear bialgebras. For the latter we propose two braided systems, recovering Hopf modules and Hopf bimodules as corresponding braided modules, and yielding a graphical interpretation of Hopf (bi)module homology, which is more workable than the original definitions. Both systems are presented in Table 2. Here τ is the transposition v ⊗ w → w ⊗ v (or the underlying braiding if one works in a symmetric category); σ bi : H ⊗ H * → H * ⊗ H is defined, using Sweedler's notation, by σ bi (h ⊗ l) = l (1) , h (2) l (2) ⊗ h (1) ;

(1) and, when writing σ i,j = σ Ass or σ bi , we mean the formulas for σ Ass or σ bi applied to the (bi)algebra corresponding to V i ⊗ V j (e.g., σ 2,4 in the last line is calculated according to Formula (1) for H op,cop ). The components σ i,i = σ Ass are omitted. Note the the braiding components in the systems above are not necessarily invertible. For instance, σ bi has an inverse if and only if H is a Hopf algebra. This yields a braided interpretation of the existence of an antipode.

The braided system from the third line of Table 2 yields an inclusion of the category of bialgebras in vect k into BrSyst 2 (vect k ). Nichita's work [START_REF] Nichita | Self-inverse Yang-Baxter operators from (co)algebra structures[END_REF][START_REF] Brzeziński | Yang-Baxter systems and entwining structures[END_REF][START_REF] Nichita | New solutions for Yang-Baxter systems[END_REF] can be seen in the same light. To encode associativity, he uses a generalization of the self-inverse braiding σ Ass = ν ⊗ µ + µ ⊗ ν -Id V ⊗2 , proposed by Nuss in the context of descent theory for noncommutative rings [START_REF] Nuss | Noncommutative descent and non-abelian cohomology[END_REF]. Our σ Ass works in more general categories, and moreover better suits for homological applications.

The representation-theoretic part of the article follows the philosophy of presenting complicated structures using something well understood-here modules over a well-chosen algebra. The complexity is now hidden in this algebra, which for some purposes can be treated as a black box. Table 3 contains examples (for the YD example see [START_REF] Lebed | R-matrices, Yetter-Drinfel'd modules and Yang-Baxter equation[END_REF]). Notation ⊗ is here to stress the use of braided tensor products. Concretely, we interpret the structures from the left column as braided modules over certain braided systems of UAAs (e.g., those from Table 2). Further, in a very general setting we identify braided modules over a braided system of UAAs with modules over the corresponding braided tensor product algebra ← -V :

Mod (V1,...,Vr; σi,i=σAss, ξi,j ) ≃ Mod← - V .
The right column of Table 3 contains the relevant ← -V algebras. Our general braided system theory now applies to the structures from the table. In particular, using our explicit permutation rules for components of a braided tensor product, we include the algebra X (H) of Cibils-Rosso [START_REF] Cibils | Hopf bimodules are modules[END_REF] and its versions Y (H) and Z (H) described by Panaite [START_REF] Panaite | Hopf bimodules are modules over a diagonal crossed product algebra[END_REF] into a family of #S 4 = 24 algebras. Explicit isomorphisms between these algebras and equivalences between their module categories are given. This circumvents the technical calculations and generalizes some results of [START_REF] Panaite | Hopf bimodules are modules over a diagonal crossed product algebra[END_REF]. Further, we obtain structural results for certain braided complexes-e.g., we recover the Hopf bimodule structure of the bar complex of a bialgebra with coefficients in a Hopf bimodule.

We finish with a list of other "braided-systematizable" structures, the work on which is in progress. 1. Our braided system for generalized two-sided crossed products works in particular for H-(bi)(co)module algebras. Repeating our study of bialgebra braided homology in this context, one recovers Yau's deformation bicomplex of module algebras [START_REF] Yau | Deformation bicomplex of module algebras[END_REF]. Braided tools also simplify Kaygun's treatment of H-equivariant Abimodule structures used in his Hopf-Hochschild module algebra homology [START_REF] Kaygun | Hopf-Hochschild (co)homology of module algebras[END_REF].

2. Combining σ Ass with the Lie algebra braiding from [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF], one gets a rank 2 braided system encoding the non-commutative Poisson algebra structure. Its braided homology includes Fresse's Poisson algebra homology [START_REF] Fresse | Théorie des opérades de Koszul et homologie des algèbres de Poisson[END_REF].

3. The braided system machinery also applies to the quantum Koszul complexes of Gurevich and Wambst [START_REF] Gurevich | Algebraic aspects of the quantum Yang-Baxter equation[END_REF][START_REF] Wambst | Complexes de Koszul quantiques[END_REF].

Notations and conventions

All our structures live in a strict monoidal category (C, ⊗, I); the reader can have in mind the category Vect k of vector spaces over a field k for simplicity. The word "strict" is often omitted for brevity, as well as the word "monoidal" in the terms "braided / symmetric monoidal category". Given an object V in C, we succinctly denote its tensor powers by V n = V ⊗n , V 0 = I. Further, given a morphism ϕ : V l → V r , the following notation is repeatedly used:

ϕ i = Id ⊗(i-1) V ⊗ϕ ⊗ Id ⊗(k-i+1) V : V k+l → V k+r , (2) 
and similarly for morphisms on tensor products of different objects. Working with a family of objects (V 1 , V 2 , . . .), we put Id i = Id Vi . The already classical graphical calculus is extensively used in this article. Dots denote objects in C; horizontal gluing represents tensor product; graph diagrams encode morphisms from the object corresponding to the lower dots to that corresponding to the upper dots; vertical gluing stands for morphism composition, and vertical strands for identities. All diagrams read from bottom to top.

Notations S n , B n , B + n stand for the symmetric groups, the braid groups, and the positive braid monoids. Their standard generators are denoted by, respectively, s i and σ i , 1 i n -1.

Braided vocabulary

The notion of braided system generalizes the more familiar braided objects. Definition 2.1.

• A rank r braided system in C is an ordered family V 1 , V 2 , . . . , V r of objects endowed with a braiding, i.e., morphisms σ i,j : V i ⊗ V j → V j ⊗ V i for 1 i j r satisfying the (colored) Yang-Baxter equation

(σ j,k ⊗ Id i )(Id j ⊗σ i,k )(σ i,j ⊗ Id k ) = (Id k ⊗σ i,j )(σ i,k ⊗ Id j )(Id i ⊗σ j,k ) (3) 
on all the tensor products V i ⊗ V j ⊗ V k with 1 i j k r. Such a system is denoted by ((V i ) 1 i r ; (σ i,j ) 1 i j r ) or briefly (V , σ).

• A braided morphism f : (V , σ) → (W , ξ) between two braided systems in C of the same rank r is a collection of morphisms (f i ∈ Hom C (V i , W i )) 1 i r respecting the braiding, in the sense that, for all 1 i j r, one has

(f j ⊗ f i )σ i,j = ξ i,j (f i ⊗ f j ). (4) 
• The category of rank r braided systems and braided morphisms in C is denoted by BrSyst r (C).

• Rank 1 braided systems are called braided objects in C.

• For 1 s t r, the braided (s, t)-subsystem of (V , σ), denoted by (V , σ)[s, t], is the subfamily V s , . . . , V t with the corresponding components σ i,j of σ.

The notion of braiding thus defined is

σ i,j ←→ i j A YBE ←→ i j k = i j k
B Figure 1: Braided systems versus colored braids 1. positive: the σ i,j are not supposed to be invertible (the term pre-braiding is sometimes used in such situations); 2. partial, i.e., defined only on certain couples of objects; 3. local: contrary to the usual notion of braiding in a monoidal category, no naturality is imposed.

Graphically, a braiding component is represented as a braid whose strands are "colored" with the corresponding objects V i , or simply with the indices i (Fig. 1A). The definition allows a j-colored strand to overcross only strands colored with indices i j. The diagrammatic counterpart of the (colored) YBE is now the (colored) third Reidemeister move (Fig. 1B), which is at the heart of braid theory. One can thus work with braided systems by manipulating positive braid diagrams.

Each component of a braided system is a braided object. Even better:

Proposition 2.2. Given a braided category (C, ⊗, I, c), one has, for all r ∈ N, a fully faithful functor

(BrSyst 1 (C)) ×r ֒-→ BrSyst r (C), (V i , σ i ) 1 i r -→ (V 1 , . . . , V r ; σ i,i := σ i , σ i,j := c Vi,Vj for i < j), (5) 
(f i : V i → W i ) 1 i r -→ f := (f i ) 1 i r .
Proof. There are three types of tensor products on which one should check the colored YBE (3) in order to verify that (5) defines a braided system:

1. On V i ⊗ V i ⊗ V i , (3) is simply the YBE for σ i . 2. On V i ⊗ V i ⊗ V j and V i ⊗ V j ⊗ V j , i < j, (3) 
expresses the naturality of c w.r.t. σ i and σ j respectively, which always holds in a braided category. 3. On V i ⊗ V j ⊗ V k , i < j < k, (3) coincides with the YBE for the categorical braiding c, which is again automatic in a braided category. Now, for morphisms, condition (4) is automatic for i < j thanks to the naturality of c, and for i = j it is equivalent to f i being a braided morphism. Thus our functor is well defined, full, and faithful on morphisms.

Observation 2.3. If C is preadditive, then for all r one has a category automorphism 

BrSyst r (C) ∼ ←→ BrSyst r (C), (V ; (σ i,j ) 1 i j r ) ←→ (V ; (-σ i,j ) 1 i j r ), f ←→ f . Definition 2.4. • A right (braided) module over (V , σ) ∈ BrSyst r (C) is an ob- ject M equipped with morphisms ρ = (ρ i : M ⊗ V i → M ) 1 i r satisfying, for all braided module ←→ ρj ρi j i M = ρj ρi j i M σ i,j
1 i j r, ρ j (ρ i ⊗ Id j ) = ρ i (ρ j ⊗ Id i )(Id M ⊗σ i,j ) : M ⊗ V i ⊗ V j → M. (6) 
• Left braided modules and left/right braided comodules, as well as braided (co)module morphisms, are defined in a similar way. • The category of right braided modules and their morphisms is denoted by Mod (V ,σ) . Notation (V ,σ) Mod is used in the left case, and Mod (V ,σ) and

(V ,σ)
Mod in the co-cases.

As shown in Fig. 2, braided modules can be handled by manipulating a particular type of knotted trivalent graphs; see. [START_REF] Kauffman | Invariants of graphs in three-space[END_REF][START_REF] Yamada | An invariant of spatial graphs[END_REF][START_REF] Yetter | Category theoretic representations of knotted graphs in S 3[END_REF] for the theory of the latter.

In this article and in [START_REF] Lebed | R-matrices, Yetter-Drinfel'd modules and Yang-Baxter equation[END_REF] we interpret, among others, algebra bimodules and Hopf and Yetter-Drinfel ′ d modules as modules over certain braided systems.

Observation 2.5. A (V , σ)-module structure on M boils down to a collection of (V i , σ i,i )-module structures on M , compatible in the sense of (6).

Observation 2.6. In an additive category, (V , σ)-modules can also be viewed as modules over the associative algebra T (V ) σ -Id , where

V = V 1 ⊕ V 2 ⊕ • • • ⊕ V r amal-
gamates all the components of our system, and σ -Id is the ideal generated by the images of the maps σ i,j -Id i ⊗ Id j :

V i ⊗ V j → V j ⊗ V i + V i ⊗ V j ֒→ V ⊗ V .
The notions of right and left (V , σ)-modules coincide for the unit object I. Condition [START_REF] Fresse | Théorie des opérades de Koszul et homologie des algèbres de Poisson[END_REF] takes in this case a simpler form (ρ j ⊗ ρ i )σ i,j = ρ i ⊗ ρ j : V i ⊗ V j → I. Definition 2.7. A braided character is a right (= left) (V , σ)-module structure on I.

Example 2.8. In a preadditive C, a braided character ε i on any V i extended to other components by zero becomes a (V , σ)-character.

The invertibility of some of the σ i,j is helpful in extending braided structures. It also allows one to interchange the corresponding components of a braided system without changing the module category: Proposition 2.9. Take (V , σ) ∈ BrSyst r (C) with σ p,p+1 invertible for some p.

1. The family (V 1 , . . . , V p-1 , V p+1 , V p , V p+2 , . . . , V r ), equipped with the old σ i,j on the tensor products V i ⊗ V j with (i, j) = (p + 1, p) and with σ -1 p,p+1 on V p+1 ⊗ V p , is a braided system, denoted by s p (V , σ). 2. The categories of braided modules for the original and the rearranged systems are equivalent:

Mod (V ,σ) ≃ Mod sp(V ,σ) .
Proof. Notation (2) is used throughout the proof.

1. One has to check four types of new instances of the colored YBE.

(a) On V i ⊗ V p+1 ⊗ V p with i < p, the YBE reads

σ 2 i,p+1 σ 1 i,p (σ -1 p,p+1 ) 2 = (σ -1 p,p+1 ) 1 σ 2 i,p σ 1 i,p+1 , or equivalently σ 1 p,p+1 σ 2 i,p+1 σ 1 i,p = σ 2 i,p σ 1 i,p+1 σ 2 p,p+1 .
This is precisely the YBE on V i ⊗ V p ⊗ V p+1 for the original system (V , σ).

The remaining types are similar, and can be summarized as follows: (b) For j > p + 1, the YBE on

V p+1 ⊗ V p ⊗ V j for s p (V , σ) is equivalent to the YBE on V p ⊗ V p+1 ⊗ V j for (V , σ). (c) The YBE on V p+1 ⊗ V p+1 ⊗ V p for s p (V , σ) is equivalent to the YBE on V p ⊗ V p+1 ⊗ V p+1 for (V , σ). (d) The YBE on V p+1 ⊗ V p ⊗ V p for s p (V , σ) is equivalent to the YBE on V p ⊗ V p ⊗ V p+1 for (V , σ). 2.
Given an object M equipped with the morphisms ρ i : M ⊗ V i → M , the list of compatibility conditions (6) one has to check for (V , σ) differs from the list for s p (V , σ) only in the conditions for i = p, j = p + 1:

ρ p+1 (ρ p ⊗ Id p+1 ) = ρ p (ρ p+1 ⊗ Id p )(Id M ⊗σ p,p+1 ) versus ρ p (ρ p+1 ⊗ Id p ) = ρ p+1 (ρ p ⊗ Id p+1 )(Id M ⊗σ -1 p,p+1
). The second one composed with the invertible morphism Id M ⊗σ p,p+1 on the right yields the first one. So the identity functor of C and the permutation ρ p ↔ ρ p+1 of the components of ρ give the announced category equivalence.

Remark 2.10. More generally, fix a permutation θ ∈ S r , and take (V , σ) ∈ BrSyst r (C) with the σ i,j invertible for all i, j reversed by θ. The family (V θ -1 (1) , . . . , V θ -1 (r) ), equipped with the old σ i,j on V i ⊗ V j with θ(i) < θ(j) and with σ -1 i,j on the remaining couples, is a braided system, denoted by θ(V , σ). This yields a partial S r -action on BrSyst r (C) and equivalences between the corresponding braided module categories. Notations s p (V , σ) and θ(V , σ) are motivated by this remark.

Corollary 2.11. Let (V , σ) be a braided system in an additive monoidal C, with σ i,j invertible for all s i < j t. Then one can glue the objects V s , . . . , V t together into V s:t := t i=s V i , and extend the braiding onto (V 1 , . . . , V s-1 , V s:t , V t+1 , . . . , V r ) by putting σ| Vj ⊗Vi := σ -1 i,j for all s i < j t.

Note that the invertibility of σ i,i is not required here even for s i t.

Proof. We consider only the case s = t -1 =: p; the general case follows by induction. The colored YBEs appearing here come from the systems (V , σ) and s p (V , σ), except for the YBE on V p ⊗ V p+1 ⊗ V p and on V p+1 ⊗ V p ⊗ V p+1 . To handle these last two cases, observe that the argument from the proof of Proposition 2.9, Point 1 remains valid for i = p and j = p + 1.

A particular case of Corollary 2.11 yields the gluing procedure for Yang-Baxter operators (or, in our terms, for braided objects), studied by Majid and Markl [START_REF] Majid | Glueing operation for R-matrices, quantum groups and link-invariants of Hecke type[END_REF].

A homology theory for braided systems

We now generalize the braided (co)homology theory, developed in [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF] for braided objects in C, to braided systems (V , σ). In this section C is additive monoidal. In particular, the collection σ assembles into a partial braiding, still denoted by σ, on

V := V 1 ⊕ V 2 ⊕ • • • ⊕ V r ,
and the family ρ defining a right (V , σ)-module M assembles into ρ : M ⊗ V → M .

We first show that the collection σ suffices for a partial version of Rosso's quantum shuffle (co)products [START_REF] Rosso | Groupes quantiques et algèbres de battage quantiques[END_REF][START_REF] Rosso | Integrals of vertex operators and quantum shuffles[END_REF]. Recall that the shuffle sets are the permutation sets

Sh p1,p2,...,p k = θ ∈ S p1+p2+•••+p k θ(1)<θ(2)<...<θ(p1), θ(p1+1)<...<θ(p1+p2), ..., θ(p+1)<...<θ(p+p k ) with p = p 1 + • • • + p k-1 . Think of permuting p 1 + p 2 + • • • + p k
elements preserving the order within k consecutive blocks of size p 1 , . . . , p k , just like when shuffling cards.

Recall further the projection B + n ։ S n sending a generator σ i to the corresponding generator s i , and its set-theoretic Matsumoto section

S n ֒-→ B + n , θ = s i1 s i2 • • • s i k -→ σ i1 σ i2 • • • σ i k , where s i1 s i2 • • • s i k is any of the shortest words representing θ ∈ S n .
Notation 3.1. We denote by B θ the image of θ ∈ S n under this map.

We also need a partial

B + d -action on V d for (V , σ) ∈ BrSyst r (C). For a genera- tor σ i of B + d and a summand V k1 ⊗ . . . ⊗ V k d of V d , k 1 . . . k d , it reads σ i -→ σ i ki,ki+1 = k1 • • • ki ki+1 • • • k d .
Here

σ i ki,ki+1 ∈ Hom C (V k1 ⊗ • • • ⊗ V k d , V k1 ⊗ • • • ⊗ V ki+1 ⊗ V ki ⊗ • • • ⊗ V k d ).
This action agrees with the usual graphical depiction of braids from B + d . Notation 3.2. The partial action described above is denoted by

B + d ∋ b → b σ . Definition 3.3. A degree d (reverse) ordered tensor product for (V , σ) ∈ BrSyst r (C) is a tensor product V k1 ⊗ . . . ⊗ V k d with k 1 . . . k d (respectively, k 1 . . . k d ).
The direct sum of all such products is denoted by

T (V ) → d (respectively, T (V ) ← d ). The T (V ) → d sum up to T (V ) → := T (V 1 ) ⊗ T (V 2 ) ⊗ • • • ⊗ T (V r ), and the T (V ) ← d sum up to T (V ) ← := T (V r ) ⊗ T (V r-1 ) ⊗ • • • ⊗ T (V 1 ).
Armed with these notations, we give multi-versions of quantum shuffle operations.

Definition 3.4. Take a braided system (V , σ) in BrSyst r (C).

• The multi-quantum shuffle product is defined by

¡ σ p,q = θ∈Shp,q (B θ ) σ : T (V ) ← p ⊗ T (V ) ← q → T (V ) ← p+q , (7) 
where

(B θ ) σ (W ⊗ U ) is declared zero when it is undefined or misses the T (V ) ← p+q part of V p+q .
• Dually, the multi-quantum shuffle coproduct is defined by

¢ σ p,q = θ∈Shp,q (B θ -1 ) σ : T (V ) → p+q → T (V ) → p ⊗ T (V ) → q . (8) 
• Replacing Sh p,q with Sh p1,...,p k , one gets morphisms ¡ σ p1,...,p k and ¢ σ p1,...,p k .

Condition [START_REF] Gerstenhaber | Bialgebra cohomology, deformations, and quantum groups[END_REF] should be thought of as the dual of the more intuitive condition [START_REF] Gurevich | Algebraic aspects of the quantum Yang-Baxter equation[END_REF].

For an ordered tensor products

W in T (V ) → p+q , its image ¢ σ p,q (W ) lives in several summands of T (V ) → p ⊗ T (V ) → q .
That is why C has to be additive. The case of rank r = 1 is exceptional: one needs a preadditive C only.

Proposition 3.5. Morphisms (7)-( 8) are well defined, and give an associative multiplication (respectively, a coassociative comultiplication).

Proof. When (reverse) ordered products are fed into formulas ( 7)-( 8), the braiding σ is applied only to products V i ⊗ V j with i j, on which it is defined. The (co)associativity is proved as in the rank 1 case (see [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF]Theorem 1]).

We now explain what we mean by a homology theory for a braided system (V , σ). Definition 3.6.

• A differential for (V , σ) is a morphism family { d n : T (V ) → n → T (V ) → n-1 } n>0 satisfying d n-1 d n = 0 for all n > 1. • A bidifferential for (V , σ) consists of 2 families { d n , d ′ n : T (V ) → n → T (V ) → n-1 } n>0 satisfying d n-1 d n = d ′ n-1 d ′ n = d ′ n-1 d n + d n-1 d ′ n = 0 for all n > 1. • Replacing T (V ) → n with M ⊗ T (V ) → n ⊗ N (
for some objects M and N ) above, one gets the notion of (bi)differentials with coefficients in M and N .

Everything is now ready for constructing a multi-version of braided complexes. Theorem 3.7. Take a braided system (V , σ) in an additive monoidal category C. Let (M, ρ) and (N, λ) be a right and, respectively, left (V , σ)-modules. The morphisms 

( ρ d) n = (ρ ⊗ Id T (V ) → n-1 ⊗N )(Id M ⊗ ¢ -σ 1,n-1 ⊗ Id N ), (d λ ) n = (-1) n-1 (Id M⊗T (V ) → n-1 ⊗λ)(Id M ⊗ ¢ -σ n-1,1 ⊗ Id N ) from M ⊗ T (V ) → n ⊗ N to M ⊗ T (V ) → n-1 ⊗ N then
ρ(ρ ⊗ Id V )(Id M ⊗ ¢ -σ 1,1 ) = 0, λ(Id V ⊗λ)( ¢ -σ 1,1 ⊗ Id N ) = 0. Concretely, writing ¢ -σ instead of Id M ⊗ ¢ -σ ⊗ Id N or ¢ -σ ⊗ Id N for brevity, one has ( ρ d) n;i = σ k1,ki σ ki-1,ki ρ ki M N k1 ki-1 ... ki ki+1 ... kn Figure 3: Braided left differential ( ρ d) n-1 ( ρ d) n = (ρ ⊗ Id ••• ) ¢ -σ 1,n-2 (ρ ⊗ Id ••• ) ¢ -σ 1,n-1 = (ρ ⊗ Id ••• )(ρ ⊗ Id ••• )(Id M⊗V ⊗ ¢ -σ 1,n-2 ) ¢ -σ 1,n-1 (A) = (ρ ⊗ Id ••• )(ρ ⊗ Id ••• )(Id M ⊗ ¢ -σ 1,1 ⊗ Id ••• ) ¢ -σ 2,n-2 = ((ρ(ρ ⊗ Id V )(Id M ⊗ ¢ -σ 1,1 )) ⊗ Id ••• ) ¢ -σ 2,n-2 (B)
= 0, and similarly for d λ . In the same way, one calculates

(d λ ) n-1 ( ρ d) n = (-1) n-2 (ρ ⊗ Id ⊗λ) ¢ -σ 1,n-2,1 = -( ρ d) n-1 (d λ ) n .
The differential ( ρ d) n is a signed sum (due to the negative braiding -σ) of the form The (bi)differentials from the above theorem and corollary are called braided. Remark 3.9.

n i=1 (-1) i-1 ( ρ d) n;i . The term ( ρ d) n;i is presented in
• Braided differentials are functorial. Concretely, take systems (V , σ) and (V ′ , σ ′ ); braided modules (M, ρ) ∈ Mod (V ,σ) , (N, λ) ∈ (V ,σ) Mod, and simi-

larly for (V ′ , σ ′ ); braided morphism f : (V , σ) → (V ′ , σ ′ ); and morphisms ϕ : M → M ′ , ψ : N → N ′ , compatible with f in the sense of ρ ′ i (ϕ ⊗ f i ) = ϕρ i and λ ′ i (f i ⊗ ψ) = ψλ i for all i. Then one has the intertwining diagram M ⊗ T (V ) → n ⊗ N dn ϕ⊗f ⊗n ⊗ψ / / M ′ ⊗ T (V ′ ) → n ⊗ N ′ d ′ n M ⊗ T (V ) → n-1 ⊗ N ϕ⊗f ⊗n-1 ⊗ψ / / M ′ ⊗ T (V ′ ) → n-1 ⊗ N ′
• There is a dual cohomology theory for (V , σ) with coefficients in braided comodules. Here one has to work with T (V ) ← n , since a braiding on (V 1 , . . . , V r ) in C corresponds to a braiding on the reversed system (V r , . . . , V 1 ) in C op .

• Braided bidifferentials refine to a precubical structure, enriched with degeneracies if the braided system carries a "good" comultiplication (i.e., compatible with σ and σ-cocommutative); see [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF] for details in the braided object case.

• Braided differentials ( ρ d) n (or (d λ ) n ) can be defined with coefficients on one side only, i.e., on

M ⊗ T (V ) → n (or T (V ) → n ⊗ N ). Notation 3.10. The obvious morphism from (V i1 ⊗ • • • ⊗ V is ) ⊗ (V j1 ⊗ • • • ⊗ V jt ) to (V j1 ⊗ • • • ⊗ V jt ) ⊗ (V i1 ⊗ • • • ⊗ V is )
, induced by σ and diagrammatically presented as , is denoted by σ. (Here we suppose i n j m for all n, m, so that σ is applicable to V in ⊗ V jm .) Proposition 3.11. Take a braided system (V , σ) ∈ BrSyst r (C) and cut it at some level t, 1 t r. That is, consider the (1, t)-subsystem (V , σ) [1, t]. Denote it by (V ′ , σ). Take also a braided module

(M, ρ) ∈ Mod (V ,σ) . 1. For any n, M ⊗ T (V ′ ) → n is a (V , σ)[t, r]-module: for t i r, define ρ π i = (ρ i ⊗ Id T (V ′ ) → n )(Id M ⊗σ T (V ′ ) → n ,Vi ) : M ⊗ T (V ′ ) → n ⊗ V i → M ⊗ T (V ′ ) → n .
2. The braided differentials ρ d on (V ′ , σ) with coefficients in M are braided module morphisms for the structure above.

Proof. Let us prove the compatibility relation ( 6) for ρ π i and ρ π j with t i j r.

Working on M ⊗ T (V ′ ) → n ⊗ V i ⊗ V j ,
and using notation (2), one gets

ρ π i ( ρ π j ⊗ Id i )(Id M⊗T (V ′ ) → n ⊗σ i,j ) = ρ 1 i σ 2 T (V ′ ) → n ,Vi ρ 1 j σ 2 T (V ′ ) → n ,Vj σ n+2 i,j = ρ 1 i ρ 1 j σ 2 T (V ′ ) → n ,Vj ⊗Vi σ n+2 i,j (A) = ρ 1 i ρ 1 j σ 2 i,j σ 2 T (V ′ ) → n ,Vi⊗Vj (B) = ρ 1 j ρ 1 i σ 2 T (V ′ ) → n ,Vi⊗Vj = ρ 1 j σ 2 T (V ′ ) → n ,Vj ρ 1 i σ 2 T (V ′ ) → n ,Vi = ρ π j ( ρ π i ⊗ Id j )
, where (A) is a repeated application of (3), and (B) follows from relation [START_REF] Fresse | Théorie des opérades de Koszul et homologie des algèbres de Poisson[END_REF] for ρ i and ρ j . The compatibility between ρ π i and ρ d, t i r, is verified similarly.

Applied to a braided object (V, σ) and a braided character on it, Proposition 3.11 endows all the tensor powers V n with a braided (V, σ)-module structure. Inspired by this example, we call adjoint the braided modules from the proposition.

A proto-example: braided systems of algebras

The braided systems studied in this section have unital associative algebras (UAAs) as components V i . We exhibit a bijection between such systems and braided tensor products of algebras, identifying braided modules over the former with usual modules over the latter. Proposition 2.9 then yields rules for permuting the factors of braided tensor products of algebras. Examples will follow. In this section C is monoidal, not necessarily additive.

The braidings we use in the associative setting come with additional structure: Definition 4.1.

• Denote by BrSyst ↓ r (C) the category of braided systems (V , σ) ∈ BrSyst r (C) enriched with distinguished morphisms ν = (ν i : I → V i ) 1 i r , called units, and morphisms from BrSyst r (C) preserving the units.

Objects (V , σ, ν) of BrSyst ↓ r (C) are called rank r pointed braided systems.

• A right module over (V , σ, ν) ∈ BrSyst ↓ r (C) is a right (V , σ)-module (M, ρ) sat- isfying ρ i (Id M ⊗ν i ) = Id M
for 1 i r (i.e., units act trivially). The category of such modules and their morphisms is denoted by Mod (V ,σ,ν) . Similar definitions and notations are assumed for left modules.

We now show that different aspects of the UAA structure for (V, µ, ν) are captured by the associativity braiding

σ Ass := ν ⊗ µ : V ⊗ V = I ⊗ V ⊗ V → V ⊗ V.
When working with several UAAs, notation σ Ass (V ) or σ Ass (V, µ, ν) helps avoid confusion. The category of UAAs and algebra morphisms in C is denoted by Alg(C). 

Alg(C) ֒-→ BrSyst ↓ 1 (C) (9) (V, µ, ν) -→ (V, σ Ass , ν), f -→ f.
2. The associativity braiding σ Ass is idempotent: σ Ass σ Ass = σ Ass . 3. The YBE for σ Ass is equivalent to the associativity for µ, under the assumption that ν is a unit for µ (i.e., µ(

Id V ⊗ν) = µ(ν ⊗ Id V ) = Id V ). 4. For a UAA (V, µ, ν) in C, one has an equivalence of right module categories Mod (V,µ,ν) ∼ ←→ Mod (V,σAss,ν) (M, ρ) ←→ (M, ρ),
where on the left one considers usual modules over UAAs, and on the right the pointed version of braided modules. 5. Let C be preadditive. For a module (M, ρ) ∈ Mod (V,µ,ν) ≃ Mod (V,σAss,ν) , the left braided differential ρ d on (M ⊗ V n ) n 0 coincides with the classical bar differential

d n = ρ 1 + n-1 i=1 (-1) i µ i . Remark 4.3.
• A more elegant functor Alg(C) → BrSyst 1 (C) is obtained by composing (9) with a forgetful functor; however, it is not full.

• Point 2 shows that the braiding σ Ass is highly non-invertible in general.

• The equivalence in 3 holds under a mild unitality assumption; such normalization conditions are ubiquitous in our braided approach. • Point 4 for M = I ensures that an algebra character is a braided character.

• Dualizing, one recovers the category of coalgebras in C inside the category of co-pointed (= endowed with a distinguished co-element) braided objects:

coAlg(C)֒-→ BrSyst ↑ 1 (C), (V, ∆, ε) -→ (V, σ coAss = ε ⊗ ∆, ε), f -→ f.
The algebra-coalgebra duality in a preadditive C can now be seen inside the category of bipointed braided objects BrSyst 1 (C). Indeed, this category is selfdual, the notion of braiding being so; and it encompasses both Alg(C) and 

σ Ass ←→ µ ν σ r Ass ←→ µ ν
coAlg(C) ֒-→ BrSyst 1 (C) ←-֓ Alg(C).
• In the theorem, the associativity braiding can be replaced with its right version σ r Ass := µ ⊗ ν. In this case left modules should be taken as coefficients in the last point. The diagrams of the two associativity braidings are shown in Fig. 4.

From now on, we work with several interacting UAAs V i . After some technical definitions, we study compatibilities between the braidings σ Ass (V i ), and interpret them in terms of (a multi-version of) braided tensor products of algebras. Definition 4.4.

• Take a V ∈ Ob(C). A pair of morphisms (η :

I → V, ǫ : V → I) is called normalized if ǫη = Id I . • Take V, W ∈ Ob(C). A morphism ξ : V ⊗ W → W ⊗ V is natural with respect to a morphism ϕ : V n → V m (or ψ : W n → W m ) if ξ 1 • • • ξ m (ϕ ⊗ Id W ) = (Id W ⊗ϕ)ξ 1 • • • ξ n
(recall Notation (2)), or, respectively,

ξ m • • • ξ 1 (Id V ⊗ψ) = (ψ ⊗ Id V )ξ n • • • ξ 1 .
In the case V = W both conditions are required.

The naturality conditions for n = 1, m = 2 and V = W are diagrammatically presented in Fig. 5. In this example, one recovers two of the six Reidemeister moves from the theory of knotted trivalent graphs [START_REF] Kauffman | Invariants of graphs in three-space[END_REF][START_REF] Yamada | An invariant of spatial graphs[END_REF][START_REF] Yetter | Category theoretic representations of knotted graphs in S 3[END_REF]. Theorem 4.5. In a monoidal category C, take UAAs (V i , µ i , ν i ) 1 i r , and morphisms ξ i,j , 1 i < j r, natural with respect to ν i and ν j . Let each unit ν i be a part of a normalized pair (ν i , ǫ i ). Then the following statements are equivalent:

(A) The morphisms ξ i,i := σ Ass (V i ), 1 i r, complete the ξ i,j and the ν i into a pointed braided system structure on V . (B) Each ξ i,j is natural with respect to µ i and µ j , and, for each triple i < j < k, the ξ satisfy the YBE on

V i ⊗ V j ⊗ V k . (C) A UAA structure on ← - V := V r ⊗ V r-1 ⊗ • • • ⊗ V 1 can be defined by putting µ← - V = (µ r ⊗ • • • ⊗ µ 1 )ξ 2r-2 1,2 (ξ 2r-4 2,3 ξ 2r-3 1,3 ) • • • (ξ 2 r-1,r • • • ξ r-1 2,r ξ r 1,r ), ( 10 
)
ν← - V = ν r ⊗ ν r-1 ⊗ • • • ⊗ ν 1 . ( 11 
)
3 2 1 3 2 1 3 2 1 µ3 µ2 µ1 A j i i j i i = j i i j i i B j i i j i = j i i j i C Figure 6: Braided tensor product of UAAs; YBE on V i ⊗ V i ⊗ V j ; naturality w.r.t. µ i
The multiplication [START_REF] Hlavatý | Solution of the Yang-Baxter system for quantum doubles[END_REF] for r = 3 is diagrammatically presented in Fig. 6A. Note the inverse component order in the definition of ← -V , ensuring that µ← - V is well-defined.

Proof. We show that assertions (A) and (C) are both equivalent to (B).

Start with (A). The YBE on each 6B for a graphical version). But this is equivalent to ξ i,j being natural w.r.t. µ i (Fig. 6C): compose the former with Id j ⊗µ i to get the latter, and compose the latter with (ξ i,j ⊗ Id i )(ν i ⊗ Id j ⊗ Id i ) to get the former (in each case, use the naturality of ξ i,j w.r.t. the units to pull the truncated strands out of all crossings). Similarly, the YBE on V i ⊗ V j ⊗ V j , i < j, is equivalent to ξ i,j being natural w.r.t. µ j . This yields the equivalence (A) ⇔ (B).

V i ⊗ V i ⊗ V i is guaranteed by Theorem 4.2. On V i ⊗ V i ⊗ V j with i < j, the YBE becomes (ξ i,j ⊗ Id i )(Id i ⊗ξ i,j )(ν i ⊗ µ i ⊗ Id j ) = (Id j ⊗ν i ⊗ µ i )(ξ i,j ⊗ Id i )(Id i ⊗ξ i,j ) (see Fig.
To conclude, we need the equivalence (C) ⇔ (B). It compares local and global properties of a braided system of UAAs. The following maps relate these two scales:

ι j = ν r ⊗ • • • ⊗ ν j+1 ⊗ Id j ⊗ν j-1 ⊗ • • • ν 1 : V j → ← - V . ( 12 
)
Given a collection ξ i,j from (B), one checks (e.g., graphically) that µ← - V and ν← - V from (C) define a UAA structure. This generalizes the verifications necessary to define the tensor product of algebras in a braided category. To show that all the conditions from (B) are needed, consider the associativity relation for µ← - V composed with

• either ι i ⊗ ι j ⊗ ι k : V i ⊗ V j ⊗ V k → ← - V 3
on the right and the ǫ t at all the positions except for i, j, k on the left (this gives the YBE on

V i ⊗ V j ⊗ V k , i < j < k); • or ι i ⊗ ι i ⊗ ι j : V i ⊗ V i ⊗ V j → ← - V 3
on the right and the ǫ t at all the positions except for i, j on the left (this gives the naturality of ξ i,j w.r.t. µ i );

• or ι i ⊗ ι j ⊗ ι j : V i ⊗ V j ⊗ V j → ← - V ⊗3
on the right and the ǫ t at all the positions except for i, j on the left (this gives the naturality of ξ i,j w.r.t. µ j ).

For example, in the second case the naturality of the ξ w.r.t. the units yields (ass-ty for µ← -

V )(ι i ⊗ ι i ⊗ ι j ) = (ι j ⊗ ν← - V ⊗ ι i )(nat-
ty condition from Fig. 6C). Applying the ǫ t , one gets rid of the term (ι j ⊗ µ← - V ⊗ ι i ).

The theorem gives a braided (A), an associative (C), and a mixed (B) interpretation of the same phenomenon. For certain structures, associativity verification can be considerably simplified by checking (A) or (B) instead. Definition 4.6. A braided system of the type described in the theorem is called a (pointed) braided system of UAAs, and the UAA ← -V is called the braided tensor product of the UAAs V 1 , . . . , V r , denoted (abusively) by

← - V = V r ⊗ ξ V r-1 ⊗ ξ • • • ⊗ ξ V 1 .
Remark 4.7. The ǫ i were used only to prove (C) ⇒ (B), i.e., to go from the global setting to the local. One could instead impose (C) for all subsystems of V , and work in appropriate subsystems instead of composing with the ǫ i . In particular, for r = 2 the theorem holds true even without the normalized pair condition.

Remark 4.8. Some or all of the morphisms ξ i,i = σ Ass (V i ) can be replaced with their right versions σ r Ass (V i ). The theorem still holds true, with analogous proof. Example 4.9. Take UAAs V i in a braided category C, and put ξ i,j = c Vi,Vj . The categorical braiding c is natural w.r.t. everything, in particular the units. Proposition 2.2 then translates as condition (A) from the theorem. The UAA structure on ← -V deduced from (C) recovers the usual tensor product of algebras in a braided category.

In an additive category, the braided tensor product ← -V is alternatively described as T (⊕ i V i ) σ -Id, ν -Id , where the ideal we mod out is generated by the images of σ i,j -Id i ⊗ Id j and ν i -Id i . Observation 2.6 then suggests a representation-theoretic counterpart for the structure equivalence from Theorem 4.5. More generally, Proposition 4.10. In the settings of Theorem 4.5, the category of modules over the pointed braided system from (A) is equivalent to the category of modules over the algebra ← -V from (C):

Mod (V ,ξ,ν) ≃ Mod ( ← - V ,µ← - V ,ν← - V )
. Proof. Observation 2.5 combined with Point 4 of Theorem 4.2 interpret a module structure over (V , ξ, ν) as module structures (M, ρ j ) over UAAs (V j , µ j , ν j ), compatible in the sense of [START_REF] Fresse | Théorie des opérades de Koszul et homologie des algèbres de Poisson[END_REF]. The map

ρ = ρ 1 (ρ 2 ⊗ Id 1 ) • • • (ρ r ⊗ Id r-1 ⊗ • • • ⊗ Id 1 ) then turns M into a ← - V -module.
Conversely, a ← -V -module (M, ρ) becomes a (V , ξ, ν)-module via ρ j = ρ(Id M ⊗ι j ), where the ι j are defined in [START_REF] Kauffman | Invariants of graphs in three-space[END_REF]. The identity functor of C and this structure correspondence give the desired category equivalence.

We now discuss factor permutation in braided tensor products of UAAs. Proposition 4.11. In the settings of Theorem 4.5, suppose one of the ξ i,i+1 invertible. Then 1. The UAAs V 1 , . . . , V i-1 , V i+1 , V i , V i+2 . . . , V r endowed with the ξ from the system V , completed with ξ -1 i,i+1 on V i+1 ⊗ V i , still form a braided system of UAAs. 2. The braided tensor products ← -V and

s i • ← - V := V r ⊗ ξ • • • ⊗ ξ V i+2 ⊗ ξ V i ⊗ ξ -1 V i+1 ⊗ ξ V i-1 ⊗ ξ • • • ⊗ ξ V 1
are related by the algebra isomorphism (abusively denoted by s i )

Id r ⊗ . . . ⊗ Id i+2 ⊗ξ -1 i,i+1 ⊗ Id i-1 ⊗ . . . ⊗ Id 1 : ← - V -→ s i • ← - V .
3. The algebra isomorphism above induces an equivalence of modules categories: 1. Proposition 2.9 allows to swap the components V i and V i+1 of the pointed braided system (V , ξ, ν) from Theorem 4.5 (A). The new system s i (V , ξ, ν) still satisfies the conditions from Theorem 4.5 (A), and is thus a braided system of UAAs (the naturality of ξ -1 i,i+1 w.r.t. the units follows from that of ξ i,i+1 ). 2. Theorem 4.5 (C) then gives a UAA structure on s i ( ← -V ). Applying the YBE several times, one sees that, in order to check that Id r ⊗ . . . ⊗ ξ -1 i,i+1 ⊗ . . . ⊗ Id 1 is an algebra morphism, it is sufficient to work with V i and V i+1 only. Namely, one has to prove the identity ξ -1 i,i+1 (ν i+1 ⊗ ν i ) = ν i ⊗ ν i+1 , which follows from the naturality of ξ -1 i,i+1 w.r.t. the units, and from the equality 7). The latter results from the naturality of ξ i,i+1 (and hence ξ -1 i,i+1 ) w.r.t. µ i and µ i+1 (Theorem 4.5 (B)). 3. (The proofs of) Propositions 2.9 and 4.10 yield the category equivalences

Mod← - V ∼ ←→ Mod si• ← - V , (M, ρ← - V ) ←→ (M, ρ← - V (Id M ⊗s -1 i )). i i+1 i i+1 µi+1 µi ξ -1 ξ -1 ξ -1 = i i+1 i i+1 µi+1 µi ξ ξ -1
(µ i ⊗ µ i+1 )(Id i ⊗ξ -1 i,i+1 ⊗ Id i+1 )(ξ -1 i,i+1 ⊗ ξ -1 i,i+1 ) = ξ -1 i,i+1 (µ i+1 ⊗ µ i )(Id i+1 ⊗ξ i,i+1 ⊗ Id i ) of morphisms (V i+1 ⊗ V i ) 2 → V i ⊗ V i+1 (Fig.
Mod← - V ≃ Mod (V ,ξ,ν) ≃ Mod si(V ,ξ,ν) ≃ Mod si( ← - V ) (M, ρ← - V ) ←--------→ (M, ρ← - V (Id M ⊗s -1 i
)) Remark 4.12. As in Remark 2.10, one gets partial S r -actions on rank r braided systems and braided tensor products of UAAs. Concretely, a permutation θ ∈ S r with a minimal decomposition θ

= s i1 • • • s i k sends (V , ξ, ν) to s i1 (• • • (s i k (V , ξ, ν)) • • • ),
and acts on UAA braided tensor products by the algebra morphism s i1 • • • s i k (still denoted by θ), provided that the braiding components are invertible when necessary. These actions are mutually compatible, and induce module category equivalences via (M, ρ← - V ) ↔ (M, ρ← - V (Id M ⊗θ -1 )). As a first illustration of the braided system theory, we now upgrade Theorem 4.2 to the rank 2 level. A braided category (C, ⊗, I, c) is needed here.

For (V, µ, ν) ∈ Alg(C), the data (µc V,V , ν) define another, twisted UAA structure on V , denoted by V op . The associativity braiding becomes here σ Ass (V op ) = ν ⊗ (µc V,V ). This twisting is used to relate left and right modules: Lemma 4.13. For (V, µ, ν) ∈ Alg(C), the functors

Mod V op ∼ ←→ V Mod, (M, ρ) -→ (M, L(ρ) := ρc -1 M,V ), ( 13 
) (M, R(λ) := λc M,V ) - → (M, λ), (14) 
extended by identities on morphisms, yield a category equivalence.

Take now two UAAs (V, µ, ν) and (V ′ , µ ′ , ν ′ ). Returning to Example 4.9, one gets Lemma 4.14. The data

(V 1 = V, V 2 = V ′ ; σ 1,1 = σ Ass (V ), σ 2,2 = σ Ass (V ′op ), σ 1,2 = c V,V ′
) define a braided system of UAAs, denoted by BM(V, V ′ ).

The proofs of the above lemmas are straightforward. The module category equivalence from Proposition 4.10 and permutation rules from Proposition 4.11 apply to BM(V, V ′ ). Using Observation 2.5 and Lemma 4.13, one interprets braided modules over this system as familiar algebra bimodules: Proposition 4.15. Take UAAs (V, µ, ν) and (V ′ , µ ′ , ν ′ ) in a braided category C. Let V ′Mod V be the category of (V ′ , V )-bimodules. The following categories are equivalent:

Mod V ′op ⊗ c V ≃ Mod BM(V,V ′ ) ≃ V ′ Mod V ≃ Mod s2(BM(V,V ′ )) ≃ Mod V ⊗ c -1 V ′op . Note that V op ⊗ c
V is the enveloping algebra of the algebra V .

We then apply adjoint module theory to our bimodules. Recall Notation (2).

Proposition 4.16. Take a bimodule (M, ρ :

M ⊗ V → M, λ : V ′ ⊗ M → M ) over UAAs V and V ′ in a braided category C. The bar complex (M ⊗ T (V ), d bar ) for V with coefficients in M is a complex in V ′Mod V .
In other words, the differentials (d bar ) n are bimodule morphisms, where a bimodule structure on M ⊗ V n is given by

ρ bar = µ n+1 : M ⊗ V n ⊗ V → M ⊗ V n , λ bar = λ 1 : V ′ ⊗ M ⊗ V n → M ⊗ V n .
Proof. Plug into Proposition 3.11 the system BM(V, V ′ ), the bimodule (M, ρ, λ) (interpreted as a BM(V, V ′ )-module via Proposition 4.15), and t = 2. One obtains the compatibility of the braided differential ρ d = d bar (cf. Theorem 4.2, Point 5) with the braided BM(V, V ′ )-module structures on the M ⊗ V n . Using Proposition 4.15 again, one interprets these braided modules as (V ′ , V )-bimodules, with the explicit structure from Lemma 4.13:

ρ π 1 = ρ 1 (Id M ⊗σ V n ,V ) = µ n+1 , λ( R(λ) π 2 ) = R(λ) π 2 c -1 M⊗V n ,V ′ = (λc M,V ′ ) 1 (Id M ⊗σ V n ,V ′ )c -1 M⊗V n ,V ′ = (λc M,V ′ ) 1 (Id M ⊗c V n ,V ′ )c -1 M⊗V n ,V ′ = λ 1 .
This bimodule structure on the bar complex is fundamental for interpreting the Hochschild (co)homology via the differential induced on coinvariants by d bar .

A braided interpretation of crossed products

We now present a rank 3 braided system. It recovers Panaite's braided treatment of two-sided crossed products [START_REF] Panaite | Hopf bimodules are modules over a diagonal crossed product algebra[END_REF], and its extension [START_REF] Martínez | On iterated twisted tensor products of algebras[END_REF] to the generalized two-sided crossed products A◮<C>◭B of Bulacu-Panaite-Van Oystaeyen [START_REF] Bulacu | Generalized diagonal crossed products and smash products for quasi-Hopf algebras[END_REF]. Our component permutation technique yields 6 isomorphic versions of the algebra A◮<C>◭B. This extends algebra isomorphisms from [START_REF] Panaite | Hopf bimodules are modules over a diagonal crossed product algebra[END_REF][START_REF] Martínez | On iterated twisted tensor products of algebras[END_REF], and simplifies their originally very technical proof. Further, our adjoint module machinery yields a (B, A)-bimodule structure on C n , used for constructing a bialgebra homology theory in Section 6.

First, we need categorical versions of some basic algebraic notions. • A bialgebra in a braided category (C, ⊗, I, c) is an object H endowed with a UAA structure (µ, ν) and a counital coassociative coalgebra (= coUAA) structure (∆, ε), compatible in the following sense:

∆µ = (µ ⊗ µ)c 2 (∆ ⊗ ∆), ∆ν = ν ⊗ ν, εµ = ε ⊗ ε, εν = Id I . (15) 
It is a Hopf algebra if it carries an antipode, i.e., an endomorphism s satisfying

µ(s ⊗ Id H )∆ = µ(Id H ⊗s)∆ = νε. (16) 
• For a bialgebra H in C, a left H-module algebra is a UAA (M, µ M , ν M ) endowed with a left H-module structure λ : H ⊗ M → M , such that µ M and ν M are Hmodule morphisms (Fig. 8): 

λ(Id H ⊗µ M ) = µ M (λ ⊗ λ)c 2 (∆ ⊗ Id ⊗2 M ), λ(Id H ⊗ν M ) = ν M ε. (17) 
ξ 1,2 = (Id C ⊗ρ)(c B,C ⊗ Id H )(Id B ⊗δ r ), ξ 1,3 = c B,A , ξ 2,3 = (λ ⊗ Id C )(Id H ⊗c C,A )(δ l ⊗ Id A ).
2. Formulas (10)-( 11) for the ξ i,j above define a UAA structure on A ⊗ C ⊗ B.

One has a module category equivalence Mod

(B,C,A;ξ) ≃ Mod A⊗ ξ C⊗ ξ B .
The braiding from the proposition is shown in Fig. 9. Here and below the underlying braiding of a symmetric category is depicted by a solid crossing.

Proof. The key point is to verify the conditions of Theorem 4.5 (B) for the ξ:

• The YBE on B ⊗ C ⊗ A rewrites (using the naturality of c) as

(L(ρ) ⊗ Id M ⊗R(λ))(Id A ⊗δ l,r ⊗ Id B )p = (L(ρ) ⊗ Id M ⊗R(λ))(Id A ⊗δ r,l ⊗ Id B )p.
Here p = (c C,A ⊗ Id B )(Id C ⊗c B,A )(c B,C ⊗ Id A ); L and R are defined by ( 13)-( 14); δ l,r = (δ l ⊗ Id H )δ r and δ r,l = (Id H ⊗δ r )δ l are morphisms C → H ⊗ C ⊗ H. Now, the left-right H-coaction compatibility for C yields δ l,r = δ r,l .

• The naturality of the ξ w.r.t. the µ is a consequence of the defining properties of H-(bico)module algebras. Here we show that ξ 1,2 is natural w.r.t. µ B , the other cases being analogous:

ξ 1,2 (µ B ⊗ Id C ) 1 = (Id C ⊗ρ)(c B,C ⊗ Id H )(µ B ⊗ δ r ) 2 = (Id C ⊗ρ)(Id C ⊗µ B ⊗ Id H )(c B⊗B,C ⊗ Id H )(Id ⊗2 B ⊗δ r ) 3 = (Id C ⊗µ B )(Id C ⊗ρ ⊗2 )(Id C⊗B ⊗c B,H ⊗ Id H )(c B⊗B,C ⊗ ∆ H )(Id ⊗2 B ⊗δ r ) 4 = (Id C ⊗µ B )(Id C ⊗ρ ⊗ Id B )(c B,C ⊗ Id H⊗B )(Id B ⊗δ r ⊗ ρ) (Id B ⊗c B,C ⊗ Id H )(Id ⊗2 B ⊗δ r ) 5 = (Id C ⊗µ B )(ξ 1,2 ⊗ Id B )(Id B ⊗ξ 1,2 ).
We used the definition of ξ 1,2 (steps 1 and 5), the naturality of c (2), the definition of right H-module algebra for B (3) and that of right H-comodule for C (4). The easiest way to follow this proof is to draw diagrams! • Similarly, the naturality of the ξ w.r.t. the units follows from the naturality of c and from the definition of H-(co)module algebras. Theorem 4.5 (A) then confirms that the ξ together with the σ Ass form a braiding, while Point (C) asserts that A⊗ ξ C⊗ ξ B is an UAA. Finally, Proposition 4.10 gives the required module category equivalence.

Our proposition recovers the generalized two-sided crossed product A◮<C>◭B := A⊗ ξ C⊗ ξ B from [START_REF] Bulacu | Generalized diagonal crossed products and smash products for quasi-Hopf algebras[END_REF]. The choice C = H (with ∆ H as coactions) yields the twosided crossed product A#H#B := A⊗ ξ H⊗ ξ B of Hausser-Nill [START_REF] Hausser | Diagonal crossed products by duals of quasi-quantum groups[END_REF]. We thus replace the original technical associativity and module-category-equivalence verifications for A◮<C>◭B with a more conceptual proof.

Further, forgetting the B (or A) part of the structure and taking as C a left (respectively, right) H-comodule, one obtains rank 2 braided systems. This gives a braided treatment of (a generalized version of) left / right crossed (or smash) products A#H := A⊗ ξ H and H#B := H⊗ ξ B.

If H has an invertible antipode s, then all the ξ are invertible:

ξ -1 1,2 = ((ρc H,B ) ⊗ Id C )(s -1 ⊗ c C,B )((c C,H δ r ) ⊗ Id B ), ξ -1 1,3 = c A,B , ξ -1 2,3 = (Id C ⊗(λc A,H ))(c A,C ⊗ s -1 )(Id A ⊗(c H,C δ l )
). Proposition 4.11 then allows to permute the components of A⊗ ξ C⊗ ξ B, producing six pairwise isomorphic UAAs with pairwise equivalent module categories. In particular, one recovers the algebra isomorphism A#H#B ≃ (A ⊗ B) ⊲⊳ H from [START_REF] Hausser | Diagonal crossed products by duals of quasi-quantum groups[END_REF]. Next, after a preliminary general lemma, we apply our adjoint braided module theory to the braided system from Proposition 5.2, with trivial coefficients M = I. Lemma 5.3. Take a rank r braided system (V , σ) in a symmetric category (C, ⊗, I, c), with σ 1,r = c V1,Vr . For this system, take two braided characters ǫ and ζ. Then the right (V r , σ r,r )-module structure ǫ π r and the left

(V 1 , σ 1,1 )-module structure π ζ 1 on T (V ) → n commute: ǫ π r (π ζ 1 ⊗ Id r ) = π ζ 1 (Id 1 ⊗ ǫ π r ) : V 1 ⊗ T (V ) → n ⊗ V r → T (V ) → n . Proof.
The categorical braiding c is natural w.r.t. the components ǫ r and ζ 1 of our braided characters. This allows to rewrite the desired identity as

(ǫ r ⊗ Id T (V ) → n ⊗ζ 1 )(σ T (V ) → n ,Vr ⊗ Id 1 )σ V1,T (V ) → n ⊗Vr = (ǫ r ⊗ Id T (V ) → n ⊗ζ 1 )(Id r ⊗σ V1,T (V ) → n )σ V1⊗T (V ) → n ,
Vr , which is checked by a repeated application of the YBE.

We now return to two-sided crossed products. Recall the notation ϕ i from (2). Put

ω 2n = 1 2 ... n n+1 n+2 ... 2n 1 3 ... 2n-1 2 4 ... 2n ∈ S 2n . ( 18 
)
Proposition 5.4. In the settings of Proposition 5.2, choose algebra characters ǫ A and ǫ B for A and B. The morphisms below turn the tensor powers C n into bimodules: 10), where S 2n acts on C 2n via the symmetric braiding c, and the notation (µ i ) (k) stands for the map µ i iterated k times.

ǫA π = (ǫ A ) 1 λ 1 (Id H ⊗c C n ,A )(µ 1 ) (n-1) ((ω -1 2n δ ⊗n l ) ⊗ Id A ) : C n ⊗ A → C n , π ǫB = (ǫ B ) n+1 ρ n+1 (c B,C n ⊗ Id H )(µ n+2 ) (n-1) (Id B ⊗(ω -1 2n δ ⊗n r )) : B ⊗ C n → C n (Fig.
Proof. Observe that for Point 1 of Proposition 3.11 to hold true, the additivity of C is not necessary, and the module M can be taken in Mod (V ,σ)[t,r] instead of Mod (V ,σ) . Thus apply Proposition 3.11 and its mirror version to the braided system of UAAs (B, C, A) from Proposition 5.2 and to the algebra characters (hence braided characters) ǫ A and ǫ B . One gets right (A, σ Ass (A))-module structures and left (B, σ Ass (B))module structures on all the B k ⊗ C n ⊗ A m , and hence on C n . Further, since the ξ 1,2 and ξ 2,3 components of the braiding on (B, C, A) are natural w.r.t. the units of A and B, these units act on C n trivially. Theorem 4.2 then ensures that our braided module structures on C n are actually module structures over the UAAs A and B, which are easily checked to coincide with the desired ones. Compatibility between Aand B-actions follows from Lemma 5.3. The data H op := (H, µc -1 , ν, ∆, ε) and

V * V * V ev ∆ * = V * V * V ev ∆ A M V * δ co := ev δ M V * B ρ δ = M H M H ρ δ µ ∆ c C M H M H
H cop := (H, µ, ν, c -1 ∆, ε) define bial- gebras in (C, ⊗, I, c -1
). The data H op,cop := (H, µc -1 , ν, c∆, ε) and H cop,op := (H, µc, ν, c -1 ∆, ε) define bialgebras in (C, ⊗, I, c). 2. If H is a Hopf algebra with an antipode s, then so are H op,cop and H cop,op , with the same antipode. If s is invertible, then s -1 is an antipode for H op and H cop . 3. One has the following bialgebra or Hopf algebra isomorphisms:

(H op ) * ≃ (H * ) cop , (H cop ) * ≃ (H * ) op , (H op,cop ) * ≃ (H * ) cop,op .
Notation 6.2. Twisted (co)multiplication is denoted by

µ op = µc -1 , ∆ cop = c -1 ∆.
Depending on the context, notations H, H * , H op , etc. will denote the corresponding bialgebra, Hopf algebra, (co)algebra, or vector space. Lemma 4.13 allows one to switch between left V -modules and right V op -modules. We now give an analogous transition tool for modules and comodules. Lemma 6.3. For a coalgebra V in vect k , the following functors (completed by identities on morphisms) yield a category equivalence:

Mod V ∼ ←→ Mod V * , (M, δ) -→ (M, δ co := (Id M ⊗ev)(δ ⊗ Id V * )), (19) 
(M,

ρ co := (ρ ⊗ Id V )(Id M ⊗coev)) - → (M, ρ). ( 20 
)
The proof is routine and is best done graphically. A diagrammatic version of the transformation [START_REF] Majid | Glueing operation for R-matrices, quantum groups and link-invariants of Hecke type[END_REF] is given in Fig. 11B. With the arched dualities, one would have to take the category Mod (V * ) op on the right. Convention 6.4. Here and below thin lines stand for the basic vector space, dashed lines for its dual, and thick colored lines for different types of modules over it. Lemma 6.5. For a bialgebra H in vect k , the functors from Lemmas 4.13 and 6.3 induce category equivalences

ModAlg H ∼ ←→ ModAlg (H * ) cop , H ModAlg ∼ ←→ ModAlg H op .
We now include the groupoid * Bialg(vect k ) of bialgebras and bialgebra isomorphisms in vect k into the groupoid of bipointed rank 2 braided systems in vect k , taking inspiration from the pointed rank 1 system interpretation of UAAs (Theorem 4.2). Definition 6.6. Given a monoidal category C, let * BrSyst r (C) be the category of

• rank r bipointed braided systems, i.e., (V , σ) ∈ BrSyst r (C) enriched with distinguished morphisms ν = (ν i : I → V i ) 1 i r and ε = (ε i : V i → I) 1 i r , called units and counits, forming normalized pairs (ν i , ε i ) for all i, and 

σ 1,1 ←→ µ ν σ 1,2 ←→ ev ∆ µ * σ 2,2 ←→ ∆ * ε *
δρ = (ρ ⊗ µ)(Id M ⊗c H,H ⊗ Id H )(δ ⊗ ∆) : M ⊗ H → M ⊗ H. (21) 
The category of such modules and their morphisms is denoted by Mod H H .

An important example of H-Hopf module is H itself, with ρ = µ H , δ = ∆ H . We now return to our category vect k , omitted in further notations.

Theorem 6.8. 1. One has a fully faithful functor

F : * Bialg ֒-→ * BrSyst 2 (22) 
(H, µ, ν, ∆, ε) -→B(H) := (V 1 := H, V 2 := H * ; σ 1,1 := σ r Ass (H), σ 2,2 := σ Ass (H * ), σ 1,2 = σ bi ; ν, ε * ; ε, ν * ), f -→(f, (f -1 ) * ),
where σ bi (h ⊗ l) = l (1) , h (2) l (2) ⊗ h (1) (Fig. 12).

2. For a bialgebra H, σ bi is invertible if and only if H has an antipode.

3. Take an H ∈ vect k with UAA and coUAA structures (µ, ν) and (∆, ε). Suppose the pair (ν, ε) normalized. Then the YBE on H ⊗ H ⊗ H * (symmetrically, on H ⊗ H * ⊗ H * ) for B(H), together with the naturality of σ bi with respect to the units, are equivalent to the bialgebra compatibility conditions (15) for H.

For a bialgebra H, one has category equivalences

Mod H H ∼ -→ Mod B(H) ∼ -→ Mod H * ⊗ σ bi H (M, ρ, δ) -→ (M ; ρ, δ co ) -→ (M, δ co ⊗ ρ)
If H is a Hopf algebra with an antipode s, then this chain can be continued on the left by Mod H⊗ θ

H * ≃ Mod s1•B(H) ≃ Mod H H , where θ = σ -1 bi .
The graphical interpretation suggests that, applied to the dual bialgebra H * instead of H, the construction yields a vertical mirror version of the system B(H).

Proof. Take a bialgebra H. Recall Notation 6.2. Consider the left H * -comodule algebra (H * , ∆ * , ε * , µ * ). (A left version of) Lemma 6.5 transforms it into a left H cop -module algebra (H * , ∆ * , ε * , (µ * ) co ). Together with the H cop -bicomodule algebra (H cop , µ, ν, ∆ cop , ∆ cop ), it can be fed into Proposition 5.2 as the A and C parts (as explained after that proposition, the B part can be omitted). The ξ 2,3 component of the braided system from that proposition coincides with σ bi . Further, H cop and H share the same UAA structure, hence our σ i-1,i-1 can be chosen as the ξ i,i components (Remark 4.8). Proposition 5.2 then implies that B(H) is a braided system of UAAs. It is clearly bipointed. Moreover, the braiding on B(H), the units and the counits suffice to recover all ingredients of the bialgebra structure on H, hence the functor F is injective on objects.

To prove Point 1, it remains to understand, for bialgebras H and K, isomorphisms of bipointed braided systems (f, g) : B(H) → B(K). By definition, they consist of bijections f : H → K, g : H * → K * intertwining the braidings of B(H) and B(K) and respecting the (co)units. Due to Theorem 4.2 (Point 1), this means that f and g are UAA isomorphisms compatible with counits (ε

K f = ε H , ν * K g = ν * H ), and satisfy σ bi (K)(f ⊗ g) = (g ⊗ f )σ bi (H) (23) 
(Fig. 13A). Applying ν * K ⊗ ε K to both sides of ( 23), using the compatibility of f and g with the counits, and playing with dualities, one deduces g * f = Id H , hence g = (f -1 ) * . Since g is a UAA isomorphism, so is g -1 , hence f = (g -1 ) * is a coUAA morphism, which completes its properties and shows that it is a bialgebra isomorphism. Reversing the argument, one checks that the choice g = (f -1 ) * for a bialgebra isomorphism f implies [START_REF] Nichita | New solutions for Yang-Baxter systems[END_REF]. Thus the bipointed braided system isomorphisms are precisely the pairs (f, (f -1 ) * for bialgebra isomorphisms f . Hence the functor F is well defined, full and faithful. This finishes the proof of Point 1.

In Point 3, the compatibility between ∆ and ν follows by applying ν * ⊗ Id H to the naturality condition for σ bi w.r.t. ν. Symmetrically, the µ-ε compatibility follows from the naturality of σ bi w.r.t. ε * . The converse (compatibility ⇒ naturality) is easy. According to (the proof of) Theorem 4.5, the YBE on H ⊗ H ⊗ H * is equivalent to the naturality condition of σ bi w.r.t. µ (Fig. 13B), which implies the bialgebra µ-∆ compatibility (apply ν * ⊗ Id H to both sides and use duality). Conversely, the bialgebra compatibility suffices to deduce the above naturality. By symmetry, one gets a proof for H ⊗ H * ⊗ H * .

The "if" part of Point 2 can be proved by exhibiting an explicit formula for σ -1 bi :

σ -1 bi (l ⊗ h) = l (1) , s(h (2) ) h (1) ⊗ l (2) (24) 
(or by using the remarks after Proposition 5.2 and Point 2 of Observation 6.1). The "only if" part is more delicate. Suppose the existence of σ -1 bi and put s = (((ε 13). Let us prove that s is the antipode. The part

⊗ ν * )σ -1 bi ) ⊗ Id H )(Id H * ⊗c H,H )(coev ⊗ Id H ) : H → H (Fig.
µ( s ⊗ Id H )∆ = νε (25) 
of the defining relation ( 16) follows from σ -1 bi σ bi = Id H⊗H * by duality manipulations. Surprisingly, the remaining part µ(Id H ⊗ s)∆ = νε does not seem to follow from σ bi σ -1 bi = Id H * ⊗H . Algebraic tricks come into play instead. Mimicking [START_REF] Nuss | Noncommutative descent and non-abelian cohomology[END_REF], set

σ = (Id H ⊗(ev( s ⊗ Id H * )) ⊗ Id H * )(∆ ⊗ µ * )c H * ,H : H * ⊗ H → H ⊗ H * .
Relation [START_REF] Ospel | Tressages et théories cohomologiques pour les algèbres de Hopf[END_REF] implies σσ bi = Id H⊗H * . Then σ coincides with σ -1 bi , giving σ bi σ = Id H * ⊗H . Applying ν * ⊗ ε to both sides, one recovers the second part of (16) for s.

We 

f g H H * K * K = g f H H * K * K A = B s ←→ coev ν * ε σ -1 bi C
Figure 13: Naturality and invertibility issues for σ bi a right B(H)-module M via right module structures ρ H and ρ H * over the UAAs H and H * respectively, compatible in the sense of ( 6):

ρ H * (ρ H ⊗ Id H * ) = ρ H (ρ H * ⊗ Id H )(Id M ⊗(τ (Id H ⊗ev ⊗ Id H * )(∆ ⊗ µ * ))). ( 26 
)
On the other hand, due to the module-comodule duality from Lemma 6. All the remarks following Theorem 4.2 remain relevant in the bialgebra case. One particular feature of the bialgebra setting is to be added to that list: Remark 6.9. It is essential to work in the groupoid, and not just in the category of bialgebras, if one wants a bialgebra morphism H → G to induce a morphism of dual bialgebras H * → G * , so that the functor [START_REF] Nichita | Self-inverse Yang-Baxter operators from (co)algebra structures[END_REF] can be defined on morphisms.

Denote by H ′ (H) = H ⊗ θ H * one of the braided tensor products of UAAs from the theorem. Then H (H) := H ′ (H * ) is the well-known Heisenberg double of the Hopf algebra H (cf. for example [START_REF] Montgomery | Hopf algebras and their actions on rings[END_REF][START_REF] Cibils | Hopf bimodules are modules[END_REF]).

Our next goal are explicit braided complexes for B(H). After detailed calculations with certain braided characters as coefficients, we discuss the general case of Hopf module coefficients.

First, for a bialgebra H, we study adjoint actions of H * on H n . Lemma 6.10. The tensor powers of a bialgebra (H, µ, ν, ∆, ε) in vect k can be endowed with an H * -bimodule structure via the following formulas (Fig. 14):

π H * = π ε H * = ev 1 ev 2 • • • ev n (((µ * ) 1 ) (n-1) ⊗ (ω -1 2n ∆ ⊗n )) : H * ⊗ H n → H n , H * π = ε H * π = ev n+1 ev n+2 • • • ev 2n ((ω -1 2n ∆ ⊗n ) ⊗ ((µ * ) 1 ) (n-1) ) : H n ⊗ H * → H n
, where notations (2) and (18) are used.

On the level of elements, the formulas can be written as Interchanging the roles of H and H * , one gets H-bimodules ((H * ) m , π H , H π). By abuse of notation, we define, for all m, n ∈ N for which this makes sense, the following morphisms from H n ⊗ (H * ) m to H (n-1) ⊗ (H * ) m or to H n ⊗ (H * ) (m-1) :

π H * (l ⊗ h 1 . . . h n ) = l (1) , h n(1) l (2) , h n-1(1) . . . l (n) , h 1(1) h 1(2) . . . h n(2) , H * π(h 1 . . . h n ⊗ l) = l (1) , h n(2) l (2) , h n-1(2) . . . l (n) , h 1(2) h 1(1) . . . h n(1) . π H * ←→ ∆ ∆ ∆ (µ * ) (n-1) ev ev ev H * π ←→ ∆ ∆ ∆ (µ * ) (n-
H * π = H * π ⊗ Id ⊗(m-1) H * , π H * = (π H * ⊗ Id ⊗(m-1) H * )τ H n ⊗(H * ) (m-1) ,H * , π H = Id ⊗(n-1) H ⊗π H , H π = (Id ⊗(n-1) H ⊗ H π)τ H,H (n-1) ⊗(H * ) m .
Lemma 6.11. These four endomorphisms of T (H) ⊗ T (H * ) pairwise commute.

Proof. Lemma 6.10 implies the commutativity of H * π and π H * . Replacing H with H * , one gets the commutativity of H π and π H . Next, returning to the braided interpretation of the adjoint actions, π H corresponds to pulling the rightmost H-strand to the right of all the H * -strands (using σ bi ) and applying ε H , while H * π means pulling the leftmost H * -strand to the left of all the H-strands and applying ε H * . Thus π H and H * π commute. The case of π H * and H π is analogous. For the two remaining pairs, consider the linear isomorphisms 

∆ n ⊗ Id ⊗m H * : H n ⊗ (H * ) m ∼ -→ (H op ) n ⊗ ((H op ) * ) m , ∆ n := 1 2 ••• n n n-1 ••• 1 ∈ S n ,
d bar (h 1 . . . h n ⊗ l 1 . . . l m ) = n-1 i=1 (-1) i h 1 . . . (h i • h i+1 ) . . . h n ⊗ l 1 . . . l m , (27) 
d cob (h 1 . . . h n ⊗ l 1 . . . l m ) = m-1 i=1 (-1) i h 1 . . . h n ⊗ l 1 . . . (l i • l i+1 ) . . . l m . (28) 
Proposition 6.12. For a finite-dimensional k-linear bialgebra (H, µ, ν, ∆, ε), the bigraded vector space T (H) ⊗ T (H * ) = n,m∈N H n ⊗ (H * ) m can be endowed with four

d n,m : H n ⊗ (H * ) m → H n-1 ⊗ (H * ) m d ′ n,m : H n ⊗ (H * ) m → H n ⊗ (H * ) m-1 1 d bar (-1) n d cob 2 d bar + (-1) n π H (-1) n d cob + (-1) n ( H * π) 3 d bar + H π (-1) n d cob + (-1) n+m π H * 4 d bar + (-1) n π H + H π (-1) n d cob + (-1) n ( H * π) + (-1) n+m π H * Table 5: Bicomplex structures on T (H) ⊗ T (H * )
bicomplex structures, presented in Table 5. Being a bicomplex means here satisfying

d n-1,m d n,m = 0, d ′ n,m-1 d ′ n,m = 0, d n,m-1 d ′ n,m + d ′ n-1,m d n,m = 0.
Proof.

1. Maps d bar and d cob are well known to be differentials (see also their interpretation as braided differentials in Theorem 4.2). They affect disjoint parts T (H) and T (H * ) of T (H) ⊗ T (H * ), and thus commute. The sign (-1) n then assures the anticommutativity. 2. Return to the braided system H bi , which we no longer consider as bipointed.

The counit ε H of H is an algebra character, hence a braided character for (H, σ r Ass (H)). Extended to H * by zero, it becomes a braided character for H bi (Example 2.8). Similarly, ε H * extended to H by zero is also a braided character for H bi . Choosing them as coefficients, one gets the following braided bidifferential, which coincides with the desired one up to a sign:

ε H * d = (-1) n d cob + (-1) n ( H * π), d εH = -(d bar + (-1) n π H ).
3. Symmetrically, one gets a bidifferential ((-1) m (d bar + H π), d cob + (-1) m π H * ), hence (d bar + H π, (-1) n d cob + (-1) n+m π H * ).

4. The last point follows from the preceding ones using an elementary observation: Lemma 6.13. Take an Abelian group (S, +, 0, a → -a) endowed with an operation •, distributive with respect to +. Then, for any a, b, c, d, e, f ∈ S, 

(a + b)•(d + e) = (a + c) • (d + f ) = a • d = b • f + c • e = 0 =⇒ (a + b + c) • (d + e + f ) = 0. Proof. (a + b + c) • (d + e + f ) = (a + b) • (d + e) + (a + c) • (d + f ) -a • d + (b • f + c • e). Now take S = End k (T ( 
π H (a ⊗ h 1 . . . h n ⊗ l 1 . . . l m ⊗ b) = l 1(1) , h n(m+1) . . . l m(1) , h n(2) b -1 , h n(1) a ⊗ h 1 . . . h n-1 ⊗ l 1(2) . . . l m(2) ⊗ b 0 , H * π(a ⊗ h 1 . . . h n ⊗ l 1 . . . l m ⊗ b) = l 1(1) , h n(2) . . . l 1(n) , h 1(2) l 1(n+1) , a 1 a 0 ⊗ h 1(1) . . . h n(1) ⊗ l 2 . . . l m ⊗ b.
Further, let H π be the action ρ applied to the two leftmost factors, and let π H * be the action λ applied to the two rightmost factors. We still denote by d bar and d cob the differentials ( 27)-( 28) tensored with Id M on the left and with Id N on the right. Repeating the argument of Proposition 6.12 for these maps, one shows that

d bar + (-1) n π H + H π and (-1) n d cob + (-1) n ( H * π) + (-1) n+m π H * define a bicomplex on M ⊗ T (H) ⊗ T (H * ) ⊗ N . If N is finite dimensional, then one can see M ⊗ H n ⊗ (H * ) m ⊗ N as Hom(N * ⊗ H m , M ⊗ H n ), with N * ∈ Mod H H .
One recovers (a variation of) the deformation (co)homology of Hopf modules, due to Panaite-S ¸tefan [START_REF] Panaite | Deformation cohomology for Yetter-Drinfel ′ d modules and Hopf (bi)modules[END_REF].

A braided interpretation of Hopf bimodules

In this section, the braided system B(H) for a bialgebra H is upgraded to a more complicated rank 4 system B ′ (H). Braided B ′ (H)-modules are identified as Hopf bimodules over H, or else as modules over the algebras X , Y , and Z of Cibils-Rosso and Panaite. These algebras are included into a list of 24 braided tensor products of UAAs, shown pairwise isomorphic by component permuting techniques. Braided bidifferentials for B ′ (H) recover the Hopf bimodule (co)homology of Ospel-Taillefer. 

δλ = (λ ⊗ µ)(Id H ⊗c H,M ⊗ Id H )(∆ ⊗ δ) : H ⊗ M → M ⊗ H, γρ = (µ ⊗ ρ)(Id H ⊗c M,H ⊗ Id H )(γ ⊗ ∆) : M ⊗ H → H ⊗ M, γλ = (µ ⊗ λ)(Id H ⊗c H,H ⊗ Id M )(∆ ⊗ γ) : H ⊗ M → H ⊗ M.
The category of Hopf bimodules over H and their morphisms is denoted by H H Mod H H .

We now return to our category C = vect k , as usual omitted from notations. 

F ′ : * Bialg ֒-→ * BrSyst 4 ( 29 
) (H, µ, ν, ∆, ε) -→ B ′ (H) := (V 1 := H, V 2 := H op , V 3 := H * , V 4 := (H cop ) * ; σ i,i := σ Ass (V i ), σ 1,2 := τ H,H op , σ 3,4 := τ H * ,(H cop ) * , σ 1,3 := σ bi (H), σ 2,3 := σ bi (H op ), σ 1,4 := σ bi (H cop ), σ 2,4 := σ bi (H op,cop ); ν, ν, ε * , ε * ; ε, ε, ν * , ν * ), f -→ (f, f, (f -1 ) * , (f -1 ) * ),
where τ is the transposition of the corresponding factors, and σ bi (A) denotes the map σ bi from Theorem 6.8 for the bialgebra A (Fig. 16). where the bipointed braided system θB ′ (H) is obtained from B ′ (H) by a component permutation from Remark 2.10, and the UAA θ • W (H), isomorphic to W (H), is obtained from W (H) by a component permutation from Remark 4.12.

For a bialgebra H, one has category equivalences

Proof. Let F ′ i,j be the composition of F ′ with the forgetful functor F or i,j : * BrSyst 4 → * BrSyst 2 which picks the ith and jth components, i < j. For i 2 < j one recognizes in F ′ i,j the functor ( 22) from Theorem 6.8 and its slight modifications which send a bialgebra H to B(H op ), B(H cop ), or B(H op,cop ) (with some σ r Ass -type braiding components replaced with their σ Ass versions). Further, F ′ 1,2 (H) and F ′ 3,4 (H) coincide with the braided systems of UAAs BM(H, H) and BM(H * , H * ) respectively. Hence all the ξ i,j for i < j are natural w.r.t. the units and the multiplications. They also satisfy the YBEs required by Theorem 4.5 (B). Indeed, on V 1 ⊗ V 2 ⊗ V k , k ∈ {3, 4}, the YBE follows from the associativity of µ, and on V k ⊗ V 3 ⊗ V 4 , k ∈ {1, 2} from the coassociativity of ∆. Theorem 4.5 then asserts that B ′ (H) is a braided system of UAAs. It is clearly bipointed.

To show that F ′ is well defined on morphisms, it suffices to check this for all the F ′ i,j , i < j. For i 2 < j it follows from Theorem 6.8. For F ′ 1,2 and F ′ 3,4 , observe that the ξ 1,2 and ξ 3,4 components of our braidings are simply transpositions, ensuring the defining property (4) of braided morphisms. Further, take a braided isomorphism (f, g, h, k) : B ′ (H) → B ′ (K) for bialgebras H and K. Applying forgetful functors F or i,j , i 2 < j, and using Theorem 6.8 again, one sees that f is a bialgebra isomorphism, and that f = g = (h * ) -1 = (k * ) -1 . Hence F ′ is full and faithful.

Let us turn to modules. Take (M, ρ, λ, δ, γ) ∈ H H Mod H H . Transform left structures λ and γ into right structures R(λ) and R(γ), and then comodule structures δ and R(γ) into module structures δ co and R(γ) co = R(γ co ). Thus the Hopf bimodule M over H becomes a module over UAAs H = V 1 , H op = V 2 , H * = V 3 , and (H cop ) * = V 4 . Further, the 4 Hopf compatibility conditions coincide with the braided module compatibility conditions on V i ⊗ V j , i 2 < j, and left-right action (or coaction) compatibility conditions cover the case i = 1, j = 2 (respectively, i = 3, j = 4). Observation 2.5 then yields the desired category equivalence H H Mod H H ≃ Mod B ′ (H) . The remaining assertions follow from the correspondence between braided modules and modules over braided tensor products (Proposition 4.10), the invertibility of σ bi in the Hopf algebra case, the properties of twisted Hopf algebras (Observation 6.1; recall that in the finite-dimensional case, an antipode is always invertible), and the component permuting Propositions 2.9 and 4.11.

The category H

H Mod H H for a Hopf algebra H is known to be equivalent to the categories of right modules over 3 UAAs: the twisted product of Cibils-Rosso [START_REF] Cibils | Hopf bimodules are modules[END_REF]: Here we adapt Panaite's notations to our conventions. For instance, he uses the arched duality, so his dual bialgebra H * corresponds to our (H * ) op,cop . Also, he sees Hopf bimodules over H * as left modules over X (H), while we interpret Hopf bimodules over H as right modules. The algebras X , Y , Z are of the form θ • W (H), with as θ the permutations (14)( 23), (1234), and [START_REF] Yau | Deformation bicomplex of module algebras[END_REF]. Point 3 of our theorem includes them into a family of #S 4 = 24 UAAs and gives explicit isomorphisms between them, inducing equivalences for their module categories (Remark 4.12). We thus generalize and conceptually explain the central results of [START_REF] Cibils | Hopf bimodules are modules[END_REF][START_REF] Panaite | Hopf bimodules are modules over a diagonal crossed product algebra[END_REF], minimizing technical computations.

Braided adjoint actions allow to regard the bar complex with bimodule coefficients as a complex of bimodules (Proposition 4.16). The same is true for Hopf bimodules: 

δ bar = (µ n+2 ) (n) ω -1 2(n+1) (δ ⊗ ∆ ⊗n ), γ bar = (µ 1 ) (n) ω -1 2(n+1) (γ ⊗ ∆ ⊗n ).
diagonal coactions

Here ω 2(n+1) ∈ S 2(n+1) from (18) acts on M ⊗ H 2n+1 by factor permutation.

Proof. Theorem 7.2 asserts that M is a B ′ (H)-module. Proposition 3.11 for t = 1 then yields a B ′ (H)-module structure on M ⊗ T (H), compatible with the braided differential ρ d. By Theorem 4.2, the latter is the bar differential. Using Theorem 7.2 again, one transforms the B ′ (H)-module structure on M ⊗ T (H) into a Hopf bimodule structure over H, which coincides with the desired one.

This Hopf bimodule structure on the bar complex, and its dual structure on the cobar complex, are essential for defining the Hopf bimodule (co)homology, introduced by Ospel in the one-module case [START_REF] Ospel | Tressages et théories cohomologiques pour les algèbres de Hopf[END_REF] and by Taillefer [START_REF] Taillefer | Théories homologiques des algèbres de Hopf[END_REF][START_REF] Taillefer | Cohomology theories of Hopf bimodules and cup-product[END_REF] H * H * ≃ B ′ (H) Mod. Mimicking the constructions for Hopf modules from the previous section, one gets a tetra-complex structure on the tetra-graded vector space M ⊗ T (H) ⊗ T (H op ) ⊗ T (H * ) ⊗ T ((H cop ) * ) ⊗ N . If N is finite dimensional, then this space can be regarded as Hom(T (H) ⊗ N * ⊗ T (H), T (H) ⊗ M ⊗ T (H)), with N * ∈ H H Mod H H (here in order to get rid of twisted (co)multiplications, we moved T (H op ) to the left of M , reversing the order of its factors, and similarly for T ((H cop ) * )). This generalizes an alternative (co)homological approach to Hopf bimodules from [START_REF] Taillefer | Cohomology theories of Hopf bimodules and cup-product[END_REF].
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 2 Figure 2: Right braided module

  define a bidifferential with coefficients in M and N . (Here -σ is the braiding obtained from σ as in Observation 2.3.) Proof. Our verifications use (A) the coassociativity of ¢ -σ (Proposition 3.5), and (B) the definition of braided modules, reformulated in an additive C as
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 3 Its sign can be read off its diagram as the crossing number. Similar holds for (d λ ) n . Corollary 3.8. Any Z-linear combination of the families ( ρ d) n and (d λ ) n from the theorem is a differential for (V , σ) with coefficients in M and N .
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 42 [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF]). 1. One has a fully faithful functor
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 45 Figure 4: Associativity braidings: σ Ass and its vertical mirror version σ r Ass
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 7 Figure 7: Checking that ξ -1 i,i+1 is an algebra morphism
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 819 Figure 8: Main bialgebra and module algebra axioms
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 52 Right H-module algebras and H-(bi)(co)module algebras are defined similarly. The categories of bialgebras / Hopf algebras / H-(co)module algebras and their morphisms in C are denoted by, respectively, Bialg(C), HAlg(C), H ModAlg, ModAlg H , H ModAlg, etc. Take a bialgebra H, a left H-module algebra (A, λ), a right Hmodule algebra (B, ρ), and an H-bicomodule algebra (C, δ l : C → H ⊗ C, δ r : C → C ⊗ H) in a symmetric category (C, ⊗, I, c). Then 1. The UAAs (B, C, A) form a braided system of UAAs, with
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 10 Figure 10: B Mod A structure on C 3
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 11 Figure 11: Multiplication-comultiplication and action-coaction dualities, and Hopf compatibility
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 12 Figure 12: A braiding encoding the bialgebra structure

  H) ⊗ T (H * )) with the usual addition and, as the second operation, a • b := ab (for proving that the two morphisms from the 4th line of our table are differentials), or a • b := ab + ba (for proving that the two morphisms anti-commute). Choose a = d bar , b = (-1) n π H , c = H π, d = d bar or d = (-1) n d cob , etc. The equalities of the type b • f + c • e = 0 follow from the pairwise anti-commutativity of (-1)

Definition 7 . 1 .

 71 In a braided category C, a Hopf bimodule over a bialgebra H is an object M with a bimodule structureM ⊗ H ρ → M, H ⊗ M λ → M and a bicomodule structure M δ → M ⊗ H, M γ → H ⊗ M , satisfying[START_REF] Montgomery | Hopf algebras and their actions on rings[END_REF] and 3 other Hopf compatibility conditions (Fig.15):
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 15416 Figure 15: Hopf compatibility conditions

3 .

 3 ρ, λ, δ, γ) → (M ; ρ, R(λ), δ co , R(γ co )) → (M, R(γ co ) ⊗ δ co ⊗ R(λ) ⊗ ρ)where R is the correspondence from Lemma 4.13, and W (H) is the braided tensor product of UAAs W (H) = (H cop ) * ⊗ ξ If H is a Hopf algebra, then, for any θ ∈ S 4 , one has category equivalencesH H Mod H H ∼ -→ Mod θB ′ (H) ∼ -→ Mod θ•W (H) ,

X

  (H) = (H ⊗ H op )⊗(H * ⊗ (H * ) op ),and the two-sided and diagonal crossed products of Panaite[START_REF] Panaite | Hopf bimodules are modules over a diagonal crossed product algebra[END_REF]:Y (H) = H * #(H op ⊗ H)#(H * ) op , Z (H) = (H * ⊗ (H * ) op ) ⊲⊳ (H op ⊗ H).
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 7317 Figure 17: Diagonal bicomodule structure on the bar complex

  ):ρ bar = µ n+1 , λ bar = λ 1 , peripheral actions

  op , σ 1,2 = τ , σ 3,4 = τ , Hopf bimod. Ospel, Taillefer H * , (H * ) op other σ i,j = σ bi

	structure	braided system	br. modules	br. complexes
	algebra	A	σ 1,1 = σ Ass	algebra mod.	bar,
	A	A, A op	σ 1,2 = τ	algebra bimod.	Hochschild
	bialgebra	H, H *	σ 1,2 = σ bi	Hopf mod.	Gerstenhaber-Schack, Panaite-S ¸tefan [7, 27]
	H	H, H			

Table 3 :

 3 Algebras encoding Hopf and Yetter-Drinfel ′ d (bi)module structures

  3, a rightright Hopf module structure over H can also be viewed as right module structures over the UAAs H and H * , with the compatibility condition obtained by applying Id M ⊗ev to the defining condition (21) of Hopf modules (tensored with Id H * on the right) and turning H-comodule structures into H * -module structures. The condition obtained coincides with (26), implying Mod H H ≃ Mod B(H) . In the Hopf algebra case, Point 2 gives the invertibility of σ bi . The component permuting Proposition 4.11 proves then the desired equivalences.

  H n as an H * -bimodule Proof. In the proof of Theorem 6.8, we observed that Proposition 5.2 applies to A = (H * , (µ* ) co ) ∈ H copModAlg and C = (H cop , ∆ cop , ∆ cop ) ∈ H copModAlg H cop (recall Notation 6.2). Symmetry considerations allow to complete this couple with B = (H * , (µ * ) co ) ∈ ModAlg H cop , and feed it into Proposition 5.4 together with the counit ε H * = (ν H ) * of H * . This counit is an algebra character of H * and hence of A and B. The output yields the desired actions.

	ev
	ev
	ev
	1)
	Figure 14:

  where S n acts on H n by component permutation. These isomorphisms transport the endomorphisms H * π, π H * , π H , and H π of H ⊗n ⊗ (H * ) ⊗m to, respectively, (H op ) * π, π (H op ) * , H op π, and π H op . Thus the commutativity of (H op ) * π and π H op induces that of H * π and H π, and similarly for π H * and π H . Further, recall the bar and (the dual of the) cobar differentials on T (H) ⊗ T (H

* ):

  n ( H * π), (-1) n+m π H * , (-1) n π H , and H π (Lemma 6.11), and the remaining ones from Points 1-3.One recognizes in d bar + (-1) n π H + H π the Hochschild differential for H with coefficients in the H-bimodule T (H * ) (Lemma 6.10). Dually,d cob + H * π + (-1) m π H * isthe Hochschild differential for H * . Thus the last bicomplex from Table5yields the Gerstenhaber-Schack bialgebra homology[START_REF] Gerstenhaber | Bialgebra cohomology, deformations, and quantum groups[END_REF]. See Taillefer's thesis[START_REF] Taillefer | Théories homologiques des algèbres de Hopf[END_REF] for computations and comparison with other homologies, and the work of Mastnak-Witherspoon[START_REF] Mastnak | Bialgebra cohomology, pointed Hopf algebras, and deformations[END_REF] for explicit formulas and the transition from Homk (H m , H n ) to H n ⊗ (H * ) m . Now,instead of the braided characters ε H and ε H * for B(H), take general braided modules (M, ρ, δ) ∈ Mod H H ≃ Mod B(H) and (N, λ, γ) ∈ H * H * Mod ≃ B(H) Mod. On M ⊗ H n ⊗ (H * ) m ⊗ N , define the maps π H and H * π using adjoint actions as before:

  for two modules. Now, take two Hopf bimodules M ∈ H H Mod H H ≃ Mod B ′ (H) and N ∈ H

* H * Mod
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Table 4: Two definitions of B(v 1 v 2 . . . v n ⊗ w 1 w 2 . . . w n )

A braided interpretation of bialgebras and Hopf modules

This section explores a rank 2 braided system B(H) encoding the bialgebra structure on H, in the same sense that σ Ass encodes the UAA structure (Table 1). It is a particular case of the system constructed for crossed products in Proposition 5.2. In B(H), the invertibility of the braiding component σ 1,2 is algebraically significant: it is equivalent to the existence of an antipode. We identify braided B(H)-modules as Hopf modules over H, and show that the braided homology theory for B(H) includes Gerstenhaber-Schack bialgebra homology and Panaite-S ¸tefan Hopf module homology.

Except for some general observations, we specialize here to the category C = vect k of finite-dimensional vector spaces over k. One could also work in a braided category C and choose a bialgebra in C admitting a dual. When working in vect k , we use Sweedler's notation for comultiplications and coactions. A simplified notation

The dual space of V ∈ vect k is denoted by V * . Letters h i and l j stand for elements of V and V * respectively. The pairing , is the evaluation map ev : V * ⊗ V → k, l ⊗ h → l(h). Multiplications on different spaces are denoted by • when no confusion arises.

Consider a pairing B : V ⊗ W → k between k-vector spaces. Table 4 presents its possible extensions to B : V n ⊗ W n → k. The "arched" one is more common, but we use the "rainbow" one (like, for instance, Gurevich [START_REF] Gurevich | Algebraic aspects of the quantum Yang-Baxter equation[END_REF]), minimizing argument permutations and crossings in diagrams. This choice slightly changes some classical formulas. We use analogous conventions in the dual and multi-pairing situations. Taking as B the evaluation map ev, one constructs out of a linear map f :

1 (note the inverse order of factors). Graphically, this is the central symmetry, while the arched duality corresponds to the horizontal mirror symmetry.

For example, the dual of a coalgebra V ∈ vect k receives an induced algebra structure via the rainbow extension of ev: 11A). Multiplication and (co)units are dualized similarly. The same structure on V * is obtained using the dual coevaluation map coev, or the twisted (co)pairings ev

Here τ is the factor transposition (which is the categorical braiding of vect k ). To simplify notations, we often write ev and coev even for the twisted maps. Observation 6.1. Take a bialgebra (H, µ, ν, ∆, ε) in a braided category (C, ⊗, I, c).