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BRAIDED SYSTEMS: A UNIFIED TREATMENT OF ALGEBRAIC

STRUCTURES WITH SEVERAL OPERATIONS

VICTORIA LEBED

Abstract
Bialgebras and Hopf (bi)modules are typical algebraic struc-

tures with several interacting operations. Their structural and
homological study is therefore quite involved. We develop the
machinery of braided systems, tailored for handling such multi-
operation situations. Our construction covers the above exam-
ples (as well as Poisson algebras, Yetter–Drinfel′d modules, and
several other structures, treated in separate publications). In
spite of this generality, graphical tools allow an efficient study
of braided systems, in particular of their representation and
homology theories. These latter naturally recover, generalize,
and unify standard homology theories for bialgebras and Hopf
(bi)modules (due to Gerstenhaber–Schack, Panaite–Ştefan, Os-
pel, Taillefer); and the algebras encoding their representation
theories (Heisenberg double, algebras X , Y , Z of Cibils–Rosso
and Panaite). Our approach yields simplified and conceptual
proofs of the properties of these objects.

1. Introduction

In [14] we developed representation and (co)homology theories for braided objects
in a monoidal category C (e.g., C = Vectk). We interpreted associative / Lie algebras
and self-distributive structures as braided objects, and could thus apply our theories
to them. As a result, we unified classical constructions into one, and explained their
otherwise mysterious similarities. The aim of this article is to extend the braided
approach to more complicated algebraic structures.

Concretely, an object V in C is called braided when endowed with a morphism
σ : V ⊗2 → V ⊗2 satisfying the Yang–Baxter equation (YBE ) σ1σ2σ1 = σ2σ1σ2, where
σ1 = σ ⊗ IdV and σ2 = IdV ⊗σ. For instance, in [14] we showed that a unital asso-
ciative algebra is braided, with σAss(v ⊗ w) = 1⊗ v · w. However, this one-object-
one-morphism setting is very restrictive. For instance, a bialgebra comes with several
operations: (co)multiplication and (co)unit. Its Gerstenhaber–Shack (co)homology is
defined on Hom(H⊗n, H⊗m) ≃ H⊗m ⊗ (H∗)⊗n and involves two objects, H and H∗

(hereH is finite-dimensional). A way out is to consider a family of objects (V1, . . . , Vr)
in C endowed with morphisms σi,j : Vi ⊗ Vj → Vj ⊗ Vi, i 6 j, satisfying the colored

2010 Mathematics Subject Classification: 16T25, 16T10, 16T05, 16E40, 18D10.
Key words and phrases: braided system, braided homology, Hopf algebra, Hopf (bi)module, Heisen-
berg double, crossed product, bialgebra homology, distributive law, multi-quantum shuffle algebra.
Article available at http://dx.doi.org/10.4310/HHA.????.v??.n??.a?
Copyright c© ????, Victoria Lebed. Permission to copy for private use granted.



2 VICTORIA LEBED

braided system 7→ algebraic structure
braiding components σi,j ↔ operations

colored YBEs ⇔ defining relations
braided morphisms ≃ structural morphisms

BrSystr(C) ←֓ Structure(C)
braided modules ⊇ usual modules

braided complexes ⊇ usual complexes

Table 1: Braided interpretation for algebraic structures

version of the YBE on all tensor products Vi ⊗ Vj ⊗ Vk with i 6 j 6 k. This is what
we call a rank r braided system, a notion central to this article. The r = 2 case recov-
ers the WXZ-systems of Hlavatý–Šnobl [10], motivated by the concept of quantum
doubles. They classified such systems in dimension 2 and studied their symmetries.

Sections 2-3 extend the representation and (co)homology theories of braided ob-
jects to braided systems. Multi-versions of braided modules and braided (co)chain
complexes are defined; the latter take the former as coefficients. Further sections ex-
plore braided systems encoding various algebraic structure, in the sense of Table 1.
The row BrSystr(C) ←֓ Structure(C) means that the categories of the algebraic
structures we work with (e.g., bialgebras in C) are recovered as subcategories of
the category of rank r braided systems in C. Properties of our structures and their
(co)homologies are then deduces from general results on braided systems.

The braided systems considered here are composed of unital associative alge-
bras (UAAs) (Vi, µi, νi), with as diagonal braiding components σi,i the associativ-
ity braidings σAss = νi ⊗ µi. In Section 4 we study such systems, and relate them to

braided tensor products of algebras
←−
V = Vr ⊗ · · · ⊗ V1. Concretely, we show that mor-

phisms ξi,j for i < j complete the associativity braidings σi,i into a braided system

structure if and only if they define an associative multiplication on
←−
V by

µ←−
V

= (µr ⊗ · · · ⊗ µ1)ξ
2r−2
1,2 (ξ2r−42,3 ξ2r−31,3 ) · · · (ξ2r−1,r · · · ξ

r−1
2,r ξ

r
1,r),

where ξpi,j denotes the morphism ξi,j applied at positions p and p+ 1.
Rank 2 braided tensor products are at the heart of Majid’s braided geometry [16,

17, 18]. They provide an algebra analogue of the product of two spaces in non-
commutative geometry. A pleasant consequence of Majid’s work is the construction
of new examples of non-commutative non-cocommutative Hopf algebras as bicross
products, which are particular cases of braided tensor products.

The case of general r independently appeared in two different frameworks:

1. Mart́ınez, Peña, Panaite, and Van Oystaeyen considered iterated twisted tensor
products of algebras in Vectk, and studied various Hopf algebraic, geometric,
and physical examples [11]. Their motivation came from braided geometry.

2. Cheng [4], generalizing Beck [1], introduced the notion of iterated distributive
laws. Categorical motivations (a study of interchange laws in a strict n-category)
led her to work in the monoidal category of the endofunctors of a given category.

All these approaches relate the associativity of µ←−
V

to the YBEs for the ξi,j with
i < j, combined with the naturality of the ξi,j w.r.t. the multiplications µi and µj .
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structure braided system br. modules br. complexes
algebra A σ1,1 = σAss algebra mod. bar,
A A, Aop σ1,2 = τ algebra bimod. Hochschild

H,H∗ σ1,2 = σbi Hopf mod.
Gerstenhaber–Schack,

bialgebra Panaite–Ştefan [7, 27]
H H,Hop, σ1,2 = τ , σ3,4 = τ ,

Hopf bimod.
Ospel, Taillefer

H∗, (H∗)op other σi,j = σbi [25, 31]

Table 2: Braided interpretation of the algebra and the bialgebra structures

Our main contribution is a treatment of all the conditions ensuring the associativity
of µ←−

V
in terms of YBEs:

associativity of µi ⇐⇒ YBE on Vi ⊗ Vi ⊗ Vi
compatibility between ξi,j & µi ⇐⇒ YBE on Vi ⊗ Vi ⊗ Vj
compatibility between ξi,j & µj ⇐⇒ YBE on Vi ⊗ Vj ⊗ Vj



 new

compatibilities between the ξ ⇐⇒ YBE on Vi ⊗ Vj ⊗ Vk
}

known

This entirely braided interpretation is made possible by our associativity braiding.
Among its advantages is the applicability of the braided (co)homology machinery to
braided tensor products of algebras; this turns out to be fruitful in our examples.

Sections 5-7 explore braided systems of UAAs encoding generalized two-sided crossed
products (as defined by Bulacu, Panaite, and Van Oystaeyen [3]) and finite-dimensional
k-linear bialgebras. For the latter we propose two braided systems, recovering Hopf
modules and Hopf bimodules as corresponding braided modules, and yielding a graph-
ical interpretation of Hopf (bi)module homology, which is more workable than the
original definitions. Both systems are presented in Table 2. Here τ is the transposi-
tion v ⊗ w 7→ w ⊗ v (or the underlying braiding if one works in a symmetric category);
σbi : H ⊗H

∗ → H∗ ⊗H is defined, using Sweedler’s notation, by

σbi(h⊗ l) =
〈
l(1), h(2)

〉
l(2) ⊗ h(1); (1)

and, when writing σi,j = σAss or σbi, we mean the formulas for σAss or σbi applied
to the (bi)algebra corresponding to Vi ⊗ Vj (e.g., σ2,4 in the last line is calculated
according to Formula (1) for Hop,cop). The components σi,i = σAss are omitted.

Note the the braiding components in the systems above are not necessarily invert-
ible. For instance, σbi has an inverse if and only if H is a Hopf algebra. This yields a
braided interpretation of the existence of an antipode.

The braided system from the third line of Table 2 yields an inclusion of the category
of bialgebras in vectk into BrSyst2(vectk). Nichita’s work [22, 2, 23] can be seen
in the same light. To encode associativity, he uses a generalization of the self-inverse
braiding σ̃Ass = ν ⊗ µ+ µ⊗ ν − IdV ⊗2 , proposed by Nuss in the context of descent
theory for noncommutative rings [24]. Our σAss works in more general categories,
and moreover better suits for homological applications.

The representation-theoretic part of the article follows the philosophy of present-
ing complicated structures using something well understood—here modules over a
well-chosen algebra. The complexity is now hidden in this algebra, which for some



4 VICTORIA LEBED

complicated structure corresponding complicated algebra
bimodule over an algebra A enveloping algebra A⊗Aop

Hopf module over a bialgebra H Heisenberg double H (H) = H∗⊗H
Hopf bimodule over algebras X (H) = (H ⊗Hop)⊗(H∗ ⊗ (H∗)op),
a Hopf algebra H Y (H), and Z (H)

YD module over a bialgebra H Drinfel′d double D(H) = H∗⊗Hop

Table 3: Algebras encoding Hopf and Yetter–Drinfel′d (bi)module structures

purposes can be treated as a black box. Table 3 contains examples (for the YD ex-
ample see [15]). Notation ⊗ is here to stress the use of braided tensor products.
Concretely, we interpret the structures from the left column as braided modules over
certain braided systems of UAAs (e.g., those from Table 2). Further, in a very general
setting we identify braided modules over a braided system of UAAs with modules over

the corresponding braided tensor product algebra
←−
V :

Mod(V1,...,Vr;σi,i=σAss, ξi,j) ≃Mod←−
V
.

The right column of Table 3 contains the relevant
←−
V algebras. Our general braided

system theory now applies to the structures from the table. In particular, using our
explicit permutation rules for components of a braided tensor product, we include the
algebra X (H) of Cibils–Rosso [5] and its versions Y (H) and Z (H) described by
Panaite [26] into a family of #S4 = 24 algebras. Explicit isomorphisms between these
algebras and equivalences between their module categories are given. This circumvents
the technical calculations and generalizes some results of [26]. Further, we obtain
structural results for certain braided complexes—e.g., we recover the Hopf bimodule
structure of the bar complex of a bialgebra with coefficients in a Hopf bimodule.

We finish with a list of other “braided-systematizable” structures, the work on
which is in progress.

1. Our braided system for generalized two-sided crossed products works in particu-
lar for H-(bi)(co)module algebras. Repeating our study of bialgebra braided ho-
mology in this context, one recovers Yau’s deformation bicomplex of module al-
gebras [34]. Braided tools also simplify Kaygun’s treatment of H-equivariant A-
bimodule structures used in his Hopf–Hochschild module algebra homology [13].

2. Combining σAss with the Lie algebra braiding from [14], one gets a rank 2
braided system encoding the non-commutative Poisson algebra structure. Its
braided homology includes Fresse’s Poisson algebra homology [6].

3. The braided system machinery also applies to the quantum Koszul complexes
of Gurevich and Wambst [8, 32].

Notations and conventions

All our structures live in a strict monoidal category (C,⊗, I); the reader can have
in mind the category Vectk of vector spaces over a field k for simplicity. The word
“strict” is often omitted for brevity, as well as the word “monoidal” in the terms
“braided / symmetric monoidal category”. Given an object V in C, we succinctly
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denote its tensor powers by V n = V ⊗n, V 0 = I. Further, given a morphism ϕ : V l →
V r, the following notation is repeatedly used:

ϕi = Id
⊗(i−1)
V ⊗ϕ⊗ Id

⊗(k−i+1)
V : V k+l → V k+r, (2)

and similarly for morphisms on tensor products of different objects. Working with a
family of objects (V1, V2, . . .), we put Idi = IdVi

.
The already classical graphical calculus is extensively used in this article. Dots de-

note objects in C; horizontal gluing represents tensor product; graph diagrams encode
morphisms from the object corresponding to the lower dots to that corresponding to
the upper dots; vertical gluing stands for morphism composition, and vertical strands
for identities. All diagrams read from bottom to top.

Notations Sn, Bn, B
+
n stand for the symmetric groups, the braid groups, and the

positive braid monoids. Their standard generators are denoted by, respectively, si
and σi, 1 6 i 6 n− 1.

Acknowledgments

The author is grateful to Marc Rosso for sharing his passion for quantum shuffles; to
Muriel Livernet, Frédéric Chapoton, and Frédéric Patras for illuminating discussions;
to Paul-André Melliès and Eugenia Cheng for pointing out connections between this
work and recent results involving distributive laws in category theory; and to the
reviewer for helpful questions and remarks.

2. Braided vocabulary

The notion of braided system generalizes the more familiar braided objects.

Definition 2.1. • A rank r braided system in C is an ordered family V1, V2, . . . , Vr
of objects endowed with a braiding, i.e., morphisms σi,j : Vi ⊗ Vj → Vj ⊗ Vi for
1 6 i 6 j 6 r satisfying the (colored) Yang–Baxter equation

(σj,k ⊗ Idi)(Idj ⊗σi,k)(σi,j ⊗ Idk) = (Idk ⊗σi,j)(σi,k ⊗ Idj)(Idi⊗σj,k) (3)

on all the tensor products Vi ⊗ Vj ⊗ Vk with 1 6 i 6 j 6 k 6 r. Such a system
is denoted by ((Vi)16i6r ; (σi,j)16i6j6r) or briefly (V , σ).

• A braided morphism f : (V , σ)→ (W, ξ) between two braided systems in C of the
same rank r is a collection of morphisms (fi ∈ HomC(Vi,Wi))16i6r respecting
the braiding, in the sense that, for all 1 6 i 6 j 6 r, one has

(fj ⊗ fi)σi,j = ξi,j(fi ⊗ fj). (4)

• The category of rank r braided systems and braided morphisms in C is denoted
by BrSystr(C).

• Rank 1 braided systems are called braided objects in C.

• For 1 6 s 6 t 6 r, the braided (s, t)-subsystem of (V , σ), denoted by (V , σ)[s, t],
is the subfamily Vs, . . . , Vt with the corresponding components σi,j of σ.

The notion of braiding thus defined is
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σi,j ←→

i j
A

YBE ←→

i j k

=

i j k
B

Figure 1: Braided systems versus colored braids

1. positive: the σi,j are not supposed to be invertible (the term pre-braiding is
sometimes used in such situations);

2. partial, i.e., defined only on certain couples of objects;

3. local: contrary to the usual notion of braiding in a monoidal category, no natu-
rality is imposed.

Graphically, a braiding component is represented as a braid whose strands are
“colored” with the corresponding objects Vi, or simply with the indices i (Fig. 1A).
The definition allows a j-colored strand to overcross only strands colored with indices
i 6 j. The diagrammatic counterpart of the (colored) YBE is now the (colored) third
Reidemeister move (Fig. 1B), which is at the heart of braid theory. One can thus
work with braided systems by manipulating positive braid diagrams.

Each component of a braided system is a braided object. Even better:

Proposition 2.2. Given a braided category (C,⊗, I, c), one has, for all r ∈ N, a fully
faithful functor

(BrSyst1(C))
×r −֒→ BrSystr(C),

(Vi, σi)16i6r 7−→ (V1, . . . , Vr;σi,i := σi, σi,j := cVi,Vj
for i < j), (5)

(fi : Vi →Wi)16i6r 7−→ f := (fi)16i6r .

Proof. There are three types of tensor products on which one should check the colored
YBE (3) in order to verify that (5) defines a braided system:

1. On Vi ⊗ Vi ⊗ Vi, (3) is simply the YBE for σi.

2. On Vi ⊗ Vi ⊗ Vj and Vi ⊗ Vj ⊗ Vj , i < j, (3) expresses the naturality of c w.r.t.
σi and σj respectively, which always holds in a braided category.

3. On Vi ⊗ Vj ⊗ Vk, i < j < k, (3) coincides with the YBE for the categorical braid-
ing c, which is again automatic in a braided category.

Now, for morphisms, condition (4) is automatic for i < j thanks to the naturality
of c, and for i = j it is equivalent to fi being a braided morphism. Thus our functor
is well defined, full, and faithful on morphisms.

Observation 2.3. If C is preadditive, then for all r one has a category automorphism

BrSystr(C)
∼
←→ BrSystr(C),

(V ; (σi,j)16i6j6r)←→ (V ; (−σi,j)16i6j6r),

f ←→ f.

Definition 2.4. • A right (braided) module over (V , σ) ∈ BrSystr(C) is an ob-
jectM equipped with morphisms ρ = (ρi : M ⊗ Vi →M)16i6r satisfying, for all
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braided module ←→

ρj

ρi

jiM

=
ρj

ρi

jiM

σi,j

Figure 2: Right braided module

1 6 i 6 j 6 r,

ρj(ρi ⊗ Idj) = ρi(ρj ⊗ Idi)(IdM ⊗σi,j) : M ⊗ Vi ⊗ Vj →M. (6)

• Left braided modules and left/right braided comodules, as well as braided
(co)module morphisms, are defined in a similar way.

• The category of right braided modules and their morphisms is denoted by

Mod(V ,σ). Notation (V ,σ)Mod is used in the left case, and Mod(V ,σ) and
(V ,σ)Mod in the co-cases.

As shown in Fig. 2, braided modules can be handled by manipulating a particular
type of knotted trivalent graphs; see. [12, 33, 35] for the theory of the latter.

In this article and in [15] we interpret, among others, algebra bimodules and Hopf
and Yetter–Drinfel′d modules as modules over certain braided systems.

Observation 2.5. A (V , σ)-module structure on M boils down to a collection of
(Vi, σi,i)-module structures on M , compatible in the sense of (6).

Observation 2.6. In an additive category, (V , σ)-modules can also be viewed as mod-
ules over the associative algebra T (V )

/
〈σ − Id〉, where V = V1 ⊕ V2 ⊕ · · · ⊕ Vr amal-

gamates all the components of our system, and 〈σ − Id〉 is the ideal generated by the
images of the maps σi,j − Idi⊗ Idj : Vi ⊗ Vj → Vj ⊗ Vi + Vi ⊗ Vj →֒ V ⊗ V .

The notions of right and left (V , σ)-modules coincide for the unit object I. Condi-
tion (6) takes in this case a simpler form (ρj ⊗ ρi)σi,j = ρi ⊗ ρj : Vi ⊗ Vj → I.

Definition 2.7. A braided character is a right (= left) (V , σ)-module structure on I.

Example 2.8. In a preadditive C, a braided character εi on any Vi extended to other
components by zero becomes a (V , σ)-character.

The invertibility of some of the σi,j is helpful in extending braided structures. It
also allows one to interchange the corresponding components of a braided system
without changing the module category:

Proposition 2.9. Take (V , σ) ∈ BrSystr(C) with σp,p+1 invertible for some p.

1. The family (V1, . . . , Vp−1, Vp+1, Vp, Vp+2, . . . , Vr), equipped with the old σi,j on
the tensor products Vi ⊗ Vj with (i, j) 6= (p+ 1, p) and with σ−1p,p+1 on Vp+1 ⊗ Vp,

is a braided system, denoted by sp(V , σ).

2. The categories of braided modules for the original and the rearranged systems
are equivalent: Mod(V ,σ) ≃Modsp(V ,σ).

Proof. Notation (2) is used throughout the proof.
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1. One has to check four types of new instances of the colored YBE.

(a) On Vi ⊗ Vp+1 ⊗ Vp with i < p, the YBE reads

σ2
i,p+1σ

1
i,p(σ

−1
p,p+1)

2 = (σ−1p,p+1)
1σ2
i,pσ

1
i,p+1,

or equivalently

σ1
p,p+1σ

2
i,p+1σ

1
i,p = σ2

i,pσ
1
i,p+1σ

2
p,p+1.

This is precisely the YBE on Vi ⊗ Vp ⊗ Vp+1 for the original system (V , σ).
The remaining types are similar, and can be summarized as follows:

(b) For j > p+ 1, the YBE on Vp+1 ⊗ Vp ⊗ Vj for sp(V , σ) is equivalent to the
YBE on Vp ⊗ Vp+1 ⊗ Vj for (V , σ).

(c) The YBE on Vp+1 ⊗ Vp+1 ⊗ Vp for sp(V , σ) is equivalent to the YBE on
Vp ⊗ Vp+1 ⊗ Vp+1 for (V , σ).

(d) The YBE on Vp+1 ⊗ Vp ⊗ Vp for sp(V , σ) is equivalent to the YBE on Vp ⊗
Vp ⊗ Vp+1 for (V , σ).

2. Given an object M equipped with the morphisms ρi : M ⊗ Vi →M , the list of
compatibility conditions (6) one has to check for (V , σ) differs from the list for
sp(V , σ) only in the conditions for i = p, j = p+ 1:

ρp+1(ρp ⊗ Idp+1) = ρp(ρp+1 ⊗ Idp)(IdM ⊗σp,p+1)

versus ρp(ρp+1 ⊗ Idp) = ρp+1(ρp ⊗ Idp+1)(IdM ⊗σ
−1
p,p+1).

The second one composed with the invertible morphism IdM ⊗σp,p+1 on the
right yields the first one. So the identity functor of C and the permutation
ρp ↔ ρp+1 of the components of ρ give the announced category equivalence.

Remark 2.10. More generally, fix a permutation θ ∈ Sr, and take (V , σ) ∈ BrSystr(C)
with the σi,j invertible for all i, j reversed by θ. The family (Vθ−1(1), . . . , Vθ−1(r)),

equipped with the old σi,j on Vi ⊗ Vj with θ(i) < θ(j) and with σ−1i,j on the remain-

ing couples, is a braided system, denoted by θ(V , σ). This yields a partial Sr-action on
BrSystr(C) and equivalences between the corresponding braided module categories.
Notations sp(V , σ) and θ(V , σ) are motivated by this remark.

Corollary 2.11. Let (V , σ) be a braided system in an additive monoidal C, with
σi,j invertible for all s 6 i < j 6 t. Then one can glue the objects Vs, . . . , Vt together

into Vs:t :=
⊕t

i=s Vi, and extend the braiding onto (V1, . . . , Vs−1, Vs:t, Vt+1, . . . , Vr)
by putting σ|Vj⊗Vi

:= σ−1i,j for all s 6 i < j 6 t.

Note that the invertibility of σi,i is not required here even for s 6 i 6 t.

Proof. We consider only the case s = t− 1 =: p; the general case follows by induction.
The colored YBEs appearing here come from the systems (V , σ) and sp(V , σ), except
for the YBE on Vp ⊗ Vp+1 ⊗ Vp and on Vp+1 ⊗ Vp ⊗ Vp+1. To handle these last two
cases, observe that the argument from the proof of Proposition 2.9, Point 1 remains
valid for i = p and j = p+ 1.

A particular case of Corollary 2.11 yields the gluing procedure for Yang–Baxter
operators (or, in our terms, for braided objects), studied by Majid and Markl [19].
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3. A homology theory for braided systems

We now generalize the braided (co)homology theory, developed in [14] for braided
objects in C, to braided systems (V , σ). In this section C is additive monoidal. In
particular, the collection σ assembles into a partial braiding, still denoted by σ, on

V := V1 ⊕ V2 ⊕ · · · ⊕ Vr ,

and the family ρ defining a right (V , σ)-module M assembles into ρ : M ⊗ V →M .
We first show that the collection σ suffices for a partial version of Rosso’s quantum

shuffle (co)products [28, 29]. Recall that the shuffle sets are the permutation sets

Shp1,p2,...,pk =

{
θ ∈ Sp1+p2+···+pk

θ(1)<θ(2)<...<θ(p1),

θ(p1+1)<...<θ(p1+p2),

..., θ(p+1)<...<θ(p+pk)

}

with p = p1 + · · ·+ pk−1. Think of permuting p1 + p2 + · · ·+ pk elements preserving
the order within k consecutive blocks of size p1, . . . , pk, just like when shuffling cards.

Recall further the projection B+
n ։ Sn sending a generator σi to the corresponding

generator si, and its set-theoretic Matsumoto section

Sn −֒→ B+
n ,

θ = si1si2 · · · sik 7−→ σi1σi2 · · ·σik ,

where si1si2 · · · sik is any of the shortest words representing θ ∈ Sn.

Notation 3.1. We denote by Bθ the image of θ ∈ Sn under this map.

We also need a partial B+
d -action on V d for (V , σ) ∈ BrSystr(C). For a genera-

tor σi of B
+
d and a summand Vk1 ⊗ . . .⊗ Vkd of V d, k1 6 . . . 6 kd, it reads

σi 7−→ σiki,ki+1
=

k1 · · · ki ki+1 · · · kd
.

Here σiki,ki+1
∈ HomC(Vk1 ⊗ · · · ⊗ Vkd , Vk1 ⊗ · · · ⊗ Vki+1 ⊗ Vki ⊗ · · · ⊗ Vkd). This ac-

tion agrees with the usual graphical depiction of braids from B+
d .

Notation 3.2. The partial action described above is denoted by B+
d ∋ b 7→ bσ.

Definition 3.3. A degree d (reverse) ordered tensor product for (V , σ) ∈ BrSystr(C)
is a tensor product Vk1 ⊗ . . .⊗ Vkd with k1 6 . . . 6 kd (respectively, k1 > . . . > kd).
The direct sum of all such products is denoted by T (V )→d (respectively, T (V )←d ).

The T (V )→d sum up to T (V )→ := T (V1)⊗ T (V2)⊗ · · · ⊗ T (Vr), and the T (V )←d
sum up to T (V )← := T (Vr)⊗ T (Vr−1)⊗ · · · ⊗ T (V1).

Armed with these notations, we give multi-versions of quantum shuffle operations.

Definition 3.4. Take a braided system (V , σ) in BrSystr(C).

• The multi-quantum shuffle product is defined by�
σ
p,q =

∑

θ∈Shp,q

(Bθ)
σ : T (V )←p ⊗ T (V )←q → T (V )←p+q, (7)

where (Bθ)
σ(W ⊗ U) is declared zero when it is undefined or misses the T (V )←p+q

part of V p+q.
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• Dually, the multi-quantum shuffle coproduct is defined by�
σ
p,q =

∑

θ∈Shp,q

(Bθ−1)σ : T (V )→p+q → T (V )→p ⊗ T (V )→q . (8)

• Replacing Shp,q with Shp1,...,pk , one gets morphisms �
σ
p1,...,pk and �

σ
p1,...,pk .

Condition (7) should be thought of as the dual of the more intuitive condition (8).

For an ordered tensor products W in T (V )→p+q, its image �
σ
p,q(W ) lives in several

summands of T (V )→p ⊗ T (V )→q . That is why C has to be additive. The case of rank
r = 1 is exceptional: one needs a preadditive C only.

Proposition 3.5. Morphisms (7)-(8) are well defined, and give an associative mul-
tiplication (respectively, a coassociative comultiplication).

Proof. When (reverse) ordered products are fed into formulas (7)-(8), the braid-
ing σ is applied only to products Vi ⊗ Vj with i 6 j, on which it is defined. The
(co)associativity is proved as in the rank 1 case (see [14, Theorem 1]).

We now explain what we mean by a homology theory for a braided system (V , σ).

Definition 3.6. • A differential for (V , σ) is a morphism family { dn : T (V )→n →
T (V )→n−1 }n>0 satisfying dn−1dn = 0 for all n > 1.

• A bidifferential for (V , σ) consists of 2 families { dn, d
′
n : T (V )→n → T (V )→n−1 }n>0

satisfying dn−1dn = d′n−1d
′
n = d′n−1dn + dn−1d

′
n = 0 for all n > 1.

• Replacing T (V )→n with M ⊗ T (V )→n ⊗N (for some objects M and N) above,
one gets the notion of (bi)differentials with coefficients in M and N .

Everything is now ready for constructing a multi-version of braided complexes.

Theorem 3.7. Take a braided system (V , σ) in an additive monoidal category C. Let
(M,ρ) and (N, λ) be a right and, respectively, left (V , σ)-modules. The morphisms

(ρd)n = (ρ⊗ IdT (V )→n−1⊗N
)(IdM ⊗ �

−σ
1,n−1 ⊗ IdN ),

(dλ)n = (−1)n−1(IdM⊗T (V )→n−1
⊗λ)(IdM ⊗ �

−σ
n−1,1 ⊗ IdN )

from M ⊗ T (V )→n ⊗N to M ⊗ T (V )→n−1 ⊗N then define a bidifferential with coeffi-
cients in M and N . (Here −σ is the braiding obtained from σ as in Observation 2.3.)

Proof. Our verifications use (A) the coassociativity of �
−σ

(Proposition 3.5), and (B)

the definition of braided modules, reformulated in an additive C as

ρ(ρ⊗ IdV )(IdM ⊗ �
−σ

1,1) = 0, λ(IdV ⊗λ)(�
−σ

1,1 ⊗ IdN ) = 0.

Concretely, writing �
−σ

instead of IdM ⊗ �
−σ
⊗ IdN or �

−σ
⊗ IdN for brevity, one has
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(ρd)n;i =
σk1,ki

σki−1,ki

ρki

M Nk1 ki−1
...

ki ki+1
...

kn

Figure 3: Braided left differential

(ρd)n−1(
ρd)n = (ρ⊗ Id···) �

−σ
1,n−2(ρ⊗ Id···) �

−σ
1,n−1

= (ρ⊗ Id···)(ρ⊗ Id···)(IdM⊗V ⊗ �
−σ

1,n−2) �
−σ

1,n−1

(A)
= (ρ⊗ Id···)(ρ⊗ Id···)(IdM ⊗ �

−σ
1,1 ⊗ Id···) �

−σ
2,n−2

= ((ρ(ρ⊗ IdV )(IdM ⊗ �
−σ

1,1))⊗ Id···) �
−σ

2,n−2
(B)
= 0,

and similarly for dλ. In the same way, one calculates

(dλ)n−1(
ρd)n = (−1)n−2(ρ⊗ Id⊗λ) �

−σ
1,n−2,1 = −(ρd)n−1(d

λ)n.

The differential (ρd)n is a signed sum (due to the negative braiding −σ) of the
form

∑n
i=1(−1)

i−1(ρd)n;i. The term (ρd)n;i is presented in Fig. 3. Its sign can be read
off its diagram as the crossing number. Similar holds for (dλ)n.

Corollary 3.8. Any Z-linear combination of the families (ρd)n and (dλ)n from the
theorem is a differential for (V , σ) with coefficients in M and N .

The (bi)differentials from the above theorem and corollary are called braided.

Remark 3.9. • Braided differentials are functorial. Concretely, take systems (V , σ)

and (V
′
, σ′); braided modules (M,ρ) ∈Mod(V ,σ), (N, λ) ∈ (V ,σ)Mod, and simi-

larly for (V
′
, σ′); braided morphism f : (V , σ)→ (V

′
, σ′); and morphisms ϕ : M →

M ′, ψ : N → N ′, compatible with f in the sense of ρ′i(ϕ⊗ fi) = ϕρi and λ
′
i(fi ⊗

ψ) = ψλi for all i. Then one has the intertwining diagram

M ⊗ T (V )→n ⊗N

dn ��

ϕ⊗f
⊗n
⊗ψ

// M ′ ⊗ T (V
′
)→n ⊗N

′

d′n ��

M ⊗ T (V )→n−1 ⊗N
ϕ⊗f

⊗n−1
⊗ψ

// M ′ ⊗ T (V
′
)→n−1 ⊗N

′

• There is a dual cohomology theory for (V , σ) with coefficients in braided comod-
ules. Here one has to work with T (V )←n , since a braiding on (V1, . . . , Vr) in C
corresponds to a braiding on the reversed system (Vr, . . . , V1) in C

op.

• Braided bidifferentials refine to a precubical structure, enriched with degenera-
cies if the braided system carries a “good” comultiplication (i.e., compatible
with σ and σ-cocommutative); see [14] for details in the braided object case.
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• Braided differentials (ρd)n (or (dλ)n) can be defined with coefficients on one side
only, i.e., on M ⊗ T (V )→n (or T (V )→n ⊗N).

Notation 3.10. The obvious morphism from (Vi1 ⊗ · · · ⊗ Vis)⊗ (Vj1 ⊗ · · · ⊗ Vjt) to
(Vj1 ⊗ · · · ⊗ Vjt)⊗ (Vi1 ⊗ · · · ⊗ Vis), induced by σ and diagrammatically presented as

, is denoted by σ. (Here we suppose in 6 jm for all n,m, so that σ is
applicable to Vin ⊗ Vjm .)

Proposition 3.11. Take a braided system (V , σ) ∈ BrSystr(C) and cut it at some
level t, 1 6 t 6 r. That is, consider the (1, t)-subsystem (V , σ)[1, t]. Denote it by

(V
′
, σ). Take also a braided module (M,ρ) ∈Mod(V ,σ).

1. For any n, M ⊗ T (V
′
)→n is a (V , σ)[t, r]-module: for t 6 i 6 r, define

ρπi = (ρi ⊗ Id
T (V

′
)→n

)(IdM ⊗σT (V
′
)→n ,Vi

) : M ⊗ T (V
′
)→n ⊗ Vi →M ⊗ T (V

′
)→n .

2. The braided differentials ρd on (V
′
, σ) with coefficients in M are braided module

morphisms for the structure above.

Proof. Let us prove the compatibility relation (6) for ρπi and
ρπj with t 6 i 6 j 6 r.

Working on M ⊗ T (V
′
)→n ⊗ Vi ⊗ Vj , and using notation (2), one gets

ρπi(
ρπj ⊗ Idi)(IdM⊗T (V

′
)→n
⊗σi,j) = ρ1iσ

2
T (V

′
)→n ,Vi

ρ1jσ
2
T (V

′
)→n ,Vj

σn+2
i,j

= ρ1i ρ
1
jσ

2
T (V

′
)→n ,Vj⊗Vi

σn+2
i,j

(A)
= ρ1i ρ

1
jσ

2
i,jσ

2
T (V

′
)→n ,Vi⊗Vj

(B)
= ρ1jρ

1
iσ

2
T (V

′
)→n ,Vi⊗Vj

= ρ1jσ
2
T (V

′
)→n ,Vj

ρ1iσ
2
T (V

′
)→n ,Vi

= ρπj(
ρπi ⊗ Idj),

where (A) is a repeated application of (3), and (B) follows from relation (6) for ρi
and ρj . The compatibility between ρπi and

ρd, t 6 i 6 r, is verified similarly.

Applied to a braided object (V, σ) and a braided character on it, Proposition 3.11
endows all the tensor powers V n with a braided (V, σ)-module structure. Inspired by
this example, we call adjoint the braided modules from the proposition.

4. A proto-example: braided systems of algebras

The braided systems studied in this section have unital associative algebras (UAAs)
as components Vi. We exhibit a bijection between such systems and braided tensor
products of algebras, identifying braided modules over the former with usual modules
over the latter. Proposition 2.9 then yields rules for permuting the factors of braided
tensor products of algebras. Examples will follow. In this section C is monoidal, not
necessarily additive.

The braidings we use in the associative setting come with additional structure:

Definition 4.1. • Denote by BrSyst↓r(C) the category of

– braided systems (V , σ) ∈ BrSystr(C) enriched with distinguished morphisms
ν = (νi : I→ Vi)16i6r, called units, and

– morphisms from BrSystr(C) preserving the units.
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Objects (V , σ, ν) of BrSyst↓r(C) are called rank r pointed braided systems.

• A right module over (V , σ, ν) ∈ BrSyst↓r(C) is a right (V , σ)-module (M,ρ) sat-
isfying ρi(IdM ⊗νi) = IdM for 1 6 i 6 r (i.e., units act trivially). The category
of such modules and their morphisms is denoted by Mod(V ,σ,ν). Similar defini-
tions and notations are assumed for left modules.

We now show that different aspects of the UAA structure for (V, µ, ν) are captured
by the associativity braiding

σAss := ν ⊗ µ : V ⊗ V = I⊗ V ⊗ V → V ⊗ V.

When working with several UAAs, notation σAss(V ) or σAss(V, µ, ν) helps avoid
confusion. The category of UAAs and algebra morphisms in C is denoted by Alg(C).

Theorem 4.2 ([14]). 1. One has a fully faithful functor

Alg(C) −֒→ BrSyst↓1(C) (9)

(V, µ, ν) 7−→ (V, σAss, ν),

f 7−→ f.

2. The associativity braiding σAss is idempotent: σAssσAss = σAss.

3. The YBE for σAss is equivalent to the associativity for µ, under the assumption
that ν is a unit for µ (i.e., µ(IdV ⊗ν) = µ(ν ⊗ IdV ) = IdV ).

4. For a UAA (V, µ, ν) in C, one has an equivalence of right module categories

Mod(V,µ,ν)
∼
←→Mod(V,σAss,ν)

(M,ρ)←→ (M,ρ),

where on the left one considers usual modules over UAAs, and on the right the
pointed version of braided modules.

5. Let C be preadditive. For a module (M,ρ) ∈Mod(V,µ,ν) ≃Mod(V,σAss,ν), the
left braided differential ρd on (M ⊗ V n)n>0 coincides with the classical bar dif-

ferential dn = ρ1 +
∑n−1

i=1 (−1)
iµi.

Remark 4.3. • A more elegant functor Alg(C)→ BrSyst1(C) is obtained by com-
posing (9) with a forgetful functor; however, it is not full.

• Point 2 shows that the braiding σAss is highly non-invertible in general.

• The equivalence in 3 holds under a mild unitality assumption; such normaliza-
tion conditions are ubiquitous in our braided approach.

• Point 4 for M = I ensures that an algebra character is a braided character.

• Dualizing, one recovers the category of coalgebras in C inside the category of
co-pointed (= endowed with a distinguished co-element) braided objects:

coAlg(C)−֒→ BrSyst↑1(C),

(V,∆, ε) 7−→ (V, σcoAss = ε⊗∆, ε),

f 7−→ f.

The algebra-coalgebra duality in a preadditive C can now be seen inside the

category of bipointed braided objects BrSyst
l
1(C). Indeed, this category is self-

dual, the notion of braiding being so; and it encompasses both Alg(C) and
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σAss ←→ µν σrAss ←→ µ ν

Figure 4: Associativity braidings: σAss and its vertical mirror version σrAss

ϕ = ϕ ϕ = ϕ

Figure 5: Naturality

coAlg(C) (take zero maps as the missing (co)units):

coAlg(C) −֒→ BrSyst
l
1(C)←−֓ Alg(C).

• In the theorem, the associativity braiding can be replaced with its right version
σrAss := µ⊗ ν. In this case left modules should be taken as coefficients in the
last point. The diagrams of the two associativity braidings are shown in Fig. 4.

From now on, we work with several interacting UAAs Vi. After some technical
definitions, we study compatibilities between the braidings σAss(Vi), and interpret
them in terms of (a multi-version of) braided tensor products of algebras.

Definition 4.4. • Take a V ∈ Ob(C). A pair of morphisms (η : I→ V, ǫ : V → I)
is called normalized if ǫη = IdI.

• Take V,W ∈ Ob(C). A morphism ξ : V ⊗W →W ⊗ V is natural with respect to
a morphism ϕ : V n → V m (or ψ : Wn →Wm) if

ξ1 · · · ξm(ϕ⊗ IdW ) = (IdW ⊗ϕ)ξ
1 · · · ξn

(recall Notation (2)), or, respectively,

ξm · · · ξ1(IdV ⊗ψ) = (ψ ⊗ IdV )ξ
n · · · ξ1.

In the case V =W both conditions are required.

The naturality conditions for n = 1, m = 2 and V =W are diagrammatically pre-
sented in Fig. 5. In this example, one recovers two of the six Reidemeister moves from
the theory of knotted trivalent graphs [12, 33, 35].

Theorem 4.5. In a monoidal category C, take UAAs (Vi, µi, νi)16i6r, and mor-
phisms ξi,j, 1 6 i < j 6 r, natural with respect to νi and νj. Let each unit νi be a
part of a normalized pair (νi, ǫi). Then the following statements are equivalent:

(A) The morphisms ξi,i := σAss(Vi), 1 6 i 6 r, complete the ξi,j and the νi into a
pointed braided system structure on V .

(B) Each ξi,j is natural with respect to µi and µj, and, for each triple i < j < k,
the ξ satisfy the YBE on Vi ⊗ Vj ⊗ Vk.

(C) A UAA structure on
←−
V := Vr ⊗ Vr−1 ⊗ · · · ⊗ V1 can be defined by putting

µ←−
V

= (µr ⊗ · · · ⊗ µ1)ξ
2r−2
1,2 (ξ2r−42,3 ξ2r−31,3 ) · · · (ξ2r−1,r · · · ξ

r−1
2,r ξ

r
1,r), (10)

ν←−
V

= νr ⊗ νr−1 ⊗ · · · ⊗ ν1. (11)
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3 2 1 3 2 1

3 2 1

µ3
µ2

µ1

A

jii

j i i

=

jii

j i i

B
jii

j i

=

jii

j i

C

Figure 6: Braided tensor product of UAAs; YBE on Vi ⊗ Vi ⊗ Vj ; naturality w.r.t. µi

The multiplication (10) for r = 3 is diagrammatically presented in Fig. 6A. Note

the inverse component order in the definition of
←−
V , ensuring that µ←−

V
is well-defined.

Proof. We show that assertions (A) and (C) are both equivalent to (B).
Start with (A). The YBE on each Vi ⊗ Vi ⊗ Vi is guaranteed by Theorem 4.2. On

Vi ⊗ Vi ⊗ Vj with i < j, the YBE becomes

(ξi,j ⊗ Idi)(Idi⊗ξi,j)(νi ⊗ µi ⊗ Idj) = (Idj ⊗νi ⊗ µi)(ξi,j ⊗ Idi)(Idi⊗ξi,j)

(see Fig. 6B for a graphical version). But this is equivalent to ξi,j being natural w.r.t.
µi (Fig. 6C): compose the former with Idj ⊗µi to get the latter, and compose the latter
with (ξi,j ⊗ Idi)(νi ⊗ Idj ⊗ Idi) to get the former (in each case, use the naturality of
ξi,j w.r.t. the units to pull the truncated strands out of all crossings). Similarly, the
YBE on Vi ⊗ Vj ⊗ Vj , i < j, is equivalent to ξi,j being natural w.r.t. µj . This yields
the equivalence (A) ⇔ (B).

To conclude, we need the equivalence (C) ⇔ (B). It compares local and global
properties of a braided system of UAAs. The following maps relate these two scales:

ιj = νr ⊗ · · · ⊗ νj+1 ⊗ Idj ⊗νj−1 ⊗ · · · ν1 : Vj →
←−
V . (12)

Given a collection ξi,j from (B), one checks (e.g., graphically) that µ←−
V

and ν←−
V

from (C) define a UAA structure. This generalizes the verifications necessary to define
the tensor product of algebras in a braided category. To show that all the conditions
from (B) are needed, consider the associativity relation for µ←−

V
composed with

• either ιi ⊗ ιj ⊗ ιk : Vi ⊗ Vj ⊗ Vk →
←−
V 3 on the right and the ǫt at all the positions

except for i, j, k on the left (this gives the YBE on Vi ⊗ Vj ⊗ Vk, i < j < k);

• or ιi ⊗ ιi ⊗ ιj : Vi ⊗ Vi ⊗ Vj →
←−
V 3 on the right and the ǫt at all the positions

except for i, j on the left (this gives the naturality of ξi,j w.r.t. µi);

• or ιi ⊗ ιj ⊗ ιj : Vi ⊗ Vj ⊗ Vj →
←−
V ⊗3 on the right and the ǫt at all the positions

except for i, j on the left (this gives the naturality of ξi,j w.r.t. µj).

For example, in the second case the naturality of the ξ w.r.t. the units yields

(ass-ty for µ←−
V
)(ιi ⊗ ιi ⊗ ιj) = (ιj ⊗ ν←−V ⊗ ιi)(nat-ty condition from Fig. 6C).

Applying the ǫt, one gets rid of the term (ιj ⊗ µ←−V ⊗ ιi).

The theorem gives a braided (A), an associative (C), and a mixed (B) interpretation
of the same phenomenon. For certain structures, associativity verification can be
considerably simplified by checking (A) or (B) instead.
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Definition 4.6. A braided system of the type described in the theorem is called

a (pointed) braided system of UAAs, and the UAA
←−
V is called the braided tensor

product of the UAAs V1, . . . , Vr, denoted (abusively) by
←−
V = Vr ⊗

ξ
Vr−1 ⊗

ξ
· · · ⊗

ξ
V1.

Remark 4.7. The ǫi were used only to prove (C) ⇒ (B), i.e., to go from the global
setting to the local. One could instead impose (C) for all subsystems of V , and work
in appropriate subsystems instead of composing with the ǫi. In particular, for r = 2
the theorem holds true even without the normalized pair condition.

Remark 4.8. Some or all of the morphisms ξi,i = σAss(Vi) can be replaced with their
right versions σrAss(Vi). The theorem still holds true, with analogous proof.

Example 4.9. Take UAAs Vi in a braided category C, and put ξi,j = cVi,Vj
. The cate-

gorical braiding c is natural w.r.t. everything, in particular the units. Proposition 2.2

then translates as condition (A) from the theorem. The UAA structure on
←−
V deduced

from (C) recovers the usual tensor product of algebras in a braided category.

In an additive category, the braided tensor product
←−
V is alternatively described as

T (⊕iVi)
/
〈σ − Id, ν − Id〉, where the ideal we mod out is generated by the images of

σi,j − Idi⊗ Idj and νi − Idi. Observation 2.6 then suggests a representation-theoretic
counterpart for the structure equivalence from Theorem 4.5. More generally,

Proposition 4.10. In the settings of Theorem 4.5, the category of modules over the
pointed braided system from (A) is equivalent to the category of modules over the

algebra
←−
V from (C): Mod(V ,ξ,ν) ≃Mod

(
←−
V ,µ←−

V
,ν←−

V
)
.

Proof. Observation 2.5 combined with Point 4 of Theorem 4.2 interpret a module
structure over (V , ξ, ν) as module structures (M,ρj) over UAAs (Vj , µj , νj), com-
patible in the sense of (6). The map ρ = ρ1(ρ2 ⊗ Id1) · · · (ρr ⊗ Idr−1⊗ · · · ⊗ Id1) then

turnsM into a
←−
V -module. Conversely, a

←−
V -module (M,ρ) becomes a (V , ξ, ν)-module

via ρj = ρ(IdM ⊗ιj), where the ιj are defined in (12). The identity functor of C and
this structure correspondence give the desired category equivalence.

We now discuss factor permutation in braided tensor products of UAAs.

Proposition 4.11. In the settings of Theorem 4.5, suppose one of the ξi,i+1 invert-
ible. Then

1. The UAAs V1, . . . , Vi−1, Vi+1, Vi, Vi+2 . . . , Vr endowed with the ξ from the sys-
tem V , completed with ξ−1i,i+1 on Vi+1 ⊗ Vi, still form a braided system of UAAs.

2. The braided tensor products
←−
V and si ·

←−
V := Vr ⊗

ξ
· · · ⊗

ξ
Vi+2 ⊗

ξ
Vi ⊗

ξ−1
Vi+1 ⊗

ξ

Vi−1 ⊗
ξ
· · · ⊗

ξ
V1 are related by the algebra isomorphism (abusively denoted by si)

Idr ⊗ . . .⊗ Idi+2⊗ξ
−1
i,i+1 ⊗ Idi−1⊗ . . .⊗ Id1 :

←−
V −→ si ·

←−
V .

3. The algebra isomorphism above induces an equivalence of modules categories:

Mod←−
V

∼
←→Mod

si·
←−
V
,

(M,ρ←−
V
)←→ (M,ρ←−

V
(IdM ⊗s

−1
i )).
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ii+1ii+1

µi+1µi

ξ−1

ξ−1ξ−1

=

ii+1ii+1

µi+1 µiξ

ξ−1

Figure 7: Checking that ξ−1i,i+1 is an algebra morphism

Proof. 1. Proposition 2.9 allows to swap the components Vi and Vi+1 of the pointed
braided system (V , ξ, ν) from Theorem 4.5 (A). The new system si(V , ξ, ν) still
satisfies the conditions from Theorem 4.5 (A), and is thus a braided system of
UAAs (the naturality of ξ−1i,i+1 w.r.t. the units follows from that of ξi,i+1).

2. Theorem 4.5 (C) then gives a UAA structure on si(
←−
V ). Applying the YBE

several times, one sees that, in order to check that Idr ⊗ . . .⊗ ξ
−1
i,i+1 ⊗ . . .⊗ Id1

is an algebra morphism, it is sufficient to work with Vi and Vi+1 only. Namely,
one has to prove the identity ξ−1i,i+1(νi+1 ⊗ νi) = νi ⊗ νi+1, which follows from

the naturality of ξ−1i,i+1 w.r.t. the units, and from the equality

(µi ⊗ µi+1)(Idi⊗ξ
−1
i,i+1 ⊗ Idi+1)(ξ

−1
i,i+1 ⊗ ξ

−1
i,i+1) =

ξ−1i,i+1(µi+1 ⊗ µi)(Idi+1⊗ξi,i+1 ⊗ Idi)

of morphisms (Vi+1 ⊗ Vi)
2 → Vi ⊗ Vi+1 (Fig. 7). The latter results from the

naturality of ξi,i+1 (and hence ξ−1i,i+1 ) w.r.t. µi and µi+1 (Theorem 4.5 (B)).

3. (The proofs of) Propositions 2.9 and 4.10 yield the category equivalences

Mod←−
V
≃ Mod(V ,ξ,ν) ≃ Modsi(V ,ξ,ν) ≃ Mod

si(
←−
V )

(M,ρ←−
V
) ←−−−−−−−−→ (M,ρ←−

V
(IdM ⊗s

−1
i ))

Remark 4.12. As in Remark 2.10, one gets partial Sr-actions on rank r braided sys-
tems and braided tensor products of UAAs. Concretely, a permutation θ ∈ Sr with a
minimal decomposition θ = si1 · · · sik sends (V , ξ, ν) to si1(· · · (sik(V , ξ, ν)) · · · ), and
acts on UAA braided tensor products by the algebra morphism si1 · · · sik (still de-
noted by θ), provided that the braiding components are invertible when necessary.
These actions are mutually compatible, and induce module category equivalences via
(M,ρ←−

V
)↔ (M,ρ←−

V
(IdM ⊗θ

−1)).

As a first illustration of the braided system theory, we now upgrade Theorem 4.2
to the rank 2 level. A braided category (C,⊗, I, c) is needed here.

For (V, µ, ν) ∈ Alg(C), the data (µcV,V , ν) define another, twisted UAA structure
on V , denoted by V op. The associativity braiding becomes here σAss(V

op) = ν ⊗
(µcV,V ). This twisting is used to relate left and right modules:

Lemma 4.13. For (V, µ, ν) ∈ Alg(C), the functors

ModV op
∼
←→ VMod,

(M,ρ) 7−→ (M,L(ρ) := ρc−1M,V ), (13)

(M,R(λ) := λcM,V ) 7−→(M,λ), (14)

extended by identities on morphisms, yield a category equivalence.
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Take now two UAAs (V, µ, ν) and (V ′, µ′, ν′). Returning to Example 4.9, one gets

Lemma 4.14. The data (V1 = V, V2 = V ′; σ1,1 = σAss(V ), σ2,2 = σAss(V
′op), σ1,2 =

cV,V ′) define a braided system of UAAs, denoted by BM(V, V ′).

The proofs of the above lemmas are straightforward.
The module category equivalence from Proposition 4.10 and permutation rules

from Proposition 4.11 apply to BM(V, V ′). Using Observation 2.5 and Lemma 4.13,
one interprets braided modules over this system as familiar algebra bimodules :

Proposition 4.15. Take UAAs (V, µ, ν) and (V ′, µ′, ν′) in a braided category C. Let

V ′ModV be the category of (V ′, V )-bimodules. The following categories are equivalent:

ModV ′op⊗
c
V ≃ModBM(V,V ′) ≃V ′ModV ≃Mods2(BM(V,V ′)) ≃ModV ⊗

c−1
V ′op .

Note that V op ⊗
c
V is the enveloping algebra of the algebra V .

We then apply adjoint module theory to our bimodules. Recall Notation (2).

Proposition 4.16. Take a bimodule (M, ρ : M ⊗ V →M, λ : V ′ ⊗M →M) over
UAAs V and V ′ in a braided category C. The bar complex (M ⊗ T (V ), dbar) for V
with coefficients in M is a complex in V ′ModV . In other words, the differentials
(dbar)n are bimodule morphisms, where a bimodule structure on M ⊗ V n is given by

ρbar = µn+1 : M ⊗ V n ⊗ V →M ⊗ V n, λbar = λ1 : V ′ ⊗M ⊗ V n →M ⊗ V n.

Proof. Plug into Proposition 3.11 the system BM(V, V ′), the bimodule (M,ρ, λ)
(interpreted as a BM(V, V ′)-module via Proposition 4.15), and t = 2. One obtains
the compatibility of the braided differential ρd = dbar (cf. Theorem 4.2, Point 5) with
the braided BM(V, V ′)-module structures on the M ⊗ V n. Using Proposition 4.15
again, one interprets these braided modules as (V ′, V )-bimodules, with the explicit
structure from Lemma 4.13:

ρπ1 = ρ1(IdM ⊗σV n,V ) = µn+1,

λ(R(λ)π2) =
R(λ)π2c

−1
M⊗V n,V ′ = (λcM,V ′)

1(IdM ⊗σV n,V ′)c
−1
M⊗V n,V ′

= (λcM,V ′)
1(IdM ⊗cV n,V ′)c

−1
M⊗V n,V ′ = λ1.

This bimodule structure on the bar complex is fundamental for interpreting the
Hochschild (co)homology via the differential induced on coinvariants by dbar.

5. A braided interpretation of crossed products

We now present a rank 3 braided system. It recovers Panaite’s braided treatment
of two-sided crossed products [26], and its extension [11] to the generalized two-sided
crossed products A◮<C>◭B of Bulacu–Panaite–Van Oystaeyen [3]. Our component
permutation technique yields 6 isomorphic versions of the algebra A◮<C>◭B. This
extends algebra isomorphisms from [26, 11], and simplifies their originally very tech-
nical proof. Further, our adjoint module machinery yields a (B,A)-bimodule structure
on Cn, used for constructing a bialgebra homology theory in Section 6.

First, we need categorical versions of some basic algebraic notions.
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µ

∆ =
µ

∆

µ

∆

c
µM

λ

=
µM

∆

λ λ

νM

λ
=

νM

ε

Figure 8: Main bialgebra and module algebra axioms

ξ1,2 ←→
δr

ρ

B C

ξ2,3 ←→
δl

λ

AC

ξ1,3 ←→

B A

Figure 9: A braided system for a two-sided crossed product

Definition 5.1. • A bialgebra in a braided category (C,⊗, I, c) is an object H
endowed with a UAA structure (µ, ν) and a counital coassociative coalgebra (=
coUAA) structure (∆, ε), compatible in the following sense:

∆µ = (µ⊗ µ)c2(∆⊗∆), ∆ν = ν ⊗ ν, εµ = ε⊗ ε, εν = IdI . (15)

It is a Hopf algebra if it carries an antipode, i.e., an endomorphism s satisfying

µ(s⊗ IdH)∆ = µ(IdH ⊗s)∆ = νε. (16)

• For a bialgebra H in C, a left H-module algebra is a UAA (M,µM , νM ) endowed
with a left H-module structure λ : H ⊗M →M , such that µM and νM are H-
module morphisms (Fig. 8):

λ(IdH ⊗µM ) = µM (λ ⊗ λ)c2(∆⊗ Id⊗2M ), λ(IdH ⊗νM ) = νMε. (17)

Right H-module algebras and H-(bi)(co)module algebras are defined similarly.

• The categories of bialgebras / Hopf algebras / H-(co)module algebras and their
morphisms in C are denoted by, respectively, Bialg(C), HAlg(C), HModAlg,
ModAlgH , HModAlg, etc.

Proposition 5.2. Take a bialgebra H, a left H-module algebra (A, λ), a right H-
module algebra (B, ρ), and an H-bicomodule algebra (C, δl : C → H ⊗ C, δr : C →
C ⊗H) in a symmetric category (C,⊗, I, c). Then

1. The UAAs (B,C,A) form a braided system of UAAs, with

ξ1,2 = (IdC ⊗ρ)(cB,C ⊗ IdH)(IdB ⊗δr), ξ1,3 = cB,A,

ξ2,3 = (λ⊗ IdC)(IdH ⊗cC,A)(δl ⊗ IdA).

2. Formulas (10)-(11) for the ξi,j above define a UAA structure on A⊗ C ⊗ B.

3. One has a module category equivalence Mod(B,C,A;ξ) ≃ModA⊗ξC⊗ξB .

The braiding from the proposition is shown in Fig. 9. Here and below the underlying
braiding of a symmetric category is depicted by a solid crossing.

Proof. The key point is to verify the conditions of Theorem 4.5 (B) for the ξ:
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• The YBE on B ⊗ C ⊗A rewrites (using the naturality of c) as

(L(ρ) ⊗ IdM ⊗R(λ))(IdA⊗δl,r ⊗ IdB)p =

(L(ρ) ⊗ IdM ⊗R(λ))(IdA⊗δr,l ⊗ IdB)p.

Here p = (cC,A ⊗ IdB)(IdC ⊗cB,A)(cB,C ⊗ IdA); L and R are defined by (13)-
(14); δl,r = (δl ⊗ IdH)δr and δr,l = (IdH ⊗δr)δl are morphisms C → H ⊗ C ⊗
H . Now, the left-right H-coaction compatibility for C yields δl,r = δr,l.

• The naturality of the ξ w.r.t. the µ is a consequence of the defining properties
of H-(bico)module algebras. Here we show that ξ1,2 is natural w.r.t. µB, the
other cases being analogous:

ξ1,2(µB ⊗ IdC)

1
= (IdC ⊗ρ)(cB,C ⊗ IdH)(µB ⊗ δr)

2
= (IdC ⊗ρ)(IdC ⊗µB ⊗ IdH)(cB⊗B,C ⊗ IdH)(Id⊗2B ⊗δr)

3
= (IdC ⊗µB)(IdC ⊗ρ

⊗2)(IdC⊗B ⊗cB,H ⊗ IdH)(cB⊗B,C ⊗∆H)(Id⊗2B ⊗δr)

4
= (IdC ⊗µB)(IdC ⊗ρ⊗ IdB)(cB,C ⊗ IdH⊗B)(IdB ⊗δr ⊗ ρ)

(IdB ⊗cB,C ⊗ IdH)(Id⊗2B ⊗δr)

5
= (IdC ⊗µB)(ξ1,2 ⊗ IdB)(IdB ⊗ξ1,2).

We used the definition of ξ1,2 (steps 1 and 5), the naturality of c (2), the defi-
nition of right H-module algebra for B (3) and that of right H-comodule for C
(4). The easiest way to follow this proof is to draw diagrams!

• Similarly, the naturality of the ξ w.r.t. the units follows from the naturality of c
and from the definition of H-(co)module algebras.

Theorem 4.5 (A) then confirms that the ξ together with the σAss form a braiding,
while Point (C) asserts that A⊗ξC⊗ξB is an UAA. Finally, Proposition 4.10 gives
the required module category equivalence.

Our proposition recovers the generalized two-sided crossed product A◮<C>◭B :=
A⊗ξC⊗ξB from [3]. The choice C = H (with ∆H as coactions) yields the two-
sided crossed product A#H#B := A⊗ξH⊗ξB of Hausser–Nill [9]. We thus replace
the original technical associativity and module-category-equivalence verifications for
A◮<C>◭B with a more conceptual proof.

Further, forgetting the B (or A) part of the structure and taking as C a left
(respectively, right) H-comodule, one obtains rank 2 braided systems. This gives a
braided treatment of (a generalized version of) left / right crossed (or smash) products
A#H := A⊗ξH and H#B := H⊗ξB.

If H has an invertible antipode s, then all the ξ are invertible:

ξ−11,2 = ((ρcH,B)⊗ IdC)(s
−1 ⊗ cC,B)((cC,Hδr)⊗ IdB), ξ−11,3 = cA,B,

ξ−12,3 = (IdC ⊗(λcA,H))(cA,C ⊗ s
−1)(IdA⊗(cH,Cδl)).

Proposition 4.11 then allows to permute the components of A⊗ξC⊗ξB, producing six
pairwise isomorphic UAAs with pairwise equivalent module categories. In particular,
one recovers the algebra isomorphism A#H#B ≃ (A⊗B) ⊲⊳ H from [9].



BRAIDED SYSTEMS 21

ǫAπ ←→

δl δl δl

µ

λ

ǫA

AC C C

πǫB ←→

δr δr δr

µ

ρ

ǫB

B CC C

Figure 10: BModA structure on C3

Next, after a preliminary general lemma, we apply our adjoint braided module
theory to the braided system from Proposition 5.2, with trivial coefficients M = I.

Lemma 5.3. Take a rank r braided system (V , σ) in a symmetric category (C,⊗, I, c),
with σ1,r = cV1,Vr

. For this system, take two braided characters ǫ and ζ. Then the right

(Vr, σr,r)-module structure ǫπr and the left (V1, σ1,1)-module structure πζ1 on T (V )→n
commute: ǫπr(π

ζ
1 ⊗ Idr) = π

ζ
1(Id1⊗

ǫπr) : V1 ⊗ T (V )→n ⊗ Vr → T (V )→n .

Proof. The categorical braiding c is natural w.r.t. the components ǫr and ζ1 of our
braided characters. This allows to rewrite the desired identity as

(ǫr ⊗ IdT (V )→n
⊗ζ1)(σT (V )→n ,Vr

⊗ Id1)σV1,T (V )→n ⊗Vr
=

(ǫr ⊗ IdT (V )→n
⊗ζ1)(Idr⊗σV1,T (V )→n

)σV1⊗T (V )→n ,Vr
,

which is checked by a repeated application of the YBE.

We now return to two-sided crossed products. Recall the notation ϕi from (2). Put

ω2n =
(
1 2 ... n n+1 n+2 ... 2n
1 3 ... 2n−1 2 4 ... 2n

)
∈ S2n. (18)

Proposition 5.4. In the settings of Proposition 5.2, choose algebra characters ǫA
and ǫB for A and B. The morphisms below turn the tensor powers Cn into bimodules:

ǫAπ = (ǫA)
1λ1(IdH ⊗cCn,A)(µ

1)(n−1)((ω−12n δ
⊗n
l )⊗ IdA) : Cn ⊗A→ Cn,

πǫB = (ǫB)
n+1ρn+1(cB,Cn ⊗ IdH)(µn+2)(n−1)(IdB ⊗(ω

−1
2n δ
⊗n
r )) : B ⊗ Cn → Cn

(Fig. 10), where S2n acts on C2n via the symmetric braiding c, and the notation
(µi)(k) stands for the map µi iterated k times.

Proof. Observe that for Point 1 of Proposition 3.11 to hold true, the additivity of C is
not necessary, and the module M can be taken in Mod(V ,σ)[t,r] instead of Mod(V ,σ).
Thus apply Proposition 3.11 and its mirror version to the braided system of UAAs
(B,C,A) from Proposition 5.2 and to the algebra characters (hence braided charac-
ters) ǫA and ǫB. One gets right (A, σAss(A))-module structures and left (B, σAss(B))-
module structures on all the Bk ⊗ Cn ⊗Am, and hence on Cn. Further, since the ξ1,2
and ξ2,3 components of the braiding on (B,C,A) are natural w.r.t. the units of A
and B, these units act on Cn trivially. Theorem 4.2 then ensures that our braided
module structures on Cn are actually module structures over the UAAs A and B,
which are easily checked to coincide with the desired ones. Compatibility between A-
and B-actions follows from Lemma 5.3.
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B(vn ⊗ w1) · · ·B(v1 ⊗ wn) B(v1 ⊗ w1) · · ·B(vn ⊗ wn)

WV

B

WV

B

WV

B

WV

B

WV

B

WV

B

“rainbow” “arched”

Table 4: Two definitions of B(v1v2 . . . vn ⊗ w1w2 . . . wn)

6. A braided interpretation of bialgebras and Hopf modules

This section explores a rank 2 braided system B(H) encoding the bialgebra struc-
ture on H , in the same sense that σAss encodes the UAA structure (Table 1). It is
a particular case of the system constructed for crossed products in Proposition 5.2.
In B(H), the invertibility of the braiding component σ1,2 is algebraically significant:
it is equivalent to the existence of an antipode. We identify braided B(H)-modules as
Hopf modules over H , and show that the braided homology theory for B(H) includes
Gerstenhaber–Schack bialgebra homology and Panaite–Ştefan Hopf module homology.

Except for some general observations, we specialize here to the category C = vectk
of finite-dimensional vector spaces over k. One could also work in a braided cate-
gory C and choose a bialgebra in C admitting a dual. When working in vectk, we
use Sweedler’s notation for comultiplications and coactions. A simplified notation
v1v2 . . . vn = v1 ⊗ v2 ⊗ . . .⊗ vn ∈ V

n is preferred for pure tensors in V n, leaving the
symbol ⊗ for v1v2 . . . vn ⊗ w1w2 . . . wm ∈ V

n ⊗Wm. The dual space of V ∈ vectk is
denoted by V ∗. Letters hi and lj stand for elements of V and V ∗ respectively. The
pairing 〈, 〉 is the evaluation map ev : V ∗ ⊗ V → k, l⊗ h 7→ l(h). Multiplications on
different spaces are denoted by · when no confusion arises.

Consider a pairing B : V ⊗W → k between k-vector spaces. Table 4 presents its
possible extensions to B : V n ⊗Wn → k. The “arched” one is more common, but
we use the “rainbow” one (like, for instance, Gurevich [8]), minimizing argument
permutations and crossings in diagrams. This choice slightly changes some classical
formulas. We use analogous conventions in the dual and multi-pairing situations.
Taking as B the evaluation map ev, one constructs out of a linear map f : V1 ⊗ . . .⊗
Vn →W1 ⊗ . . .⊗Wm its dual f∗ : W ∗m ⊗ . . .⊗W

∗
1 → V ∗n ⊗ . . .⊗ V

∗
1 (note the inverse

order of factors). Graphically, this is the central symmetry, while the arched duality
corresponds to the horizontal mirror symmetry.

For example, the dual of a coalgebra V ∈ vectk receives an induced algebra struc-
ture via the rainbow extension of ev: 〈l1l2, h〉 =

〈
l1, h(2)

〉 〈
l2, h(1)

〉
, h ∈ V, l1, l2 ∈ V

∗

(Fig. 11A). Multiplication and (co)units are dualized similarly. The same structure
on V ∗ is obtained using the dual coevaluation map coev, or the twisted (co)pairings
ev ◦ τ : V ⊗ V ∗ → k and τ ◦ coev : k → V ⊗ V ∗. Here τ is the factor transposition
(which is the categorical braiding of vectk). To simplify notations, we often write ev
and coev even for the twisted maps.

Observation 6.1. Take a bialgebra (H,µ, ν,∆, ε) in a braided category (C,⊗, I, c).
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V ∗ V ∗ V

ev

∆∗ =

V ∗ V ∗ V

ev

∆ A
M V ∗

δco :=
ev

δ

M V ∗

B ρ
δ =

M H

M H

ρ

δ

µ

∆

c
C

M H

M H

Figure 11: Multiplication-comultiplication and action-coaction dualities, and Hopf
compatibility

1. The data Hop := (H,µc−1, ν,∆, ε) and Hcop := (H,µ, ν, c−1∆, ε) define bial-
gebras in (C,⊗, I, c−1). The data Hop,cop := (H,µc−1, ν, c∆, ε) and Hcop,op :=
(H,µc, ν, c−1∆, ε) define bialgebras in (C,⊗, I, c).

2. If H is a Hopf algebra with an antipode s, then so are Hop,cop and Hcop,op, with
the same antipode. If s is invertible, then s−1 is an antipode for Hop and Hcop.

3. One has the following bialgebra or Hopf algebra isomorphisms:

(Hop)∗ ≃ (H∗)cop, (Hcop)∗ ≃ (H∗)op, (Hop,cop)∗ ≃ (H∗)cop,op.

Notation 6.2. Twisted (co)multiplication is denoted by µop = µc−1, ∆cop = c−1∆.

Depending on the context, notations H , H∗, Hop, etc. will denote the correspond-
ing bialgebra, Hopf algebra, (co)algebra, or vector space.

Lemma 4.13 allows one to switch between left V -modules and right V op-modules.
We now give an analogous transition tool for modules and comodules.

Lemma 6.3. For a coalgebra V in vectk, the following functors (completed by iden-
tities on morphisms) yield a category equivalence:

ModV
∼
←→ModV ∗ ,

(M, δ) 7−→ (M, δco := (IdM ⊗ev)(δ ⊗ IdV ∗)), (19)

(M,ρco := (ρ⊗ IdV )(IdM ⊗coev)) 7−→(M,ρ). (20)

The proof is routine and is best done graphically. A diagrammatic version of the
transformation (19) is given in Fig. 11B. With the arched dualities, one would have
to take the category Mod(V ∗)op on the right.

Convention 6.4. Here and below thin lines stand for the basic vector space, dashed
lines for its dual, and thick colored lines for different types of modules over it.

Lemma 6.5. For a bialgebra H in vectk, the functors from Lemmas 4.13 and 6.3
induce category equivalences

ModAlgH
∼
←→ModAlg(H∗)cop , HModAlg

∼
←→ModAlgHop .

We now include the groupoid ∗Bialg(vectk) of bialgebras and bialgebra isomor-
phisms in vectk into the groupoid of bipointed rank 2 braided systems in vectk, taking
inspiration from the pointed rank 1 system interpretation of UAAs (Theorem 4.2).

Definition 6.6. Given a monoidal category C, let ∗BrSystlr(C) be the category of

• rank r bipointed braided systems, i.e., (V , σ) ∈ BrSystr(C) enriched with dis-
tinguished morphisms ν = (νi : I→ Vi)16i6r and ε = (εi : Vi → I)16i6r , called
units and counits, forming normalized pairs (νi, εi) for all i, and
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σ1,1 ←→ µ
ν σ1,2 ←→

ev∆ µ∗
σ2,2 ←→ ∆∗

ε∗

Figure 12: A braiding encoding the bialgebra structure

• isomorphisms from BrSystr(C) preserving the units and the counits.

Definition 6.7. A (right-right) Hopf module over a bialgebra H in a braided cate-
gory C is an object M endowed with right module and comodule structures ρ : M ⊗
H →M , δ : M →M ⊗H , satisfying the Hopf compatibility condition (Fig. 11C):

δρ = (ρ⊗ µ)(IdM ⊗cH,H ⊗ IdH)(δ ⊗∆) : M ⊗H →M ⊗H. (21)

The category of such modules and their morphisms is denoted by ModHH .

An important example of H-Hopf module is H itself, with ρ = µH , δ = ∆H .
We now return to our category vectk, omitted in further notations.

Theorem 6.8. 1. One has a fully faithful functor

F : ∗Bialg −֒→∗BrSyst
l
2 (22)

(H,µ, ν,∆, ε) 7−→B(H) := (V1 := H,V2 := H∗;

σ1,1 := σrAss(H), σ2,2 := σAss(H
∗), σ1,2 = σbi; ν, ε

∗; ε, ν∗),

f 7−→(f, (f−1)∗),

where σbi(h⊗ l) =
〈
l(1), h(2)

〉
l(2) ⊗ h(1) (Fig. 12).

2. For a bialgebra H, σbi is invertible if and only if H has an antipode.

3. Take an H ∈ vectk with UAA and coUAA structures (µ, ν) and (∆, ε). Suppose
the pair (ν, ε) normalized. Then the YBE on H ⊗H ⊗H∗ (symmetrically, on
H ⊗H∗ ⊗H∗) for B(H), together with the naturality of σbi with respect to the
units, are equivalent to the bialgebra compatibility conditions (15) for H.

4. For a bialgebra H, one has category equivalences

ModHH
∼
−→ ModB(H)

∼
−→ ModH∗ ⊗

σbi

H

(M,ρ, δ) 7−→ (M ; ρ, δco) 7−→ (M, δco ⊗ ρ)
If H is a Hopf algebra with an antipode s, then this chain can be continued on
the left by ModH⊗

θ
H∗ ≃Mods1·B(H) ≃ModHH , where θ = σ−1bi .

The graphical interpretation suggests that, applied to the dual bialgebra H∗ in-
stead of H , the construction yields a vertical mirror version of the system B(H).

Proof. Take a bialgebra H . Recall Notation 6.2. Consider the left H∗-comodule
algebra (H∗,∆∗, ε∗, µ∗). (A left version of) Lemma 6.5 transforms it into a left
Hcop-module algebra (H∗,∆∗, ε∗, (µ∗)co). Together with the Hcop-bicomodule alge-
bra (Hcop, µ, ν,∆cop,∆cop), it can be fed into Proposition 5.2 as the A and C parts
(as explained after that proposition, the B part can be omitted). The ξ2,3 component
of the braided system from that proposition coincides with σbi. Further, H

cop and H
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share the same UAA structure, hence our σi−1,i−1 can be chosen as the ξi,i compo-
nents (Remark 4.8). Proposition 5.2 then implies that B(H) is a braided system of
UAAs. It is clearly bipointed. Moreover, the braiding on B(H), the units and the
counits suffice to recover all ingredients of the bialgebra structure on H , hence the
functor F is injective on objects.

To prove Point 1, it remains to understand, for bialgebras H and K, isomorphisms
of bipointed braided systems (f, g) : B(H)→ B(K). By definition, they consist of
bijections f : H → K, g : H∗ → K∗ intertwining the braidings of B(H) and B(K)
and respecting the (co)units. Due to Theorem 4.2 (Point 1), this means that f and g
are UAA isomorphisms compatible with counits (εKf = εH , ν∗Kg = ν∗H), and satisfy

σbi(K)(f ⊗ g) = (g ⊗ f)σbi(H) (23)

(Fig. 13A). Applying ν∗K ⊗ εK to both sides of (23), using the compatibility of f
and g with the counits, and playing with dualities, one deduces g∗f = IdH , hence
g = (f−1)∗. Since g is a UAA isomorphism, so is g−1, hence f = (g−1)∗ is a coUAA
morphism, which completes its properties and shows that it is a bialgebra isomor-
phism. Reversing the argument, one checks that the choice g = (f−1)∗ for a bialgebra
isomorphism f implies (23). Thus the bipointed braided system isomorphisms are
precisely the pairs (f, (f−1)∗) for bialgebra isomorphisms f . Hence the functor F is
well defined, full and faithful. This finishes the proof of Point 1.

In Point 3, the compatibility between ∆ and ν follows by applying ν∗ ⊗ IdH to
the naturality condition for σbi w.r.t. ν. Symmetrically, the µ-ε compatibility follows
from the naturality of σbi w.r.t. ε

∗. The converse (compatibility⇒ naturality) is easy.
According to (the proof of) Theorem 4.5, the YBE on H ⊗H ⊗H∗ is equivalent
to the naturality condition of σbi w.r.t. µ (Fig. 13B), which implies the bialgebra
µ-∆ compatibility (apply ν∗ ⊗ IdH to both sides and use duality). Conversely, the
bialgebra compatibility suffices to deduce the above naturality. By symmetry, one
gets a proof for H ⊗H∗ ⊗H∗.

The “if” part of Point 2 can be proved by exhibiting an explicit formula for σ−1bi :

σ−1bi (l ⊗ h) =
〈
l(1), s(h(2))

〉
h(1) ⊗ l(2) (24)

(or by using the remarks after Proposition 5.2 and Point 2 of Observation 6.1). The
“only if” part is more delicate. Suppose the existence of σ−1bi and put

s̃ = (((ε⊗ ν∗)σ−1bi )⊗ IdH)(IdH∗ ⊗cH,H)(coev ⊗ IdH) : H → H

(Fig. 13). Let us prove that s̃ is the antipode. The part

µ(s̃⊗ IdH)∆ = νε (25)

of the defining relation (16) follows from σ−1bi σbi = IdH⊗H∗ by duality manipula-
tions. Surprisingly, the remaining part µ(IdH ⊗s̃)∆ = νε does not seem to follow
from σbiσ

−1
bi = IdH∗⊗H . Algebraic tricks come into play instead. Mimicking (24), set

σ̃ = (IdH ⊗(ev(s̃⊗ IdH∗))⊗ IdH∗)(∆⊗ µ
∗)cH∗,H : H∗ ⊗H → H ⊗H∗.

Relation (25) implies σ̃σbi = IdH⊗H∗ . Then σ̃ coincides with σ−1bi , giving σbiσ̃ =
IdH∗⊗H . Applying ν

∗ ⊗ ε to both sides, one recovers the second part of (16) for s̃.
We nowmove to Point 4. EquivalenceModB(H)

∼
→ModH∗ ⊗

σbi

H follows from Propo-

sition 4.10. Further, Observation 2.5, combined with Point 4 of Theorem 4.2, present
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=
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Figure 13: Naturality and invertibility issues for σbi

a right B(H)-module M via right module structures ρH and ρH∗ over the UAAs H
and H∗ respectively, compatible in the sense of (6):

ρH∗(ρH ⊗ IdH∗) = ρH(ρH∗ ⊗ IdH)(IdM ⊗(τ(IdH ⊗ev ⊗ IdH∗)(∆⊗ µ
∗))). (26)

On the other hand, due to the module-comodule duality from Lemma 6.3, a right-
right Hopf module structure over H can also be viewed as right module structures
over the UAAs H and H∗, with the compatibility condition obtained by applying
IdM ⊗ev to the defining condition (21) of Hopf modules (tensored with IdH∗ on the
right) and turning H-comodule structures into H∗-module structures. The condition
obtained coincides with (26), implying ModHH ≃ModB(H).

In the Hopf algebra case, Point 2 gives the invertibility of σbi. The component
permuting Proposition 4.11 proves then the desired equivalences.

All the remarks following Theorem 4.2 remain relevant in the bialgebra case. One
particular feature of the bialgebra setting is to be added to that list:

Remark 6.9. It is essential to work in the groupoid, and not just in the category of
bialgebras, if one wants a bialgebra morphism H → G to induce a morphism of dual
bialgebras H∗ → G∗, so that the functor (22) can be defined on morphisms.

Denote by H ′(H) = H ⊗
θ
H∗ one of the braided tensor products of UAAs from the

theorem. Then H (H) := H ′(H∗) is the well-known Heisenberg double of the Hopf
algebra H (cf. for example [21, 5]).

Our next goal are explicit braided complexes for B(H). After detailed calculations
with certain braided characters as coefficients, we discuss the general case of Hopf
module coefficients.

First, for a bialgebra H , we study adjoint actions of H∗ on Hn.

Lemma 6.10. The tensor powers of a bialgebra (H,µ, ν,∆, ε) in vectk can be en-
dowed with an H∗-bimodule structure via the following formulas (Fig. 14):

πH
∗

= πεH∗ = ev1ev2 · · · evn(((µ∗)1)(n−1) ⊗ (ω−12n∆
⊗n)) : H∗ ⊗Hn → Hn,

H∗π = εH∗π = evn+1evn+2 · · · ev2n((ω−12n∆
⊗n)⊗ ((µ∗)1)(n−1)) : Hn ⊗H∗ → Hn,

where notations (2) and (18) are used.

On the level of elements, the formulas can be written as

πH
∗

(l ⊗ h1 . . . hn) =
〈
l(1), hn(1)

〉 〈
l(2), hn−1(1)

〉
. . .

〈
l(n), h1(1)

〉
h1(2) . . . hn(2),

H∗π(h1 . . . hn ⊗ l) =
〈
l(1), hn(2)

〉 〈
l(2), hn−1(2)

〉
. . .

〈
l(n), h1(2)

〉
h1(1) . . . hn(1).
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πH
∗

←→

∆ ∆ ∆
(µ∗)(n−1)

ev

ev

ev

H∗π ←→

∆ ∆ ∆
(µ∗)(n−1)

ev

ev

ev

Figure 14: Hn as an H∗-bimodule

Proof. In the proof of Theorem 6.8, we observed that Proposition 5.2 applies to A =
(H∗, (µ∗)co) ∈ HcopModAlg and C = (Hcop,∆cop,∆cop) ∈ Hcop

ModAlgH
cop

(recall
Notation 6.2). Symmetry considerations allow to complete this couple with B =
(H∗, (µ∗)co) ∈ModAlgHcop , and feed it into Proposition 5.4 together with the counit
εH∗ = (νH)∗ of H∗. This counit is an algebra character of H∗ and hence of A and B.
The output yields the desired actions.

Interchanging the roles of H and H∗, one gets H-bimodules ((H∗)m, πH ,Hπ). By
abuse of notation, we define, for all m,n ∈ N for which this makes sense, the following
morphisms from Hn ⊗ (H∗)m to H(n−1) ⊗ (H∗)m or to Hn ⊗ (H∗)(m−1):

H∗π = H∗π ⊗ Id
⊗(m−1)
H∗ , πH

∗

= (πH
∗

⊗ Id
⊗(m−1)
H∗ )τHn⊗(H∗)(m−1),H∗ ,

πH = Id
⊗(n−1)
H ⊗πH , Hπ = (Id

⊗(n−1)
H ⊗Hπ)τH,H(n−1)⊗(H∗)m .

Lemma 6.11. These four endomorphisms of T (H)⊗ T (H∗) pairwise commute.

Proof. Lemma 6.10 implies the commutativity of H
∗

π and πH
∗

. ReplacingH withH∗,
one gets the commutativity of Hπ and πH . Next, returning to the braided interpre-
tation of the adjoint actions, πH corresponds to pulling the rightmost H-strand to
the right of all the H∗-strands (using σbi) and applying εH , while H

∗

π means pulling
the leftmost H∗-strand to the left of all the H-strands and applying εH∗ . Thus π

H

and H∗π commute. The case of πH
∗

and Hπ is analogous.

For the two remaining pairs, consider the linear isomorphisms

∆n ⊗ Id⊗mH∗ : H
n ⊗ (H∗)m

∼
−→ (Hop)n ⊗ ((Hop)∗)m, ∆n :=

(
1 2 ··· n
n n−1 ··· 1

)
∈ Sn,

where Sn acts on Hn by component permutation. These isomorphisms transport the
endomorphisms H∗π, πH

∗

, πH , and Hπ of H⊗n ⊗ (H∗)⊗m to, respectively, (Hop)∗π,
π(Hop)∗ , H

op

π, and πH
op

. Thus the commutativity of (Hop)∗π and πH
op

induces that
of H

∗

π and Hπ, and similarly for πH
∗

and πH .

Further, recall the bar and (the dual of the) cobar differentials on T (H)⊗ T (H∗):

dbar(h1 . . . hn ⊗ l1 . . . lm) =
∑n−1

i=1
(−1)ih1 . . . (hi · hi+1) . . . hn ⊗ l1 . . . lm, (27)

dcob(h1 . . . hn ⊗ l1 . . . lm) =
∑m−1

i=1
(−1)ih1 . . . hn ⊗ l1 . . . (li · li+1) . . . lm. (28)

Proposition 6.12. For a finite-dimensional k-linear bialgebra (H,µ, ν,∆, ε), the bi-
graded vector space T (H)⊗ T (H∗) =

⊕
n,m∈NH

n ⊗ (H∗)m can be endowed with four
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dn,m : Hn ⊗ (H∗)m → Hn−1 ⊗ (H∗)m d′n,m : Hn ⊗ (H∗)m → Hn ⊗ (H∗)m−1

1 dbar (−1)ndcob
2 dbar + (−1)nπH (−1)ndcob + (−1)n(H

∗

π)

3 dbar +
Hπ (−1)ndcob + (−1)n+mπH

∗

4 dbar + (−1)nπH + Hπ (−1)ndcob + (−1)n(H
∗

π) + (−1)n+mπH
∗

Table 5: Bicomplex structures on T (H)⊗ T (H∗)

bicomplex structures, presented in Table 5. Being a bicomplex means here satisfying

dn−1,mdn,m = 0, d′n,m−1d
′
n,m = 0, dn,m−1d

′
n,m + d′n−1,mdn,m = 0.

Proof. 1. Maps dbar and dcob are well known to be differentials (see also their
interpretation as braided differentials in Theorem 4.2). They affect disjoint parts
T (H) and T (H∗) of T (H)⊗ T (H∗), and thus commute. The sign (−1)n then
assures the anticommutativity.

2. Return to the braided system Hbi, which we no longer consider as bipointed.
The counit εH of H is an algebra character, hence a braided character for
(H,σrAss(H)). Extended to H∗ by zero, it becomes a braided character for Hbi

(Example 2.8). Similarly, εH∗ extended to H by zero is also a braided character
for Hbi. Choosing them as coefficients, one gets the following braided bidiffer-
ential, which coincides with the desired one up to a sign:

εH∗d = (−1)ndcob + (−1)n(H
∗

π), dεH = −(dbar + (−1)nπH).

3. Symmetrically, one gets a bidifferential ((−1)m(dbar +
Hπ), dcob + (−1)mπH

∗

),
hence (dbar +

Hπ, (−1)ndcob + (−1)n+mπH
∗

).

4. The last point follows from the preceding ones using an elementary observation:

Lemma 6.13. Take an Abelian group (S,+, 0, a 7→ −a) endowed with an oper-
ation ·, distributive with respect to +. Then, for any a, b, c, d, e, f ∈ S,

(a+ b)·(d+ e) = (a+ c) · (d+ f) = a · d = b · f + c · e = 0

=⇒ (a+ b+ c) · (d+ e+ f) = 0.

Proof. (a+ b+ c) · (d+ e+ f) = (a+ b) · (d+ e) + (a+ c) · (d+ f)− a · d+ (b ·
f + c · e).

Now take S = Endk(T (H)⊗ T (H∗)) with the usual addition and, as the sec-
ond operation, a · b := ab (for proving that the two morphisms from the 4th
line of our table are differentials), or a · b := ab+ ba (for proving that the two
morphisms anti-commute). Choose a = dbar, b = (−1)nπH , c = Hπ, d = dbar or
d = (−1)ndcob, etc. The equalities of the type b · f + c · e = 0 follow from the
pairwise anti-commutativity of (−1)n(H

∗

π), (−1)n+mπH
∗

, (−1)nπH , and Hπ

(Lemma 6.11), and the remaining ones from Points 1-3.

One recognizes in dbar + (−1)nπH + Hπ the Hochschild differential for H with co-
efficients in the H-bimodule T (H∗) (Lemma 6.10). Dually, dcob +

H∗π + (−1)mπH
∗

is
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the Hochschild differential for H∗. Thus the last bicomplex from Table 5 yields the
Gerstenhaber–Schack bialgebra homology [7]. See Taillefer’s thesis [30] for computa-
tions and comparison with other homologies, and the work of Mastnak–Witherspoon
[20] for explicit formulas and the transition from Homk(H

m, Hn) to Hn ⊗ (H∗)m.

Now, instead of the braided characters εH and εH∗ for B(H), take general braided
modules (M,ρ, δ) ∈ModHH ≃ModB(H) and (N, λ, γ) ∈ H∗

H∗Mod ≃ B(H)Mod. OnM ⊗

Hn ⊗ (H∗)m ⊗N , define the maps πH and H∗π using adjoint actions as before:

πH(a⊗ h1 . . . hn ⊗ l1 . . . lm ⊗ b) =〈
l1(1), hn(m+1)

〉
. . .

〈
lm(1), hn(2)

〉 〈
b−1, hn(1)

〉
a⊗ h1 . . . hn−1 ⊗ l1(2) . . . lm(2) ⊗ b0,

H∗π(a⊗ h1 . . . hn ⊗ l1 . . . lm ⊗ b) =〈
l1(1), hn(2)

〉
. . .

〈
l1(n), h1(2)

〉 〈
l1(n+1), a1

〉
a0 ⊗ h1(1) . . . hn(1) ⊗ l2 . . . lm ⊗ b.

Further, let Hπ be the action ρ applied to the two leftmost factors, and let πH
∗

be the
action λ applied to the two rightmost factors. We still denote by dbar and dcob the dif-
ferentials (27)-(28) tensored with IdM on the left and with IdN on the right. Repeating
the argument of Proposition 6.12 for these maps, one shows that dbar + (−1)nπH +
Hπ and (−1)ndcob + (−1)n(H

∗

π) + (−1)n+mπH
∗

define a bicomplex on M ⊗ T (H)⊗
T (H∗)⊗N . If N is finite dimensional, then one can see M ⊗Hn ⊗ (H∗)m ⊗N as
Hom(N∗ ⊗Hm,M ⊗Hn), with N∗ ∈ModHH . One recovers (a variation of) the de-
formation (co)homology of Hopf modules, due to Panaite–Ştefan [27].

7. A braided interpretation of Hopf bimodules

In this section, the braided system B(H) for a bialgebra H is upgraded to a more
complicated rank 4 system B′(H). Braided B′(H)-modules are identified as Hopf
bimodules overH , or else as modules over the algebras X , Y , and Z of Cibils–Rosso
and Panaite. These algebras are included into a list of 24 braided tensor products
of UAAs, shown pairwise isomorphic by component permuting techniques. Braided
bidifferentials for B′(H) recover the Hopf bimodule (co)homology of Ospel–Taillefer.

Definition 7.1. In a braided category C, a Hopf bimodule over a bialgebra H is an

object M with a bimodule structure M ⊗H
ρ
→M,H ⊗M

λ
→M and a bicomodule

structure M
δ
→M ⊗H,M

γ
→ H ⊗M , satisfying (21) and 3 other Hopf compatibility

conditions (Fig. 15):

δλ = (λ⊗ µ)(IdH ⊗cH,M ⊗ IdH)(∆⊗ δ) : H ⊗M →M ⊗H,

γρ = (µ⊗ ρ)(IdH ⊗cM,H ⊗ IdH)(γ ⊗∆) : M ⊗H → H ⊗M,

γλ = (µ⊗ λ)(IdH ⊗cH,H ⊗ IdM )(∆⊗ γ) : H ⊗M → H ⊗M.

The category of Hopf bimodules over H and their morphisms is denoted by H
HModHH .

We now return to our category C = vectk, as usual omitted from notations.
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Figure 15: Hopf compatibility conditions

σ1,3 ←→ σ2,3 ←→ σ1,4 ←→ σ2,4 ←→

Figure 16: Some braiding components for B′(H)

Theorem 7.2. 1. One has a fully faithful functor

F ′ : ∗Bialg −֒→ ∗BrSyst
l
4 (29)

(H,µ, ν,∆, ε) 7−→ B′(H) := (V1 := H,V2 := Hop, V3 := H∗, V4 := (Hcop)∗;

σi,i := σAss(Vi), σ1,2 := τH,Hop , σ3,4 := τH∗,(Hcop)∗ , σ1,3 := σbi(H),

σ2,3 := σbi(H
op), σ1,4 := σbi(H

cop), σ2,4 := σbi(H
op,cop);

ν, ν, ε∗, ε∗; ε, ε, ν∗, ν∗),

f 7−→ (f, f, (f−1)∗, (f−1)∗),

where τ is the transposition of the corresponding factors, and σbi(A) denotes
the map σbi from Theorem 6.8 for the bialgebra A (Fig. 16).

2. For a bialgebra H, one has category equivalences
H
HModHH

∼
→ ModB′(H)

∼
→ ModW (H)

(M,ρ, λ, δ, γ) 7→ (M ; ρ,R(λ), δco,R(γco)) 7→ (M,R(γco)⊗ δco ⊗R(λ) ⊗ ρ)

where R is the correspondence from Lemma 4.13, and W (H) is the braided
tensor product of UAAs W (H) = (Hcop)∗ ⊗

ξ
H∗ ⊗

ξ
Hop ⊗

ξ
H.

3. If H is a Hopf algebra, then, for any θ ∈ S4, one has category equivalences

H
HModHH

∼
−→ModθB′(H)

∼
−→Modθ·W (H),

where the bipointed braided system θB′(H) is obtained from B′(H) by a com-
ponent permutation from Remark 2.10, and the UAA θ ·W (H), isomorphic
to W (H), is obtained from W (H) by a component permutation from Remark 4.12.

Proof. Let F ′i,j be the composition ofF ′ with the forgetful functor Fori,j :
∗BrSyst

l
4 →

∗BrSyst
l
2 which picks the ith and jth components, i < j. For i 6 2 < j one recognizes

in F ′i,j the functor (22) from Theorem 6.8 and its slight modifications which send a
bialgebra H to B(Hop), B(Hcop), or B(Hop,cop) (with some σrAss-type braiding com-
ponents replaced with their σAss versions). Further, F ′1,2(H) and F ′3,4(H) coincide
with the braided systems of UAAs BM(H,H) and BM(H∗, H∗) respectively. Hence
all the ξi,j for i < j are natural w.r.t. the units and the multiplications. They also
satisfy the YBEs required by Theorem 4.5 (B). Indeed, on V1 ⊗ V2 ⊗ Vk, k ∈ {3, 4},
the YBE follows from the associativity of µ, and on Vk ⊗ V3 ⊗ V4, k ∈ {1, 2} from
the coassociativity of ∆. Theorem 4.5 then asserts that B′(H) is a braided system of
UAAs. It is clearly bipointed.
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To show that F ′ is well defined on morphisms, it suffices to check this for all
the F ′i,j , i < j. For i 6 2 < j it follows from Theorem 6.8. For F ′1,2 and F ′3,4, ob-
serve that the ξ1,2 and ξ3,4 components of our braidings are simply transpositions,
ensuring the defining property (4) of braided morphisms. Further, take a braided
isomorphism (f, g, h, k) : B′(H)→ B′(K) for bialgebras H and K. Applying forgetful
functors Fori,j , i 6 2 < j, and using Theorem 6.8 again, one sees that f is a bialgebra
isomorphism, and that f = g = (h∗)−1 = (k∗)−1. Hence F ′ is full and faithful.

Let us turn to modules. Take (M,ρ, λ, δ, γ) ∈ H
HModHH . Transform left structures λ

and γ into right structures R(λ) and R(γ), and then comodule structures δ and R(γ)
into module structures δco and R(γ)co = R(γco). Thus the Hopf bimodule M over H
becomes a module over UAAs H = V1, H

op = V2, H
∗ = V3, and (Hcop)∗ = V4. Fur-

ther, the 4 Hopf compatibility conditions coincide with the braided module compati-
bility conditions on Vi ⊗ Vj , i 6 2 < j, and left-right action (or coaction) compatibil-
ity conditions cover the case i = 1, j = 2 (respectively, i = 3, j = 4). Observation 2.5
then yields the desired category equivalence HHModHH ≃ModB′(H).

The remaining assertions follow from the correspondence between braided modules
and modules over braided tensor products (Proposition 4.10), the invertibility of σbi
in the Hopf algebra case, the properties of twisted Hopf algebras (Observation 6.1;
recall that in the finite-dimensional case, an antipode is always invertible), and the
component permuting Propositions 2.9 and 4.11.

The category H
HModHH for a Hopf algebra H is known to be equivalent to the

categories of right modules over 3 UAAs: the twisted product of Cibils–Rosso [5]:

X (H) = (H ⊗Hop)⊗(H∗ ⊗ (H∗)op),

and the two-sided and diagonal crossed products of Panaite [26]:

Y (H) = H∗#(Hop ⊗H)#(H∗)op, Z (H) = (H∗ ⊗ (H∗)op) ⊲⊳ (Hop ⊗H).

Here we adapt Panaite’s notations to our conventions. For instance, he uses the arched
duality, so his dual bialgebra H∗ corresponds to our (H∗)op,cop. Also, he sees Hopf bi-
modules over H∗ as left modules over X (H), while we interpret Hopf bimodules over
H as right modules. The algebras X ,Y ,Z are of the form θ ·W (H), with as θ the
permutations (14)(23), (1234), and (34). Point 3 of our theorem includes them into
a family of #S4 = 24 UAAs and gives explicit isomorphisms between them, induc-
ing equivalences for their module categories (Remark 4.12). We thus generalize and
conceptually explain the central results of [5, 26], minimizing technical computations.

Braided adjoint actions allow to regard the bar complex with bimodule coefficients
as a complex of bimodules (Proposition 4.16). The same is true for Hopf bimodules:

Proposition 7.3. Take a Hopf bimodule (M, M ⊗H
ρ
→M, H ⊗M

λ
→M, M

δ
→M ⊗

H, M
γ
→ H ⊗M) over a bialgebra (H,µ, ν,∆, ε) in vectk. The bar complex (M ⊗

T (H), dbar) for H with coefficients in M is a complex in H
HModHH . In other words,
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δbar ←→
δ ∆ ∆ ∆

µ

γbar ←→
γ ∆ ∆ ∆

µ

Figure 17: Diagonal bicomodule structure on the bar complex

the differentials (dbar)n are Hopf bimodule morphisms, with the following Hopf bi-
module structure on M ⊗Hn (Fig. 17):

ρbar = µn+1, λbar = λ1,
}

peripheral actions

δbar = (µn+2)(n)ω−12(n+1)(δ ⊗∆⊗n),

γbar = (µ1)(n)ω−12(n+1)(γ ⊗∆⊗n).

}
diagonal
coactions

Here ω2(n+1) ∈ S2(n+1) from (18) acts on M ⊗H2n+1 by factor permutation.

Proof. Theorem 7.2 asserts that M is a B′(H)-module. Proposition 3.11 for t = 1
then yields a B′(H)-module structure on M ⊗ T (H), compatible with the braided
differential ρd. By Theorem 4.2, the latter is the bar differential. Using Theorem 7.2
again, one transforms the B′(H)-module structure onM ⊗ T (H) into a Hopf bimodule
structure over H , which coincides with the desired one.

This Hopf bimodule structure on the bar complex, and its dual structure on the
cobar complex, are essential for defining the Hopf bimodule (co)homology, introduced
by Ospel in the one-module case [25] and by Taillefer [30, 31] for two modules.

Now, take two Hopf bimodules M ∈ H
HModHH ≃ModB′(H) and N ∈

H∗

H∗ModH
∗

H∗ ≃

B′(H)Mod. Mimicking the constructions for Hopf modules from the previous section,
one gets a tetra-complex structure on the tetra-graded vector space M ⊗ T (H)⊗
T (Hop)⊗ T (H∗)⊗ T ((Hcop)∗)⊗N . If N is finite dimensional, then this space can
be regarded as Hom(T (H)⊗N∗ ⊗ T (H), T (H)⊗M ⊗ T (H)), with N∗ ∈ H

HModHH
(here in order to get rid of twisted (co)multiplications, we moved T (Hop) to the left
ofM , reversing the order of its factors, and similarly for T ((Hcop)∗)). This generalizes
an alternative (co)homological approach to Hopf bimodules from [31].

References

[1] J. Beck. Distributive laws. In Sem. on Triples and Categorical Homology
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