
HAL Id: hal-00820327
https://hal.science/hal-00820327v2

Preprint submitted on 29 Mar 2014 (v2), last revised 14 Nov 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Braided Systems: a Unified Treatment of Algebraic
Structures with Several Operations

Victoria Lebed

To cite this version:
Victoria Lebed. Braided Systems: a Unified Treatment of Algebraic Structures with Several Opera-
tions. 2013. �hal-00820327v2�

https://hal.science/hal-00820327v2
https://hal.archives-ouvertes.fr


Braided Systems: a Unified Treatment of Algebraic

Structures with Several Operations

Victoria Lebed

lebed.victoria@gmail.com

March 29, 2014

Abstract

Bialgebras and Hopf (bi)modules are examples of algebraic structures involving several interacting
operations. The multi-operation setting significantly increases the complexity of these structures and
their homology. In the present paper we develop the machinery of braided systems, tailored for
handling multi-operation structures. Our construction is general enough to include as particular cases
the examples above (as well as, for instance, Poisson algebras and Yetter-Drinfel′d modules, treated
in separate publications). At the same time, graphical tools allow a concrete and efficient exploration
of braided systems. Gerstenhaber-Schack, Panaite-Ştefan and Ospel-Taillefer (co)homology theories
for bialgebras and Hopf (bi)modules, as well as the Heisenberg double, and the algebras X , Y and Z

of Cibils-Rosso and Panaite, naturally appear in our braided setting. This new interpretation offers a
conceptual explication, a generalization and a simplified proof of several related algebraic phenomena.

Keywords: braided systems; braided homology; Hopf algebras; Hopf (bi)modules; Heisen-
berg double; (generalized) crossed products; bialgebra homology; distributive laws; multi-quantum
shuffle algebra.
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1 Introduction

In [14] we introduced a homology theory for braided objects in a monoidal category C (C = Vectk
is a typical example). Interpreting associative / Leibniz algebras and self-distributive structures
as braided objects, and applying our general homology theory to them, we obtained in each case
a generalization of usual homology theories for the structure in question. We thus unified many
familiar theories into one, explaining their otherwise mysterious similarities.

Concretely, an object V in C is called braided if it is endowed with a braiding, i.e., a morphism
σ : V ⊗ V → V ⊗ V satisfying the Yang-Baxter equation (YBE ) σ1σ2σ1 = σ2σ1σ2, where σ1 =
σ⊗IdV and σ2 = IdV ⊗σ. For instance, in [14] we showed that a unital associative algebra in Vectk
is a braided object, with σAss : v⊗w 7→ 1⊗v ·w. However, the one-object one-morphism setting of
braided object theory is too restrictive for more complicated structures. For instance, the bialgebra
structure involves several operations (multiplication, comultiplication, etc.), and its Gerstenhaber-
Shack (co)homology theory (in the version convenient for braided interpretations) is defined on
Hom(H⊗n, H⊗m) ≃ H⊗m⊗(H∗)⊗n, thus involving two different objects (H andH∗). This suggests
working with a family of objects (V1, . . . , Vr) in C endowed with morphisms σi,j : Vi⊗Vj → Vj⊗Vi
(here we impose i 6 j for staying the most general possible), satisfying the colored version of the
YBE on all the tensor products Vi ⊗ Vj ⊗ Vk with i 6 j 6 k. This is what we call a rank r braided
system, a notion central to this paper. For r = 2 we recover the WXZ-systems of L. Hlavatý and
L. Šnobl ([10]), motivated by the concept of quantum doubles. They classified such systems in
dimension 2 and studied their symmetries.

In Sections 2 and 3 we extend the representation and homology theories for braided objects,
developed in [14], to braided systems. In particular, the multi-versions of braided modules and
braided differentials are defined, the former playing the role of coefficients for the latter. Further
sections are devoted to examples. In each of them, we look for a braided system encoding the
given algebraic structure in the sense of Table 1. The line BrSystr(C) ←֓ Structure(C) means
that we want to recover the categories of the algebraic structures we are interested in (e.g., the
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category of bialgebras in C) as subcategories of the category of rank r braided systems in C.
Diverse properties of our algebraic structures and their homologies can then be deduces from the
corresponding properties of braided systems.

braided system 7→ algebraic structure
braiding components σi,j ↔ operations

YBEs ⇔ defining relations
braided morphisms ≃ structural morphisms

BrSystr(C) ←֓ Structure(C)
braided modules ≃ usual modules

braided differentials ⊇ usual differentials

Table 1: Multi-braided interpretation for algebraic structures

All braided systems considered in this paper are composed of unital associative algebras (=UAAs)
(Vi, µi, νi), and the diagonal braiding components σi,i are the “associativity braidings” σAss =
νi⊗µi (or their right versions σ

r
Ass = µi⊗νi). In Section 4 we study in detail such braided systems

of UAAs, highlighting their connections with braided tensor products of algebras
←−
V = Vr⊗· · ·⊗V1.

Concretely, morphisms ξi,j for i < j are shown to complete the associativity braidings σi,i into a

braided system structure if and only if they define an associative multiplication on
←−
V by

µ←−
V

:= (µr ⊗ · · · ⊗ µ1) ◦ ξ
2r−2
1,2 ◦ (ξ2r−42,3 ◦ ξ2r−31,3 ) ◦ · · · ◦ (ξ2r−1,r ◦ · · · ◦ ξ

r−1
2,r ◦ ξ

r
1,r) :

←−
V ⊗

←−
V →

←−
V ,

where ξpi,j denotes the morphism ξi,j applied at positions p and p+ 1.
Rank 2 braided tensor products are at the heart of braided geometry, introduced by S. Majid in

a long series of papers ([17, 16, 18], etc.). Majid’s motivation was to develop an algebra analogue
of the product of two spaces in non-commutative geometry. A pleasant consequence of his work
was the construction of new examples of non-commutative non-cocommutative Hopf algebras via
the bicrossproduct construction (which is a particular case of braided tensor product).

The case of general r was independently treated by several authors from different viewpoints:
1. P.J. Mart́ınez, J.L. Peña, F. Panaite and F. van Oystaeyen introduced in [11] the notion

of iterated twisted tensor products of algebras in Vectk, and studied various Hopf algebraic,
geometric and physical examples. Their motivation lied in the braided geometry.

2. E. Cheng introduced in [4] the notion of iterated distributive laws, generalizing the work
of J. Beck ([1]). Categorical motivations (namely, a study of interchange laws in a strict
n-category) lead her to work in the monoidal category of endofunctors of a given category.

The approaches above relate the associativity of µ←−
V

to the YBEs for the ξi,j with i < j,
combined with the naturality of the ξi,j w.r.t. multiplications µi and µj . Our main contribution
consists in a treatment of all the conditions involved in the associativity of µ←−

V
in terms of YBEs:

associativity of µi ⇐⇒ YBE on Vi ⊗ Vi ⊗ Vi
compatibility between ξi,j & µi ⇐⇒ YBE on Vi ⊗ Vi ⊗ Vj
compatibility between ξi,j & µj ⇐⇒ YBE on Vi ⊗ Vj ⊗ Vj



 new

compatibilities between the ξ ⇐⇒ YBE on Vi ⊗ Vj ⊗ Vk
}

known

This entirely braided interpretation is made possible by our associativity braiding. Among its
advantages is the possibility to apply the braided homology machinery to braided tensor products
of algebras, which turns out to be very fruitful in the examples from this paper.

Sections 5-7 contain a detailed study of the braided systems of UAAs encoding the structures of
generalized two-sided crossed products (as defined by D. Bulacu, F. Panaite and F. Van Oystaeyen
in [3]) and finite-dimensional k-linear bialgebras. For the latter, we propose two braided systems,
recovering Hopf modules and Hopf bimodules as corresponding braided modules. Both systems
are presented in Table 2, together with two systems encoding the UAA structure. Here τ is simply
the transposition v⊗w 7→ w⊗v (or the underlying braiding if one works in a symmetric category),
σbi : H ⊗H

∗ → H∗ ⊗H is defined, using Sweedler’s notation, by

σbi(h⊗ l) :=
〈
l(1), h(2)

〉
l(2) ⊗ h(1), (1)

and, when writing σi,j = σAss or σbi, we mean the formulas for σAss or σbi applied to the (bi)algebra
corresponding to Vi⊗Vj (e.g., σ2,4 in the last line is calculated according to Formula (1) forHop,cop).
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The σi,i components are omitted when they equal σAss.

structure braided system br. modules br. complexes
algebra A σ1,1 = σAss or σrAss algebra modules bar,
A A, Aop σ1,2 = τ algebra bimodules Hochschild

H,H∗
σ1,1 = σrAss, Hopf modules

Gerstenhaber-Schack,
bialgebra σ1,2 = σbi Panaite-Ştefan [7, 27]

H H,Hop σ1,2 = τ , σ3,4 = τ ,
Hopf bimodules

Ospel-Taillefer
H∗, (H∗)op other σi,j = σbi [25, 31]

Table 2: Braided interpretation of the algebra and the bialgebra structures

Note the the braiding components in the systems above are not necessarily invertible. For
instance, σbi has an inverse if and only if H is a Hopf algebra. This yields a braided interpretation
of the existence of an antipode.

The braided system from the third line of the table leads to an inclusion of the category of
bialgebras in vectk into BrSyst2(vectk). F.F. Nichita’s paper [23] can also be seen in the same
light. To encode the associativity, he uses a generalization of the self-inverse braiding σ̃Ass = ν⊗µ+
µ⊗ ν− IdV ⊗2 , proposed by P. Nuss ([24]) in the context of the descent theory for noncommutative
rings. This braiding was thoroughly studied by Nichita and his collaborators ([22, 2]). We stick
however to our σAss because of its homological applications (cf. the last column of Table 2).

Representation-theoretic aspects of braided systems of UAAs are of particular interest. They
can be viewed through the prism of the general principle of presenting complicated structures using
something well understood — here modules over a well chosen algebra. The structure complexity
is now hidden in this algebra, which for some purposes can be treated as a black box. Table 3
contains relevant examples. Notation ⊗ is here to stress that braided tensor products are used.

“complicated” structure corresponding “complicated” algebra
bimodule over an algebra A enveloping algebra A⊗Aop

Hopf module over a bialgebra H Heisenberg double H (H) := H∗⊗H
Hopf bimodule over algebras X (H) = (H ⊗Hop)⊗(H∗ ⊗ (H∗)op),
a Hopf algebra H Y (H) and Z (H)

YD module over a bialgebra H Drinfel′d double D(H) := H∗⊗Hop

Table 3: Algebras encoding Hopf and Yetter-Drinfel′d (bi)module structures

In this paper and in [15], we interpret the “complicated” structures from the table as braided
modules over certain braided systems of UAAs (cf. Table 2), and the “complicated” algebras as
the corresponding braided tensor product algebras. Now in order to interpret the former as algebra
modules over the latter, we return to our general setting, and identify braided modules over a

braided system of UAAs as modules over the corresponding braided tensor product algebra
←−
V :

Mod(V1,...,Vr ;σi,i=σAss, ξi,j) ≃Mod
(
←−
V , µ←−

V
)
.

Our general braided system theory now applies to the “complicated” structures and algebras from
the table. In particular, using our explicit permutation rules for components of a braided tensor
product, we include the algebra X (H) of Cibils-Rosso ([5]) and their versions Y (H) and Z (H)
of F. Panaite ([26]) into a family of #S4 = 24 algebras. We give explicit isomorphisms between
these, as well as explicit equivalences between their categories of modules. This generalizes some
results of [26], avoiding the technical calculations used there. Further, our adjoint braided module
theory recovers the “complicated” structure of some braided differential complexes (e.g., the Hopf
bimodule structure of the bar complex of a bialgebra with coefficients in a Hopf bimodule).

We finish with a list of other structures admitting a braided system interpretation; the work
on all these points is in progress.

1. The braided system we constructed for generalized two-sided crossed products works in par-
ticular for H-(bi)(co)module algebras. Repeating our study of braided homology of bialgebras
in this context, one recovers in particular D. Yau’s deformation bicomplex of module algebras
([34]). “Braided” tools also simplify A. Kaygun’s treatment of H-equivariant A-bimodule
structures used in his Hopf-Hochschild homology of module algebras ([13]).
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2. Combining σAss with the braiding from [14] encoding Lie/Leibniz algebras, one gets a rank 2
braided system encoding the non-commutative Poisson algebra structure. Its braided homol-
ogy is likely to include B. Fresse’s Poisson algebra homology ([6]).

3. The braided system machinery can also be applied to the quantum Koszul complexes of
D. Gurevich ([8]) and M. Wambst ([32]).

Notations and conventions

All the structures in this paper live in a strict monoidal category (C,⊗, I); the reader can have in
mind the category Vectk of vector spaces over a field k for simplicity. The word “strict” is often
omitted for brevity, as well as the word “monoidal” in the terms “braided / symmetric monoidal
category”. Given an object V in C, we succinctly denote its tensor powers by V n := V ⊗n, V 0 := I.
Further, given a morphism ϕ : V l → V r, the following notation is repeatedly used:

ϕi := Id
⊗(i−1)
V ⊗ϕ⊗ Id

⊗(k−i+1)
V : V k+l → V k+r , (2)

and similarly for morphisms on tensor products of different objects. Working with a family of
objects (V1, V2, . . .), we put Idi := IdVi

.
The already classical graphical calculus is extensively used in this paper, with

➺ dots standing for objects in C,
➺ horizontal gluing corresponding to the tensor product,
➺ graph diagrams representing morphisms from the object which corresponds to the lower dots

to that corresponding to the upper dots,
➺ vertical gluing standing for morphism composition, and vertical strands for identities.

All diagrams are to be read from bottom to top here.
Notations Sn, Bn, B

+
n stand for the symmetric groups, the braid groups and the positive braid

monoids respectively. Their standard generators are denoted by si and σi, 1 6 i 6 n− 1.

2 Multi-braided vocabulary

Braided systems

The notion of braided system generalizes the common notion of braided object in a monoidal
category.

Definition 2.1. ➺ A braided system in C is an ordered finite family V1, V2, . . . , Vr ∈ Ob(C)
endowed with a braiding, i.e., morphisms σi,j : Vi ⊗ Vj → Vj ⊗ Vi for 1 6 i 6 j 6 r satisfying
the (colored) Yang-Baxter equation

(σj,k ⊗ Idi) ◦ (Idj ⊗σi,k) ◦ (σi,j ⊗ Idk) = (Idk ⊗σi,j) ◦ (σi,k ⊗ Idj) ◦ (Idi⊗σj,k) (YBE)

on all the tensor products Vi ⊗ Vj ⊗ Vk with 1 6 i 6 j 6 k 6 r. Such a system is denoted by

((Vi)16i6r; (σi,j)16i6j6r) or briefly (V , σ).
➺ The rank of a braided system is the number r of its components.
➺ A braided morphism f : (V , σ)→ (W, ξ) between two braided systems in C of the same rank

r is a collection of morphisms (fi ∈ HomC(Vi,Wi))16i6r respecting the braiding, in the sense
that, for all 1 6 i 6 j 6 r, one has

(fj ⊗ fi) ◦ σi,j = ξi,j ◦ (fi ⊗ fj). (3)

➺ The category of rank r braided systems and braided morphisms in C is denoted byBrSystr(C).
➺ Rank 1 braided systems are called braided objects in C.
➺ For given 1 6 s 6 t 6 r, the braided (s, t)-subsystem of (V , σ), denoted by (V , σ)[s, t], is the

subfamily Vs, . . . , Vt with the corresponding components σi,j of σ.

In order to emphasize the multi-component nature of our constructions, we sometimes talk
about multi-braidings, multi-braided morphisms, etc.

The notion of multi-braiding thus defined is
1. positive, i.e., the σi,j are not supposed to be invertible (the term pre-braiding, usual in such

situations, is avoided here in order not to overload the terminology);
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2. partial, i.e., defined only on certain couples of objects (this is underlined in the definition);
3. local, i.e., contrary to the usual notion of braiding in a monoidal category, no naturality

conditions are imposed.
Graphically, a braiding component is represented as on Fig. 1 A ; it is a braid whose strands are

“colored” (= decorated) with the corresponding objects Vi (or sometimes simply their indices i).
Note that the definition allows a j-colored strand to overcross only strands colored with indices
i 6 j. The diagrammatic counterpart of Equation (YBE) is now the (colored) third Reidemeister

move (Fig. 1 B ), which is at the heart of braid theory; this allows one to work with braided
systems by manipulating positive braid diagrams.

σi,j ←→

i j
A

(YBE) ←→

i j k

=

i j k
B

Figure 1: Braided systems versus colored braids

Each component of a braided system is a braided object. Pursuing this remark, one gets

Proposition 2.2. Given a braided category (C,⊗, I, c), one has, ∀ r ∈ N, a fully faithful functor

(BrSyst1(C))
×r −֒→ BrSystr(C),

(Vi, σi)16i6r 7−→ (V1, . . . , Vr;σi,i := σi, σi,j := cVi,Vj
for i < j), (4)

(fi : Vi →Wi)16i6r 7−→ f := (fi)16i6r.

Proof. There are three types of tensor products on which one should check (YBE) in order to
verify that (4) defines a braided system:

1. Vi ⊗ Vi ⊗ Vi. Use the YBE for σi here.
2. Vi ⊗ Vi ⊗ Vj or Vi ⊗ Vj ⊗ Vj for i < j. Use the naturality of c with respect to σi or σj .
3. Vi ⊗ Vj ⊗ Vk for i < j < k. Use the YBE for the braiding c.
Now, for morphisms, condition (3) is automatic for i < j thanks to the naturality of c, and for

i = j it is equivalent to fi being a braided morphism. Thus our functor is well defined, full and
faithful on morphisms.

The following elementary observation will be useful in what follows:

Observation 2.3. If our category C is preadditive, then one has, ∀ r ∈ N, a category automorphism

BrSystr(C)
∼
←→ BrSystr(C),

((Vi)16i6r; (σi,j)16i6j6r)←→ ((Vi)16i6r ; (−σi,j)16i6j6r),

(fi : Vi →Wi)16i6r ←→ (fi : Vi →Wi)16i6r.

Braided modules

Actions can be defined for our new structure in a very natural way:

Definition 2.4. ➺ A right braided module over (V , σ) ∈ BrSystr(C) is an object M equipped
with morphisms ρ := (ρi :M ⊗ Vi →M)16i6r satisfying, for all 1 6 i 6 j 6 r,

ρj ◦ (ρi ⊗ Idj) = ρi ◦ (ρj ⊗ Idi) ◦ (IdM ⊗σi,j) : M ⊗ Vi ⊗ Vj →M. (5)

➺ Left braided modules and left/right braided comodules, as well as braided (co)module mor-
phisms, are defined in the usual way.

➺ The category of right braided modules and their morphisms is denoted by Mod(V ,σ). Nota-

tion (V ,σ)Mod is used in the left case, and Mod(V ,σ) and (V ,σ)Mod in the co-cases.

According to Fig. 2, braided modules can be treated by manipulating a particular type of
knotted trivalent graphs (cf. [12, 33, 35] for the theory of the latter).
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braided module ←→

ρj
ρi

jiM

= ρj

ρi

jiM

σi,j

Figure 2: Right braided module

In the following sections and [15], we interpret algebra (bi)modules, Hopf (bi)modules, Yetter-
Drinfel′d modules and other structures as braided modules over appropriate braided systems.

We now give some equivalent definitions of braided module structure, in particular in the
important case of the unit object I of C.

Observation 2.5. A braided (V , σ)-module structure on M is the same thing as a collection of
braided (Vi, σi,i)-module structures, compatible in the sense of (5) for all i < j.

Observation 2.6. The notions of right and left braided (V , σ)-modules coincide for I. Condi-
tion (5) takes in this case a simpler form

(ρj ⊗ ρi) ◦ σi,j = ρi ⊗ ρj : Vi ⊗ Vj → I.

Definition 2.7. A right (= left) braided (V , σ)-module structure on I is called a braided character.

Example 2.8. If C is preadditive, then a braided character εi on any Vi, extended to other
components by zero, trivially becomes a braided character on (V , σ).

Invertibility questions

The invertibility of some of the σi,j , often encountered in practice, can be helpful in extending
braided structures. It allows to interchange the corresponding components of a braided system
without changing the module category:

Proposition 2.9. Take (V , σ) ∈ BrSystr(C) with σp,p+1 invertible for some p. Then:
1. The family (V1, . . . , Vp−1, Vp+1, Vp, Vp+2, . . . , Vr), equipped with the old σi,j on the tensor

products Vi ⊗ Vj with (i, j) 6= (p + 1, p) and with σ−1p,p+1 on Vp+1 ⊗ Vp, is a braided system,

denoted by sp(V , σ).
2. The categories of braided modules for the original and the rearranged systems are equivalent:

Mod(V ,σ) ≃Modsp(V ,σ). (6)

Proof. 1. One has to check the following new instances of the YBE:
(a) On Vi ⊗ Vp+1 ⊗ Vp with i < p, i.e., using notation (2),

σ2
i,p+1 ◦ σ

1
i,p ◦ (σ

−1
p,p+1)

2 = (σ−1p,p+1)
1 ◦ σ2

i,p ◦ σ
1
i,p+1.

Composing both sides with σ1
p,p+1 on the left and with σ2

p,p+1 on the right, one gets

σ1
p,p+1 ◦ σ

2
i,p+1 ◦ σ

1
i,p = σ2

i,p ◦ σ
1
i,p+1 ◦ σ

2
p,p+1,

which is precisely the YBE on Vi ⊗ Vp ⊗ Vp+1 for the braided system (V , σ).
(b) On Vp+1 ⊗ Vp ⊗ Vj with j > p+ 1. This case is similar to the previous one.
(c) On Vp+1 ⊗ Vp+1 ⊗ Vp. Manipulations similar to case 1a iterated twice lead to the YBE

on Vp ⊗ Vp+1 ⊗ Vp+1 for the braided system (V , σ).
(d) On Vp+1 ⊗ Vp ⊗ Vp. This case is similar to the previous one.

2. Given an objectM equipped with morphisms ρi :M ⊗Vi →M , the list of compatibility con-
ditions (5) one has to check for (V , σ) differs from the list for sp(V , σ) only in the conditions
for i = p, j = p+ 1:

ρp+1 ◦ (ρp ⊗ Idp+1) = ρp ◦ (ρp+1 ⊗ Idp) ◦ (IdM ⊗σp,p+1)

versus ρp ◦ (ρp+1 ⊗ Idp) = ρp+1 ◦ (ρp ⊗ Idp+1) ◦ (IdM ⊗σ
−1
p,p+1).

The second one composed with the invertible morphism IdM ⊗σp,p+1 on the right yields the
first one. So the identity functor of C and the permutation ρp ↔ ρp+1 of the components of
ρ give a category equivalence (6).
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Remark 2.10. More generally, given a permutation θ ∈ Sr and a (V , σ) ∈ BrSystr(C) with all
the σi,j invertible for i and j reversed by θ, the family (Vθ−1(1), . . . , Vθ−1(r)), equipped with the

old σi,j on Vi ⊗ Vj with i < j, θ(i) < θ(j) and with σ−1i,j on Vj ⊗ Vi with i < j, θ(i) > θ(j), is a

braided system, denoted by θ(V , σ). One thus obtains a partial Sr-action on BrSystr(C), inducing
equivalences between the corresponding categories of braided modules.

Corollary 2.11. Let (V , σ) be a braided system in an additive monoidal C, with σi,j invertible for

all s 6 i < j 6 t. Then one can glue the objects Vs, . . . , Vt together into Vs:t :=
⊕t

i=s Vi and extend
the braiding onto (V1, . . . , Vs−1, Vs:t, Vt+1, . . . , Vr), putting σ|Vj⊗Vi

:= σ−1i,j for all s 6 i < j 6 t.

Note that the invertibility of σi,i is not required here even for s 6 i 6 t.

Proof. It suffices to consider the case s = t− 1 =: p — the general case then follows by induction.
The only instances of (YBE) appearing here in addition to those coming from the braided systems
(V , σ) and sp(V , σ) are those on Vp⊗Vp+1⊗Vp and Vp+1⊗Vp⊗Vp+1. They are proved by the same
argument as in Point 1a (or 1b) of the proof of Proposition 2.9, taking i = p (or j = p+ 1).

The corollary recovers in particular the gluing procedure for Yang-Baxter operators (or, in our
terms, for braided objects) described by S. Majid and M. Markl in [19].

3 A homology theory for braided systems

We now generalize the braided homology theory, developed in [14] for braided objects in C, to the
braided system setting. In this section C is additive monoidal. In particular, one can interpret the
collection σ as a partial braiding, still denoted by σ, on

V := V1 ⊕ V2 ⊕ · · · ⊕ Vr,

and the family ρ defining a right braided (V , σ)-module as a morphism ρ :M ⊗ V →M .

Quantum shuffles: a multi-version

We start by showing that the collection σ suffices for defining a partial version of quantum
(co)shuffle structures, defined in M. Rosso’s pioneer papers [28, 29].

Definition 3.1. The permutation sets

Shp1,p2,...,pk :=

{
θ ∈ Sp1+p2+···+pk

θ(1) < θ(2) < . . . < θ(p1),
θ(p1 + 1) < . . . < θ(p1 + p2),
. . . ,

θ(p+ 1) < . . . < θ(p+ pk)

}
,

where p = p1 + p2 + · · ·+ pk−1, are called shuffle sets.

In other words, one permutes p1+p2+· · ·+pk elements preserving the order within k consecutive
blocks of size p1, p2, . . . , pk, just like when shuffling cards, which explains the name.

Recall further the projection B+
n ։ Sn, sending a generator σi to the corresponding generator

si, and its set-theoretical (i.e. not preserving the monoid structure) Matsumoto section

Sn −֒→ B+
n ,

θ = si1si2 · · · sik 7−→ σi1σi2 · · ·σik ,

where si1si2 · · · sik is any of the shortest words representing θ ∈ Sn.

Notation 3.2. We denote by Bθ the image of θ ∈ Sn under this map.

Now let us return to the context of braided systems.

Definition 3.3. ➺ A degree d (reversely) ordered tensor product for (V , σ) ∈ BrSystr(C) is a
tensor product of the form Vk1 ⊗ . . .⊗ Vkd with k1 6 . . . 6 kd (respectively, k1 > . . . > kd).

➺ The direct sum of all the (reversely) ordered tensor products of degree d is denoted by T (V )→d
(respectively, T (V )←d ).

7



In Vectk, the T (V )→d sum up to T (V )→ := T (V1)⊗ T (V2)⊗ · · · ⊗ T (Vr), and the T (V )←d sum
up to T (V )← := T (Vr)⊗ T (Vr−1)⊗ · · · ⊗ T (V1).

The last ingredient we need is a partial B+
d -action on V d for (V , σ) ∈ BrSystr(C). For a

generator σi of B
+
d and a summand Vk1 ⊗ . . .⊗ Vkd of V d with k1 6 . . . 6 kd, it is defined by

σi 7−→ σiki,ki+1
=

k1 · · · ki ki+1 · · · kd
,

the latter morphism lying in HomC(Vk1 ⊗ · · ·⊗Vkd , Vk1 ⊗ · · ·⊗Vki+1 ⊗Vki ⊗ · · ·⊗Vkd). This action
agrees with the common graphical depiction of elements of B+

d .

Notation 3.4. The partial action described above is denoted by B+
d ∋ b 7→ bσ.

Armed with all these notations, we are ready to define the multi-versions of quantum shuffle
operations:

Definition 3.5. Take (V , σ) ∈ BrSystr(C).
➺ The family of morphisms�

σ
p,q :=

∑

θ∈Shp,q

(Bθ)
σ : T (V )←p ⊗ T (V )←q → T (V )←p+q, (7)

where for given reversely ordered tensor products W in T (V )←p and U in T (V )←q the sum-

mation runs only over θ for which the action (Bθ)
σ is defined on W ⊗ U and takes values in

the T (V )←p+q part of V p+q, is called the multi-quantum shuffle multiplication.
➺ The family of morphisms�

σ
p,q :=

∑

θ∈Shp,q

(Bθ−1)σ : T (V )→p+q → T (V )→p ⊗ T (V )→q (8)

is called the multi-quantum coshuffle comultiplication.
➺ More generally, replacing Shp,q with Shp1,...,pk , one gets morphisms �

σ
p1,...,pk and �

σ
p1,...,pk .

In order to better understand the condition on θ in (7), one should think of it as a dual version
of the more natural definition (8).

Note that for an ordered tensor products W in T (V )→p+q , its image �
σ
p,q(W ) lives in several

summands of T (V )→p ⊗ T (V )→q . That is why we need categories to be additive here.

Proposition 3.6. The morphisms (7)-(8) are well-defined, and give an associative multiplication
(respectively, a coassociative comultiplication).

Proof. If (reversely) ordered tensor products are fed into these formulas, then the braiding σ

is applied only to components Vi ⊗ Vj with i 6 j, so the morphisms are well defined. The
(co)associativity is proved as in the rank 1 case (see [29] or [14]).

Multi-braided differentials

We now explain what we mean by a homology theory for a braided system (V , σ) in C:

Definition 3.7. ➺ A differential for (V , σ) is a family of morphisms {dn : T (V )→n → T (V )→n−1}n>0

satisfying dn−1 ◦ dn = 0 for all n > 1.
➺ A bidifferential for (V , σ) consists of two families of morphisms {dn, d

′
n : T (V )→n → T (V )→n−1}n>0

satisfying, for all n > 1,

dn−1 ◦ dn = d′n−1 ◦ d
′
n = d′n−1 ◦ dn + dn−1 ◦ d

′
n = 0.

➺ Replacing T (V )→n with M ⊗ T (V )→n ⊗ N (for some objects M and N) above, one gets the
notion of (bi)differentials with coefficients in M and N .

Everything is now ready for constructing a multi-version of braided differentials:
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Theorem 1. Take a braided system (V , σ) in an additive monoidal category C, equipped with a
right and, respectively, left braided (V , σ)-modules (M,ρ) and (N, λ). The families of morphisms

(ρd)n := (ρ⊗ IdT (V )→n−1⊗N
) ◦ (IdM ⊗ �

−σ
1,n−1 ⊗ IdN ),

(dλ)n := (−1)n−1(IdM⊗T (V )→n−1
⊗λ) ◦ (IdM ⊗ �

−σ
n−1,1 ⊗ IdN )

from M ⊗ T (V )→n ⊗N to M ⊗ T (V )→n−1 ⊗N define a bidifferential with coefficients in M and N .
(Here −σ is the braiding obtained from σ according to Observation 2.3.)

Proof. The verifications use
1 the coassociativity of �

−σ
, and

2 the definition of braided modules, reformulated in a preadditive C as

ρ ◦ (ρ⊗ IdV ) ◦ (IdM ⊗ �
−σ

1,1) = 0, λ ◦ (IdV ⊗λ) ◦ (�
−σ

1,1 ⊗ IdN ) = 0.

Concretely, writing �
−σ

instead of IdM ⊗ �
−σ
⊗ IdN or �

−σ
⊗ IdN for brevity, one calculates

(ρd)n−1 ◦ (
ρd)n = (ρ⊗ Id···) ◦ �

−σ
1,n−2 ◦ (ρ⊗ Id···) ◦ �

−σ
1,n−1

= (ρ⊗ Id···) ◦ (ρ⊗ Id···) ◦ (IdM⊗V ⊗ �
−σ

1,n−2) ◦ �
−σ

1,n−1

1
= (ρ⊗ Id···) ◦ (ρ⊗ Id···) ◦ (IdM ⊗ �

−σ
1,1 ⊗ Id···) ◦ �

−σ
2,n−2

= ((ρ ◦ (ρ⊗ IdV ) ◦ (IdM ⊗ �
−σ

1,1))⊗ Id···) ◦ �
−σ

2,n−2

2
= 0 ◦ �

−σ
2,n−2 = 0,

and similarly for dλ. Further, one has

(dλ)n−1 ◦ (
ρd)n = (−1)n−2(ρ⊗ Id···⊗λ) ◦ �

−σ
1,n−2,1 = −(ρd)n−1 ◦ (d

λ)n.

The differential (ρd)n — and, similarly, (dλ)n — can be viewed as a signed sum (since the
negative braiding −σ is used) of the form

∑n
i=1(−1)

i−1(ρd)n;i. The term (ρd)n;i is diagrammatically
presented on Fig. 3. The sign can be interpreted here as the crossing number of the diagram.

(ρd)n;i =
σk1,ki

σki−1,ki

ρki

M Nk1 ki−1
...

ki ki+1
...

kn

Figure 3: Multi-braided left differential

Corollary 3.8. Any Z-linear combination of the families (ρd)n and (dλ)n from the theorem is a
differential for (V , σ) with coefficients in M and N .

The (bi)differentials from the above theorem and corollary are called braided.

Remark 3.9. ✓ Braided (bi)differentials are functorial : for braided systems (V , σ) and (V
′
, σ′)

and braided modules (M,ρ) ∈ Mod(V ,σ), (M ′, ρ′) ∈ Mod(V
′
,σ′), (N, λ) ∈ (V ,σ)Mod,

(N ′, λ
′
) ∈ (V

′
,σ′)Mod, any braided morphism f : (V , σ) → (V

′
, σ′) and morphisms ϕ :

M →M ′, ψ : N → N ′ compatible with f (i.e., ρ′i ◦ (ϕ⊗ fi) = ϕ ◦ ρi and λ
′
i ◦ (fi⊗ψ) = ψ ◦λi

for all i) intertwine braided differentials, in the sense that the following diagram commutes:

M ⊗ T (V )→n ⊗N

dn ��

ϕ⊗f
⊗n
⊗ψ

// M ′ ⊗ T (V
′
)→n ⊗N

′

d′n ��

M ⊗ T (V )→n−1 ⊗N
ϕ⊗f

⊗n−1
⊗ψ

// M ′ ⊗ T (V
′
)→n−1 ⊗N

′

9



✓ Dually, one obtains a cohomology theory for (V , σ) with coefficients in braided comodules.
Note that one works with T (V )←n in the dual settings, since a braiding on the system
(V1, . . . , Vr) in C is the same thing as a braiding on the reversed system (Vr , . . . , V1) in C

op.
✓ Braided bidifferentials can be refined to a precubical structure, enriched with degeneracies

if the braided system is moreover endowed with a “good” comultiplication (i.e. compatible
with the braiding and σ-cocommutative); see [14] for details in the braided object case.

✓ Braided differentials (ρd)n (or (dλ)n) can be defined with coefficients on one side only, i.e. on
M ⊗ T (V )→n (or T (V )→n ⊗N), by analogous formulas.

Adjoint multi-braided modules

The theory of adjoint braided modules from [14], including its homological consequences, has a
multi-version as well.

Notation 3.10. The obvious morphism from (Vi1 ⊗ · · · ⊗ Vis) ⊗ (Vj1 ⊗ · · · ⊗ Vjt) to (Vj1 ⊗ · · · ⊗

Vjt)⊗ (Vi1 ⊗ · · · ⊗Vis), induced by σ and diagrammatically presented as , is denoted by
σ. (Here we suppose in 6 jm for all n,m, so that σ is applicable to Vin ⊗ Vjm .)

Proposition 3.11. Take (V , σ) ∈ BrSystr(C) and (M,ρ) ∈Mod(V ,σ). Fix an integer 1 6 t 6 r,

and denote by (V
′
, σ) the braided (1, t)-subsystem (V , σ)[1, t] .

1. For any n ∈ N, a braided (V , σ)[t, r]-module structure can be defined on M ⊗ T (V
′
)→n via

ρπi := (ρi ⊗ Id
T (V

′
)→n

) ◦ (IdM ⊗σT (V
′
)→n ,Vi

) : M ⊗ T (V
′
)→n ⊗ Vi →M ⊗ T (V

′
)→n .

2. The braided differentials ρd on (V , σ) with coefficients in M are braided module morphisms
for the structure above.

Proof. Let us prove the compatibility relation (5) for ρπi and
ρπj with t 6 i 6 j 6 r. Working on

M ⊗ T (V
′
)→n ⊗ Vi ⊗ Vj , and using Notation (2), one gets

ρπi ◦ (
ρπj ⊗ Idi) ◦ (IdM⊗T (V

′
)→n
⊗σi,j)

= ρ1i ◦ σ
2
T (V

′
)→n ,Vi

◦ ρ1j ◦ σ
2
T (V

′
)→n ,Vj

◦ σn+2
i,j

= ρ1i ◦ ρ
1
j ◦ σ

2
T (V

′
)→n ,Vj⊗Vi

◦ σn+2
i,j

1
= ρ1i ◦ ρ

1
j ◦ σ

2
i,j ◦ σ

2
T (V

′
)→n ,Vi⊗Vj

2
= ρ1j ◦ ρ

1
i ◦ σ

2
T (V

′
)→n ,Vi⊗Vj

= ρ1j ◦ σ
2
T (V

′
)→n ,Vj

◦ ρ1i ◦ σ
2
T (V

′
)→n ,Vi

= ρπj ◦ (
ρπi ⊗ Idj),

where 1 is a repeated application of (YBE), and 2 follows from the relation (5) for ρi and ρj .
The compatibility relation for ρπi and

ρd with t 6 i 6 r is verified similarly.

Applied to a braided object (V, σ) and a braided character on it, Proposition 3.11 endows all
the tensor powers V n with a braided (V, σ)-module structure. Inspired by this example, we call
adjoint the braided modules from the proposition.

4 A proto-example: braided systems of associative algebras

The braided systems studied in this section have unital associative algebras (= UAAs) as com-
ponents Vi, and “associativity braidings” from [14] as the diagonal parts σi,i of the braiding. We
exhibit a bijection between such braided systems and braided tensor products of algebras, iden-
tifying braided modules over the former with usual modules over the latter. The “component
permuting” Proposition 2.9 then yields rules for permuting the factors of braided tensor products
of algebras. Concrete examples illustrating the advantages of our braided system approach follow
in subsequent sections. In this section C is again monoidal, not necessarily preadditive.
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A braiding encoding the associativity

The braidings we use in the associativity setting come with some additional structure:

Definition 4.1. ➺ Denote by BrSyst↓r(C) the category of
✓ (V , σ) ∈ BrSystr(C) endowed with distinguished morphisms ν := (νi : I → Vi)16i6r ,

called units, and
✓ morphisms from BrSystr(C) preserving all the units.

Objects (V , σ, ν) of BrSyst↓r(C) are called rank r pointed braided systems.
➺ A right braided module over (V , σ, ν) ∈ BrSyst↓r(C) is a right braided (V , σ)-module (M,ρ)

satisfying moreover ρi ◦ (IdM ⊗νi) = IdM for all 1 6 i 6 r (morally, the units act by
identity). The category of such modules and their morphisms is denoted by Mod(V ,σ,ν).
Similar definitions and notations are assumed for left modules.

Notation 4.2. The category of UAAs and algebra morphisms in C is denoted by Alg(C).

We next show that different aspects of the UAA structure are captured by a braiding encoding
it, called the associativity braiding in what follows:

Theorem 2 ([14]). 1. One has a fully faithful functor

Alg(C) −֒→ BrSyst
↓
1(C) (9)

(V, µ, ν) 7−→ (V, σAss, ν),

f 7−→ f,

where

σAss := ν ⊗ µ : V ⊗ V = I⊗ V ⊗ V → V ⊗ V. (10)

2. The associativity braiding σAss is idempotent: σAss ◦ σAss = σAss.
3. The YBE for σAss is equivalent to the associativity for µ, under the assumption that ν is a

unit map for µ (i.e., µ ◦ (IdV ⊗ν) = µ ◦ (ν ⊗ IdV ) = IdV ).
4. For a UAA (V, µ, ν) in C, one has an equivalence of right module categories

Mod(V,µ,ν)
∼
←→Mod(V,σAss,ν)

(M,ρ)←→ (M,ρ),

where on the left one considers usual modules over UAAs, and on the right the pointed version
of braided modules.

5. For a module (M,ρ) ∈Mod(V,µ,ν) ≃Mod(V,σAss,ν), the left braided differential ρd on (M ⊗

V n)n>0 coincides with the bar differential dn = ρ1 +
∑n−1

i=1 (−1)
iµi with coefficients in M .

When working with several UAAs, we use notation σAss(V ) or σAss(V, µ, ν) to avoid confusion.

Remark 4.3. ✓ A more elegant functor Alg(C) → BrSyst1(C) is obtained by composing (9)
with a forgetful functor. However, the pointed structure is needed if one wants a full functor.

✓ Point 2 shows that the braiding σAss is highly non-invertible in general. This explains our
choice of the positive notion of braiding.

✓ The equivalence in 3 holds only under a mild condition concerning units; such normalization
conditions often appear in our “braided” study of structures.

✓ Point 4 applied to M = I ensures that an algebra character is always a braided character.
✓ Dualizing, one interprets the category of coalgebras in C as a subcategory of co-pointed (=

endowed with a distinguished co-element) braided objects via the fully faithful functor

coAlg(C)−֒→ BrSyst
↑
1(C),

(V,∆, ε) 7−→ (V, σcoAss = ε⊗∆, ε),

f 7−→ f.

The algebra-coalgebra duality in a preadditive C can now be seen inside the category of bi-

pointed braided objects BrSyst
l
1(C), since this category is self-dual (the notion of braiding

being so) and encompasses both Alg(C) and coAlg(C) (the missing (co)unit structure can

11



be taken zero):

coAlg(C) −֒→ BrSyst
l
1(C)←−֓ Alg(C).

✓ In the theorem, the associativity braiding can be replaced with its right version σrAss := µ⊗ν.
In this case left modules should be taken as coefficients in the last point. The diagrams of
the two associativity braidings are shown on Fig. 4.

σAss ←→ µν
σrAss ←→ µ ν

Figure 4: Associativity braidings: σAss and its vertical mirror version σrAss

Multi-braided tensor products of algebras

From now on, we work in the settings of several interacting UAAs. After some general technical
definitions, we study the compatibility of braidings σAss(Vi) for different UAAs Vi and interpret it
in terms of (a multi-version of) braided tensor products of algebras.

Definition 4.4. ➺ Take an object V in C. A pair of morphisms (η : I→ V, ǫ : V → I) is called
normalized if ǫ ◦ η = IdI.

➺ Take objects V,W in C. A morphism ξ : V ⊗W →W ⊗ V is called natural with respect to a
morphism ϕ : V n → V m (or ψ :Wn →Wm) if

ξ1 ◦ · · · ◦ ξm ◦ (ϕ⊗ IdW ) = (IdW ⊗ϕ) ◦ ξ
1 ◦ · · · ◦ ξn

(where Notation (2) is used), or, respectively,

ξm ◦ · · · ◦ ξ1 ◦ (IdV ⊗ψ) = (ψ ⊗ IdV ) ◦ ξ
n ◦ · · · ◦ ξ1.

In the case V =W both conditions are required.

The naturality conditions for n = 1, m = 2 and V = W are diagrammatically presented on
Fig. 5.In this example, one recovers two of the six Reidemeister moves from the theory of knotted
trivalent graphs (cf. [12, 33, 35]).

V V

V V V

ϕ =

V V

V V V

ϕ

V V

V V V

ϕ =

V V

V V V

ϕ

Figure 5: Naturality

Theorem 3. Take r UAAs (Vi, µi, νi)16i6r in a monoidal category C, each unit νi being a part
of a normalized pair (νi, ǫi). For each couple of subscripts 1 6 i < j 6 r, take a morphism ξi,j
natural with respect to νi and νj. The following statements are then equivalent:

1 The morphisms ξi,i := σAss(Vi), 1 6 i 6 r, complete the ξi,j and the νi into a pointed braided

system structure on V .
2 Each ξi,j is natural with respect to µi and µj, and, for each triple i < j < k, the ξ satisfy the

YBE on Vi ⊗ Vj ⊗ Vk.

3 A UAA structure on
←−
V := Vr ⊗ Vr−1 ⊗ · · · ⊗ V1

can be defined by putting

µ←−
V

:= (µr ⊗ · · · ⊗ µ1) ◦ ξ
2r−2
1,2 ◦ (ξ2r−42,3 ◦ ξ2r−31,3 ) ◦ · · · ◦ (ξ2r−1,r ◦ · · · ◦ ξ

r−1
2,r ◦ ξ

r
1,r), (11)

ν←−
V

:= νr ⊗ νr−1 ⊗ · · · ⊗ ν1. (12)

The multiplication (11) for r = 3 is diagrammatically presented on Fig. 6 A . Note the inverse

component order in the definition of
←−
V , ensuring that µ←−

V
is well-defined.
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Proof. We show that Points 1 and 3 are both equivalent to the (intermediate) Point 2.
Start with 1. The YBE on each Vi ⊗ Vi ⊗ Vi is automatic via Theorem 2. On Vi ⊗Vi ⊗Vj with

i < j, the YBE becomes

(ξi,j ⊗ Idi) ◦ (Idi⊗ξi,j) ◦ (νi ⊗ µi ⊗ Idj) = (Idj ⊗νi ⊗ µi) ◦ (ξi,j ⊗ Idi) ◦ (Idi⊗ξi,j)

(see Fig. 6 B for a graphical version). But this is equivalent to ξi,j being natural with respect to

µi (cf. Fig. 6 C ): compose the former with Idj ⊗µi to get the latter, and compose the latter with
(ξi,j ⊗ Idi) ◦ (νi ⊗ Idj ⊗ Idi) to get the former (in each case, use the naturality of ξi,j with respect
to the units to pull the truncated strands out of all crossings). Similarly, YBE on Vi ⊗ Vj ⊗ Vj ,
i < j, is equivalent to ξi,j being natural with respect to µj . This yields the equivalence 1 ⇔ 2.

3 2 1 3 2 1

3 2 1

µ3
µ2 µ1

A

jii

j i i

=

jii

j i i

B

jii

j i

=

jii

j i

C

Figure 6: Braided tensor product of UAAs; YBE for Vi ⊗ Vi ⊗ Vj ; naturality with respect to µi

Let us now show the equivalence 3 ⇔ 2. We use short-cut notations

ιj := νr ⊗ · · · ⊗ νj+1 ⊗ Idj ⊗νj−1 ⊗ · · · ν1 : Vj →
←−
V . (13)

Given a collection ξi,j satisfying the conditions of Point 2, one checks (for instance graphically)

that µ←−
V

and ν←−
V

from Point 3 define a UAA structure on
←−
V . This generalizes the verifications

usually made while defining tensor product of algebras in a braided category. To show that all the
conditions from Point 2 are necessary, consider the associativity condition for µ←−

V
composed with

➺ either ιi ⊗ ιj ⊗ ιk : Vi ⊗ Vj ⊗ Vk →
←−
V ⊗3 on the right and the ǫt at all the positions except

for i, j and k on the left (this gives the YBE on Vi ⊗ Vj ⊗ Vk, i < j < k);

➺ or ιi ⊗ ιi ⊗ ιj : Vi ⊗ Vi ⊗ Vj →
←−
V ⊗3 on the right and the ǫt at all the positions except for i

and j on the left (this gives the naturality of ξi,j with respect to µi);

➺ or ιi ⊗ ιj ⊗ ιj : Vi ⊗Vj ⊗ Vj →
←−
V ⊗3 on the right and the ǫt at all the positions except for i, j

on the left (this gives the naturality of ξi,j with respect to µj).
Above we used the naturality of the ξ with respect to the units and the defining property of a
normalized pair.

The theorem gives a “braided” ( 1 ), an “algebraic” ( 3 ) and a “mixed” ( 2 ) interpretations
of the same phenomenon. For certain structures, the associativity verification can be considerably
simplified by checking 1 or 2 instead.

Definition 4.5. A braided system of the type described in the theorem is called a (pointed) braided

system of UAAs, and the UAA
←−
V is called the braided tensor product of the UAAs V1, . . . , Vr,

denoted (abusively) by
←−
V = Vr ⊗

ξ
Vr−1 ⊗

ξ
· · · ⊗

ξ
V1.

Remark 4.6. The existence of the ǫi was used only to prove 3 ⇒ 2. One can replace it by de-
manding 3 to hold for all subsystems of V . In this case, while proving 3 ⇒ 2, one can work with
an appropriate subsystem instead of composing with the ǫi in order to get rid of the unnecessary
components. In particular, the existence of the ǫi is redundant for r = 2.

Remark 4.7. Some or all of the morphisms ξi,i = σAss(Vi) can be replaced with their right versions
σrAss(Vi). The theorem still holds true, with analogous proof.

Example 4.8. According to Proposition 2.2, for a braided C the choice ξi,j = cVi,Vj
in the

theorem gives a braided system. In addition, the cVi,Vj
are natural with respect to everything

hence in particular to the units. In this case, the UAA structure on
←−
V predicted by the theorem

is the usual tensor product of algebras in a braided category.
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Multi-braided modules as modules over algebras

The structure equivalence from Theorem 3 has an important counterpart on the level of modules:

Proposition 4.9. In the settings of Theorem 3, suppose one of the three equivalent conditions

satisfied for the ξi,j . Then the category of modules over the UAA
←−
V is equivalent to the category

of braided modules over the pointed braided system from the theorem:

Mod
(
←−
V ,µ←−

V
,ν←−

V
)
≃Mod(V ,ξ,ν)

Proof. According to Observation 2.5 combined with Point 4 of Theorem 2, a braided module
structure over (V , ξ, ν) consists of module structures (M,ρj) over UAAs (Vj , µj , νj), compatible
in the sense of (5). The map ρ = ρ1 ◦ (ρ2 ⊗ Id1) ◦ · · · ◦ (ρr ⊗ Idr−1⊗ · · · ⊗ Id1) then defines a
←−
V -module structure on M . Conversely, a module (M,ρ) over the UAA

←−
V can also be seen as a

braided (V , ξ, ν)-module via ρj = ρ ◦ (IdM ⊗ιj), where the ιj are defined in (13). The identity
functor of C and this structure correspondence give the desired category equivalence.

We now discuss the possibility to permute the factors of braided tensor products of UAAs:

Proposition 4.10. In the settings of Theorem 3, suppose one of the ξi,i+1 invertible. Then
1. UAAs V1, . . . , Vi−1, Vi+1, Vi, Vi+2 . . . , Vr endowed with the ξ one had for the system V , com-

pleted with ξ−1i,i+1 on Vi+1 ⊗ Vi, still form a braided system of UAAs.

2. The UAA braided tensor products
←−
V and si ·

←−
V := Vr⊗

ξ
· · ·⊗

ξ
Vi+2⊗

ξ
Vi ⊗
ξ−1

Vi+1⊗
ξ
Vi−1⊗

ξ
· · ·⊗

ξ
V1

are related by the algebra isomorphism (abusively denoted by si)

Idr ⊗ . . .⊗ Idi+2⊗ξ
−1
i,i+1 ⊗ Idi−1⊗ . . .⊗ Id1 :

←−
V −→ si ·

←−
V .

3. The algebra isomorphism above induces an equivalence of categories of modules:

Mod←−
V
≃Mod

si·
←−
V
,

(M,ρ←−
V
)↔ (M,ρ←−

V
◦ (IdM ⊗s

−1
i )).

Proof. 1. Proposition 2.9 allows to interchange components Vi and Vi+1 of the pointed braided

system (V , ξ, ν) from Point 1 of Theorem 3. The new pointed braided system si(V , ξ, ν)

then satisfies again the conditions from Point 1 of Theorem 3 and is thus a braided system of

UAAs (note that the naturality of ξ−1i,i+1 with respect to the units follows from that of ξi,i+1).

2. Theorem 3 (Point 3 ) then gives a UAA structure on si(
←−
V ). Applying the YBE several times,

one sees that, in order to check that Idr ⊗ . . .⊗ ξ
−1
i,i+1 ⊗ . . .⊗ Id1 is an algebra morphism, it

is sufficient to work with Vi and Vi+1 only. Namely, one has to prove the identity

ξ−1i,i+1 ◦ (νi+1 ⊗ νi) = νi ⊗ νi+1,

which follows from the naturality of ξ−1i,i+1 with respect to the units, and the equality

(µi ⊗ µi+1) ◦ (Idi⊗ξ
−1
i,i+1 ⊗ Idi+1) ◦ (ξ

−1
i,i+1 ⊗ ξ

−1
i,i+1) =

ξ−1i,i+1 ◦ (µi+1 ⊗ µi) ◦ (Idi+1⊗ξi,i+1 ⊗ Idi)

of morphisms from (Vi+1 ⊗ Vi)
⊗2 to Vi ⊗ Vi+1 (cf. Fig. 7). This relation follows from the

naturality of ξi,i+1 (and hence ξ−1i,i+1 ) with respect to µi and µi+1 (Point 2 of Theorem 3).

ii+ 1ii+ 1

µi+1µi
ξ−1

ξ−1ξ−1

=

ii+ 1ii+ 1

µi+1 µiξ

ξ−1

Figure 7: Checking that ξ−1i,i+1 is an algebra morphism

3. (The proofs of) Propositions 2.9 and 4.9 yield the following chain of category equivalences:
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Mod←−
V
≃ Mod(V ,ξ,ν) ≃ Modsi(V ,ξ,ν) ≃ Mod

si(
←−
V )

(M,ρ←−
V
) ←−−−−−−−−→ (M,ρ←−

V
◦ (IdM ⊗s

−1
i ))

Remark 4.11. Like in Remark 2.10, one obtains partial Sr-actions on braided systems of UAAs
and UAA braided tensor products of rank r. Concretely, a permutation θ ∈ Sr with a minimal
decomposition θ = si1 · · · sik sends (V , ξ, ν) to si1(· · · (sik(V , ξ, ν)) · · · ) and acts on UAA braided
tensor products by the algebra morphism si1 ◦ · · · ◦ sik (still denoted by θ), provided that the
braiding components are invertible when necessary. These actions are mutually compatible and
induce equivalences (M,ρ←−

V
)↔ (M,ρ←−

V
◦ (IdM ⊗θ

−1)) of module categories.

A toy example: algebra bimodules

As a first illustration of the braided system theory, we now upgrade Theorem 2 to the rank 2 level.
A braided category (C,⊗, I, c) is needed here.

First note that, for (V, µ, ν) ∈ Alg(C), the data (µ ◦ c, ν) define another UAA structure on V .
Notation V op is used for V endowed with this twisted multiplication. The associativity braiding
becomes here σAss(V

op) = ν ⊗ (µ ◦ c). The twisted structure provides a useful transition between
left and right modules:

Lemma 4.12. For (V, µ, ν) ∈ Alg(C), the functors

ModV op
∼
←→ VMod,

(M,ρ) 7−→ (M,L(ρ) := ρ ◦ c−1M,V ), (14)

(M,R(λ) := λ ◦ cM,V ) 7−→(M,λ), (15)

extended on morphisms by identities, give a category equivalence.

Take now two UAAs (V, µ, ν) and (V ′, µ′, ν′) in C. Returning to Example 4.8, one gets

Lemma 4.13. The data (V1 = V, V2 = V ′;σ1,1 = σAss(V ), σ2,2 = σAss(V
′op), σ1,2 = cV,V ′) define

a braided system of UAAs, denoted by BM(V, V ′).

The proofs of the above lemmas are straightforward.
The module category equivalence from Proposition 4.9 and permutation rules from Proposi-

tion 4.10 can now be applied to BM(V, V ′). Keeping in mind Observation 2.5 and Lemma 4.12,
one interprets braided modules over this system as familiar algebra bimodules :

Proposition 4.14. Take two UAAs (V, µ, ν) and (V ′, µ′, ν′) in a braided category C. Denote by

V ′ModV the category of (V ′, V )-bimodules. The following categories of modules are equivalent:

ModV ′op⊗
c
V ≃ModBM(V,V ′) ≃V ′ModV ≃Mods2(BM(V,V ′)) ≃ModV ⊗

c−1
V ′op .

In the case V ′ = V , one identifies V ′op ⊗
c
V as the enveloping algebra of the UAA V .

We finish by applying the adjoint module theory to our bimodule context. Recall Notation (2).

Proposition 4.15. Take a bimodule (M, ρ : M ⊗ V → M, λ : V ′ ⊗M → M) over UAAs V
and V ′ in a braided category C. The bar complex (M ⊗ T (V ), dbar) for V with coefficients in M is
a complex in V ′ModV . In other words, the differentials (dbar)n are bimodule morphisms, where a
bimodule structure on M ⊗ V n is given by

ρbar := µn+1 : M ⊗ V n ⊗ V →M ⊗ V n,

λbar := λ1 : V ′ ⊗M ⊗ V n →M ⊗ V n.

Proof. Plugging into Proposition 3.11 the braided system BM(V, V ′), the bimodule (M,ρ, λ),
interpreted as a braided BM(V, V ′)-module as in Proposition 4.14, and choosing t = 2, one obtains
the compatibility of the the braided differential ρd (which Theorem 2.5 shows to coincide with dbar)
with the braided BM(V, V ′)-module structures on the M ⊗V n. Using Proposition 4.14 again, one
interprets these braided modules as (V ′, V )-bimodules, with the structure explicitly written using
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Lemma 4.12:
ρπ1 = ρ1 ◦ (IdM ⊗σV n,V ) = µn+1,

λ(R(λ)π2) =
R(λ)π2 ◦ c

−1
M⊗V n,V ′

= (λ ◦ cM,V ′)
1 ◦ (IdM ⊗σV n,V ′) ◦ c

−1
M⊗V n,V ′

= (λ ◦ cM,V ′)
1 ◦ (IdM ⊗cV n,V ′) ◦ c

−1
M⊗V n,V ′ = λ1.

This bimodule structure on the bar complex is important for one of the constructions of the
Hochschild (co)homology; namely, one considers the differential induced on the coinvariants by dbar.

5 A braided interpretation of two-sided crossed products

We now present a rank 3 braided system of UAAs, which recovers F. Panaite’s braided treatment
of two-sided crossed products from [26] and its extension to generalized two-sided crossed prod-
ucts A◮<C>◭B of Bulacu-Panaite-Van Oystaeyen ([3]) from [11]. Proposition 4.10 then yields
six equivalent versions of the algebra A◮<C>◭B via component permutations, generalizing and
simplifying arguments from [26, 11]. Further, our adjoint braided module concept endows Cn with
a (B,A)-bimodule structure, used in Section 6 to construct a bialgebra homology theory.

Categorical bialgebras and module algebras

We need the categorical versions of some familiar algebraic notions:

Definition 5.1. ➺ A bialgebra in a braided category (C,⊗, I, c) is an object H endowed with
a UAA structure (µ, ν) and a counital coassociative coalgebra (= coUAA) structure (∆, ε),
compatible in the following sense:

∆ ◦ µ = (µ⊗ µ) ◦ c2 ◦ (∆⊗∆), ∆ ◦ ν = ν ⊗ ν, (16)

ε ◦ µ = ε⊗ ε, ε ◦ ν = IdI . (17)

➺ A Hopf algebra in C is a bialgebra H with an antipode, i.e. an endomorphism s satisfying

µ ◦ (s⊗ IdH) ◦∆ = µ ◦ (IdH ⊗s) ◦∆ = ν ◦ ε. (18)

➺ For a bialgebra H in C, a left H-module algebra is a UAA (M,µM , νM ) endowed with a left
H-module structure λ : H ⊗M →M , such that µM and νM are H-module morphisms:

λ ◦ (IdH ⊗µM ) = µM ◦ (λ⊗ λ) ◦ c
2 ◦ (∆⊗ Id⊗2M ), (19)

λ ◦ (IdH ⊗νM ) = νM ◦ ε. (20)

Right H-module algebras and H-(bi)(co)module algebras are defined similarly.
➺ The categories of bialgebras / Hopf algebras / H-(co)module algebras and their morphisms

in C are denoted by, respectively, Bialg(C), HAlg(C), HModAlg, ModAlgH , HModAlg,
etc.

Compatibility conditions (16), (19) and (20) are presented on Fig. 8.

µ
∆ =

µ

∆

µ

∆

c
µM
λ

=

µM

∆
λ λ

νM

λ
=

νM
ε

Figure 8: Bialgebra and module algebra relations

Note that a bialgebra H is an H-bicomodule, but in general not an H-bimodule over itself.

Two-sided crossed products as braided tensor products

Proposition 5.2. Take a bialgebra H, a left H-module algebra (A, λ), a right H-module algebra
(B, ρ) and an H-bicomodule algebra (C, δl : C → H⊗C, δr : C → C⊗H) in a symmetric category
(C,⊗, I, c). Then
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1. The UAAs (B,C,A) form a braided system of UAAs when endowed with morphisms

ξ1,2 = (IdC ⊗ρ) ◦ (cB,C ⊗ IdH) ◦ (IdB ⊗δr),

ξ2,3 = (λ⊗ IdC) ◦ (IdH ⊗cC,A) ◦ (δl ⊗ IdA),

ξ1,3 = cB,A.

2. Formulas (11)-(12) for the ξi,j above define a UAA structure on A⊗ C ⊗B.
3. One has a module category equivalence

Mod(B,C,A;ξ) ≃ModA⊗
ξ
C⊗

ξ
B. (21)

The braiding from the proposition is shown on Fig. 9. Here and afterwards the underlying
braiding of a symmetric category is depicted by a solid crossing, in order to distinguish it from
“structural” braiding ξ.

ξ1,2 ←→
δr

ρ

B C

ξ2,3 ←→
δl

λ

AC

ξ1,3 ←→

B A

Figure 9: A braided system for a two-sided crossed product

Proof. The key point is to verify that the ξ satisfy the conditions of Theorem 3. 2 :
✓ the YBE on B⊗C⊗A follows from the compatibility of left and the right H-coactions for C;
✓ the naturality of the ξ with respect to µC is a consequence of the defining properties of
H-bicomodule algebras for C;

✓ the naturality of the ξ with respect to µA and µB can be deduced from the defining properties
of H-module algebras for A and B.

Here we show that ξ1,2 is natural with respect to µB, the other proofs being of the same spirit:

ξ1,2 ◦ (µB ⊗ IdC)
1
= (IdC ⊗ρ) ◦ (cB,C ⊗ IdH) ◦ (µB ⊗ δr)

2
= (IdC ⊗ρ) ◦ (IdC ⊗µB ⊗ IdH) ◦ (cB⊗B,C ⊗ IdH) ◦ (Id⊗2B ⊗δr)

3
= (IdC ⊗µB) ◦ (IdC ⊗ρ

⊗2) ◦ (IdC⊗B ⊗cB,H ⊗ IdH) ◦ (cB⊗B,C ⊗∆H) ◦ (Id⊗2B ⊗δr)

4
= (IdC ⊗µB) ◦ (IdC ⊗ρ⊗ IdB) ◦ (cB,C ⊗ IdH⊗B)◦

(IdB ⊗δr ⊗ ρ) ◦ (IdB ⊗cB,C ⊗ IdH) ◦ (Id⊗2B ⊗δr)

5
= (IdC ⊗µB) ◦ (ξ1,2 ⊗ IdB) ◦ (IdB ⊗ξ1,2),

where we use the definition of ξ1,2 (equalities 1 and 5), the naturality of c (equality 2), the definition
of right H-module algebra for B (equality 3) and that of right H-comodule for C (equality 4). The
reader is advised to draw diagrams in order to better follow the verifications.

The naturality with respect to the units follows from the naturality of c and from the definition
of H-(co)module algebras. Point 1 of Theorem 3 then confirms that the ξ together with the σAss

form a braiding, while Point 3 asserts that A⊗
ξ
C ⊗

ξ
B is an UAA. Finally, Proposition 4.9 gives

the required module category equivalence.

The braided tensor product algebra from the proposition is known as the generalized two-sided
crossed product A◮<C>◭B := A⊗

ξ
C ⊗

ξ
B from [3]. The choice C = H (with comodule structures

given by ∆H) gives the two-sided crossed product A#H#B := A⊗
ξ
H ⊗

ξ
B of Hausser-Nill ([9]).

Remark 5.3. Forgetting the B (or A) part of the structure and taking as C a left (respectively,
right) H-comodule, one obtains rank 2 braided systems. This gives a “braided” treatment of (a
generalized version of) left/right crossed (or smash) products A#H := A⊗

ξ
H and H#B := H⊗

ξ
B.

We have thus obtained a conceptual proof of the associativity of A◮<C>◭B and of the category
equivalence (21), otherwise very technical.
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Remark 5.4. If H is a Hopf algebra with an invertible antipode s, then all the ξ are invertible:

ξ−11,2 = ((ρ ◦ cH,B)⊗ IdC) ◦ (s
−1 ⊗ cC,B) ◦ ((cC,H ◦ δr)⊗ IdB),

ξ−12,3 = (IdC ⊗(λ ◦ cA,H)) ◦ (cA,C ⊗ s
−1) ◦ (IdA⊗(cH,C ◦ δl)),

ξ−11,3 = cA,B.

Proposition 4.10 then allows one to permute components ofA⊗
ξ
C⊗
ξ
B, giving six pairwise isomorphic

UAAs with pairwise equivalent categories of modules. In particular, one recovers the algebra
isomorphism A#H#B ≃ (A⊗B) ⊲⊳ H from [9].

Adjoint actions

Next, after a preliminary general lemma, we apply the theory of adjoint braided modules to the
braided system of UAAs from Proposition 5.2, choosing trivial coefficients (M = I).

Lemma 5.5. Take a rank r braided system (V , σ) in a symmetric category (C,⊗, I, c), with σ1,r =

cV1,Vr
. For this system, take braided characters ǫ and ζ. Then the right braided (Vr , σr,r)-module

structure ǫπr and the left braided (V1, σ1,1)-module structure πζ1 on T (V )→n commute:

ǫπr ◦ (π
ζ
1 ⊗ Idr) = π

ζ
1 ◦ (Id1⊗

ǫπr) : V1 ⊗ T (V )→n ⊗ Vr → T (V )→n .

Proof. The underlying braiding c is natural with respect to everything, in particular to the com-
ponents ǫr and ζ1 of our braided characters. With the help of the YBE, both sides of the desired
identity can then be brought to the form (ǫr⊗IdT (V )→n

⊗ζ1)◦(σT (V )→n ,Vr
⊗Id1)◦σV1,T (V )→n ⊗Vr

.

Now return to two-sided crossed products. Recall notation ϕi from (2). Put

ω2n :=
(
1 2 ... n n+1 n+2 ... 2n
1 3 ... 2n−1 2 4 ... 2n

)
∈ S2n. (22)

Proposition 5.6. In the settings of Proposition 5.2, choose algebra characters ǫA and ǫB for A
and B. The tensor powers of C then become bimodules, Cn ∈ BModA, via the formulas
ǫAπ = (ǫA)

1 ◦ λ1 ◦ (IdH ⊗cCn,A) ◦ (µ
1)◦(n−1) ◦ ((ω−12n ◦ δ

⊗n
l )⊗ IdA) : Cn ⊗A→ Cn,

πǫB = (ǫB)
n+1 ◦ ρn+1 ◦ (cB,Cn ⊗ IdH) ◦ (µn+2)◦(n−1) ◦ (IdB ⊗(ω

−1
2n ◦ δ

⊗n
r )) : B ⊗ Cn → Cn,

where S2n acts on tensor products of objects from C via the symmetric braiding c.

The actions from the proposition for n = 3 are depicted on Fig. 10.

ǫAπ ←→

δl δl δl

µn−1
λ

ǫA

AC C C

πǫB ←→

δr δr δr

µn−1

ρ

ǫB

B CC C

Figure 10: BModA structure on Cn

Proof. Note that for Point 1 of Proposition 3.11 to hold true,
✓ the additivity of C is not necessary, and
✓ a braided module (M,ρ) ∈Mod(V ,σ)[t,r] (instead of (M,ρ) ∈Mod(V ,σ)) suffices.

Apply that proposition and its mirror version to the braided system of UAAs (B,C,A) from
Proposition 5.2 and to the algebra characters (hence braided characters) ǫA and ǫB. One gets a
right braided (A, σAss(A))-module structure and a left braided (B, σAss(B))-module structure on
all Bk ⊗ Cn ⊗ Am, and hence on Cn. Further, since the ξ1,2 and ξ2,3 components of the braiding
on (B,C,A) are natural with respect to the units of A and B, the latter act on Cn by identity.
Theorem 2 then ensures that our braided module structures on Cn are actually module structures
over UAAs A and B, which are easily checked to coincide with the desired ones. The compatibility
between A- and B-actions follows from Lemma 5.5.
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6 A braided interpretation of bialgebras and Hopf modules

In this section we present a rank 2 braided system of UAAs B(H) which encodes the bialgebra struc-
ture on H , in the same sense that the braiding σAss encodes the UAA structure (cf. Table 1). This
braided system is a particular case of the one constructed for crossed products in Proposition 5.2.
In B(H), the invertibility property (trivially false for σAss) becomes algebraically significant: for
the braiding component σ1,2, it is equivalent to the existence of an antipode. We further identify
braided B(H)-modules as Hopf modules over H , and show the braided homology theory for B(H)
to include Gerstenhaber-Schack bialgebra homology and Panaite-Ştefan Hopf module homology.

Except for some general observations, we specialize here to the category C = vectk of finite-
dimensional vector spaces over k. Note that one could stay in the general setting of a braided
category C and choose a bialgebra in C admitting a dual. When working in vectk, we use Sweedler’s
notation for comultiplications and comodule structures. A simplified notation

v1v2 . . . vn := v1 ⊗ v2 ⊗ . . .⊗ vn ∈ V
n

is preferred for pure tensors in V n, leaving the tensor product sign for

v1v2 . . . vn ⊗ w1w2 . . . wm ∈ V
n ⊗Wm.

The dual space of V ∈ vectk is denoted by V ∗. Letters hi and lj always stay here for elements of V
and V ∗ respectively. The pairing 〈, 〉 is the evaluation map ev : V ∗ ⊗ V → k sending l⊗ h to l(h).
Multiplications on different spaces are simply denoted by · when it does not lead to confusion.

Duality: conventions and observations

Take k-vector spaces V , W and a pairing B : V ⊗W → k (e.g., the evaluation map). Table 4
presents two common ways of extending it to B : V n⊗Wn → k. The “arched” one is more common
in literature, but we use the “rainbow” one here (like, for instance, D. Gurevich in [8]), avoiding
unnecessary argument permutations in formulas and getting crossingless diagrams. Because of this
non-conventional choice, some of our formulas are slightly different from those in literature.

B(v1v2 . . . vn ⊗ w1w2 . . . wn) :=
B(vn ⊗ w1) · · ·B(v1 ⊗ wn) B(v1 ⊗ w1) · · ·B(vn ⊗ wn)

WV

B

WV

B

WV

B

WV

B

WV

B

WV

B

“rainbow” “arched”

Table 4: Rainbow and arched dualities

Similar conventions are used in the dual and multi-pairing situations. A linear duality in vectk
allows then to construct out of a morphism f : V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm its dual morphism
f∗ : W ∗m ⊗ . . . ⊗ W ∗1 → V ∗n ⊗ . . . ⊗ V ∗1 (note the inverse order of factors). Graphically, this
morphism duality corresponds to the central symmetry, while with the arched duality one would
get the horizontal mirror symmetry.

In what follows, we explicitly endow the dual of a coalgebra V in vectk with the induced algebra
structure via the pairing ev, extended to (V ∗)2 and V 2 using the rainbow pattern (Fig. 11 A ):

〈l1l2, h〉 =
〈
l1, h(2)

〉 〈
l2, h(1)

〉
, h ∈ V, l1, l2 ∈ V

∗.

Multiplication and (co)units are dualized similarly. The same structure on V ∗ can be obtained
via the dual coevaluation map coev or via twisted (co)pairings ev ◦ τ : V ⊗ V ∗ → k and τ ◦ coev :
k → V ⊗ V ∗. Here τ is the transposition of factors (which is the underlying braiding of our
category vectk). We shall often simplify notations, writing ev and coev even for the twisted maps.

Lemma 4.12 provides a handy transition tool between left V -modules and right V op-modules for
an algebra V in vectk. We now state an analogous transition lemma for modules and comodules.
A classical general observation concerning twisted bialgebra structures is first due:
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Observation 6.1. Take a bialgebra (H,µ, ν,∆, ε) in a braided category (C,⊗, I, c). Then
1. Hop := (H,µop := µ ◦ c−1, ν,∆, ε) and Hcop := (H,µ, ν,∆cop := c−1 ◦∆, ε) are bialgebras in

(C,⊗, I, c−1), while Hop,cop := (H,µ ◦ c−1, ν, c ◦∆, ε) and Hcop,op := (H,µ ◦ c, ν, c−1 ◦∆, ε)
are bialgebras in (C,⊗, I, c).

2. If H is a Hopf algebra with an antipode s, then so are Hop,cop and Hcop,op, with the same
antipode. If s is invertible, then s−1 becomes an antipode for Hop and Hcop.

3. Moreover, one has the following bialgebra or Hopf algebra isomorphisms:

(Hop)∗ ≃ (H∗)cop, (Hcop)∗ ≃ (H∗)op, (Hop,cop)∗ ≃ (H∗)cop,op.

Depending on the context, notations H , H∗, Hop, etc. will stay for the bialgebra / Hopf algebra
structure, or for the corresponding (co)algebra structure, or simply the underlying vector space.

Lemma 6.2. For a coalgebra V in vectk, the following functors (extended on morphisms by
identities) give a category equivalence:

ModV
∼
←→ModV ∗ ,

(M, δ) 7−→ (M, δco := (IdM ⊗ev) ◦ (δ ⊗ IdV ∗)), (23)

(M,ρco := (ρ⊗ IdV ) ◦ (IdM ⊗coev)) 7−→(M,ρ). (24)

The proof of the lemma is routine and is best done graphically. A diagrammatic version of,
for instance, the (23) part of the equivalence is given on Fig. 11 B . Note that with the arched
dualities, one would have to take the category Mod(V ∗)op on the right.

V ∗ V ∗ V

ev

∆∗ =

V ∗ V ∗ V

ev

∆ A

M V ∗

δco :=
ev

δ

M V ∗

B

Figure 11: Multiplication-comultiplication and action-coaction dualities

Convention 6.3. Here and afterwards thin lines stand for the basic vector space V or H , dashed
lines for its dual, and thick colored lines for different types of modules over it.

Similar equivalences hold for the categories of module (co)algebras:

Lemma 6.4. For a bialgebra H in vectk, the functors from Lemmas 4.12 and 6.2 (combined with
identities for the algebra structures) induce the following category equivalences:

ModAlgH
∼
←→ModAlg(H∗)cop , HModAlg

∼
←→ModAlgHop .

A braiding encoding the bialgebra structure

We now show how to include the groupoid ∗Bialg(vectk) of bialgebras and bialgebra isomorphisms
in vectk into the groupoid of bipointed rank 2 braided systems in vectk, taking inspiration from
what was done in Theorem 2 for UAAs and pointed rank 1 systems.

Definition 6.5. ➺ Given a monoidal category C, denote by BrSystlr(C) the category of
✓ rank r pointed braided systems (V , σ, ν) in C endowed with distinguished morphisms
ε := (εi : Vi → I)16i6r , called counits, such that all (νi, εi) are normalized pairs, and

✓ morphisms from BrSyst↓r(C) preserving moreover all the counits.

Objects (V , σ, ν, ε) of BrSystlr(C) are called rank r bipointed braided systems.
➺ The groupoid of rank r bipointed braided systems and their isomorphisms is denoted by
∗BrSystlr(C).

We also recall the notion of Hopf modules, giving their general categorical definition:

Definition 6.6. In a braided category C, a (right-right) Hopf module over H ∈ Bialg(C) is an
object M endowed with a right module structure ρ :M ⊗H →M and a right comodule structure
δ :M →M ⊗H , satisfying the Hopf compatibility condition (cf. Fig. 12):

δ ◦ ρ = (ρ⊗ µ) ◦ (IdM ⊗cH,H ⊗ IdH) ◦ (δ ⊗∆) : M ⊗H →M ⊗H. (25)

The category of right-right Hopf modules over H and their morphisms is denoted by ModHH .
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An important example of H-Hopf module is given by H itself, with ρ = µH , δ = ∆H .

ρ
δ =

ρ

δ

µ

∆

c

Figure 12: Right-right Hopf compatibility condition

We now return to our category C = vectk, omitted in further notations for simplicity.

Theorem 4. 1. One has a fully faithful functor

F : ∗Bialg −֒→∗BrSyst
l
2 (26)

(H,µ, ν,∆, ε) 7−→ B(H) := (V1 := H,V2 := H∗;

σ1,1 := σrAss(H), σ2,2 := σAss(H
∗), σ1,2 = σbi;

ν, ε∗; ε, ν∗),

f 7−→ (f, (f−1)∗),

where σbi(h⊗ l) =
〈
l(1), h(2)

〉
l(2) ⊗ h(1) (cf. Fig. 13).

2. For a bialgebra H, the braiding component σbi is invertible if and only if H has an antipode.
3. Take an H ∈ vectk endowed with a UAA and a coUAA structures (µ, ν) and (∆, ε). Suppose

the pair (ν, ε) normalized. Then the YBE on H⊗H⊗H∗ (or, symmetrically, on H⊗H∗⊗H∗)
for B(H), together with the naturality of σbi with respect to the units, are equivalent to the
bialgebra compatibility conditions (16)-(17) for H.

4. For a bialgebra H, one has category equivalences

Mod
H
H

∼
−→ ModB(H)

∼
−→ ModH∗ ⊗

σbi

H

(M,ρ, δ) 7−→ (M ; ρ, δco) 7−→ (M, δco ⊗ ρ)
If H is a Hopf algebra with an antipode s, then this chain of category equivalences can be
continued on the left by ModH⊗

θ
H∗ ≃Mods1·B(H) ≃ModHH , where θ = σ−1bi .

σ1,1 ←→ µ
ν σ1,2 ←→

ev∆ µ∗
σ2,2 ←→ ∆∗

ε∗

Figure 13: A braiding encoding the bialgebra structure

The graphical interpretation of B(H) suggests that, applied to the dual bialgebra H∗ instead
of H , the construction from the theorem gives a vertical mirror version of the system B(H).

Proof. Take a bialgebra H . The data (H∗,∆∗, ε∗, µ∗) define a left H∗-comodule algebra. (A left
version of) Lemma 6.4 transforms it into a module algebra (H∗,∆∗, ε∗, (µ∗)co) ∈ HcopModAlg.

Together with (Hcop, µ, ν,∆cop,∆cop) ∈ Hcop

ModAlgH
cop

, the latter can be fed into Proposi-
tion 5.2 as the A and C parts (Remark 5.3 allows one to forget the B part). The ξ2,3 component of
the braided system from that proposition coincides with σbi. Further, H

cop and H share the same
UAA structure, hence our σi−1,i−1 can be chosen as the ξi,i components (cf. Remark 4.7). Propo-
sition 5.2 then implies that B(H) is a braided system of UAAs. It is clearly bipointed. Moreover,
the braiding on B(H), the units and the counits suffice to recover all ingredients of the bialgebra
structure on H , hence the functor F is injective on objects.

To prove Point 1, it remains to understand, for bialgebras H and K, isomorphisms of bipointed
braided systems (f, g) : B(H) → B(K). By definition, the latter consist of bijections f : H → K

and g : H∗ → K∗ which intertwine the braidings of B(H) and B(K) and respect the units/counits.
Due to Theorem 2 (Point 1), this is equivalent to f and g being UAA isomorphisms compatible
with counits (i.e., εK ◦ f = εH and ν∗K ◦ g = ν∗H) and satisfying

σbi(K) ◦ (f ⊗ g) = (g ⊗ f) ◦ σbi(H) (27)

(cf. Fig. 14 A ). Applying ν∗K ⊗ εK to both sides of (27), using the compatibility of f and g with
the counits, and playing with dualities, one deduces that g∗ ◦ f = IdH , hence g = (f−1)∗. Since g
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is a UAA isomorphism, so is g−1, hence f = (g−1)∗ is a coUAA morphism, which completes its
properties to show that it is a bialgebra isomorphism. Reversing the argument, one checks that
the choice g = (f−1)∗ for a bialgebra isomorphism f implies (27). Thus the bipointed braided
system isomorphisms are precisely the pairs (f, (f−1)∗) for bialgebra isomorphisms f . This shows
the functor F to be well defined, full and faithful, and finishes the proof of Point 1.

In Point 3, the compatibility between ∆ and ν follows by applying ν∗ ⊗ IdH to the naturality
condition for σbi with respect to ν. Symmetrically, the µ-ε compatibility follows from the naturality
of σbi with respect to ε∗. The converse (compatibility ⇒ naturality) is easy. Now, according to
(the proof of) Theorem 3, the YBE on H ⊗H ⊗H∗ is equivalent to the naturality condition of σbi
with respect to µ (Fig. 14 B ), which implies the bialgebra µ-∆ compatibility condition (apply
ν∗⊗ IdH to both sides and use duality). Conversely, the bialgebra compatibility suffices to deduce
the above naturality. By symmetry, one also gets a proof for H ⊗H∗ ⊗H∗.

The “if” part of Point 2 can be proved by exhibiting an explicit formula for σ−1bi :

σ−1bi (l ⊗ h) =
〈
l(1), s(h(2))

〉
h(1) ⊗ l(2) (28)

(or by using Remark 5.4 and Point 2 of Observation 6.1). The “only if” part is more delicate.
Suppose the existence of σ−1bi and put

s̃ := (((ε⊗ ν∗) ◦ σ−1bi )⊗ IdH) ◦ (IdH∗ ⊗cH,H) ◦ (coev ⊗ IdH) : H → H

(cf. Fig. 14). Let us prove that s̃ is the antipode. The part

µ ◦ (s̃⊗ IdH) ◦∆ = ν ◦ ε (29)

of the defining relation (18) follows from σ−1bi ◦ σbi = IdH⊗H∗ using duality manipulations. One
would expect to deduce µ ◦ (IdH ⊗s̃) ◦∆ = ν ◦ ε from σbi ◦ σ

−1
bi = IdH∗⊗H , but surprisingly this

does not seem to work. Some algebraic tricks come into play instead. Mimicking (28), set

σ̃ := (IdH ⊗(ev ◦ (s̃⊗ IdH∗))⊗ IdH∗) ◦ (∆⊗ µ
∗) ◦ cH∗,H : H∗ ⊗H → H ⊗H∗.

Relation (29) implies σ̃ ◦ σbi = IdH⊗H∗ . Consequently, σ̃ coincides with the inverse σ−1bi of σbi, so
σbi ◦ σ̃ = IdH∗⊗H . Applying ν∗ ⊗ ε to both sides, one recovers the second part of (18) for s̃.

f g

H H∗

K∗ K

=
g f

H H∗

K∗ K

A
=

B s̃ ←→

coev

ν∗ε

σ−1bi
C

Figure 14: Naturality and invertibility issues for σbi

We now move to Point 4. Equivalence ModB(H)
∼
→ModH∗ ⊗

σbi

H follows from Proposition 4.9.

Further, Observation 2.5, combined with Point 4 of Theorem 2, present a right braided B(H)-
module M via right module structures ρH and ρH∗ over the UAAs H and H∗ respectively, com-
patible in the sense of (5):

ρH∗ ◦ (ρH ⊗ IdH∗) = ρH ◦ (ρH∗ ⊗ IdH) ◦ (IdM ⊗(τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ (∆⊗ µ
∗))) (30)

On the other hand, due to the module-comodule duality from Lemma 6.2, a right-right Hopf module
structure over H can also be viewed as right module structures over the UAAs H and H∗, with
the compatibility condition obtained by applying IdM ⊗ev to the defining condition (25) of Hopf
modules (tensored with IdH∗ on the right) and turning H-comodule structures into H∗-module
structures. The condition obtained coincides with (30), implying ModHH ≃ModB(H).

In the Hopf algebra case, Point 2 gives the invertibility of σbi. The component permuting
Proposition 4.10 proves then the desired equivalences.

All the remarks following Theorem 2 remain relevant in the bialgebra case. One particular
feature of the bialgebra setting is to be added to that list:

Remark 6.7. It is essential to work in the groupoid, and not just in the category of bialgebras, if
one wants a bialgebra morphism H → G to induce a morphism of dual bialgebras H∗ → G∗ (and
not just a morphism G∗ → H∗), so that the functor (26) can be defined on morphisms.
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Denote by H ′(H) := H ⊗
θ
H∗ one of the braided tensor products of UAAs from the theorem.

Then H (H) := H ′(H∗) is the well-known Heisenberg double of the Hopf algebra H (cf. for
example [21, 5]).

Braided homology for bialgebras and Hopf modules

Our next goal is to write down explicit braided differentials for B(H). After detailed calcula-
tions with certain braided characters as coefficients, we discuss the general case of Hopf module
coefficients.

First, for a bialgebra H , we study adjoint actions of the UAA H∗ on the tensor powers of H :

Lemma 6.8. The tensor powers of a bialgebra (H,µ, ν,∆, ε) in vectk can be endowed with an
H∗-bimodule structure via the following formulas (cf. Fig. 15):

πH
∗

:= πεH∗ = ev1 ◦ ev2 · · · ◦ evn ◦ (((µ∗)1)◦(n−1) ⊗ (ω−12n ◦∆
⊗n)) : H∗ ⊗Hn → ⊗Hn,

H∗π := εH∗π = evn+1 ◦ evn+2 · · · ◦ ev2n ◦ ((ω−12n ◦∆
⊗n)⊗ ((µ∗)1)◦(n−1)) : Hn ⊗H∗ → ⊗Hn,

where notations (2) and (22) are used.

πH
∗

←→

∆ ∆ ∆
(µ∗)◦(n−1)

ev

ev

ev

H∗π ←→

∆ ∆ ∆
(µ∗)◦(n−1)

ev

ev

ev

Figure 15: Hn as an H∗-bimodule

On the level of elements, the formulas can be written as

πH
∗

(l ⊗ h1 . . . hn) =
〈
l(1), hn(1)

〉 〈
l(2), hn−1(1)

〉
. . .

〈
l(n), h1(1)

〉
h1(2) . . . hn(2),

H∗π(h1 . . . hn ⊗ l) =
〈
l(1), hn(2)

〉 〈
l(2), hn−1(2)

〉
. . .

〈
l(n), h1(2)

〉
h1(1) . . . hn(1).

Proof. In the proof of Theorem 4, we noticed that A = (H∗, (µ∗)co) ∈ HcopModAlg and C =

(Hcop,∆cop,∆cop) ∈ Hcop

ModAlgH
cop

can be fed into Proposition 5.2. Symmetry considerations
allow to complete this data by B = (H∗, (µ∗)co) ∈ ModAlgHcop . Together with the counit
εH∗ = (νH)∗ of H∗, which is an algebra character of H∗, and hence of A and B, this data can then
be fed into Proposition 5.6. The actions from Proposition 5.6 are precisely the desired ones.

Interchanging the roles of H and H∗, one gets H-bimodules ((H∗)m, πH ,Hπ). By abuse of
notation, we define, for all m,n ∈ N for which this makes sense, the following morphisms from
Hn ⊗ (H∗)m to H(n−1) ⊗ (H∗)m or to Hn ⊗ (H∗)(m−1):

H∗π := H∗π ⊗ Id
⊗(m−1)
H∗ , πH

∗

:= (πH
∗

⊗ Id
⊗(m−1)
H∗ ) ◦ τHn⊗(H∗)(m−1),H∗ ,

πH := Id
⊗(n−1)
H ⊗πH , Hπ := (Id

⊗(n−1)
H ⊗Hπ) ◦ τH,H(n−1)⊗(H∗)m .

Lemma 6.9. The endomorphisms H∗π, πH
∗

, πH and Hπ of T (H)⊗ T (H∗) pairwise commute.

Proof. Lemma 6.8 implies the commutativity of H
∗

π and πH
∗

. Replacing H with H∗, one gets the
commutativity of Hπ and πH . Next, returning to the braided interpretation of the adjoint actions,
πH corresponds to pulling the rightmost H-strand to the right of all the H∗-strands (using σbi)
and applying εH , while H∗π corresponds to pulling the leftmost H∗-strand to the left of all the
H-strands and applying εH∗ . Thus π

H and H∗π commute. The case of πH
∗

and Hπ is analogous.
In order to prove the commutativity of the two remaining pairs, consider the linear isomorphisms

∆n ⊗ Id⊗mH∗ : Hn ⊗ (H∗)m
∼
−→ (Hop)n ⊗ ((Hop)∗)m, ∆n :=

(
1 2 ··· n
n n−1 ··· 1

)
∈ Sn,

where Sn acts on Hn by component permutation. These isomorphisms transport the endomor-
phisms H

∗

π, πH
∗

, πH and Hπ of H⊗n ⊗ (H∗)⊗m to, respectively, (Hop)∗π, π(Hop)∗ , H
op

π and πH
op

.
Thus the commutativity of (Hop)∗π and πH

op

induces that of H
∗

π and Hπ, and similarly for πH
∗

and πH .
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Further, recall the bar and (the dual of the) cobar differentials on T (H)⊗ T (H∗):

dbar(h1 . . . hn ⊗ l1 . . . lm) =
∑n−1

i=1
(−1)ih1 . . . hi−1(hi · hi+1)hi+2 . . . hn ⊗ l1 . . . lm, (31)

dcob(h1 . . . hn ⊗ l1 . . . lm) =
∑m−1

i=1
(−1)ih1 . . . hn ⊗ l1 . . . li−1(li · li+1)li+2 . . . lm. (32)

Proposition 6.10. For a finite-dimensional k-linear bialgebra (H,µ, ν,∆, ε), the bigraded vector
space T (H) ⊗ T (H∗) =

⊕
n,m∈NH

n ⊗ (H∗)m can be endowed with four bicomplex structures,
presented in Table 5. Being a bicomplex means here satisfying

dn−1,m ◦ dn,m = 0, d′n,m−1 ◦ d
′
n,m = 0, dn,m−1 ◦ d

′
n,m + d′n−1,m ◦ dn,m = 0.

dn,m : Hn ⊗ (H∗)m → H(n−1) ⊗ (H∗)m d′n,m : Hn ⊗ (H∗)m → Hn ⊗ (H∗)(m−1)

1. dbar (−1)ndcob
2. dbar + (−1)nπH (−1)ndcob + (−1)n(H

∗

π)

3. dbar +
Hπ (−1)ndcob + (−1)n+mπH

∗

4. dbar + (−1)nπH + Hπ (−1)ndcob + (−1)n(H
∗

π) + (−1)n+mπH
∗

Table 5: Bicomplex structures on T (H)⊗ T (H∗)

Proof. 1. Maps dbar and dcob are well known to be differentials (see also their interpretation as
braided differentials in Theorem 2). They affect different parts of T (H)⊗T (H∗) (T (H) and,
respectively, T (H∗)), and thus commute. The sign (−1)n then assures the anticommutativity.

2. Return to the braided system Hbi, which we no longer consider as bipointed. The counit εH
of H is an algebra character, hence a braided character for (H,σrAss(H)). Extended to H∗

by zero, it becomes a braided character for Hbi (cf. Example 2.8). Similarly, εH∗ extended
to H by zero is also a braided character for Hbi. Choosing them as coefficients, one gets the
following braided bidifferential, which coincides with the desired one up to a sign:

εH∗d = (−1)ndcob + (−1)n(H
∗

π), dεH = −(dbar + (−1)nπH).

3. Symmetrically, one gets a bidifferential ((−1)mdbar + (−1)m(Hπ), dcob + (−1)mπH
∗

), hence
(dbar +

Hπ, (−1)ndcob + (−1)n+mπH
∗

).
4. The last point follows from the three preceding ones using an elementary observation:

Lemma 6.11. Take an Abelian group (S,+, 0, a 7→ −a) endowed with an operation ·, dis-
tributive with respect to +. Then, for any a, b, c, d, e, f ∈ S,

(a+ b)·(d+ e) = (a+ c) · (d+ f) = a · d = b · f + c · e = 0

=⇒ (a+ b+ c) · (d+ e + f) = 0.

Proof. (a+ b+ c) · (d+ e+ f) = (a+ b) · (d+ e) + (a+ c) · (d+ f)− a · d+ (b · f + c · e).

Now take S = Endk(T (H)⊗ T (H∗)) with the usual addition and the operation a · b := a ◦ b
(for proving that the two morphisms from the fourth line of our table are differentials), or
the operation a ·b := a◦b+b◦a (for proving that the two morphisms anti-commute). Choose
a = dbar, b = (−1)nπH , c = Hπ, d = dbar or d = (−1)ndcob, etc. The equalities of the type
b · f + c · e = 0 follow from the pairwise anti-commutativity of (−1)n(H

∗

π), (−1)n+mπH
∗

,
(−1)nπH and Hπ (guaranteed by Lemma 6.9), and the remaining ones from Points 1-3.

One recognizes in dbar + (−1)nπH + Hπ the Hochschild differential for H with (right) coeffi-
cients in the H-bimodule T (H∗) (cf. Lemma 6.8), and similarly for (−1)ndcob + (−1)n(H

∗

π) +
(−1)n+mπH

∗

. Thus the last bicomplex from Table 5 defines the Gerstenhaber-Schack bialgebra
homology; cf. [7] for the first mention, R. Taillefer’s thesis [30] for detailed calculations and a
comparison with other bialgebra homologies, and M. Mastnak and S. Witherspoon’s paper [20] for
explicit formulas and the passage from Homk(H

m, Hn) to Hn ⊗ (H∗)m.
Now, instead of the braided characters εH and εH∗ for B(H), take general braided modules

(M,ρ, δ) ∈Mod
H
H ≃ModB(H) and (N, λ, γ) ∈ H∗

H∗Mod ≃ B(H)Mod. On M ⊗Hn ⊗ (H∗)m ⊗N ,
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define maps πH and H∗π using adjoint actions as before:

πH(a⊗ h1 . . . hn ⊗ l1 . . . lm ⊗ b) =〈
l1(1), hn(m+1)

〉 〈
l2(1), hn(m)

〉
. . .

〈
lm(1), hn(2)

〉 〈
b−1, hn(1)

〉
a⊗ h1 . . . hn−1 ⊗ l1(2) . . . lm(2) ⊗ b0,

H∗π(a⊗ h1 . . . hn ⊗ l1 . . . lm ⊗ b) =〈
l1(1), hn(2)

〉 〈
l1(2), hn−1(2)

〉
. . .

〈
l1(n), h1(2)

〉 〈
l1(n+1), a1

〉
a0 ⊗ h1(1) . . . hn(1) ⊗ l2 . . . lm ⊗ b.

Further, let Hπ be the action ρ applied to the two leftmost factors, and let πH
∗

be the action λ

applied to the two rightmost factors. We still denote by dbar and dcob the differentials (31)-(32) ten-
sored with IdM on the left and with IdN on the right. Repeating the argument of Proposition 6.10
for these maps, one shows that dbar + (−1)nπH + Hπ and (−1)ndcob + (−1)n(H

∗

π) + (−1)n+mπH
∗

define a bicomplex on M ⊗ T (H) ⊗ T (H∗) ⊗ N . If N is finite dimensional, then one can see
M ⊗Hn⊗ (H∗)m⊗N as Hom(N∗⊗Hm,M ⊗Hn), with N∗ ∈Mod

H
H . One recovers (a variation

of) the deformation (co)homology of Hopf modules, defined by Panaite-Ştefan in [27].

7 A braided interpretation of Hopf bimodules

In this section, the braided system of UAAs B(H) for a bialgebra H is upgraded to a more
complicated rank 4 braided system B′(H). Braided B′(H)-modules are identified as Hopf bimodules
over H , or else as modules over the algebras X , Y and Z of Cibils-Rosso-Panaite. These three
algebras are included into a list of 24 braided tensor products of UAAs, shown pairwise isomorphic
by component permuting techniques. Braided bidifferentials for B′(H) are shown to generalize the
Hopf bimodule (co)homology of Ospel-Taillefer.

Hopf bimodules as braided modules

Definition 7.1. In a braided category C, a Hopf bimodule over H ∈ Bialg(C) is an object M
endowed with a bimodule structure ρ :M ⊗H →M , λ : H ⊗M →M and a bicomodule structure
δ :M →M ⊗H , γ :M → H ⊗M , satisfying (25) and three other Hopf compatibility conditions :

δ ◦ λ = (λ⊗ µ) ◦ (IdH ⊗cH,M ⊗ IdH) ◦ (∆⊗ δ) : H ⊗M →M ⊗H,

γ ◦ ρ = (µ⊗ ρ) ◦ (IdH ⊗cM,H ⊗ IdH) ◦ (γ ⊗∆) : M ⊗H → H ⊗M,

γ ◦ λ = (µ⊗ λ) ◦ (IdH ⊗cH,H ⊗ IdM ) ◦ (∆⊗ γ) : H ⊗M → H ⊗M

(cf. Fig. 16). The category of Hopf bimodules over H and their morphisms is denoted by H
HModHH .

λ
δ =

λ

∆

µ

δ

c
ρ

γ
=

µ

γ

ρ

∆

c
λ
γ

=
µ

∆

λ
γ

c

Figure 16: Hopf compatibility conditions

We now return to our category C = vectk, omitted as usual for simplicity.

Theorem 5. 1. One has a fully faithful functor

F ′ : ∗Bialg −֒→ ∗BrSyst
l
4 (33)

(H,µ, ν,∆, ε) 7−→B′(H) := (V1 := H,V2 := Hop, V3 := H∗, V4 := (Hcop)∗;

σi,i := σAss(Vi), σ1,2 := τH,Hop , σ3,4 := τH∗,(Hcop)∗ ,

σ1,3 := σbi(H), σ2,3 := σbi(H
op), σ1,4 := σbi(H

cop), σ2,4 := σbi(H
op,cop);

ν, ν, ε∗, ε∗; ε, ε, ν∗, ν∗),

f 7−→(f, f, (f−1)∗, (f−1)∗),

where τ is the transposition of the corresponding factors, and σbi(A) denotes the map σbi
from Theorem 4 for the bialgebra A (cf. Fig. 17).

2. For a bialgebra H, one has category equivalences
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H
HMod

H
H

∼
−→ ModB′(H)

∼
−→ ModW (H)

(M,ρ, λ, δ, γ) 7−→ (M ; ρ,R(λ), δco,R(γco)) 7−→ (M,R(γco)⊗ δco ⊗R(λ) ⊗ ρ)

where R is the correspondence from Lemma 4.12, and W (H) is the braided tensor product
of UAAs

W (H) = (Hcop)∗ ⊗
ξ
H∗ ⊗

ξ
Hop ⊗

ξ
H.

3. If H is a Hopf algebra, then, for any permutation θ ∈ S4, one has category equivalences
H
HModHH

∼
−→ModθB′(H)

∼
−→Modθ·W (H),

where the bipointed braided system θB′(H) is obtained from B′(H) by a component permuta-
tion from Remark 2.10, and the UAA θ ·W (H), isomorphic to W (H), is obtained from W (H)
by a component permutation from Remark 4.11.

σ1,3 ←→ σ2,3 ←→ σ1,4 ←→ σ2,4 ←→

Figure 17: Some braiding components for B′(H)

Proof. Denote by F ′i,j the composition of F ′ with the forgetful functor Fori,j : ∗BrSyst
l
4 →

∗BrSyst
l
2 which picks the ith and jth components, i < j. For i 6 2 < j one recognizes in F ′i,j

the functor (26) from Theorem 4 and its slight modifications which send a bialgebra H to B(Hop),
B(Hcop) or B(Hop,cop) (with some σrAss-type braiding components replaced with their σAss versions,
which has no importance here). Further, F ′1,2(H) and F ′3,4(H) coincide with the braided systems
of UAAs BM(H,H) and BM(H∗, H∗) respectively. Hence all the ξi,j for i < j are natural with

respect to the units and to the multiplications. They also satisfy the YBEs required by Point 2
of Theorem 3: indeed, on V1 ⊗ V2 ⊗ Vk, k ∈ {3, 4}, it follows from the associativity of µ, and on
Vk⊗V3⊗V4, k ∈ {1, 2}, it follows from the coassociativity of ∆. Theorem 3 then asserts that B′(H)
is a braided system of UAAs. It is clearly bipointed.

To show that F ′ is well defined on morphisms, it suffices to check this statement for all the F ′i,j ,
i < j. For i 6 2 < j it follows from Theorem 4. For F ′1,2 and F ′3,4, notice that the ξ1,2 and ξ3,4
components of our braidings are simple transpositions, ensuring the defining property (3) of braided
morphisms. Further, take a braided isomorphism (f, g, h, k) : B′(H) → B′(K) for bialgebras H
and K. Applying forgetful functors Fori,j with i 6 2 < j, and using Theorem 4 again, one sees
that f is a bialgebra isomorphism, and that f = g = (h∗)−1 = (k∗)−1. Hence F ′ is full and faithful.

Let us turn to modules. Take (M,ρ, λ, δ, γ) ∈ H
HModHH . Transform left structures λ and γ into

right ones R(λ) and R(γ), and then comodule structures δ and R(γ) into module structures δco

and R(γ)co = R(γco). One thus interprets the Hopf bimodule M over H as a module over UAAs
H = V1, H

op = V2, H
∗ = V3 and (Hcop)∗ = V4. Further, the four Hopf compatibility conditions

coincide with the braided module compatibility conditions on Vi⊗Vj with i 6 2 < j, and left-right
action (or coaction) compatibility conditions cover the case i = 1, j = 2 (respectively, i = 3, j = 4).
Observation 2.5 then gives the desired category equivalence HHModHH ≃ModB′(H).

The remaining assertions follow from the correspondence between braided modules and modules
over braided tensor products (Proposition 4.9), the invertibility of σbi in the Hopf algebra case,
the properties of twisted Hopf algebras (Observation 6.1; note that in the finite-dimensional case,
an antipode is always invertible), and the component permuting Propositions 2.9 and 4.10.

The category HHModHH for a Hopf algebraH was already known to be equivalent to the categories
of right modules over three UAAs: the twisted product

X (H) = (H ⊗Hop)⊗(H∗ ⊗ (H∗)op)

of Cibils-Rosso ([5]), and the two-sided crossed product and the diagonal crossed product

Y (H) = H∗#(Hop ⊗H)#(H∗)op,

Z (H) = (H∗ ⊗ (H∗)op) ⊲⊳ (Hop ⊗H)

of F. Panaite ([26]). (Here we follow the notations of [26] adapted to our conventions: first, [26]
uses the arched duality, so their dual bialgebra H∗ corresponds to our (H∗)op,cop; second, they
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interpret Hopf bimodules over H∗ as left modules over X (H) etc., which is equivalent to our
interpretation of Hopf bimodules over H as right modules.) These three algebras are of the form
θ ·W (H), with as θ permutations (1, 4)(2, 3), (1, 2, 3, 4) and (3, 4) respectively. Now, Point 3 of our
theorem includes them into a family of #S4 = 24 UAAs and gives an explicit isomorphism between
any two of them, inducing an equivalence of their categories of modules (Remark 4.11). We thus
generalize most results of [5, 26], conceptually explain them and minimize technical computations.

Towards Hopf bimodule homology

In Proposition 4.15 we used braided adjoint actions to see that the bar complex with coefficients
in a bimodule is a complex of bimodules. We now show an analogous property for Hopf bimodules:

Proposition 7.2. Take a Hopf bimodule (M, ρ :M⊗H →M, λ : H⊗M →M, δ :M →M⊗H, γ :
M → H ⊗M) over a bialgebra (H,µ, ν,∆, ε) in vectk. The bar complex (M ⊗ T (H), dbar) for H
with coefficients in M is a complex in H

HModHH . In other words, the differentials (dbar)n are Hopf
bimodule morphisms, where a Hopf bimodule structure on M ⊗Hn is given by

ρbar := µn+1 : M ⊗Hn ⊗H →M ⊗Hn,

λbar := λ1 : H ⊗M ⊗Hn →M ⊗Hn,

}
peripheral
actions

δbar := (µn+2)◦n ◦ ω−12(n+1) ◦ (δ ⊗∆⊗n) : M ⊗H⊗n →M ⊗H⊗n ⊗H,

γbar := (µ1)◦n ◦ ω−12(n+1) ◦ (γ ⊗∆⊗n) : M ⊗H⊗n → H ⊗M ⊗H⊗n

}
diagonal
coactions

(cf. Fig. 18), where ω2(n+1) ∈ S2(n+1) is defined by (22), and S2(n+1) acts on M ⊗H⊗(2n+1) by
factor permutations.

δbar ←→

δ ∆ ∆ ∆

µ◦n

γbar ←→

γ ∆ ∆ ∆

µ◦n

Figure 18: Diagonal bicomodule structure on the bar complex

Proof. Theorem 5 allows to seeM as a braided module over B′(H). Proposition 3.11 for t = 1 then
gives a braided B′(H)-module structure on M ⊗T (H), compatible with the braided differential ρd.
According to Theorem 2, the latter is precisely the bar differential. Using Theorem 5 once again,
one transforms the braided B′(H)-module structure on M ⊗T (H) into a Hopf bimodule structure
over H , and shows that it coincides with the desired one.

This Hopf bimodule structure on the bar complex, as well as its dual one on the cobar complex,
are essential elements in the definition of the Hopf bimodule (co)homology, introduced by C. Ospel
in the one-module case ([25]) and by R. Taillefer ([30, 31]) in the two-module case.

Now, take Hopf bimodules M ∈ H
HModHH ≃ ModB′(H) and N ∈ H∗

H∗ModH
∗

H∗ ≃ B′(H)Mod.
Mimicking the constructions for Hopf modules from the previous section, one gets a tetra-complex
structure on the tetra-graded vector spaceM ⊗T (H)⊗T (Hop)⊗T (H∗)⊗T ((Hcop)∗)⊗N . If N is
finite dimensional, then this space can be regarded as Hom(T (H)⊗N∗⊗T (H), T (H)⊗M⊗T (H)),
with N∗ ∈ H

HModHH (here in order to get rid of twisted (co)multiplications, we moved T (Hop) to
the left of M , reversing the order of its factors, and similarly for T ((Hcop)∗)). This generalizes
another (co)homological approach to Hopf bimodules from [31].
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