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Abstract

We introduce the notion of braided system and develop its representation and homology theories.
The case of braided systems of associative algebras is presented in detail, giving an efficient tool for
studying multi-braided tensor products of algebras and their actions. Braided systems encoding the
structures of generalized crossed product and bialgebra are considered. For the latter, Hopf modules are
identified as the corresponding multi-braided modules, Heisenberg double as the corresponding multi-
braided tensor product of algebras, and Gerstenhaber-Schack and Panaite-Ştefan (co)homologies as
particular cases of multi-braided (co)homologies. This “braided” interpretation offers a conceptual
explication and a simplified proof of several algebraic phenomena concerning the structures above.
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1 Introduction

In [15] we introduced general representation and homology theories for a braided object
V in a monoidal category C (for simplicity, the reader can think about braided k-vector spaces).
Here braided means endowed with a braiding, i.e. a morphism σ : V ⊗ V → V ⊗ V satisfying the
Yang-Baxter equation (=YBE)

σ1σ2σ1 = σ2σ1σ2, σ1 := σ ⊗ IdV , σ2 := IdV ⊗σ.

Further, for several basic algebraic structures (associative algebras, Leibniz algebras, self-distributive
structures) on an object V we presented braidings on V encoding many algebraic properties of these
structures. Trying to apply these ideas to more complicated structures (e.g. the bialgebra structure
on H), one soon hits the limits of the concept of braiding. In particular, if one wants to recover
the Gerstenhaber-Shack differential for H ([7]), defined on Hom(H⊗n, H⊗m) ≃ H⊗m ⊗ (H∗)⊗n,
one should be able to simultaneously handle objects of different nature (here H and H∗). This
suggests the notion of braided system, central to this paper.

Concretely, a rank r braided system is a family of objects (V1, . . . , Vr) in C endowed with
morphisms σi,j : Vi⊗Vj → Vj ⊗Vi ∀ i 6 j satisfying the (colored) Yang-Baxter equation on all the
tensor products Vi⊗Vj⊗Vk with i 6 j 6 k. This is a positive (the invertibility condition is relaxed),
partial and local version of the notion of braiding. Note that our definition (for r = 2) recovers
the WXZ-systems constructed by L. Hlavatý and L. Šnobl in [10] and motivated by the concept of
quantum doubles. They classified such systems in dimension 2 and studied their symmetries.

In Sections 2 and 3 we develop in detail general representation and homology theories for
braided systems, introducing the notions ofmulti-braided modules andmulti-braided differentials,
and generalizing the case of braided objects. Note that multi-braided modules play the role of
coefficients in multi-braided differential complexes. The last sections are devoted to more or less
general examples. In each of them, we look for a braided system encoding the given algebraic
structure in the following sense:

multi-braiding 7→ algebraic structure
YBEs ⇔ defining relations

braided morphisms ≃ structural morphisms
invertibility ⇔ algebraic properties
BrSystr(C) ←֓ Structure(C)

multi-braided modules ≃ usual modules
multi-braided differentials ⊇ usual differentials

Table 1: “Braided” interpretation for algebraic structures

The line BrSystr(C) ←֓ Structure(C) means that we want to recover the categories of the alge-
braic structures we are interested in (e.g. the category of bialgebras in C) as subcategories of the
category of rank r braided systems and braided morphisms in C.

In the examples presented in this paper, all components Vi of braided systems are unital asso-
ciative algebras (=UAAs) (Vi, µi, νi), and the σi,i braiding components are the “associativity
braidings” σAss = νi⊗µi (or their “right” versions σr

Ass = µi⊗ νi) from [15]. The braiding σAss,

presented in the category of vector spaces by a more eloquent formula σAss(a ⊗ b) = 1 ⊗ a · b,
encodes the associativity structure. Such braided systems of UAAs are studied in detail in Section
4. They are shown to be in one-to-one correspondence with multi-braided tensor products

of algebras
←−
V = Vr ⊗

ξ
· · · ⊗

ξ
V1. Concretely, morphisms ξi,j for i < j are shown to complete the

associativity braidings σi,i into a braided system structure if and only if a formula generalizing the
familiar r = 2 case

µV2⊗V1 := (µ2 ⊗ µ1) ◦ (Id2⊗ξ1,2 ⊗ Id1) : (V2 ⊗ V1)⊗ (V2 ⊗ V1)→ V2 ⊗ V1

defines an associative multiplication on
←−
V .

This braided tensor product construction (for r = 2) is at the heart of the braided geometry,
introduced by S. Majid in a long series of papers in the 1990’s (cf. for example [17], [18], [19]).
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Majid’s motivation was to develop an algebra analogue of the product of spaces in non-commutative
geometry. A pleasant consequence of his work was the construction of new examples of non-
commutative non-cocommutative Hopf algebras via the bicrossproduct construction (which is a
particular case of braided tensor product).

The case of general r was independently treated by different authors from different viewpoints:
1. P.J. Mart́ınez, J.L. Peña, F. Panaite and F. van Oystaeyen introduced in [11] the notion of

iterated twisted tensor products of algebras. Their motivation lied in the braided geometry,
like for Majid (namely, they wanted an algebra analogue of the product of r non-commutative
spaces). They studied various Hopf algebraic, geometric and physical examples. They worked
in the category of vector spaces.

2. In category theory, E. Cheng generalized J. Beck’s notion of distributive laws to that of
iterated distributive laws ([1], [4]). Having category theory motivations in mind, she placed
everything in the monoidal category of endofunctors of a given category, thus working with
monads. Iterated distributive laws turned out to be very useful for describing interchange
laws in a strict n-category.

Both approaches above study, in our language, the relation between

ú the associativity of the multiplication on
←−
V , and

ú the YBE for the ξi,j ’s with i < j and the naturality of the ξi,j ’s with respects to multiplica-
tions µi and µj .

Our main contribution to this picture consists in a treatment of all the conditions involved in
the definition of multi-braided tensor product (and not only the compatibilities between the ξi,j ’s)
in terms of braided systems, and hence in terms of YBEs. It is our associativity braiding that
makes this possible. Such a unified treatment leads to a homology theory for braided systems of
UAAs, thanks to our general multi-braided homology machinery.

structure ingredient YBE on ...

associativity of µi Vi ⊗ Vi ⊗ Vi
compatibility of ξi,j and µi Vi ⊗ Vi ⊗ Vj
compatibility of ξi,j and µj Vi ⊗ Vj ⊗ Vj

compatibilities between the ξi,j ’s Vi ⊗ Vj ⊗ Vk

Table 2: Instances of YBE encoding different ingredients of multi-braided tensor product structure

Representation-theoretical aspects of braided systems of UAAs present a particular interest.

We identify multi-braided modules over such a system with modules over the algebra
←−
V .

This should be considered in the context of the general principle of presenting “complicated” struc-
tures (e.g. Hopf modules) as “simpler” structures – algebra modules – over certain “complicated”
algebras (e.g. Heisenberg doubles). The concrete examples we are interested in are the following:

“complicated” structure corresponding “complicated” algebra

bimodule over an algebra A enveloping algebra A⊗Aop

Hopf module over a bialgebra H Heisenberg double H (H) := H∗⊗̃H

YD module over a bialgebra H Drinfel′d double D(H) := H∗⊗̃Hop

Hopf bimodule over a Hopf algebra H algebras X (H), Y (H) and Z (H) ([5], [27])

Table 3: Algebras encoding Hopf and Yetter-Drinfel′d (bi)module structures

The symbol ⊗̃ is used here to stress that braided tensor products are used. The first two examples
are treated here, the last two are left for a follow-up paper [16].

In our braided system interpretation, these “complicated” algebras are precisely the multi-
braided tensor products for carefully chosen braided systems of UAAs. Thus guessing the right
braided systems of UAAs suffices for constructing the right “complicated” algebra, automatically
proving its associativity. This considerably reduces the technical calculations, as we see here on
the example of Heisenberg doubles and in [16] on other examples from the table. Note also that
our general braided system theory gives convenient explicit permutation rules for components
of a UAA braided system – and thus for components of a multi-braided tensor product. Further,
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the adjoint module theory developed here in the context of braided systems allows to reinterpret
different “complicated” structures on concrete braided differential complexes (for instance, the
Hopf bimodule structure on the bar complex of a bialgebra with coefficients in a Hopf bimodule).

An important example – that of generalized two-sided crossed products, as defined by
D. Bulacu, F. Panaite and F. Van Oystaeyen in [3] – is studied in Section 5. The non-trivial
components of the braiding on the corresponding braided system are inspired from the classical
braiding on the category of Yetter-Drinfel′d modules. This braiding is used in Section 6 in the
construction of a rank 2 braided system encoding the finite-dimensional k-bialgebra structure.
The definition and some properties of this latter braided system are presented in the following
table, including also detailed information about the associativity braiding σAss for comparison:

structure system braiding invertibility br. modules br. complexes

algebra (A) σAss or no algebra bar,
A σr

Ass modules Hochschild

bialgebra Hbi := σ1,1 = σr
Ass, ∃σ−11,2 iff Hopf Gerstenhaber-

H (H,H∗) σ2,2 = σAss, H is a Hopf modules Schack [7],
σ1,2 = σbi algebra Panaite-Ştefan [28]

Table 4: “Braided” ingredients of the algebra and bialgebra structures

Here σbi : H ⊗H
∗ → H∗ ⊗H is defined, using Sweedler’s notation, by

σbi(h⊗ l) :=
〈
l(1), h(2)

〉
l(2) ⊗ h(1).

Note the “braided” interpretation of the existence of the antipode: it turns out to be equivalent
to the invertibility of the σbi braiding component.

Our braided system allows to recover the category of bialgebras in vectk as a subcategory of
BrSyst2(vectk) (endowed with some additional structure). The paper [24] by F.F. Nichita can
also be interpreted in the same vein. The difference consists in the braiding he uses to encode the
associativity, namely a generalization of the braiding σ̃Ass = ν ⊗ µ + µ ⊗ ν − IdV ⊗2 proposed by
P. Nuss in [25], in the context of the descent theory for noncommutative rings. Although more
complicated, this braiding has the advantage of being self-inverse. F.F. Nichita and collaborators
studied its properties in [23], [2] and related papers. We stick however to our σAss because of its
homological applications (cf. the last column of the above table).

In [16] we suggest an alternative interpretation of Hbi as the simplest case of a Yetter-Drinfel′d
system, which is a special type of braided system of UAAs designed for dealing with YD modules.

We finish with a list of other structures admitting a braided system interpretation .
All these points are work in progress.

1. The braided system we constructed for generalized two-sided crossed products gives in par-
ticular a “braided” treatment of H-(bi)(co)module algebras: it suffices to take the underlying
bialgebra H or its dual H∗ as the remaining components of the triple. Repeating our study
of braided homology of bialgebras in this context, one recovers in particular D. Yau’s de-
formation bicomplex of module algebras ([34]). Our “braided” tools also allow to simplify
A. Kaygun’s treatment of H-equivariant A-bimodule structures used for his construction of
module algebra homology, called Hopf-Hochschild homology ([12]).

2. In a follow-up paper [16], we construct braided systems encoding the structures of Hopf bi-
modules and Yetter-Drinfel′d modules, recovering and generalizing their usual (co)homologies
([26], [32], [28]). Several other features of these structures naturally appear in this “braided”
interpretation, offering a new conceptual explanation for some of these. In particular, we
naturally recover two definitions of tensor products of Yetter-Drinfel′d modules, proposed by
L.A. Lambe and D.E. Radford in [13].

3. Resuming the braiding from [15] encoding the Jacobi identity and combining it with σAss,

one gets a rank 2 braided system encoding the non-commutative Poisson algebra structure.
Its multi-braided homology will hopefully include B. Fresse’s Poisson algebra homology ([6]).

4. The braided system machinery can also be applied to the quantum Koszul complexes of D.
Gurevich ([8]) and M. Wambst ([33]).
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Notations and conventions

All the structures in this paper live in a strict monoidal category (C,⊗, I); the reader can have in
mind the category Vectk of k-vector spaces or the category ModR of R-modules for simplicity.
Notation k always stands for a field, and R for a commutative unital ring.

The tensor algebra of an R-module V is denoted by T (V ).We often call it the tensor module of
V, emphasizing that it can be endowed with a multiplication different from the usual concatenation.

The word “monoidal” is omitted in the terms braided / symmetric monoidal category for brevity.
Given an object V in C, we succinctly denote its tensor powers by V n := V ⊗n, V 0 := I. Further,

given a morphism ϕ : V l → V r, the following notation is repeatedly used:

ϕi := Id
⊗(i−1)
V ⊗ϕ⊗ Id

⊗(k−i+1)
V : V k+l → V k+r , (1)

and similarly for morphisms on tensor products of different objects.
Working with a family of objects (V1, V2, . . .), we put Idi := IdVi

.

All the category equivalences in the paper are “structure equivalences” : they preserve the
underlying objects and establish an equivalence of different structures on them.

The already classical graphical calculus is extensively used in this paper, with
ú dots standing for objects in C,
ú horizontal gluing corresponding to the tensor product,
ú graph diagrams representing morphisms from the object which corresponds to the lower dots

to that corresponding to the upper dots,
ú vertical gluing standing for morphism composition, and vertical strands for identities.

All diagrams are to be read from bottom to top here.
Notations Sn, Bn, B

+
n stand for the symmetric groups, the braid groups and the positive braid

monoids respectively. Their standard generators are denoted by si and σi, 1 6 i 6 n− 1.

2 Multi-braided vocabulary

2.1 Braided systems

The notion of braided system is a weak (in the three senses explained below) generalization of the
common notion of braided object in a monoidal category.

Definition 2.1. ú A braided system in C is an ordered finite family V1, V2, . . . , Vr ∈ Ob(C)
endowed with a braiding, i.e. morphisms σi,j : Vi ⊗ Vj → Vj ⊗ Vi ∀ 1 6 i 6 j 6 r satisfying
the (colored) Yang-Baxter equation (=YBE)

(σj,k ⊗ Idi) ◦ (Idj ⊗σi,k) ◦ (σi,j ⊗ Idk) = (Idk⊗σi,j) ◦ (σi,k ⊗ Idj) ◦ (Idi⊗σj,k) (YB)

on all the tensor products Vi ⊗ Vj ⊗ Vk with 1 6 i 6 j 6 k 6 r. Such a system is denoted by

((Vi)16i6r; (σi,j)16i6j6r) or briefly (V , σ).
ú The rank of a braided system is the number r of its components.
ú A braided morphism f : (V , σ) → (W, ξ) between two braided systems in C of the same

rank r is a collection of morphisms (fi ∈ HomC(Vi,Wi))16i6r respecting the braiding, i.e.

(fj ⊗ fi) ◦ σi,j = ξi,j ◦ (fi ⊗ fj) ∀ 1 6 i 6 j 6 r. (2)

ú The category of rank r braided systems and braided morphisms in C is denoted byBrSystr(C),
or Br(C) in the rank one case.

ú Rank 1 braided systems are called braided objects in C.
ú For given 1 6 s 6 t 6 r, the braided (s, t)-subsystem of (V , σ), denoted by (V , σ)[s, t], is the

subfamily Vs, . . . , Vt with the corresponding components σi,j of σ.

The notion of braiding on V thus defined is
1. positive, i.e. we do not demand the invertibility of any of the σi,j ’s; the term pre-braiding

was used in our previous papers to emphasize this;
2. partial, i.e. defined only on certain couples of objects (this is underlined in the definition);
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3. local, i.e., contrary to the usual notion of braiding in a monoidal category, no naturality
conditions are imposed.

Graphically, the σi,j component of the braiding is depicted as

i j
.

Figure 1: A braiding component

Note that we write i and j instead of Vi and Vj in order not to overload the diagrams.
According to the definition, one allows a strand to overcross only the strands colored with a

smaller or equal index i ∈ {1, 2, . . . , r}. The diagrammatical counterpart of Equation (YB) is the
(colored) third Reidemeister move, which is at the heart of knot theory:

i j k

=

i j k
.

Figure 2: Yang-Baxter equation ←→ Reidemeister move III

Each component of a braided system is clearly a braided objects in C. Pursuing this remark,
one gets

Proposition 2.2. Given a braided category (C,⊗, I, c), one has, ∀ r ∈ N, a fully faithful functor

(Br(C))×r −֒→ BrSystr(C),

(Vi, σi)16i6r 7−→ (V1, . . . , Vr;σi,i := σi, σi,j := cVi,Vj
∀ i < j), (3)

(fi : Vi →Wi)16i6r 7−→ f := (fi)16i6r.

Proof. There are three kinds of tensor products on which one should check (YB) in order to verify
that (3) defines a braided system:

1. Vi ⊗ Vi ⊗ Vi. Use YBE for σi here.
2. Vi ⊗ Vi ⊗ Vj or Vi ⊗ Vj ⊗ Vj for i < j. Use the naturality of c with respect to σi or σj .
3. Vi ⊗ Vj ⊗ Vk for i < j < k. Use YBE for the braiding c.
As for morphisms, condition (2) is automatic for i < j thanks to the naturality of c, and for

i = j it is equivalent to fi being a braided morphism. Thus our functor is well defined, full and
faithful on morphisms.

The following elementary observation will be useful in what follows:

Observation 2.3. If our category C is preadditive, then one has, ∀ r ∈ N, a category automorphism

BrSystr(C)
∼
←→ BrSystr(C),

((Vi)16i6r ; (σi,j)16i6j6r)←→ ((Vi)16i6r; (−σi,j)16i6j6r) =: (V ,−σ),

(fi : Vi →Wi)16i6r ←→ (fi : Vi →Wi)16i6r .

2.2 Multi-braided modules

Like for any algebraic structure, the representation theory of braided systems is important to study.

Definition 2.4. ú A right multi-braided module over (V , σ) ∈ BrSystr(C) is an objectM
equipped with morphisms ρ := (ρi :M ⊗ Vi →M)16i6r satisfying

ρj ◦ (ρi ⊗ Idj) = ρi ◦ (ρj ⊗ Idi) ◦ (IdM ⊗σi,j) :M ⊗ Vi ⊗ Vj →M ∀ 1 6 i 6 j 6 r (4)

or, graphically,
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ρj
ρi

jiM

=
ρi
ρj

jiM

σi,j

.

Figure 3: Multi-braided module

ú Left multi-braided modules and left/right multi-braided comodules, as well as multi-braided
(co)module morphisms, are defined in the usual way.

ú The category of right multi-braided modules and their morphisms is denoted by Mod(V ,σ).

We use notation (V ,σ)Mod in the left case and Mod(V ,σ) and (V ,σ)Mod in the co-cases.

ú We talk about braided (co)modules in the rank 1 case.

Observation 2.5. A multi-braided (V , σ)-module can be seen as a braided (Vi, σi,i)-module ∀ 1 6

i 6 r, these structures being compatible ∀ 1 6 i < j 6 r in the sense of (4).

In the following sections and a subsequent paper we interpret algebra (bi)modules, Hopf
(bi)modules, Yetter-Drinfel′d modules and other structures as multi-braided modules over ap-
propriate braided systems.

We next study multi-braided module structures on the unit object I of C, which are particularly
important in practice.

Observation 2.6. The notions of right and left multi-braided (V , σ)-modules coincide for I. Con-
dition (4) takes in this case a simpler form

(ρj ⊗ ρi) ◦ σi,j = ρi ⊗ ρj : Vi ⊗ Vj → I.

Definition 2.7. A right (= left) multi-braided (V , σ)-module structure on I is called a multi-
braided character , or just a braided character in the rank 1 case.

Example 2.8. If C is preadditive, then a braided character εi on any Vi extended to other com-
ponents by zero trivially becomes a multi-braided character on (V , σ).

2.3 Invertibility questions

The invertibility of some of the σi,j ’s, often encountered in practice, can be helpful in extending
braided structures. It allows to interchange the corresponding components of a braided system
without changing the module category:

Proposition 2.9. Take (V , σ) ∈ BrSystr(C) with σp,p+1 invertible for some p. Then:
1. The family (V1, . . . , Vp−1, Vp+1, Vp, Vp+2, . . . , Vr), equipped with the old σi,j’s on the tensor

products Vi ⊗ Vj with (i, j) 6= (p + 1, p) and with σ−1p,p+1 on Vp+1 ⊗ Vp, is a braided system,

denoted by sp(V , σ).
2. The categories of multi-braided modules for the original and the rearranged system are equiv-

alent:
Mod(V ,σ) ≃Modsp(V ,σ).

As usual in this paper, the equivalence of module categories from the proposition preserves the
underlying objects of C.
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Proof. 1. One has to check the following new instances of the YBE:
(a) On Vi ⊗ Vp+1 ⊗ Vp with i < p, i.e., using notation (1),

σ2
i,p+1 ◦ σ

1
i,p ◦ (σ

2
p,p+1)

−1 = (σ1
p,p+1)

−1 ◦ σ2
i,p ◦ σ

1
i,p+1.

Composing both sides with σ1
p,p+1 on the left and with σ2

p,p+1 on the right, one gets

σ1
p,p+1 ◦ σ

2
i,p+1 ◦ σ

1
i,p = σ2

i,p ◦ σ
1
i,p+1 ◦ σ

2
p,p+1,

which is precisely the YBE on Vi ⊗ Vp ⊗ Vp+1. The latter holds by the definition of
braided system.

(b) On Vp+1 ⊗ Vp ⊗ Vj with j > p+ 1. This case is similar to the previous one.
(c) On Vp+1 ⊗ Vp+1 ⊗ Vp. Manipulations similar to case 1a iterated twice lead to the YBE

on Vp ⊗ Vp+1 ⊗ Vp+1.

(d) On Vp+1 ⊗ Vp ⊗ Vp. This case is similar to the previous one.
2. Given an objectM equipped with morphisms ρi : M ⊗Vi →M, the list of compatibility con-

ditions (4) one has to check for (V , σ) differs from the list for sp(V , σ) only in the conditions
for components p, p+ 1:

ρp+1 ◦ (ρp ⊗ Idp+1) = ρp ◦ (ρp+1 ⊗ Idp) ◦ (IdM ⊗σp,p+1)

versus
ρp ◦ (ρp+1 ⊗ Idp) = ρp+1 ◦ (ρp ⊗ Idp+1) ◦ (IdM ⊗σ

−1
p,p+1).

These two conditions are clearly equivalent. So the identity functor of C and the transposition
sp of the components of ρ give the demanded category equivalence.

Remark 2.10. More generally, given a θ ∈ Sr and a (V , σ) ∈ BrSystr(C) with all the σi,j ’s
invertible for i and j permuted by θ, the family (Vθ−1(1), . . . , Vθ−1(r)), equipped with the old σi,j ’s

on the tensor products Vi⊗Vj with i < j, θ(i) < θ(j) and with σ−1i,j on Vj⊗Vi with i < j, θ(i) > θ(j),

is a braided system. Its module category is equivalent to that of (V , σ).

One thus obtains a partial Sr-action on BrSystr(C). This explains

Notation 2.11. The braided system from the above remark is denoted by θ(V , σ).

Corollary 2.12. Let (V , σ) be a braided system in an additive monoidal C, with σi,j invertible for

all s 6 i < j 6 t. Then one can glue the objects Vs, . . . , Vt together into Vs:t :=
⊕t

i=s Vi and extend
the braiding onto (V1, . . . , Vs−1, Vs:t, Vt+1, . . . , Vr), putting σ|Vj⊗Vi

:= σ−1i,j ∀ s 6 i < j 6 t.

Note that the invertibility of the σi,i’s is not required here even for s 6 i 6 t.

Proof. It suffices to consider the case s = t− 1 =: p, the general case then following by induction.
The only instances of (YB) appearing here in addition to those coming from the braided systems
(V , σ) and sp(V , σ) are those on Vp⊗Vp+1⊗Vp and Vp+1⊗Vp⊗Vp+1. They are proved by the same
argument as in Point 1a (or 1b) of the proof of Proposition 2.9, taking i = p (or j = p+ 1).

Remark 2.13. The corollary recovers in particular the gluing procedure for Yang-Baxter operators
(or, in our terms, for braided objects) described by S. Majid and M. Markl in [20].

3 A homology theory for braided systems

We now generalize the braided homology theory, developed in [15] for a braided object in C equipped
with a left and right braided modules, to the braided system setting.

In this section C is additive monoidal. In particular, one can interpret the collection σ as a
partial braiding , still denoted by σ, on

V := V1 ⊕ V2 ⊕ · · · ⊕ Vr,

and the family ρ defining a right multi-braided (V , σ)-module M as a morphism ρ :M ⊗ V →M.
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3.1 Quantum shuffle structures: a “multi-version”

We start by showing that the collection σ suffices for defining a partial version of quantum
(co)shuffle structures, defined in M. Rosso’s pioneer papers [29], [30].

Definition 3.1. The permutation sets

Shp,q :=

{
θ ∈ Sp+q

θ(1) < θ(2) < . . . < θ(p),
θ(p+ 1) < θ(p+ 2) < . . . < θ(p+ q)

}

or, more generally,

Shp1,p2,...,pk
:=

{
θ ∈ Sp1+p2+···+pk

θ(1) < θ(2) < . . . < θ(p1),
θ(p1 + 1) < . . . < θ(p1 + p2),
. . . ,

θ(p+ 1) < . . . < θ(p+ pk)

}

where p = p1 + p2 + · · ·+ pk−1, are called shuffle sets.

In other words, one permutes p1+p2+· · ·+pk elements preserving the order within k consecutive
blocks of size p1, p2, . . . , pk, just like when shuffling cards, which explains the name.

Recall further the projection

B+
n −։ Sn,

σi 7−→ si,

and its set-theoretical (i.e. not preserving the monoid structure) section, called Matsumoto section:

Sn −֒→ B+
n ,

θ = si1si2 · · · sik 7−→ σi1σi2 · · ·σik ,

where si1si2 · · · sik is any of the shortest words representing θ ∈ Sn.

Notation 3.2. We denote by Tθ the image of θ ∈ Sn under this inclusion.

Now let us return to the context of braided systems.

Definition 3.3. ú An ordered tensor product for (V , σ) ∈ BrSystr(C) is a tensor product
of the form

V ⊗m1
1 ⊗ V ⊗m2

2 ⊗ · · · ⊗ V ⊗mr
r , mi > 0.

ú A reversely ordered tensor product is one of the form

V ⊗mr
r ⊗ V

⊗mr−1

r−1 ⊗ · · · ⊗ V ⊗m1
1 , mi > 0.

ú The degree of such a tensor product is simply the sum
∑r

i=1mi.

ú The direct sum of the (reversely) ordered tensor products of degree n is denoted by T (V )→n
(respectively, T (V )←n ).

In ModR, the T (V )→n ’s (respectively, T (V )←n ’s) sum up to

T (V )→ := T (V1)⊗ T (V2)⊗ · · · ⊗ T (Vr),

T (V )← := T (Vr)⊗ T (Vr−1)⊗ · · · ⊗ T (V1).

The last ingredient we need is a partial B+
n -action on V n for (V , σ) ∈ BrSystr(C). For a

generator σi of B
+
n and a summand Vk1 ⊗ · · · ⊗ Vkn

of V n, with ki 6 ki+1, it is defined by

σi 7−→ Idk1 ⊗ · · · ⊗ Idki−1 ⊗σki,ki+1 ⊗ Idki+2 ⊗ · · · ⊗ Idkn

∈ HomC(Vk1 ⊗ · · · ⊗ Vkn
, Vk1 ⊗ · · · ⊗ Vki+1 ⊗ Vki

⊗ · · · ⊗ Vkn
).

This action agrees with the common graphical depiction of the positive braid monoid elements.

Notation 3.4. The partial action described above is denoted by B+
n ∋ b 7→ bσ.

Armed with all these definitions and notations, one is ready for writing down the main definition
of this section:
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Definition 3.5. Take (V , σ) ∈ BrSystr(C).
ú The family of morphisms�

σ
p,q :=

∑

θ∈Shp,q

(Tθ)
σ : T (V )←p ⊗ T (V )←q → T (V )←p+q, (5)

where for given reversely ordered tensor products W in T (V )←p and U in T (V )←q the sum-

mation runs only over θ for which the action (Tθ)
σ is defined on W ⊗ U and takes values in

the T (V )←p+q part of V p+q, is called the multi-quantum shuffle multiplication .
ú The family of morphisms�

σ
p,q :=

∑

θ∈Shp,q

(Tθ−1)σ : T (V )→p+q → T (V )→p ⊗ T (V )→q (6)

is called the multi-quantum coshuffle comultiplication .
ú More generally, replacing Shp,q by Shp1,...,pk

, one gets morphisms �
σ
p1,...,pk

and �
σ
p1,...,pk

.

Note that even when its source is an ordered tensor product, the target of �
σ
p,q is not a single

tensor product of ordered tensor products, but their direct sum in general. This explains why we
need additive categories here.

Lemma 3.6. The morphisms above are well-defined, and give an associative multiplication (re-
spectively, a coassociative comultiplication).

Proof. It is sufficient to observe that if (reversely) ordered tensor products are fed into the formulas
from the definition, then the braiding σ is applied only to components Vi ⊗ Vj with i 6 j. The
verification of the (co)associtivity repeats the classical one for the rank 1 case (see [30] or [14]).

Remark 3.7. One should think about the definition (5) as a dual version of the more natural
definition (6). This gives in particular a better understanding of the condition on θ in the first
definition.

3.2 Multi-braided differentials

We now explain what we mean by a homology theory for a braided system (V , σ) in C:

Definition 3.8. ú A degree −1 differential for (V , σ) is a family of morphisms {dn :
T (V )→n → T (V )→n−1}n>0, satisfying dn−1 ◦ dn = 0 ∀ n > 1.

ú A bidegree −1 bidifferential for (V , σ) consists of two families of morphisms {dn, d
′
n :

T (V )→n → T (V )→n−1}n>0, satisfying

dn−1 ◦ dn = d′n−1 ◦ d
′
n = d′n−1 ◦ dn + dn−1 ◦ d

′
n = 0 ∀ n > 1.

ú These notions allow versions “with coefficients”: one simply works on M ⊗T (V )→n ⊗N (with
some objects M and N) instead of T (V )→n .

ú A collection of objects (Xn)n>0 in C endowed with morphisms (dn : Xn → Xn−1)n>0 and,
eventually, (d′n : Xn → Xn−1)n>0 satisfying the conditions above is called a differential
(bi)complex . Morphisms between differential complexes (Xn, dn) and (Yn, bn) are collections
of morphisms (fn : Xn → Yn)n>0 such that

bn ◦ fn = fn−1 ◦ dn ∀n > 1,

and similarly for differential bicomplexes.

Everything is now ready for constructing a multi-version of the braided differentials from [15]:

Theorem 1. Take a braided system (V , σ) in an additive monoidal category C, equipped with a right
and, respectively, left multi-braided (V , σ)-modules (M,ρ) and (N, λ). The families of morphisms

(ρd)n := (ρ⊗ IdT (V )→n−1⊗N
) ◦ (IdM ⊗ �

−σ
1,n−1 ⊗ IdN ),

(dλ)n := (−1)n−1(IdM⊗T (V )→n−1
⊗λ) ◦ (IdM ⊗ �

−σ
n−1,1 ⊗ IdN )

fromM⊗T (V )→n ⊗N toM⊗T (V )→n−1⊗N define a bidegree −1 tensor bidifferential with coefficients.
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Proof. The verifications use
1 the coassociativity of �

−σ
, and

2 the definition of multi-braided modules, reformulated in a preadditive C as

ρ ◦ (ρ⊗ IdV ) ◦ (IdM ⊗ �
−σ

1,1) = 0, λ ◦ (IdV ⊗λ) ◦ (�
−σ

1,1 ⊗ IdN ) = 0.

Concretely, writing �
−σ

instead of IdM ⊗ �
−σ
⊗ IdN or �

−σ
⊗ IdN for brevity, one calculates

(ρd)n−1 ◦ (
ρd)n = (ρ⊗ Id···) ◦ �

−σ
1,n−2 ◦ (ρ⊗ Id···) ◦ �

−σ
1,n−1

= (ρ⊗ Id···) ◦ (ρ⊗ �
−σ

1,n−2) ◦ �
−σ

1,n−1

= (ρ⊗ Id···) ◦ (ρ⊗ Id···) ◦ (IdM⊗V ⊗ �
−σ

1,n−2) ◦ �
−σ

1,n−1

1
= (ρ⊗ Id···) ◦ (ρ⊗ Id···) ◦ (IdM ⊗ �

−σ
1,1 ⊗ Id···) ◦ �

−σ
2,n−2

= ((ρ ◦ (ρ⊗ IdV ) ◦ (IdM ⊗ �
−σ

1,1))⊗ Id···) ◦ �
−σ

2,n−2

2
= 0 ◦ �

−σ
2,n−2 = 0,

and similarly for dλ.
Further,

(dλ)n−1 ◦ (
ρd)n = (−1)n−2(ρ⊗ Id···⊗λ) ◦ �

−σ
1,n−2,1 = −(ρd)n−1 ◦ (d

λ)n.

Our proof of (ρd)n−1 ◦ (
ρd)n = 0 can be informally interpreted as follows: the coassociative

comultiplication by a square zero coelement is a differential.
Pictorially, (ρd)n is a signed sum (due to the use of the negative braiding −σ) of terms

(−1)k−1
ρik

M Ni1 i2 · · · ik · · ·
,

Figure 4: Multi-braided left differential

and similarly for (dλ)n. The sign can be interpreted here via the intersection number of the diagram.

Corollary 3.9. Any Z-linear combination of the families (ρd)n and (dλ)n from the theorem is a
degree −1 tensor differential.

Definition 3.10. The (bi)differentials from the above theorem and corollary are called multi-
braided .

Remark 3.11. 3 The constructions from the theorem are functorial , in the sense that a

braided morphism f : (V , σ) → (V
′
, σ′) and morphisms ϕ : M → M ′, ψ : N → N ′

between multi-braided modules (M,ρ) ∈ Mod(V ,σ) and (M ′, ρ′) ∈ Mod(V
′
,σ′) (respec-

tively, (N, λ) ∈ (V ,σ)Mod and (N ′, λ
′
) ∈ (V

′
,σ′)Mod), compatible with f (i.e., for instance,

ρ′i ◦ (ϕ⊗ fi) = ϕ ◦ ρi ∀i), define a differential bicomplex morphism

ϕ⊗ f
⊗n
⊗ ψ :M ⊗ T (V )→n ⊗N →M ′ ⊗ T (V

′
)→n ⊗N

′.

3 Applying the categorical duality to this theorem, one gets a cohomology theory for (V , σ)
with coefficients in multi-braided (V , σ)-comodules. Note that one should work with T (V )←n
in the dual settings, since a braiding on the system (V1, . . . , Vr) in C

op is the same thing as
a braiding on the reversed sytem (Vr, . . . , V1) in C.
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3 The braided bidifferentials can be shown to come from a pre-bisimplicial structure (more
famous under the name of precubical structure), becoming weakly bisimplicial if the
braided system is moreover endowed with a “good” comultiplication (i.e. multi-braided,
σ-cocommutative and coassociative). See [15] for all the definitions and proofs in the braided
object case; the generalization to higher rank does not present any particular difficulties.

3 Braided differentials (ρd)n (or (dλ)n) can be defined with coefficients on one side only, i.e. on
M ⊗ T (V )→n (or T (V )→n ⊗N), by analogous formulas.

3.3 Adjoint multi-braided modules

The theory of adjoint braided modules from [15], including its homological consequences, has a
multi-version as well.

Notation 3.12. The evident morphism from (Vi1 ⊗ · · · ⊗ Vis) ⊗ (Vj1 ⊗ · · · ⊗ Vjt) to (Vj1 ⊗ · · · ⊗
Vjt)⊗ (Vi1 ⊗ · · · ⊗ Vis) induced by σ is denoted by σ. (Here we suppose in 6 jm ∀n,m, so that σ
is applicable to Vin ⊗ Vjm .)

Proposition 3.13. Take (V , σ) ∈ BrSystr(C) and (M,ρ) ∈Mod(V ,σ). Fix numbers 1 6 s 6 t 6

r, and denote by (V
′
, σ) the braided (s, t)-subsystem (V , σ)[s, t].

1. For any n ∈ N, M ⊗ T (V
′
)→n becomes a multi-braided (V , σ)[t, r]-module via the morphisms

ρπi := (ρi ⊗ Id
T (V

′
)→n

) ◦ (IdM ⊗σT (V
′
)→n ,Vi

) :

M ⊗ T (V
′
)→n ⊗ Vi →M ⊗ T (V

′
)→n , t 6 i 6 r.

2. The multi-braided differential ρd on M⊗T (V
′
)→∗ respects the multi-braided (V , σ)[t, r]-module

structure described above.

Proof. Let us prove the compatibility relation (4) for ρπi and
ρπj with t 6 i 6 j 6 r. Working on

M ⊗ T (V
′
)→n ⊗ Vi ⊗ Vj , one has

ρπi◦(
ρπj ⊗ Idi) ◦ (Id···⊗σi,j)

= (ρi ⊗ Id···) ◦ (IdM ⊗σT (V
′
)→n ,Vi

) ◦ (((ρj ⊗ Id···) ◦ (IdM ⊗σT (V
′
)→n ,Vj

))⊗ Idi) ◦ (Id···⊗σi,j)

= (ρi ⊗ Id···) ◦ (ρj ⊗ Id···) ◦ (IdM ⊗σT (V
′
)→n ,Vj⊗Vi

) ◦ (Id···⊗σi,j)

1
= (ρi ⊗ Id···) ◦ (ρj ⊗ Id···) ◦ (IdM ⊗σi,j ⊗ Id···) ◦ (IdM ⊗σT (V

′
)→n ,Vi⊗Vj

)

2
= (ρj ⊗ Id···) ◦ (ρi ⊗ Id···) ◦ (IdM ⊗σT (V

′
)→n ,Vi⊗Vj

)

= ρπj ◦ (
ρπi ⊗ Idj),

where 1 is a repeated application of (YB), and 2 follows from the relation (4) for ρi and ρj .
The compatibility relation for ρπi and

ρd, with t 6 i 6 r, is verified similarly.

Definition 3.14. The multi-braided modules from the above proposition are called adjoint .

Applied to a braided object (V, σ) endowed with a braided character, Proposition 3.13 endows
all the tensor powers V n with a braided (V, σ)-module structure, hence the term adjoint.

4 A protoexample: braided systems of associative algebras

In this section C is again monoidal, not necessarily preadditive. We study braided systems whose
components Vi are unital associative algebras (=UAAs) in C.We start by recalling a braiding σi,i
on Vi encoding the associativity. It was introduced and studied in detail in [15]. Then we try to
complete these σi,i’s into a braiding on the whole V . Such braided systems are proved to be in one-
to-one correspondence with multi-braided tensor products of algebras, and multi-braided modules
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over such systems are shown to coincide with modules over the corresponding tensor product
algebras. The “component permuting” Proposition 2.9 describes then the rules for permuting the
factors of a tensor product algebra. Concrete examples illustrating the advantages of our braided
system approach follow in subsequent sections.

4.1 A braiding encoding the associativity

A technical definition is first necessary.

Definition 4.1. ú Denote by BrSyst•r(C) the category of
3 (V , σ) ∈ BrSystr(C) endowed with distinguished morphisms ν := (νi : I → Vi)16i6r

called units, and
3 morphisms from BrSystr(C) preserving all the units.

Objects (V , σ, ν) of BrSyst•r(C) are called rank r pointed braided systems.
ú In the rank 1 case, notation Br•(C) is used.
ú A right multi-braided module over (V , σ, ν) ∈ BrSyst•r(C) is a right multi-braided (V , σ)-

module (M,ρ) satisfying moreover ρi ◦ (IdM ⊗νi) = IdM ∀ 1 6 i 6 r (morally, “the units act
by identity”). The category of such modules and their morphisms is denoted by Mod(V ,σ,ν).

Similar definitions and notations are assumed for left modules.

Notation 4.2. The category of unital associative algebras and algebra morphisms in C is denoted
by Alg(C).

We next show that different aspects of associativity are extremely well captured by a braiding
encoding it, called the associativity braiding in what follows:

Theorem 2 ([15]). 1 One has a fully faithful functor

Alg(C) −֒→ Br•(C)

(V, µ, ν) 7−→ (V, σAss(V ), ν),

f 7−→ f,

where
σAss(V ) := ν ⊗ µ : V ⊗ V = I⊗ V ⊗ V → V ⊗ V. (7)

2 The YBE for the associativity braiding σAss(V ) is equivalent to the associativity for µ, under
the assumption that ν is a unit for µ.

3 The braiding σAss(V ) is idempotent: σAss ◦ σAss = σAss.

4 For a UAA (V, µ, ν) in C, one has an equivalence of right module categories

Mod(V,µ,ν)
∼
←→Mod(V,σAss(V ),ν)

(M,ρ)←→ (M,ρ),

where on the left one considers UAA modules, and on the right the pointed version of multi-
braided modules.

5 Given a module (M,ρ) ∈ Mod(V,µ,ν) ≃ Mod(V,σAss(V ),ν), the left braided differential ρd on
(M ⊗ V n)n>0 coincides with the bar differential with coefficients in M.

Remark 4.3. 3 Composing the functor from 1 with the evident forgetful functor, one gets a
perhaps more elegant functor Alg(C) → Br(C). The additional pointed structure on the
target category is necessary if one wants the fullness property.

3 The equivalence in 2 holds only up to a mild condition concerning units; such “normal-

ization” conditions often appear in our “braided” study of structures.
3 Point 3 shows that the braiding σAss(V ) is highly non-invertible in general. This explains

why we choose the positive notion of braiding (i.e. without invertibility axiom).

3 Point 4 applied to M = I ensures that an algebra character is always a braided character.

13



3 Dualizing, one interpretes the category of coalgebras in C as a subcategory of co-pointed
(= endowed with a distinguished co-element) braided objects via the fully faithful functor

coAlg(C)−֒→ Br•(C),

(V,∆, ε) 7−→ (V, σcoAss(V ) = ε⊗∆, ε),

f 7−→ f.

The algebra-coalgebra duality can now be seen inside the category of bipointed braided
objects Br••(C), since the latter is self-dual (the notion of braiding being so) and encompasses
both Alg(C) and coAlg(C) (the missing structure of (co)unit can be taken zero):

coAlg(C) −֒→ Br••(C)←−֓ Alg(C).

3 In the theorem, the associativity braiding can be replaced with its “right version” σr
Ass(V ) :=

µ⊗ν. In this case one should take left modules as coefficients in the last point. The diagrams
of the two associativity braidings are vertically symmetric:

µν
,

µ ν

.

Figure 5: Associativity braidings: σAss and its vertical mirror version σr
Ass

The rest of the paper is devoted to similar results for more complicated algebraic structures.

4.2 Multi-braided tensor products of algebras

We now show that the familiar tensor product of UAAs in a braided category can be generalized
to the setting of a braided system with all the σi,i components being the associativity braidings
described above.

Some general technical definitions are first due. Recall notation ϕi from (1).

Definition 4.4. ú Given a V ∈ Ob(C), a morphism pair (η : I → V, ǫ : V → I) is called
normalized if ǫ ◦ η = IdI .

ú Given V,W ∈ Ob(C), a morphism ξ : V ⊗W → W ⊗ V is called natural with respect to
a morphism ϕ : V n → Vm (or ψ :Wn →Wm) if

ξ1 ◦ · · · ◦ ξm ◦ (ϕ⊗ IdW ) = (IdW ⊗ϕ) ◦ ξ
1 ◦ · · · ◦ ξn,

or, respectively,
ξm ◦ · · · ◦ ξ1 ◦ (IdV ⊗ψ) = (ψ ⊗ IdV ) ◦ ξ

n ◦ · · · ◦ ξ1.

In the case V =W both conditions are required.

Example 4.5. The naturality condition for n = 1,m = 2 and V =W graphically means

V V

V V V

ϕ =

V V

V V V

ϕ

V V

V V V

ϕ =

V V

V V V

ϕ
.

Figure 6: Naturality

This is precisely the definition of a braided comultiplication on (V, σ). Note also that these graphical
conditions appear in the study of diagrams of trivalent graphs.

Theorem 3. Take r UAAs (Vi, µi, νi)16i6r in a monoidal category C, each unit νi being a part of
a normalized pair (νi, ǫi), and, for each couple of subscripts 1 6 i < j 6 r, take a morphism ξi,j
natural with respect to νi and νj . The following statements are then equivalent:
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1 The morphisms ξi,i := σAss(Vi) ∀ 1 6 i 6 r complete the ξi,j’s and the νi’s into a pointed

braided system structure on V .
2 Each ξi,j is natural with respect to µi and µj , and, for each triple i < j < k, the ξi,j ’s satisfy

the Yang-Baxter equation on Vi ⊗ Vj ⊗ Vk.

3 A UAA structure on
←−
V := Vr ⊗ Vr−1 ⊗ · · · ⊗ V1

can be defined by putting

µ←−
V

:= (µr ⊗ µr−1 ⊗ · · · ⊗ µ1) ◦ ξ
2r−2 ◦ (ξ2r−4 ◦ ξ2r−3) ◦ · · · ◦ (ξ2 ◦ · · · ◦ ξr−1 ◦ ξr), (8)

ν←−
V

:= νr ⊗ νr−1 ⊗ · · · ⊗ ν1. (9)

Here ξp means the morphism ξi,j applied at the positions p and p+ 1 of the tensor product,
i and j being the subscripts of the components of V which are currently at these positions.

Note the inverse component order in the definition of
←−
V , ensuring that (8) is well-defined.

Proof. We show that Points 1 and 3 are both equivalent to the (intermediate) Point 2.
Start with 1. YBE on each Vi ⊗ Vi ⊗ Vi is automatic via Theorem 2. On Vi ⊗ Vi ⊗ Vj , i < j,

YBE becomes

(ξi,j ⊗ Idi) ◦ (Idi⊗ξi,j) ◦ (νi ⊗ µi ⊗ Idj) = (Idj ⊗νi ⊗ µi) ◦ (ξi,j ⊗ Idi) ◦ (Idi⊗ξi,j),

or, graphically,

jii

j i i

=

jii

j i i

.

Figure 7: YBE for Vi ⊗ Vi ⊗ Vj

The naturality of ξi,j with respect to the units permits to “pull” the short strand out of the
crossing on the left diagram. The equation obtained is equivalent to ξi,j being natural with respect
to µi (compose this equation with Idj ⊗µi to get one of the implications), or, graphically, to

jii

=

jii
.

Figure 8: Naturality with respect to µi

Similarly, YBE on Vi ⊗ Vj ⊗ Vj , i < j, is equivalent to ξi,j being natural with respect to µj .

This terminates the proof of the equivalence 1 ⇔ 2.
Let us now show that 3 ⇔ 2. We use shortcut notations

ιj := νr ⊗ · · · ⊗ νj+1 ⊗ Idj ⊗νj−1 ⊗ · · · ν1 : Vj →
←−
V ∀ 1 6 j 6 r. (10)

Given a collection of ξi,j ’s satisfying the conditions of Point 2, one verifies (for instance graph-

ically) that the morphisms from Point 3 define a UAA structure on
←−
V . This is a generalization

of the verifications usually made while defining the tensor product of algebras in a braided cate-
gory. To show that all the conditions from Point 2 are indeed necessary, consider the associativity
condition for µ←−

V
composed with

ú either ιi ⊗ ιj ⊗ ιk : Vi ⊗ Vj ⊗ Vk →
←−
V ⊗3 on the right and the ǫt’s at all the positions except

for i, j, k on the left;

ú or ιi ⊗ ιi ⊗ ιj : Vi ⊗ Vi ⊗ Vj →
←−
V ⊗3 on the right and the ǫt’s at all the positions except for

i, j on the left;
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ú or ιi ⊗ ιj ⊗ ιj : Vi ⊗ Vj ⊗ Vj →
←−
V ⊗3 on the right and the ǫt’s at all the positions except for

i, j on the left.
Using the naturality of the ξ’s with respect to the units and the defining property of a normalized
pair, in the first case one gets YBE for the ξ’s on Vi ⊗ Vj ⊗ Vk with i < j < k, in the second and
third cases – the naturality of ξi,j with respect to µi and µj respectively, with i < j.

The theorem gives a “braided” ( 1 ), an “algebraic” ( 3 ) and a “mixed” ( 2 ) interpretations

of the same phenomenon. In practice, it is usually convenient to use 1 or 2 in order to check the
associativity of µ←−

V
, considerably simplifying the associativity verification for complicated struc-

tures.

Definition 4.6. A braided system of the type described in the above theorem is called a braided

system of UAAs, and the UAA
←−
V is called the multi-braided tensor product of the UAAs

V1, . . . , Vr, denoted (abusively) by

←−
V = Vr ⊗

ξ
Vr−1 ⊗

ξ
· · · ⊗

ξ
V1.

Remark 4.7. In the theorem, one can replace the existence of the ǫi’s, used only to prove 3⇒ 2, by
demanding 3 to hold for all (even non-consecutive) subsystems of V . In this case, while proving
3⇒ 2, one can work with an appropriate subsystem instead of composing with the ǫi’s in order to
get to the desired tensor product. In particular, the existence of the ǫi’s is not necessary for r = 2.

Remark 4.8. Some or all of the morphisms ξi,i = σAss(Vi) can be replaced with their right versions
σr
Ass(Vi). The previous theorem still holds, with analogous proof.

Example 4.9. According to Proposition 2.2, for a braided category C, the choice ξi,j := cVi,Vj

in the theorem above gives a braided system. In addition, the cVi,Vj
’s are natural with respect to

everything hence in particular to the units. In this case, the UAA structure on
←−
V given by the

theorem is the usual tensor product of algebras in a braided category.

4.3 Multi-braided modules as modules over algebras

The structure equivalence from Theorem 3 has an important counterpart on the level of modules:

Proposition 4.10. In the settings of Theorem 3, suppose one of the three equivalent conditions
satisfied for the ξi,j ’s. The following categories are then equivalent:

ModVr⊗
ξ
Vr−1⊗

ξ
...⊗

ξ
V1 ≃Mod((V1,...,Vr),ξ,ν)

Proof. According to Observation 2.5 combined with Point 4 of Theorem 2, a multi-braided module
structure over the pointed braided system described in Theorem 3 consists of module structures
(M,ρi) over each UAA (Vi, µi, νi), compatible in the sense of (4). The correspondence with modules
(M,ρ) over the UAA Vr ⊗

ξ
Vr−1 ⊗

ξ
· · · ⊗

ξ
V1 can now be given by

ρj := ρ ◦ (IdM ⊗ιj),

ρ := ρ1 ◦ (ρ2 ⊗ Id1) ◦ · · · ◦ (ρr ⊗ Idr−1⊗ · · · ⊗ Id1),

where the ιj ’s are defined in (10). The identity functor of C and this structure correspondence give
the desired category equivalence.

Consider now the situation when one of the ξi,i+1’s is invertible, allowing one to apply Propo-
sition 2.9. One gets
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Proposition 4.11. In the settings of Theorem 3, suppose one of the ξi,i+1’s invertible. Then
1. UAAs V1, . . . , Vi−1, Vi+1, Vi, Vi+2 . . . , Vr endowed with the ξ’s one had for the system V , com-

pleted with ξ−1i,i+1 on Vi+1 ⊗ Vi, still form a braided system of UAAs.
2. Further, the morphism

Idr ⊗ . . .⊗ Idi+2⊗ξ
−1
i,i+1 ⊗ Idi−1⊗ . . .⊗ Id1,

abusively denoted by ξ−1i,i+1, gives an algebra isomorphism between the multi-braided UAA

tensor products
←−
V and (using one more abusive notation)

si(
←−
V ) := Vr ⊗

ξ
· · · ⊗

ξ
Vi+2 ⊗

ξ
Vi ⊗

ξ−1
Vi+1 ⊗

ξ
Vi−1 ⊗

ξ
· · · ⊗

ξ
V1.

3. The last isomorphism is compatible with the category equivalence

Mod←−
V

≃ Mod(V ,ξ,ν) ≃ Modsi(V ,ξ,ν) ≃ Mod
si(
←−
V )
,

(M,ρ←−
V
) ←−−−−−−−−→ (M,ρ

si(
←−
V )

),

in the sense that ρ←−
V

= ρ
si(
←−
V )
◦ (IdM ⊗ξ

−1
i,i+1). The leftmost and rightmost categories in this

chain of equivalences are the usual categories of UAA modules.

Proof. 1. Proposition 2.9 allows to interchange the components Vi and Vi+1 of the pointed braided

system (V , ξ, ν) from Point 1 of Theorem 3. The new pointed braided system si(V , ξ, ν) then

satisfies again the conditions of Point 1 from Theorem 3. Moreover, ξ−1i,i+1 is natural with respect
to the units since so is ξi,i+1. One thus gets the desired braided system of UAAs.

2. Theorem 3 (Point 3 ) then gives the multi-braided UAA tensor product si(
←−
V ). Applying

YBE several times, one shows that, in order to see that ξ−1i,i+1 is an algebra morphism, it is sufficient
to work with Vi and Vi+1 only. Namely, one has to prove

ξ−1i,i+1 ◦ (νi+1 ⊗ νi) = νi ⊗ νi+1,

which follows from the naturality of ξ−1i,i+1 with respect to the units, and

(µi ⊗ µi+1) ◦ (Idi⊗ξ
−1
i,i+1 ⊗ Idi+1) ◦ (ξ

−1
i,i+1 ⊗ ξ

−1
i,i+1) =

ξ−1i,i+1 ◦ (µi+1 ⊗ µi) ◦ (Idi+1⊗ξi,i+1 ⊗ Idi) :

(Vi+1 ⊗ Vi)
⊗2 → Vi ⊗ Vi+1,

or, graphically,

ii+ 1ii+ 1

=

ii+ 1ii+ 1

µi+1 µiξ

ξ−1

.

Figure 9: ξ−1i,i+1 is an algebra morphism

This relation follows from the naturality of ξi,i+1 (and hence ξ−1i,i+1 ) with respect to µi and

µi+1 (Point 2 of Theorem 3).
3. The equivalence of module categories is a consequence of (the proofs of) Propositions 2.9

and 4.10.

One thus obtains partial Sr-actions on braided systems of UAAs and multi-braided UAA
tensor products of rank r. These actions are mutually compatible and induce equivalences of module
categories.
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4.4 A toy example: algebra bimodules

We upgrade here Theorem 2 to the rank 2 level. A braided category (C,⊗, I, c) is needed here.
First note that, for (V, µ, ν) ∈ Alg(C), the data (µ ◦ c, ν) define another UAA structure on V.

Notation V op is used for V endowed with this modified UAA structure. The associativity braiding
becomes here σAss(V

op) = ν ⊗ (µ ◦ c). The twisted multiplication provides a useful transition
between left and right module structures:

Lemma 4.12. For (V, µ, ν) ∈ Alg(C), the following functors (extended on morphisms by identities)
give an equivalence of module categories:

ModV op
∼
←→ VMod,

(M,ρ) 7−→ (M,λ(ρ) := ρ ◦ c−1M,V ), (11)

(M,ρ(λ) := λ ◦ cM,V ) 7−→(M,λ). (12)

Take now two UAAs (V, µ, ν) and (V ′, µ′, ν′) in C. Returning to Example 4.9, one gets

Lemma 4.13. The data (V1 = V, V2 = V ′;σ1,1 = σAss(V ), σ2,2 = σAss(V
′op), σ1,2 = cV,V ′) define

a braided system of UAAs.

The proofs of the above two lemmas are straightforward.

Notation 4.14. This braided system of UAAs is denoted by Bimod(V, V ′).

Applying Observation 2.5, the module category equivalence from Proposition 4.10 and permu-
tation rules from Proposition 4.11 to Bimod(V, V ′), and keeping in mind Lemma 4.12, one obtains
a nice interpretation for multi-braided modules over this system:

Proposition 4.15. Take two UAAs (V, µ, ν) and (V ′, µ′, ν′) in a braided category C. The following
module categories are equivalent:

ModV ′op⊗
c
V ≃ModBimod(V,V ′) ≃V ′ ModV ≃Mods2(Bimod(V,V ′)) ≃ModV ⊗

c−1
V ′op ,

where V ′ModV is the usual category of (V ′, V )-bimodules.

One thus gets a multi-braided module treatment of algebra bimodules. The case V ′ = V

gives the familiar enveloping algebra of a UAA V, V e := V ⊗ V op.

We finish by applying the “adjoint module” Proposition 3.13 to our bimodule context, choosing
s = 1, t = 2. Recall notation ϕi from (1).

Proposition 4.16. Take a bimodule (M, ρ : M ⊗ V → M, λ : V ′ ⊗M → M) over two UAAs
V and V ′ in a braided category C. The bar complex for V with coefficients in (M,ρ) on the left,
i.e. (M ⊗ T (V ), ρd), is a complex in V ′ModV . More precisely, the differentials (ρd)n are bimodule
morphisms, the bimodule structure on M ⊗ V n being given by

ρbar := µn+1 :M ⊗ V n ⊗ V →M ⊗ V n, λbar := λ1 : V ′ ⊗M ⊗ V n →M ⊗ V n.

We call such structures peripheral , as they see only the extreme factors of a tensor product.

Proof. Plug the braided system Bimod(V, V ′) and (M,ρ, λ) ∈V ′ ModV ≃ ModBimod(V,V ′) into
Proposition 3.13. The braided Bimod(V, V ′)-multi-module structure on M ⊗ T (V ) obtained this
way is compatible, according to that proposition, with the braided differential ρd and, due to
Proposition 4.15, is equivalent to a (V ′, V )-bimodule structure on M ⊗T (V ). The latter structure
can be explicitely written using Lemma 4.12 as follows:

ρπ1 = ρ1 ◦ (IdM ⊗σV n,V )

= IdM ⊗ IdV n−1 ⊗µ : M ⊗ V n ⊗ V →M ⊗ V n,

λ(ρ(λ)π2) =
ρ(λ)π2 ◦ c

−1
M⊗V n,V ′

= (λ ◦ cM,V ′)1 ◦ (IdM ⊗σV n,V ′) ◦ c−1M⊗V n,V ′

= (λ ◦ cM,V ′)1 ◦ (IdM ⊗cV n,V ′) ◦ c−1M⊗V n,V ′

= λ1 : V ′ ⊗M ⊗ V n →M ⊗ V n.
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This bimodule structure on the bar complex is important for one of the constructions of the
Hochschild (co)homology ; namely, one considers the differential induced by the bar differential
on the coinvariants.

5 Handling more structure: two-sided crossed products

We now present a rank 3 braided system of UAAs, where some of the ξi,j ’s with i < j are
“structural”, i.e. coming from the algebraic structure on the Vi’s rather than from the underlying
category. This example allows to reinterpret F. Panaite’s braided treatment of two-sided crossed
products A#H#B from [27] and its extension to the case of generalized two-sided crossed products
A◮<C>◭B (defined by D. Bulacu, F. Panaite and F. Van Oystaeyen in [3]) from [11]. In particular,
we automatically obtain (via Proposition 4.11) six equivalent versions of the algebra A◮<C>◭B.
Pursuing further the “braided” ideas and using our results on adjoint multi-braided modules, we
get, in the generalized crossed product setting, a (B,A)-bimodule structure on Cn, used in Section
6 for constructing bialgebra homologies.

5.1 Categorical bialgebras and module algebras

The categorical versions of some familiar algebraic notions are needed here:

Definition 5.1. ú A bialgebra structure in a braided category (C,⊗, I, c) is a UAA structure
(µ, ν) and a counital coassociative coalgebra (= coUAA) structure (∆, ε) on an object H,
compatible in the following sense:

∆ ◦ µ = (µ⊗ µ) ◦ c2 ◦ (∆⊗∆), ∆ ◦ ν = ν ⊗ ν, (13)

ε ◦ µ = ε⊗ ε, ε ◦ ν = IdI . (14)

The category of bialgebras and bialgebra morphisms in C is denoted by Bialg(C).
ú H is a Hopf algebra in C if moreover it has an antipode, i.e. an endomorphism s ofH satisfying

µ ◦ (s⊗ IdH) ◦∆ = µ ◦ (IdH ⊗s) ◦∆ = ν ◦ ε. (s)

The category of Hopf algebras and their morphisms in C is denoted by HAlg(C).
ú For a bialgebra H in C, a left H-module algebra is a UAA (M,µM , νM ) endowed with a left

H-module structure λ : H ⊗M →M, such that µM and νM are H-module morphisms:

λ ◦ (IdH ⊗µM ) = µM ◦ (λ⊗ λ) ◦ c2 ◦ (∆⊗ Id⊗2M ), (15)

λ ◦ (IdH ⊗νM ) = νM ◦ ε. (16)

Right H-module algebras, H-comodule algebras and H-bi(co)module algebras are defined
similarly. The categories of module algebras and their morphisms are denoted by HModAlg,

ModAlgH ,
HModAlg etc.

Graphically, compatibility conditions (13), (15) and (16) mean

µ
∆ =

µ

∆

µ

∆

c
,

µM

λ
=

µM

∆
λ λ

, νM

λ
=

νM
ε .

Figure 10: Bialgebra and module algebra relations

5.2 Two-sided crossed products as multi-braided tensor products

Everything is now ready for handling generalized two-sided crossed product.

Proposition 5.2. Take a bialgebra H, a left H-module algebra (A, λ), a right H-module algebra
(B, ρ) and an H-bicomodule algebra (C, δl : C → H ⊗C, δr : C → C ⊗H) in a symmetric category
C. Then
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1. The UAAs (B,C,A) together with morphisms

ξ1,2 = (IdC ⊗ρ) ◦ (cB,C ⊗ IdH) ◦ (IdB ⊗δr),

ξ2,3 = (λ⊗ IdC) ◦ (IdH ⊗cC,A) ◦ (δl ⊗ IdA),

ξ1,3 = cB,A

form a braided system of UAAs.
2. Formulas (8)-(9) for the ξi,j ’s above define a UAA structure on A⊗ C ⊗B.
3. One has a module category equivalence

Mod(B,C,A) ≃ModA⊗
ξ
C⊗

ξ
B. (17)

Graphically, the ξ1,2 and ξ2,3 components of the braiding look as follows:

ξ1,2 =
δr

ρ

B C

ξ2,3 =
δl

λ

AC
.

Figure 11: A braided system for a two-sided crossed product

Convention 5.3. The underlying braiding of a symmetric category is depicted here and afterwards
by a solid crossing, in order to distinguish it from “structural” braidings proper to given objects.

Proof. The key point is to verify that the ξ’s satisfy the conditions of Point 2 of Theorem 3:
3 YBE on B ⊗ C ⊗A follows from the left and the right H-coaction compatibility for C;
3 the naturality of the ξ’s with respect to µC is a consequence of the defining properties of
H-bicomodule algebras for C;

3 the naturality of the ξ’s with respect to µA and µB can be deduced from the defining prop-
erties of H-module algebras for A and B.

As an example, we show in detail that ξ1,2 is natural with respect to µB:

ξ1,2 ◦ (µB ⊗ IdC)

1
= (IdC ⊗ρ) ◦ (cB,C ⊗ IdH) ◦ (µB ⊗ δr)

2
= (IdC ⊗ρ) ◦ (IdC ⊗µB ⊗ IdH) ◦ (cB⊗B,C ⊗ IdH) ◦ (Id⊗2B ⊗δr)

3
= (IdC ⊗µB) ◦ (IdC ⊗ρ⊗ ρ) ◦ (IdC⊗B ⊗cB,H ⊗ IdH) ◦ (cB⊗B,C ⊗∆H) ◦ (Id⊗2B ⊗δr)

4
= (IdC ⊗µB) ◦ (IdC ⊗ρ⊗ IdB) ◦ (cB,C ⊗ IdH⊗B) ◦ (IdB ⊗δr ⊗ ρ) ◦ (IdB ⊗cB,C ⊗ IdH) ◦ (Id⊗2B ⊗δr)

5
= (IdC ⊗µB) ◦ (ξ1,2 ⊗ IdB) ◦ (IdB ⊗ξ1,2),

where we use
1. and 5. : the definition of ξ1,2,
2. the naturality of c,
3. the defining property of right H-module algebra for B,
4. the defining property of right H-comodule for C and the naturality of c.

The reader is advised to draw diagrams in order to better follow these verifications.
Further, the naturality with respect to units follows from the defining properties ofH-(co)module

algebras as well. Point 1 from Theorem 3 then confirms that the ξ’s together with the σAss’s

form a braiding, while Point 3 proves the associativity of the multiplication (8).
Finally, Proposition 4.10 gives the required module category equivalence.

The tensor product algebra from the proposition is known as the generalized two-sided
crossed product (cf. [3])

A◮<C>◭B := A⊗
ξ
C ⊗

ξ
B.

The choice C = H (with both comodule structures given by ∆H) gives the two-sided crossed
product of F. Hausser and F. Nill (cf. [9]), usually denoted by

A#H#B := A⊗
ξ
H ⊗

ξ
B.
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Remark 5.4. Forgetting the B (or A) part of the structure and taking as C a left (respectively
right) H-comodule, one obtains rank 2 braided systems, giving in particular a “braided” treatment
of left and right crossed (or smash) products A#H := A⊗

ξ
H and H#B := H ⊗

ξ
B, as well as

of their generalized versions.

We have thus obtained an alternative conceptual proof of the associativity of A◮<C>◭B and
of the category equivalence (17), otherwise very technical.

Remark 5.5. If H is a Hopf algebra with an invertible antipode s, then all the ξ’s are invertible:

ξ−11,2 = ((ρ ◦ cH,B)⊗ IdC) ◦ (s
−1 ⊗ cC,B) ◦ ((cC,H ◦ δr)⊗ IdB),

ξ−12,3 = (IdC ⊗(λ ◦ cA,H)) ◦ (cA,C ⊗ s
−1) ◦ (IdA⊗(cH,C ◦ δl)),

ξ−11,3 = cA,B.

Proposition 4.11 then allows to permute components of A⊗
ξ
C⊗

ξ
B, giving six pairwise isomorphic

UAAs, these isomorphisms being compatible with the equivalences of their module categories. In
particular, one recovers the algebra isomorphism A#H#B ≃ (A⊗B) ⊲⊳ H from [9].

Remark 5.6. Supposing the category C moreover additive, one can start with an H-bimodule
(C′, δl, δr) and introduce an artificial trivial UAA structure by adding a formal unit C := C′⊕ I,

taking the zero multiplication on C′ and making νC := IdI : I → C a unit. The bicomodule
structure on C′ extended to C by putting δl|I := νH ⊗ νC , δr|I := νC ⊗ νH endows C with an
H-bicomodule algebra structure. This formal trick will be useful in what follows.

5.3 Adjoint actions

We finish this example by applying the theory of adjoint multi-modules (Proposition 3.13) to the
braided system of UAAs from Proposition 5.2, choosing trivial coefficients (M = I).

A preliminary general lemma is first necessary:

Lemma 5.7. Take a braided system ((V1, . . . , Vr), σ) in a symmetric additive category C, such that
σ1,r is the underlying symmetric braiding cV1,Vr

of C. Take further two multi-braided characters ǫ
and ζ for this braided system. Then the right braided Vr-module structure ǫπr and the left braided
V1-module structure πζ

1 on T (V )→n , n ∈ N, commute:

ǫπr ◦ (π
ζ
1 ⊗ Idr) = π

ζ
1 ◦ (Id1⊗

ǫπr) : V1 ⊗ T (V )→n ⊗ Vr → T (V )→n .

Proof. The underlying braiding c is natural with respect to everything, in particular ǫr and ζ1.

Both sides of the desired identity then equal

(ǫr ⊗ IdT (V )→n
⊗ζ1) ◦ (σT (V )→n ,Vr

⊗ Id1) ◦ σV1,T (V )→n ⊗Vr
.

Now return to the two-sided crossed products. Recall notation ϕi from (1).

Proposition 5.8. In the settings of Proposition 5.2, choose algebra characters ǫA and ǫB for A
and B. The tensor powers of C become then bimodules, Cn ∈ BModA ∀ n ∈ N, via the formulas

ǫAπ = (ǫA)
1 ◦ λ1 ◦ (IdH ⊗cCn,A) ◦ (µ

1)◦(n−1) ◦ ((ω−12n ◦ δ
⊗n
l )⊗ IdA) : C

n ⊗A→ Cn,

πǫB = (ǫB)
n+1 ◦ ρn+1 ◦ (cB,Cn ⊗ IdH) ◦ (µn+2)◦(n−1) ◦ (IdB ⊗(ω

−1
2n ◦ δ

⊗n
r )) : B ⊗ Cn → Cn,

where ω2n :=
(
1 2 ... n n+1 n+2 ... 2n
1 3 ... 2n−1 2 4 ... 2n

)
∈ S2n, (18)

and S2n acts on tensor products of objects from C via the symmetric braiding c.

These actions are graphically depicted as
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δl δl δl

µn−1

λ

ǫA

,
AC⊗n

δr δr δr

µn−1

ρ

ǫB

.
B C⊗n

Figure 12: BModA structure on Cn

Proof. Note that for the Point 1 of Proposition 3.13 to hold,
3 the additivity of C is not necessary, and
3 a multi-braided module (M,ρ) ∈Mod(V ,σ)[t,r] (instead of (M,ρ) ∈Mod(V ,σ)) suffices.

That proposition and its right version applied to the braided system of UAAs (B,C,A) from
Proposition 5.2 and to the algebra characters (hence braided characters) ǫA and ǫB give then a
right braided A-module structure and a left braided B-module structure on Cn. Further, since
the ξ1,2 and ξ2,3 components of the braiding on (B,C,A) are natural with respect to the units,
the units of A and B act on Cn by identity. Theorem 2 then ensures that our braided A- and
B-module structures on Cn are actually UAA module structures. One then verifies that these
module structures coincide with the desired ones.

It remains to show that the actions of A and B commute, which is precisely the assertion of
Lemma 5.7 in our setting.

6 Bialgebras

In this section we present a rank 2 braided system of UAAs Hbi encoding the bialgebra structure,
in the same sense that the braiding σAss from Theorem 2 encodes the associativity (cf. table 1).
This braided system is a particular case of the one presented in Section 5 for crossed products.

Note a new feature appearing in the bialgebra case compared to the algebra case. While the
invertibility condition for σAss is trivially false, the invertibility of the σ1,2 component of Hbi

corresponds to an important algebraic property of the structure: it is in fact equivalent to the
existence of the antipode.

The braided homology theory for Hbi is very rich. In particular it is shown to include the
familiar Gerstenhaber-Schack bialgebra homology. Multi-braided modules over Hbi turn out to
be precisely the familiar Hopf modules, so these are the natural candidates for coefficients in the
bialgebra homology.

Except for some general observations, we specialize here to the category C = vectk of finite-
dimensional k-vector spaces. Note however that one could stay in the general setting of a braided
category C and choose a bialgebra in C admitting a dual.

Several conventions are used when working in vectk. Notation T (V ) :=
⊕

n≥0 V
n stands for

the tensor space of V ∈ vectk, with V
0 := k. A simplified notation is used for tensors in V n :

v1v2 . . . vn := v1 ⊗ v2 ⊗ . . .⊗ vn ∈ V
n,

leaving the tensor product sign for

v1v2 . . . vn ⊗ w1w2 . . . wm ∈ V
n ⊗Wm.

Sweedler’s notation is used for comultiplications and comodule structures.

6.1 Duality: conventions and observations

We start with some conventions concerning dualities.
The dual space of V ∈ vectk is denoted by V ∗. Letters hi stay in this section for elements of

V, lj – for elements of V ∗. The pairing 〈, 〉 is the evaluation map ev : V ∗ ⊗ V → k, l ⊗ h 7→ l(h).
Multiplications on different spaces are simply denoted by · when it does not lead to confusion.

Take k-vector spaces V,W and a pairing B : V ⊗W → k (e.g. the evaluation map). There are
two common ways of extending it to B : V n ⊗Wn → k :
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B(v1v2 . . . vn ⊗ w1w2 . . . wn) :=
B(v1 ⊗ wn) · · ·B(vn ⊗ w1) B(v1 ⊗ w1) · · ·B(vn ⊗ wn)

WV

B

WV

B

WV

B

WV

B

WV

B

WV

B

“rainbow” “arched”

Table 5: Rainbow and arched dualities

The “arched” version is more common in literature, but it is the “rainbow” version we use in
this work (like, for instance, D. Gurevich in [8]), avoiding unnecessary flips (in the diagram it is
reflected by the absence of crossings). Similar conventions are used in the dual situation, i.e. for
Casimir elements. The usual duality V 7→ V ∗ in vectk induces, with these conventions, a duality
on morphisms which associates to an f : V1 ⊗ . . . ⊗ Vn → W1 ⊗ . . . ⊗ Wm its dual morphism
f∗ : W ∗m ⊗ . . . ⊗W

∗
1 → V ∗n ⊗ . . . ⊗ V

∗
1 (note the inverse order of factors). In particular, the dual

of a finite-dimensional k-linear coalgebra V is always implicitly endowed here with the induced
algebra structure via the evaluation map ev, extended to V ⊗V and V ∗⊗V ∗ using the “rainbow”
pattern:

〈l1l2, h〉 =
〈
l1, h(2)

〉 〈
l2, h(1)

〉
∀h ∈ V, l1, l2 ∈ V

∗,

or, graphically,

V ∗ V ∗ V

ev

∆∗ =

V ∗ V ∗ V
.

ev

∆

Figure 13: Dual structures via the “rainbow” duality

Multiplication and (co)units are dualized in the same way.
Analyzing the graphical interpretation, one sees that, on the level of structures, the “rainbow”

duality corresponds to the central symmetry, while the “arched” duality – to the horizontal

mirror symmetry. Note that because of our non-conventional choice, we sometimes get formulas
slightly different from the ones found in literature.

The same structure on V ∗ can be obtained via the dual coevaluation map coev or via “twisted
versions” ev ◦ τ : V ⊗ V ∗ → k and τ ◦ coev : k → V ⊗ V ∗, still with the “rainbow” extension on
tensor products. Here τ is simply the transposition of factors V and V ∗; in the general settings of
a symmetric category it should be replaced with the braiding c. It is common to simplify notations,
writing just ev and coev for the latter maps, which we do systematically.

Lemma 4.12 provides an important transition tool between left V -modules and right V op-
modules for an algebra V in vectk. We now state an analogous transition lemma for modules and
comodules. A classical general observation concerning “twisted” bialgebra structures is first due:

Observation 6.1. Take a bialgebra (H,µ, ν,∆, ε) in a braided category (C,⊗, I, c). Then
1. Hop := (H,µop := µ ◦ c−1, ν,∆, ε) and Hcop := (H,µ, ν,∆cop := c−1 ◦∆, ε) are bialgebras in

(C,⊗, I, c−1), while Hop,cop := (H,µ ◦ c−1, ν, c ◦∆, ε) and Hcop,op := (H,µ ◦ c, ν, c−1 ◦∆, ε)
are bialgebras in (C,⊗, I, c).

2. If H is a Hopf algebra with the antipode s, then so are Hop,cop and Hcop,op, with the same
antipode s. If s is invertible, then s−1 becomes the antipode for Hop and Hcop.

3. Moreover, one has the following bialgebra or Hopf algebra isomorphisms:

(Hop)∗ ≃ (H∗)cop, (Hcop)∗ ≃ (H∗)op, (Hop,cop)∗ ≃ Hcop,op.
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Lemma 6.2. For a coalgebra V in vectk, the following functors (extended on morphisms by
identities) give an equivalence of module categories:

ModV ∼
←→ModV ∗ ,

(M, δ) 7−→ (M, δco := (IdM ⊗ev) ◦ (δ ⊗ IdV ∗)), (19)

(M,ρco := (ρ⊗ IdV ) ◦ (IdM ⊗coev)) 7−→(M,ρ). (20)

If the “arched” version of structure dualities is used, one should take Mod(V ∗)op on the right.
The proof of the lemma is routine. Here is a graphical version of the (19) part of the equivalence:

M V ∗

δco :=
ev

δ

M V ∗
.

Figure 14: Action-coaction duality

Convention 6.3. Here and afterwards thin lines stand for H, dashed lines for its dual H∗, and
thick colored lines for different types of modules over them.

Similar equivalences hold for the categories of module (co)algebras:

Lemma 6.4. For a bialgebra H in vectk, the functors from Lemmas 4.12 and 6.2 (combined with
identities on the algebra structures) induce the following category equivalences:

ModAlgH ∼
←→ModAlg(H∗)cop ,

HModAlg
∼
←→ModAlgHop .

6.2 A braiding encoding the bialgebra structure

We now show how to include the groupoid ∗Bialg(vectk) of bialgebras and bialgebra isomorphisms
in vectk into the groupoid of bipointed rank 2 braided systems in vectk, just like it was done in
Theorem 2 for UAAs and pointed rank 1 systems.

Definition 6.5. ú Given a monoidal category C, denote by BrSystr
•
•(C) the category of

3 (V , σ, ν) ∈ BrSyst•r(C) endowed with distinguished morphisms ε := (εi : Vi → I)16i6r

called counits, such that (νi, εi) is a normalized pair for each i, and
3 morphisms from BrSyst•r(C) preserving moreover all the counits.

Objects (V , σ, ν, ε) of BrSystr
•
•(C) are called rank r bipointed braided systems.

ú The groupoid of rank r bipointed braided systems and their isomorphisms is denoted by
∗BrSystr

•
•(C).

ú In the rank 1 case, notations Br••(C) and
∗Br••(C) are used.

We also have to recall the notion of Hopf modules in order to identify the multi-braided modules
over the system presented here. A general categorical definition is given here for completeness:

Definition 6.6. In a braided category (C,⊗, I, c), a right module structure ρ :M ⊗H →M and a
right comodule structure δ : M →M ⊗H on M ∈ Ob(C) are said to form a (right-right) Hopf
module structure over H ∈ Bialg(C) if they satisfy the Hopf compatibility condition

δ ◦ ρ = (ρ⊗ µ) ◦ (IdM ⊗cH,H ⊗ IdH) ◦ (δ ⊗∆) :M ⊗H →M ⊗H. (21)

The category of right-right Hopf modules over H and their morphisms is denoted by ModH
H .

Condition (21) is graphically depicted as

ρ
δ =

ρ

δ

µ

∆

c

.

Figure 15: Right-right Hopf compatibility condition
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H itself gives an important example of an H-Hopf module, with ρ := µH , δ := ∆H .

We now return to our category C = vectk, omitting it in most notations for simplicity.

Theorem 4. 1 One has a fully faithful functor

∗Bialg −֒→∗BrSyst2
•
•

(H,µ, ν,∆, ε) 7−→ Hbi := (V1 := H,V2 := H∗;

σ1,1 := σr
Ass(H), σ2,2 := σAss(H

∗), σ1,2 = σbi;

ν, ε∗; ε, ν∗),

f 7−→ (f, (f−1)∗),

where σbi(h⊗ l) :=
〈
l(1), h(2)

〉
l(2) ⊗ h(1).

2 Take an H ∈ vectk endowed with a UAA and a coUAA structures (µ, ν) and (∆, ε). Suppose
the pair (ν, ε) normalized. Then the YBE on H⊗H⊗H∗ (or, symmetrically, on H⊗H∗⊗H∗)
and the naturality of σbi with respect to units are equivalent to the bialgebra compatibility
conditions (13)-(14) for H.

3 For a bialgebra H, the braiding component σbi is invertible if and only if H has an antipode:

∃σ−1bi ⇐⇒ H ∈ HAlg

4 For a bialgebra H, one has an equivalence of module categories

ModH
H

∼
−→ ModHbi

∼
−→ModH∗ ⊗

σbi

H

(M,ρ, δ) 7−→ (M,ρ, δco) 7−→ (M, δco ⊗ ρ).

If H is a Hopf algebra with the antipode s, then this chain of category equivalences can be
continued on the left (putting: θ := σ−1bi ):

ModH⊗
θ
H∗ ≃Mods1(Hbi)

≃ModH
H .

Before proving the theorem, we present a graphical version of the braiding on Hbi:

σH,H = µ
ν

,

σH,H∗ =
ev∆ µ∗

,
σH∗,H∗ = ∆∗

ε∗

.

Figure 16: A braiding encoding the bialgebra structure

Remark 6.7. From the graphical interpretation of Hbi it is clear that, applied to the dual bialgebra
H∗ instead of H, the construction from the theorem gives a vertical mirror version of Hbi.

Proof. Consider (H∗, µ∗) ∈H
∗

ModAlg. (A left version of) Lemma 6.4 allows to transform this co-
module algebra into a module algebra (H∗, (µ∗)co) ∈Hcop ModAlg. Together with (Hcop,∆cop,∆cop)

∈H
cop

ModAlgHcop

these two structures can be fed into Proposition 5.2 as the A and the C parts
of the structure (Remark 5.4 allows one to forget the B part). One verifies that the ξ2,3 component
of the braided system from that proposition is precisely the σbi described here. Further, Hcop and
H share the same UAA structure. We thus recover Hbi as a particular case of the braided system
of UAAs constructed in Proposition 5.2. It is clearly bipointed. Moreover, one checks that the
braiding on Hbi suffices to recover all ingredients of the bialgebra structure on H.

To prove Point 1 , it remains to understand isomorphisms of bipointed braided systems (f, g) :

Hbi → Kbi for bialgebras H,K in vectk. By definition,
1. f : H → K and g : H∗ → K∗ are bijections;
2. f and g respect units and counits;
3. f respects the braiding σ1,1 = σr

Ass;
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4. g respects the braiding σ2,2 = σAss;
5. f and g respect σbi.
Due to Theorem 2 (Point 1 ), the first four points are equivalent to f and g being UAA

isomorphisms compatible with counits (i.e. εK ◦ f = εH and ν∗K ◦ f = ν∗H). The last point means

σbi(K) ◦ (f ⊗ g) = (g ⊗ f) ◦ σbi(H),

which can be explicitly written as

f g

H H∗

K∗ K

=
g f

H H∗

K∗ K

.

Figure 17: Braided morphisms Hbi → Kbi: compatibility with σ1,2

Applying ν∗K ⊗ εK to both sides, using the fact that f and g respect the counits, and playing with
evaluation-coevaluation dualities, one deduces that g∗ ◦f = IdH , hence g = (f∗)−1 = (f−1)∗. Since
g is a UAA isomorphism, so is g−1, hence f = (g−1)∗ is a coUAA morphism, which completes
its properties to show that it is a bialgebra isomorphism. Thus all bipointed braided system
isomorphisms are of the form (f, (f−1)∗) for a unique bialgebra isomorphism f, and for all bialgebra
isomorphisms the couple (f, (f−1)∗) is indeed a bipointed braided system isomorphism. The functor

from the theorem is thus well defined, full and faithful, which finishes the proof of Point 1 .

In Point 2 , the compatibility between ∆ and ν follow from the naturality of σbi with respect
to ν by applying ν∗ ⊗ IdH to the latter condition and using evaluation-coevaluation dualities.
Symmetrically, the compatibility between µ and ε follow from the naturality of σbi with respect
to ε∗. The converse (compatibility =⇒ naturality) is easy. Further, according to (the proof of)
Theorem 3, the YBE on H ⊗H ⊗H∗ is equivalent to σbi being natural with respect to µ:

=
.

Figure 18: Naturality of σbi with respect to µ

Applying ν∗⊗IdH to both sides and playing with dualities, one recovers the bialgebra compatibility
condition for µ and ∆. Conversely, the bialgebra compatibility condition suffices for showing the
above naturality. By symmetry, one gets a proof for H ⊗H∗ ⊗H∗.

The “if” part of Point 3 can be proved by checking an explicit formula for σ−1bi

σ−1bi (l ⊗ h) =
〈
l(1), s(h(2))

〉
h(1) ⊗ l(2) (22)

(or by using Remark 5.5 and Point 2 of Observation 6.1). The “only if” part is more delicate.
Suppose the existence of σ−1bi and put

s̃ := (((ε⊗ ν∗) ◦ σ−1bi )⊗ IdH) ◦ (IdH∗ ⊗cH,H) ◦ (coev ⊗ IdH) : H → H.

s̃ :=

coev

ν∗ε

σ−1bi

Figure 19: A candidate for the antipode
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Let us prove that s̃ is the antipode. The part

µ ◦ (s̃⊗ IdH) ◦∆ = ν ◦ ε (23)

of the defining relation (s) is a direct consequence of σ−1bi ◦ σbi = IdH⊗H∗ and the evaluation-
coevaluation duality. One would expect to deduce the second part of (s) from σbi ◦σ

−1
bi = IdH∗⊗H ,

but surprisingly this does not seem to work. Some algebraic tricks come into play instead. Mim-
icking (22), set

σ̃ := (IdH ⊗(ev ◦ (s̃⊗ IdH∗))⊗ IdH∗) ◦ (∆⊗ µ∗) ◦ cH∗,H : H∗ ⊗H → H ⊗H∗.

Relation (23) implies σ̃ ◦ σbi = IdH⊗H∗ . But σ−1bi is the inverse of σbi, so

σ̃ = σ̃ ◦ (σbi ◦ σ
−1
bi ) = (σ̃ ◦ σbi) ◦ σ

−1
bi = σ−1bi .

This gives σbi ◦ σ̃ = IdH∗⊗H . Applying ν∗⊗ε to both sides and playing with dualities, one recovers
the second part of (s) for s̃.

We now move to Point 4 . Equivalence ModHbi

∼
→ ModH∗ ⊗

σbi

H follows from Point 3 of

Proposition 5.2. Further, according to Observation 2.5 combined with Point 4 of Theorem 2, a

right multi-braided Hbi-module means a right algebra H-module and a right algebra H∗-module
structures ρH and ρH∗ on M, compatible in the sense of (4):

ρH∗ ◦ (ρH ⊗ IdH∗) = ρH ◦ (ρH∗ ⊗ IdH) ◦ (IdM ⊗(τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ (∆⊗ µ∗))).

On the other hand, the module-comodule duality Lemma 6.2 allows to interpret a right-right Hopf
module over H as a right algebra H-module and a right algebra H∗-module structures, with the
compatibilty condition obtained by

ú applying IdM ⊗ev to the definition (21) of Hopf modules, tensored with IdH∗ on the right,
ú and using (19) to transform H-comodule structures into H∗-module structures.

The two compatibilty conditions coincide, implying ModH
H ≃ModHbi

.

In the Hopf algebra case Point 3 gives the invertibility of σbi. The component permuting
Proposition 4.11 proves then the desired equivalences.

All the remarks following Theorem 2 remain relevant in the bialgebra case. One particular
feature of the bialgebra setting is to be added to that list:

Remark 6.8. It is essential to work in the groupoid, and not just in the category of bialgebras,
if one wants a bialgebra morphism H → G to induce a morphism of dual bialgebras H∗ → G∗, so
that the functor from 1 can be defined on morphisms.

Denote by
H
′(H) := H ⊗

θ
H∗

one of the multi-braided tensor products of UAAs from the theorem. Then H (H) := H ′(H∗) is
the well-known Heisenberg double of the Hopf algebra H (cf. for example [22] or [5]).

6.3 Braided homology for bialgebras

Our next goal is to write down explicit braided differentials for Hbi. We do it for partial charac-
ters εH (the counit of H extended to H∗ by zero) and εH∗ (the counit of H∗, i.e. (νH)∗, extended
to H by zero); they are algebra characters and hence braided characters on the corresponding
component Hbi, and Example 2.8 justifies the extension by zero.

Some preliminary observations are necessary for our calculations. The first ones concern
twisted and dual variations of Theorem 4. Applying that theorem to each of the bialge-
bras Hop, Hcop and Hop,cop (which in our symmetric category C = vectk coincides with Hcop,op)
and their duals, one obtains several new braided system structures:
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Corollary 6.9. For a finite-dimensional k-bialgebra (H,µ, ν,∆, ε), one can construct the following
braided systems on (H,H∗):

H
op

: σ1,1 = (µ ◦ τ)⊗ ν, σ2,2 = ε∗ ⊗∆∗,

σ1,2 = σ
op
bi := τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ (∆⊗ (τ ◦ µ∗));

H
cop

: σ1,1 = µ⊗ ν, σ2,2 = ε∗ ⊗ (∆∗ ◦ τ),

σ1,2 = σ
cop
bi := τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ ((τ ◦∆)⊗ µ∗);

H
op,cop

: σ1,1 = (µ ◦ τ)⊗ ν, σ2,2 = ε∗ ⊗ (∆∗ ◦ τ),

σ1,2 = σ
op,cop
bi := τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ ((τ ◦∆)⊗ (τ ◦ µ∗));

the following braided system on (H∗, H):

H
r
: σ1,1 = ∆∗ ⊗ ε∗, σ2,2 = ν ⊗ µ,

σ1,2 = σr
bi := τ ◦ (IdH∗ ⊗ev ⊗ IdH) ◦ (µ∗ ⊗∆);

and the three “twisted” versions of the last structure.

Notations H
r
and σr

bi come from their interpretations as vertical mirror versions of H and σbi.
Here are graphical representations of the “twisted” bialgebra braidings:

σ
op
bi =

ev
,

σ
cop
bi =

ev
,

σ
op,cop
bi =

ev
.

Figure 20: “Twisted” bialgebra braidings

We also need adjoint actions of H∗ on the tensor powers of H, obtained via Proposition 5.8:

Lemma 6.10. The tensor powers of a finite-dimensional k-bialgebra (H,µ, ν,∆, ε) can be endowed
with an H∗-bimodule structure via formulas (cf. notations (1) and (18)):

πH∗

:= πεH∗ = ev1 ◦ ev2 · · · evn ◦ (((µ∗)1)◦(n−1) ⊗ (ω−12n ◦∆
⊗n)) :

H∗ ⊗Hn → ⊗Hn,

H∗

π := εH∗π = evn+1 ◦ evn+2 · · · ev2n ◦ ((ω−12n ◦∆
⊗n)⊗ ((µ∗)1)◦(n−1)) :

Hn ⊗H∗ → ⊗Hn.

The H∗-actions are graphically depicted as

∆ ∆ ∆
(µ∗)n−1

ev

ev

ev

,
H∗ Hn

∆ ∆ ∆
(µ∗)n−1

ev

ev

ev

.
H∗Hn

Figure 21: Hn as an H∗-bimodule

On the level of elements, the formulas can be written as

πH∗

(l ⊗ h1 . . . hn) =
〈
l(1), hn(1)

〉 〈
l(2), hn−1(1)

〉
. . .

〈
l(n), h1(1)

〉
h1(2) . . . hn(2),

H∗

π(h1 . . . hn ⊗ l) =
〈
l(1), hn(2)

〉 〈
l(2), hn−1(2)

〉
. . .

〈
l(n), h1(2)

〉
h1(1) . . . hn(1).

Proof. In the proof of Theorem 4 we have noticed that C = (Hcop,∆cop,∆cop) ∈H
cop

ModAlgHcop

and A = (H∗, (µ∗)co) ∈Hcop ModAlg can be fed into Proposition 5.2, hence into Proposition
5.8. Symmetry considerations show that this data can be completed by B = (H∗, (µ∗)co) ∈
ModAlgHcop . To conclude, notice that for this triple (A,B,C) and braided characters εA = εB :=
εH∗ , the actions from Proposition 5.8 are precisely the desired ones.
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Interchanging the roles of H and H∗, one gets an H-bimodule ((H∗)⊗m, πH ,Hπ). By abuse of
notation, we define, for all m,n ∈ N for which this makes sense, the following morphisms from
Hn ⊗ (H∗)m to H(n−1) ⊗ (H∗)m or to Hn ⊗ (H∗)(m−1):

H∗

π := H∗

π ⊗ Id
⊗(m−1)
H∗ , πH∗

:= (πH∗

⊗ Id
⊗(m−1)
H∗ ) ◦ τHn⊗(H∗)(m−1),H∗ ,

πH := Id
⊗(n−1)
H ⊗πH , Hπ := (Id

⊗(n−1)
H ⊗Hπ) ◦ τH,H(n−1)⊗(H∗)m .

Lemma 6.11. The endomorphisms H∗

π, πH∗

, πH and Hπ of T (H)⊗ T (H∗) pairwise commute.

Proof. Lemma 6.10 implies the commutativity of H∗

π and πH∗

. The commutativity of Hπ and
πH follows by duality. Next, returning to the braided interpretation of the adjoint actions, πH

corresponds to pulling the rigtmost H strand to the right of all the H∗ strands (using σbi) and
applying εH , while

H∗

π corresponds to pulling the leftmost H∗ strand to the left of all the H
strands and applying εH∗ . Thus πH and H∗

π commute, and so do πH∗

and Hπ by duality.
In order to prove the commutativity of the two remaining pairs, consider the linear isomorphism

∆n ⊗ Id⊗mH∗ : Hn ⊗ (H∗)m
∼
−→ (Hop)n ⊗ ((Hop)∗)m, ∆n :=

(
1 2 ··· n
n n−1 ··· 1

)
∈ Sn,

where Sn acts on Hn via the flip τ. This isomorphism, extended to T (H) ⊗ T (H∗) by linearity,
is denoted by ∆∗ by abuse of notation (unfortunately, the common notation for Garside elements
coincides with that for comultiplication). One checks that ∆∗ transports the endomorphisms
H∗

π, πH∗

, πH and Hπ of H⊗n ⊗ (H∗)⊗m to, respectively, (Hop)∗π, π(Hop)∗ ,H
op

π and πHop

. Thus the
commutativity of (Hop)∗π and πHop

induces that of H∗

π and Hπ, and similarly for πH∗

and πH .

Further, recall the bar and cobar differentials

dbar(h1 . . . hn ⊗ l1 . . . lm) =
∑n−1

i=1
(−1)ih1 . . . hi−1(hi · hi+1)hi+2 . . . hn ⊗ l1 . . . lm,

dcob(h1 . . . hn ⊗ l1 . . . lm) =
∑m−1

i=1
(−1)ih1 . . . hn ⊗ l1 . . . li−1(li · li+1)li+2 . . . lm

on T (H)⊗ T (H∗). Note that we use the evaluation-coevaluation duality in order to transform the
degree 1 cobar differential on Endk(T (H)) into a degree −1 differential on T (H)⊗ T (H∗).

Putting everything together, one gets

Proposition 6.12. For a finite-dimensional k-bialgebra (H,µ, ν,∆, ε), one has the following bid-
ifferential structures on T (H)⊗ T (H∗):

1. dbar (−1)ndcob
2. dbar + (−1)nπH (−1)ndcob + (−1)n(H

∗

π)

3. dbar +
Hπ (−1)ndcob + (−1)n+mπH∗

4. dbar + (−1)nπH + Hπ (−1)ndcob + (−1)n(H
∗

π) + (−1)n+mπH∗

Table 6: Bidifferential structures on T (H)⊗ T (H∗)

The signs (−1)n etc. here are those for the component Hn ⊗ (H∗)m of T (H)⊗ T (H∗).

Proof. We prove the assertion for each pair of morphisms separately, keeping the order from the
statement.

1. It is well known that dbar and dcob are differentials (this also follows from their interpretation

in terms of braided differentials, cf. Point 5 of Theorem 2). They affect different components
of T (H)⊗T (H∗) (T (H) and, respectively, T (H∗)), and thus commute. The sign (−1)n then
assures the anticommutativity.

2. Return to the braided system Hbi. One calculate the braided differentials:

εH∗d = (−1)ndcob + (−1)n(H
∗

π), dεH = −(dbar + (−1)nπH),

obtaining the desired bidifferential.
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3. Dually, one gets a bidifferential ((−1)mdbar + (−1)m(Hπ), dcob + (−1)mπH∗

). Observe that
multiplying the first differential by (−1)m and the second one by (−1)n, one still gets a
bidifferential, coinciding with the desired one.

4. The last point follows from the three preceding ones thanks to the following elementary
observation:

Lemma 6.13. Take an abelian group (S,+, 0, a 7→ −a) endowed with an operation · dis-
tributive with respect to +. Then, for any a, b, c, d, e, f ∈ S such that

(a+ b) · (d+ e) = (a+ c) · (d+ f) = a · d = b · f + c · e = 0,

one has
(a+ b+ c) · (d+ e + f) = 0.

Proof.

(a+ b+ c) · (d+ e+ f) = (a+ b) · (d+ e) + (a+ c) · (d+ f)− a · d+ (b · f + c · e).

Now take S = EndR(T (H)⊗ T (H∗)) with the usual addition and the operation a · b := a ◦ b
(for proving that the two morphisms from the fourth line of our table are differentials), or
the operation a · b := a ◦ b + b ◦ a (for proving that the two morphisms anti-commute).
The equalities of the type b · f + c · e = 0 follow from the pairwise anti-commutativity of
(−1)n(H

∗

π), (−1)n+mπH∗

, (−1)nπH and Hπ (which is a consequence of Lemma 6.11), and
the remaining ones from the preceding points of the proposition.

One recognizes in dbar + (−1)nπH + Hπ the Hochschild differential of H with the (right)
coefficients in the H-bimodule T (H∗) (cf. the dual version of Lemma 6.10), and similarly for
(−1)ndcob + (−1)n(H

∗

π) + (−1)n+mπH∗

. Thus the last bidifferential from the proposition defines
the bialgebra homology of M. Gerstenhaber and S.D. Schack ; cf. [7] where it was first
introduced, R. Taillefer’s thesis [31] for detailed calculations and a comparison with other bialgebra
homologies, and M. Mastnak and S. Witherspoon’s paper [21] for explicit formulas and the passage
from Homk(H

m, Hn) to Hn ⊗ (H∗)m.

Remark 6.14. We have identified multi-braided modules overHbi as Hopf modules. Thus the multi-
braided homology of Hbi with coefficients gives in fact a homology theory for a pair (right-right
Hopf module, left-left Hopf module). Repeating the manipulations from the previous proposition
in this setting, one gets the deformation (co)homology of Hopf modules defined by F.F.
Panaite and D. Ştefan in [28].
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