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Abstract. Mesh subdivision algorithms are usually specified informally
using graphical schemes defining local mesh refinements. These algo-
rithms are then implemented efficiently in an imperative framework. The
implementation is cumbersome and implies some tricky indices manage-
ment. Smith et al. (2004) asks the question of the declarative program-
ming of such algorithms in an index-free way. In this paper, we positively
answer this question by presenting a rewriting framework where mesh re-
finements are described by simple rules. This framework is based on a
notion of topological chain rewriting. Topological chains generalize the
notion of labeled graph to higher dimensional objects. This framework
has been implemented in the domain specific language MGS. The same
generic approach has been used to implement Loop as well as Butterfly,
Catmull-Clark and Kobbelt subdivision schemes.

1 Introduction

The definition and generation of smooth curves or surfaces specified from a finite
and small set of control points is a fundamental problem in geometrical modeling.
A possible approach is based on the concept of mesh subdivision which consists
in iterating the replacement of coarse parts of a mesh by finer ones. Introduced
by Chaikin in 1974 [1], subdivision algorithms for curves and surfaces are now a
major geometric modeling technique.

Many polygon mesh algorithms operate in a local manner and are intuitively
described by local graphical schemes. However, their expression and implementa-
tion rely on the use of global arrays of points with the induced indexed notation.
This obscures the essence of these algorithms and makes their specification un-
necessarily complex, especially for the inevitable reindexations caused by the
mesh modifications.

This issue has motivated several attempts to develop implementations of
such algorithms that are simultaneously declarative (close to the mathematical
formulation), intensional (abstracting meshes from their implementations) and
coordinate-free (no explicit index manipulation). These works have succeeded
completely in the 1D case [2] and only partially for the 2D case [3]: “The prob-
lem of providing a declarative, grammar-like method for specifying subdivision



algorithms remains open. Such specification, if possible, may provide the ulti-
mately concise and clear specification of these algorithms”.

In [4, 5], we have developed a topological collections rewriting formalism for
simulation purposes. Topological collections extend the notion of labeled graphs
considering higher dimensional cells (w.r.t. points and edges) such as surfaces,
volumes, etc. This framework has been validated in the modeling and simulation
of morphogenesis [6, 7] and self-assembly [8] as well as diagrammatic reasoning
involving arbitrary high dimensional spaces [9].

In this paper, we show that the topological collections and the topological
rewriting framework suit well the declarative, intensional and coordinate-free
specification of mesh subdivision algorithms. In the next section, we present the
notion of topological collection and we give a formal definition of topological
rewriting. In Section 3 we introduce MGS, an experimental programming lan-
guage that provides an implementation of the previous concepts. MGS is used
in Section 4 to specify the Loop’s algorithm, a typical subdivision scheme. The
other classical algorithms are illustrated and their complete implementations
are given in [10]. We conclude by outlining some links with more traditional
approaches in graph rewriting as well as some related and future work.

2 Topological Rewriting

2.1 Topological Collections

A topological collection is a weakening of the notion of topological chain. The
latter is developed in algebraic topology and corresponds to a labeled cellular
complex. An (abstract) cellular complex is a formal construction that builds a
space in a combinatorial way through more simple objects called topological cells.
Each cell abstractly represents a part of the whole space. The structure of the
whole space, corresponding to the partition into topological cells, is considered
through the incidence relationships, relating two “neighbor” cells in the partition.
A topological chain is a function from a cellular complex to a set of labels
equipped with some algebraic structure [11]. We can forget some of the technical
machinery for topological collection.

Definition 1 (Abstract Cellular Complex) Let (Sn)n∈N be a family of dis-
joint sets of symbols. An element of Sn is called an abstract topological cell of
dimension n, or simply an n-cell. If σ ∈ Sn, n is called the dimension of σ and
is denoted by dim(σ). We write S for the set of cells

⋃

n Sn.
An abstract cellular complex K on S is a partially ordered subset of S, that

is a couple (S,�) such that S ⊂ S and � is a partial order over S (i.e., a reflex-
ive, transitive and antisymmetric binary relation on S) satisfying the following
condition: ∀σ, τ ∈ S σ � τ ⇒ dim(σ) ≤ dim(τ). The relation � is called the
incidence relationships of the complex K. A complex K is of finite dimension if
the integer N = max{dim(σ) |σ ∈ S} is defined. In such a case, N is called the
dimension of K.
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Fig. 1. On the left, an example of cellular complex: it is composed of three 0-cells
(v1, v2, v3), of three 1-cells (e1, e2, e3) and of a single 2-cells (f). The boundary of
f is constituted of its incident cells v1, v2, v3, e1, e2 and e3. The three edges are the
faces of f , and therefore f is a common coface of e1, e2 and e3. On the right, data are
associated with topological cells: positions with vertices, lengths with edges and area
with f .

An n-cell represents an elementary piece of space of dimension n. In particular,
0-cells are vertices, 1-cells are edges, 2-cells are surfaces, 3-cells are volumes, etc.
Thus, graphs are examples of abstract cellular complexes of dimension 1. All
set operations are extended to abstract cellular complexes. In particular, we will
denote the empty complex ∅ and use the union K1∪K2 = (S1∪S2,≺1 ∪ ≺2) and
the difference of two abstract cellular complexes K1−K2 = (S1−S2,≺1 /S1−S2

)
where ≺1 /S1−S2

represents the restriction of the relation ≺1 to the elements of
S1 − S2.

Notions of neighborhoods can be defined from the incidence relationships.

Definition 2 (Neighborhoods) Let K be a cellular complex and let σ be a cell
of K. A cell τ of K is called face of σ iff (τ ≺ σ) and dim(τ) = dim(σ)− 1. The
cell σ is called a coface of τ . This relation is denoted by τ < σ.

Let n and p be two integers. Two n-cells of K, σ1 and σ2, are p-neighbors if
there exists a p-cell in K that is commonly incident to σ1 and σ2.

The notion of incidence is close to the notion of boundary. For example, if two
vertices v1 and v2 are the faces of an edge (in other words, v1 and v2 are 1-
neighbors), they constitute the boundary of that edge. Left of Figure 1 shows
an example of cellular complex. We do not detail further these notions. The
interested reader should refer to [11, 4].

A topological collection is a labeled cellular complex.

Definition 3 (Topological Collection) Let S be a set of topological cells, K =
(S,�) be a complex of S, and V be an arbitrary set of values. A topological col-
lection c over K with values in V is a partial function from S to V . A topological
collection c is represented by a formal sum

∑

σ∈|c| vσ.σ where vσ = c(σ).

We use the following notations: Shape(c) refers to the complex K, |c| denotes
the set of cells σ ∈ K where c(σ) is defined, CS(K,V) denotes the set of topological
collections over K in V, and CS(V) denotes the set of topological collections with
values in V.



The indices in notations CS(K,V) and CS(V) refer to the set of topological cells.
By convention, when we write a collection c as a sum c = v1.σ1+ · · ·+ vp.σp, we
insist that all σi are distinct. Right of Figure 1 gives an example of a topological
collection c = (0, 4).v1 + (3, 0).v2 + (−2, 0).v3 + 5.e1 + 6.e2 + 5.e3 + 12.f .

2.2 Rewriting Topological Collections

Transforming topological collections using rewriting requires:

– the notion of sub-collection (a way to cut out a sub-part of a collection),
– the extension of a collection, and
– the merge of collections, that is a way to rebuild a collection from the ele-

ments resulting of local transformations.

Definition 4 (Sub-collection) Let c be a collection of CS(K,V). A sub-collec-
tion s of c, is an element of CS(K,V) such that |s| ⊆ |c| and ∀σ ∈ |s|, s(σ) =
c(σ).

In other words, a sub-collection of a collection c is a restriction of c to a collection
(with the same structure) where only a sub-part of the cells remains labeled. Note
that if s is a sub-collection of c, then the collection c− s is defined and is also a
sub-collection of c.

Definition 5 (Extension, Collection Matching) Let c be an arbitrary col-
lection of CS(V) and let K be a complex such that Shape(c) ⊂ K (i.e. the in-
cidence relationships of the complex underlying c are included in the incidence
relationships of K). The extension of c on K, written c|K, is the collection c′ of
CS(K,V) such that c′(σ) = c(σ) for σ ∈ |c| and c′ is left undefined elsewhere.

We say that a collection c′ matches in a collection c ∈ K if Shape(c′) ⊂ K
and c′|K is a sub-collection of c.

Merging collections with similar shape naturally corresponds to the addition
of their formal sum representation. To merge collections with different shapes,
we first build a common abstract cellular complex on which we then perform the
standard addition. Note that merge is commutative.

Definition 6 (Collections Merge) Let c1 ∈ CS(K1,V) and c2 ∈ CS(K2,V)
be two topological collections such that |c1| ∩ |c2| = ∅. The merge of c1 and c2,
denoted c1 ⊎ c2, is defined by: c1 ⊎ c2 = c1|K + c2|K where K = K1 ∪ K2.

Remark: if a collection c′ matches in a collection c, then c can be written
c = c′ ⊎ c′′ where c′′ is uniquely defined.

Definition 7 (Rewriting Relation) Let R be a relation over CS(V). One step
of rewriting generated by R is the relation c1⊲Rc2 which is true either iff c1 = c2
or there exists (l, r) ∈ R such that

– c1 = c ⊎ l and c2 = c ⊎ r, and
– (Shape(r)− Shape(l)) ∩ Shape(c) = ∅.



In the latter case, the collection l is called the redex of the couple c1 ⊲R c2.
One step of parallel rewriting generated by R is the relation c|⊲Rc

′ which
is true iff there exists a sequence c = c1 ⊲R c2 ⊲R . . . ⊲R cp = c′ such that the
redexes li of the ci⊲R ci+1 are sub-collections of c and are mutually disjoint (that
is, |li| ∩ |lj | = ∅ for all i 6= j).

In this definition, the condition (Shape(r)−Shape(l))∩Shape(c) = ∅ stresses
the fact that the “new” cells appearing in r w.r.t. l must really be new, even
in c. Informally, the definition can be read as follows. When l matches in c1, the
application of (l, r):

1. removes the cells of l (only the elements of c1 that do not appear in the
shape of l remain with their coefficient), and

2. adds the cells of r.

In order to rebuild a collection, r may refer to some cells of Shape(c)−Shape(l).
These references correspond to the usual notion of invariant (or gluing graph)
in graph rewriting [12]. If there is no matching, then the application of the rule
is void and the rewriting is the identity. The parallel application of a relation R
can be represented by the following diagram:

c1 = l1 ⊎ . . . ⊎ ln ⊎ c
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c2 = r1 ⊎ . . . ⊎ rn ⊎ c

where all the li are disjoint.

2.3 Transformation

The use of an explicit relation R to generate a rewriting relation is not very
effective. In the following, we propose to generate a relation R from a set of
rules α → β where α is a pattern that matches a (sub-)collection and β is a
collection expression. This process, called a transformation, relies on the use of
variables and on the notion of environment.

Definition 8 (Variables, Environments and Expressions) Let (Svarn ) with
n ∈ N, be a family of distinguished symbols. An element x of Svarn is called a
(topological) cell variable of dimension n. The set of all cell variables is written
Svar =

⋃

n S
var
n . Let Vvar be a set of distinguished values called value variables.

An environment (resp. a cell environment) is a function from Vvar (resp.
Svar) to V (resp. S, such that the dimension of arguments and images match).
The set of environments (resp. cell environments) is written ΓV (resp. ΓS).

Let Σ ⊂ (V∪Vvar)∗ be a distinguished set of words built on V and Vvar called
expressions. We assume that Σ is equipped by a function ξ : Σ× ΓV → V, called
the evaluation function.



Definition 9 (Rule and Rule Occurrence) A pattern is a topological col-
lection of CSvar(Vvar). A collection expression is a collection of CSvar∪S(Σ). A rule
is a couple α → β where α is a pattern and β is a collection expression.

Let α = a1.x1 + ...+ ap.xp be a pattern and β = e1.x1 + ...+ eq.xq + e′1.σ1 +
... + e′p′ .σp′ , with q ≤ p, be a collection expression. A couple of collections (l, r)
is an occurrence of the rule α → β iff it exists ρV ∈ ΓV and ρS ∈ ΓS such that:

l = ρV(a1).ρS(x1) + ...+ ρV(ap).ρS(xp)

and

r = ξ(ρV, e1).ρS(x1) + ...+ ξ(ρV, eq).ρS(xq) + ξ(ρV, e
′
1).σ1 + ...+ ξ(ρV, e

′
p′).σp′

The set of all occurrences of α → β is written Occα→β.

We are now able to define the concept of transformation.

Definition 10 (Transformation) Let T be a set of rules αi → βi. The trans-
formation associated with T is the relation |⊲RT

where RT =
⋃

i Occαi→βi
.

3 The MGS Language

The previous section gives a formal description of topological collections and
transformations without any explicit definition of expressions. In this section,
we propose an implementation of this formalism through the definition of an
experimental functional language called MGS. In particular, we focus on the
definition of topological collections and on the specification of a transformation.

3.1 MGS Topological Collections

The MGS language provides the means to specify topological collections. In par-
ticular, the programmer is allowed to create new cellular complexes and to label
them.

The very basic function new cell creates fresh topological cells. It takes three
parameters providing the dimension of the cell to be created, the sequence of its
faces and the sequence of its cofaces. Associated with a recursive letcell...in
construction (similar to a let rec...in in OCaml), this simple function allows
to create basic complexes. Finally, the specification of a topological collection
consists in associating values with cells relying on the formal sum notation given
in Definition 3.

Thus, the example of Figure 1 is evaluated by the following MGS program:

letcell v1 = new cell 0 () (e1,e3)

and v2 = new cell 0 () (e1,e2)

and v3 = new cell 0 () (e2,e3)

and e1 = new cell 1 (v1,v2) (f)

and e2 = new cell 1 (v2,v3) (f)

and e3 = new cell 1 (v1,v3) (f)

and f = new cell 2 (e1,e2,e3) () in

(0,4)*v1 + (3,0)*v2 + (-3,0)*v3 + + 5*e1 + 6*e2 + 5*e3 + 12*f



The reader is invited to pay attention that topological collections are heteroge-
neous, i.e., any type of data can be associated with the cells within a collection
(here couples of integers and integers).

3.2 MGS Patch Transformations

In Section 2, patterns and collection expressions are defined as topological collec-
tions. The difficulty of their descriptions is hidden by the implicit partial orders
that they come with. As an implementation of this formalism, MGS has to make
these objects as explicit as possible with a special syntax for the programmer.
The objectives of the syntax is to simplify as much as possible the specification
of the rewriting rules. Different rule languages have been developed. In this ar-
ticle, we focus on patch transformations (called patches from now on), a kind of
transformation specially designed for the specification of topological surgeries.

A patch is specified as follows:

patch P = { Pattern => Exp ; ... }

The language Pattern has been introduced to specify the left hand side (l.h.s.)
while the right hand side (r.h.s.) are basic expressions of the language where
MGS operators (e.g., new cell) can be used to specify new collections.

A patch is a function having a topological collection as argument. More
specifically, the expression P(c) where c is an MGS collection, evaluates into a
new collection c′ such that c|⊲RP

c′ as defined in Definition 10. Obviously, the
relationRP (which may be an infinite set) is not computed within this evaluation.
In fact, a pattern matching mechanism has been developed to compute one
of the possible collections c′. The interested reader should refer to [13] for an
elaboration.

In the following, we detail the patch transformation language. In order to
illustrate our comments, we consider the topological modification described on
Figure 2: an edge named e, whose faces are called v1 and v2, is matched and
replaced by two new edges e1 and e2 together with a new vertex v; the edge
e1 is bound by vertices v1 and v, and e2 by v2 and v. This rule specifies the
insertion of a vertex on an edge.

v2v2v1 e v1 v
e2e1

Fig. 2. Insertion of a vertex on an edge.

Patch Patterns. Rather than specifying patterns of rules as explicit topological
collections, patch patterns describe them implicitly with a list of constraints



(on dimension and incidence). The topological cells of sub-collections that are
matched by these patterns, have to respect the constraints.

The specification of a pattern relies on the following grammar:

Pattern

m ::= c | c o m

Op

o ::= ε | < | >

Clause

c ::= x:[dim=expd, faces=expf, cofaces=expcf , expb]
| ~x:[dim=expd, faces=expf, cofaces=expcf , expb]

where ε represents the empty word. A pattern (Pattern ) is a finite list of clauses
separated by some operators (Op ). A clause (Clause ) corresponds to a topologi-
cal cell to be matched. Each clause is characterized by some optional information
that will guide the pattern matching process:

– x is a pattern variable that allows to refer to the cell matched by the clause
anywhere else in the rule. A variable can be used before its definition. Nev-
ertheless, a name refers to one and only one element. If two clauses share the
same identifier, they will match the same cell (the predicates of both clauses
have to hold together). Since a clause refers to an element of a collection,
that is a couple (value v, cell σ), the use of the variable x in the rest of the
rule might be ambiguous. We avoid such a problem by setting that x binds
for the value v and the expression ^x binds for the cell σ.

– The expression expd associated with the field dim returns an integer con-
straining the dimension of the cell matched by the clause,

– Expressions expf and expcf respectively associated with fields faces and
cofaces are evaluated in sequences of topological cells. These lists constrain
the incidence relationships of the matched cell. They do not have to be
exhaustive; a cell can get more (co)faces than those referred in the pattern.
In these expressions, pattern variables or direct references to topological cells
may be used,

– The last expression expb can be used to specify some arbitrary predicate the
cell has to satisfy (it can be used to constrain the value associated with the
cell for example),

– Two kinds of clause can be specified depending on the presence of the unary
operator ~. When it is present, the clause is considered as a context for
the pattern matching and the associated cell in the sub-collection is not
considered as consumed by the pattern matching. If no operator ~ is specified,
the topological cell is matched and consumed by the rule: no other sub-
collection can refer to a not-tilded element.
The consumption of a cell during the pattern matching ensures sub-collections
to be disjoint as required by Definition 7. Operator ~ allows a same cell to be
referred into distinguished sub-collections. Using notations of Definition 7,
such cell belongs to Shape(l) ∩ Shape(c).



Operators Op correspond to syntactic sugar. The infix binary operator < (resp. >)
constraints the element matched by the left operand to be a face (resp. co-
face) of the element matched by the right operand. Therefore, any patterns
of type a:[...] < b:[...] can be rewritten a:[..., cofaces=b] b:[...,

faces=a]. When no operator separates two clauses, there is no constraint be-
tween the matched elements.

The pattern corresponding to the l.h.s. of the rule pictures on Figure 2 is
specified by:

~v1 < e:[ dim = 1 ] > ~v2

Here, v1 and v2 are not consumed as they are used as a context for the pattern
matching of e. They are referred to in the r.h.s. but they are not rewritten.

Right Hand Side of a Rule. The r.h.s. of a rule is an MGS expression that has
to evaluate to a collection. In other words, the r.h.s. can be any MGS program. It
makes the transformation very flexible and allows program factorization. There-
fore, using the MGS syntax for defining new collections given Section 3.1, the
graphical rule of Figure 2 is specified in MGS by:

~v1 < e:[ dim = 1 ] > ~v2 =>

letcell v = new cell 0 () (e1,e2)

and e1 = new cell 1 (^v1,v) (cofaces ^e)

and e2 = new cell 1 (^v2,v) (cofaces ^e) in

(some expression)*v

In the r.h.s., the three new cells are created and then a collection is defined. The
cofaces of the new defined edges e1 and e2 are the cofaces of the edge matched
by e, so that if e belongs to the boundary of a 2-cell, e1 and e2 belong to it after
the application of the patch. The new sub-collection consists of the association
of an arbitrary value with the new vertex v while the collection is left undefined
on e1 and e2.

4 Mesh Refinement Algorithms

In this section, we propose to use the rule-based programming of patches to
specify a classical but not trivial familly of algorithms in CAD: the refinement
of meshes.

4.1 Loop Subdivision

Subdivision algorithms generate to the limit smooth surfaces by iterating sub-
divisions of polygonal mesh. In [14], the descriptions of the usual subdivision
processes dedicated to the geometrical modeling and to the animation of solids
can be found. These algorithms are locally specified by masks. A mask is a cel-
lular complex describing a part of a mesh centered on an element to be refined



(e.g., an edge, a triangle, etc.). The refinement consists in inserting a new vertex
whose coordinates are determined by an affine combination of the other vertices
belonging to the mask. The properties of smoothness of the surface obtained to
the limit and therefore the quality of the subdivision depends on the mask. The
intended properties correspond to surfaces as smooth as possible (C1-continuity
or C2-continuity everywhere for example) and are difficult to obtain on arbi-
trary meshes that exhibit irregularities on singular points. The mask is then
chosen depending on the kind of the mesh (triangular, quadrangular, etc.) and
the property to hold.

We are here interested in the Loop subdivision [15]. This algorithm:

– is based on vertex insertions: a vertex is created on each edge of the mesh
within each application of the algorithm; old nodes are conserved and new
nodes are linked to them by new edges;

– works on and generates triangular meshes;
– is approximating : old nodes positions are changed in the new mesh and new

nodes positions are computed as a function of the old nodes positions in the
old mesh (approximating subdivisions are opposed to interpolating ones for
which old nodes positions are not affected).

The algorithm describes on the one hand the topological modifications and on
the other hand the geometrical modifications.

Topological Modification. The mesh refinement is based on the polyhedral sub-
division shown on Figure 3. A vertex is inserted on each edge and triangles are
refined in 4 smaller triangles.

Fig. 3. Loop Algorithm: Topological Modification

Geometrical Modification. Loop’s masks provide the information required to
compute the positions of new vertices (as a function of the coordinates of the
old ones) and the new positions of the old vertices (see Figure 4). On the left,
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Fig. 4. Loop Algorithm: Geometrical Modification

coordinates of a new vertex v inserted on the edge whose boundary is composed
of vertices v1 and v2 are given by:
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On the right, new coordinates of an old vertex v is computed as a function of
its 1-neighbors positions:
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4.2 Representation of Geometrical Objects in MGS

Meshes can be easily represented by MGS topological collections. Since they are
surfaces composed of polygons, their structures are represented by a cellular
complex of dimension 2. In the topological collections, only the geometrical po-
sitions of the 0-cells matter. So, we associate the constant value ‘Triangle with
triangles, the constant value ‘Edge with edges, and coordinates with vertices.
The coordinates of a vertex are represented by an MGS record value (that is
equivalent to a C struct). The type of a coordinate is defined as follows:

record coordinate = {
x:float, y:float, z:float, old:(coordinate|‘Nil) }

whose fields x, y and z encode the coordinates in the 3D space. The last field
old is used to distinguish new and old vertices. For new vertices, old is set to
the value ‘Nil (an MGS constant). For old vertices, old is set to the coordinates
before the Loop algorithm iteration.

To simplify the description of the MGS program, we assume the existence of
a function addCoord that sums two values of type coordinate, and the global
constant O corresponding to the 3D space origin.



4.3 Loop Subdivision in MGS

Three steps are used to implement the Loop algorithm.

Update of the old vertices. In this step, we save in the field old the current
coordinates of each vertex and we update the coordinates with respect to the
Loop’s mask (see Figure 4 on the right).

patch even vertex = {
v:[dim=0] =>

let s = ccellsfold(addCoord, O, v, 1) and b = β in

{ old = v, x = (1-k*b)*v.x + b*s.x, ... } * ^v

}

The single rule of this patch does not change the topology: one element of di-
mension 0 named v is matched and an elementary collection on v is computed
in the r.h.s. Variables s and b correspond respectively to the sum of the coor-
dinates of the 1-neighbors (see Definition 2) of ^v and to the β coefficient of
the Loop’s mask (see Equation (2)). The MGS primitive ccellsfold(f,z,σ,i)
computes the sequence (v1, . . . , vn) of the values associated with the i-neighbors
of σ and computes the value f(v1, (. . . f(vn, z) . . . )). Old coordinates referred by
the variable v are saved in the field old.

Insertion of new vertices. The following patch is quite similar to the patch
given as an example in Section 3.2.

patch odd vertex = {
~v1 < e:[dim=1] > ~v2

~v1 < ~e13 > ~v3 < ~e23 > ~v2

~v1 < ~e14 > ~v4 < ~e24 > ~v2

=>

letcell v = new cell 0 () (e1,e2)

and e1 = new cell 1 (^v1,v) (cofaces ^e)

and e2 = new cell 1 (^v2,v) (cofaces ^e) in

{ old = ‘Nil, x = vx, ... }*v + ‘Edge*e1 + ‘Edge*e2

}

The pattern is extended to take into account the vertices v3 et v4 required by
the Loop’s mask (see Figure 4 on the right). Only the edge e is consumed to
be removed and replaced. All the other clauses are used as pattern matching
context. Coordinates (vx, vy, vz) of the new created vertex v are computed using
the field old of vertices v1, v2, v3 and v4 w.r.t. Equation (1).

Creation of the refined triangles. The previous patch leads to the transfor-
mation of the mesh triangles into hexagons. These hexagons are then removed
and replaced by new smaller triangles.
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Fig. 5. Construction of the 4 refined triangles in the Loop’s algorithm.

patch subdivideFace = {
f:[ dim = 2, faces = (^e1,^e2,^e3,^e4,^e5,^e6) ]

~v1 < ~e1 > ~v2:[ v2.old == ‘Nil ] < ~e2 >

~v3 < ~e3 > ~v4:[ v4.old == ‘Nil ] < ~e4 >

~v5 < ~e5 > ~v6:[ v6.old == ‘Nil ] < ~e6 > ~v1

=>

letcell a1 = new cell 1 (^v2,^v4) (f1,f4)

and a2 = new cell 1 (^v4,^v6) (f2,f4)

and a3 = new cell 1 (^v6,^v2) (f3,f4)

and f1 = new cell 2 (a1,^e2,^e3) ()

and f2 = new cell 2 (a2,^e4,^e5) ()

and f3 = new cell 2 (a3,^e6,^e1) ()

and f4 = new cell 2 (a1,a2,a3) () in

‘Edge*a1 + ... + ‘Triangle*f4 }

This patch is composed of a single rule sketched in Figure 5. Note the presence
of tests vi.old == ‘Nil to distinguish old and new vertices.

Figure 6 shows an example of Loop’s algorithm iterations generated by the
current prototype of MGS. The figure also shows outputs of three other algo-
rithms [14] that have been implemented in the same way in MGS.

5 Conclusion

In this article, we have presented the MGS language as a positive answer to the
question of a framework that allows a declarative, intensional and coordinate-free
specification of mesh algorithms.

The MGS main notions, topological collections and transformations, rely on
a formal definition of a topological rewriting relation. This computational model
is based on the substitution of labeled cellular complexes that are an extension
of graphs to higher dimensions. The expressiveness of topological collections and
their transformations allows the programming of complex algorithms (in a large
range of domains) in a very concise way. It has been exemplified in this paper
with the specification of non trivial mesh subdivision algorithms.



Fig. 6. Results of the application of subdivision algorithms. From top to bottom,
the Loop’s algorithm, the Butterfly algorithm, the Catmull-Clark’s algorithm and the
Kobbelt’s algorithm. From the left to the right, the initial state then 3 iteration steps.
These pictures have been generated by the current MGS prototype.

Topology has already been introduced in graph transformation in different
kinds of contexts [16–18]. Work presented in [17] is far from our purpose since
the concept of topology is used to ensure structural constraints on graphs being
transformed. Nevertheless, MGS and its current implementation can be used as a
programming language to express and simulate the proposed model transforma-
tion rules. In [16], GRiT (Graph Rewriting in Topology), a kind of hyper-graph
rewriting, is developed to take into account topological properties (from homol-
ogy and homotopy) in models of parallel computing based on rewriting the-
ory [19]. This approach has been applied in the modeling of chemical reactions,
DNA computing, membrane computing, etc. MGS has also been extensively used



in this context [4]. Since we focus in this paper on an application in topological
modeling, our work can be compared to [18] where graph transformations have
been applied to specify topological operations on G-maps. G-maps are a data
structure used to encode cellular complexes corresponding to a specific class of
topological objects called quasi-manifolds [20]. Roughly speaking, G-maps are
graphs where vertices are named darts and where edges correspond to invo-
lutions defined between darts. Because G-maps are a specific kind of cellular
complexes, they can be handled by the approach presented here. Indeed, they
have been implemented in MGS (see [10] for an elaboration) as well as many of
the applications proposed in [18] (especially in biology). The formal approach de-
velopped in [18] is very specific and focuses on the correct handling of involutions
in G-maps construction and deletion operations.

Our contribution differs from the works mentionned above on two main
points: the object to be transformed and the addressed mathematical frame-
work. These works are all based on (hyper-)graph transformation. We propose
to transform cellular complexes since the extension from graphs to complexes
seems intuitive and relevant in a lot of application area [21]. Our mathematical
description is not based on the usual graph morphisms and pushouts (like in [12,
17, 18]). Our objective was here to relate the notion of transformation to the very
definition of topological collections in the context of a programming language.
It requires to give explicit details on the construction of collections and how the
rewriting is effectively done. Our mathematical formalization of complex trans-
formation is inspired by [22] where graph rewriting based on a (multi-)set point
of view is developed. The proposed model is close to term rewriting modulo
associativity and commutativity (where the l.h.s. of a rule is removed and the
r.h.s. is added) and can be applied on the formal sum notation of topological col-
lections. This kind of approach also allows to extend results from term rewriting
to topological rewriting (as we did for termination in [23]).
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