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Abstract – Turbulence in superfluid helium is unusual and presents a challenge to fluid dynam-
icists because it consists of two coupled, inter penetrating turbulent fluids: the first is inviscid
with quantised vorticity, the second is viscous with continuous vorticity. Despite this double na-
ture, the observed spectra of the superfluid turbulent velocity at sufficiently large length scales
are similar to those o ordinary turbulence. We present experimental, numerical and theoretical
results which explain these similarities, and illustrate the limits of our present understanding of
superfluid turbulence at smaller scales.

Introduction: motivations.. – If cooled below a
critical temperature (Tλ ≈ 2.18 K in 4He and Tc ≈ 10−3K
in at 3He [1] at saturated vapour pressure), liquid he-
lium undergoes Bose-Einstein condensation [2], becoming
a quantum fluid and demonstrating superfluidity (pure in-
viscid flow). Besides the lack of viscosity, another major
difference between superfluid helium and ordinary (classi-
cal) fluids such as water or air is that, in helium, vorticity
is constrained to vortex line singularities of fixed circula-
tion κ = h/M , where h is Planck’s constant, and M is the
mass of the relevant boson (in the most common isotope
4He, M = m4, the mass of an atom; in the rare isotope
3He, M = 2m3, the mass of a Cooper pair). These vortex

lines are essentially one-dimensional space curves, like the
vortex lines of fluid dynamics textbooks; for example, in
4He the vortex core radius ξ ≈ 10−10m is comparable to
the inter atomic distance. This quantisation of the circu-
lation thus results in the appearance of another charac-
teristic length scale: the mean separation between vortex
lines, `. In typical experiments (both in 4He and 3He) ` is
orders of magnitude smaller than the outer scale of turbu-
lence D (the scale of the largest eddies) but is also orders
of magnitudes larger than ξ.

There is a growing consensus [3] that on length scales
much larger than ` the properties of superfluid turbulence
are similar to those of classical turbulence if excited sim-
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ilarly, for example by a moving grid. The idea is that
motions at scales R � ` should involve at least a partial
polarization [4,5] of vortex lines and their organisation into
vortex bundles which, at such large scales, should mimic
continuous hydrodynamic eddies. Therefore one expects
a classical Richardson-Kolmogorov energy cascade, with
larger “eddies” breaking into smaller ones. The spectral
signature of this classical cascade is indeed observed exper-
imentally in superfluid helium. In the absence of viscosity,
in superfluid turbulence the kinetic energy should cascade
downscale without loss, until it reaches the small scales
where the quantum discreteness of vorticity is impor-
tant. It is also believed that at this point the Richardson-
Kolmogorov eddy-dominated cascade should be replaced
by a second cascade which arises from the nonlinear inter-
action of Kelvin waves (helical perturbation of the vortex
lines) on individual vortex lines. This Kelvin wave cas-
cade should take the energy further downscale where it
is radiated away by thermal quasi particles (phonons and
rotons in 4He).

Although this scenario seems quite reasonable, crucial
details are yet to be established. Our understanding of
superfluid turbulence at scales of the order of ` is still
at infancy stage, and what happens at scales below ` is
a question of intensive debates. The “quasi-classical” re-
gion of scales, R � `, is better understood, but still less
than classical hydrodynamic turbulence. The main rea-
son is that at nonzero temperatures (but still below the
critical temperature Tλ), superfluid helium is a two-fluid
system. According to the theory of Landau and Tisza [6],
it consists of two inter–penetrating components: the in-
viscid superfluid, of density ρs and velocity us (associated
to the quantum ground state), and the viscous normal
fluid, of density ρn and velocity un (associated to ther-
mal excitations). The normal fluid carries the entropy
S and the viscosity µ of the entire liquid. In the pres-
ence of superfluid vortices these two components interact
via a mutual friction force [7]. The total helium density
ρ = ρs + ρn ≈ 145 kg/m3 is practically temperature in-
dependent, while the superfluid fraction ρs/ρ is zero at
T = Tλ, but rapidly increases if T is lowered (it becomes
50% at T ≈ 2 K, 83% at T ≈ 1.6 K and 95% at T ≈ 1.3 K
[8]). The normal fluid is essentially negligible below 1 K.
One would therefore expect classical behaviour only in the
high temperature limit T → Tλ, where the normal fluid
must energetically dominate the dynamics. Experiments
show that this is not the case, thus raising the interesting
problem of “double-fluid” turbulence which we study here.

The aim of this article is to present the current state
of the art in this intriguing problem, clarify common fea-
tures of turbulence in classical and quantum fluids, and
highlight their differences. To achieve our aim we shall
overview and combine experimental, theoretical and nu-
merical results in the simplest possible (and, probably, the
most fundamental) case of homogeneous, isotropic turbu-
lence, away from boundaries and maintained in a statis-
tical steady state by continuous mechanical forcing. The

natural tools to study homogeneous isotropic turbulence
are spectral, thus we shall consider the velocity spectrum
(also known as the energy spectrum) and attempt to give
a physical explanation for the observed phenomena.

Classical vs superfluid turbulence: the back-
ground.. – We recall that ordinary incompressible vis-
cous flows are described by the Navier-Stokes equation[∂ u

∂t
+ (u · ∇)u

]
= −1

ρ
∇p+ ν∇2u, (1)

and the solenoidal condition ∇ · u = 0 for the velocity
field u, where p is the pressure, ρ the density, and ν = µ/ρ
the kinematic viscosity. The dimensionless parameter that
determines the properties of hydrodynamic turbulence is
the Reynolds number Re= V D/ν. The Reynolds num-
ber estimates the ratio of nonlinear and viscous terms in
Eq. (1) at the outer length scale D (typically the size of
a streamlined body), where V is the root mean square
turbulent velocity fluctuation. In fully developed turbu-
lence (Re� 1) the D-scale eddies are unstable and give
birth to smaller scale eddies, which, being unstable, gen-
erate further smaller eddies, and so on. This process is the
Richardson-Kolmogorov energy cascade toward eddies of
scale η, defined as the length scale at which the nonlinear
and viscous forces in Eq. (1) approximately balance each
other. η-scale eddies are stable and their energy is dissi-
pated into heat by viscous forces. The hallmark feature
of fully developed turbulence is the coexistence of eddies
of all scales from D to η ' DRe−3/4 � D with universal
statistics; the range of length scales D � R � η where
both energy pumping and dissipation can be ignored is
called the inertial range.

In the study of homogeneous turbulence it is custom-
ary to consider the energy density per unit mass E(t) (of
dimensions m2/s2). In the isotropic case the energy dis-
tribution between eddies of scale R can be characterized
by the one–dimensional energy spectrum E(k, t) of dimen-
sions m2/s2) with wavenumber defined as k = 2π/R (or
as k = 1/R), normalized such that

. E(t) =
1

V

∫
1

2
u2dV =

∫ ∞
0

E(k, t)dk,

where V is volume. In the inviscid limit, E(t) is a con-
served quantity (dE(t)/dt = 0), thus E(k, t) satisfies the
continuity equation

∂E(k, t)

∂t
+
∂ε(k, t)

∂k
= 0, (2)

where ε(k, t) is the energy flux in spectral space (of dimen-
sions m2/s3). In the stationary case, energy spectrum and
energy flux are t–independent, thus Eq. (2) immediately
dictates that the energy flux ε is k-independent. Assuming
that this constant ε is the only relevant characteristics of
turbulence in the inertial interval and using dimensional
reasoning, in 1941 Kolmogorov and (later) Obukhov sug-
gested that the energy spectrum is

EK41(ε, k) = CK41ε
2/3k−5/3, (3)
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where the (dimensionless) Kolmogorov constant is approx-
imately CK41 ≈ 1. This is the celebrated Kolmogorov-
Obukhov 5/3 law (KO–41), verified in experiments and
numerical simulations of Eq. (1); it states in particular
that in incompressible, steady, homogeneous, isotropic
turbulence, the distribution of kinetic energy over the
wavenumbers is E(k) ∝ k−5/3.

In the inviscid limit the energy flux goes to smaller and
smaller scales, reaching finally the interatomic scale and
accumulating there. To describe this effect, Leith [9] sug-
gested to replace the algebraic relation (3) between ε(k)
and E(k) by the differential form:

ε(k) = −1

8

√
k11E(k)

d

dk

(
E(k)

k2

)
. (4)

This approximation dimensionally coincides with Eq. (3),
but the derivative d[E(k)/k2]/dk guarantees that ε(k) = 0
if E(k) ∝ k2. The numerical factor 1/8, suggested
in [10], fits the experimentally observed value CK41 =
(24/11)2/3 ≈ 1.7 in Eq. (3).

A generic energy spectrum with a constant energy flux
was found in [10] as a solution to the equation ε(k) = ε
constant:

E(ε, k) = CK41

ε2/3

k5/3
Teq(k) , Teq(k) =

[
1 +

( k

keq

)11/2]2/3
. (5)

Notice that at low k, Eq. (5) coincides with KO–41, while
for k � keq it describes a thermalized part of the spec-
trum, E(k) ∝ k2, with equipartition of energy (shown by
the solid black line at the right of in Fig. 3A, and, under-
neath in the same figure, by the solid red line, although
the latter occurs in slightly different contexts [11])

We shall have also to keep in mind that although Eq. (3)
is an important result of classical turbulence theory, it
presents only the very beginning of the story. In partic-
ular, its well known [12] that in the inertial range, the
turbulent velocity field is not self–similar, but shows in-
termittency effects which modify the KO–41 scenario.

In this paper we apply these ideas to superfluid helium,
explain how to overcome technical difficulties to measure
the energy spectrum near absolute zero, and draw the
attention to three conceptual differences between classi-
cal hydrodynamic turbulence and turbulence in superfluid
4He.

The first difference is that the quantity which (histori-
cally) is most easily and most frequently detected in turbu-
lent liquid helium is not the superfluid velocity but rather
the vortex line density L, defined as the superfluid vortex
length per unit volume; in most experiments (and numer-
ical simulations) this volume is the entire cell (or com-
putational box) which contains the helium. This scalar
quantity L has no analogy in classical fluid mechanics and
should not be confused with the vorticity, whose spectrum,
in the classical KO–41 scenario, scales as k1/3 correspond-
ingly to the k−5/3 scaling of the velocity. Notice that in a

superfluid the vorticity is zero everywhere except on quan-
tized vortex lines. In order to use as much as possible the
toolkit of ideas and methods of classical hydrodynamics,
we shall define in the next sections an ”effective” super-
fluid vorticity field ωs; this definition (which indeed [13]
yields the classical k1/3 vorticity scaling corresponding to
the k−5/3 velocity scaling) is possible on scales that exceed
the mean intervortex scale `, provided that the vortex lines
contained in a fluid parcel are sufficiently polarized. This
procedure opens the way for a possible identification of
”local” values of L(r, t) with the magnitude |ωs| of the
vector field ωs.

The second difference is that liquid helium is a two fluid
system, and we expect both superfluid and normal fluid
to be turbulent. This makes the problem of superfluid
turbulence much richer than classical turbulence, but the
analysis becomes more involved. For example, the exis-
tence of the intermediate scale ` makes it impossible to
apply arguments of scale invariance to the entire inertial
interval and calls for its separation into three ranges. The
first is a “hydrodynamic” region of scales `� R� D (cor-
responding to kD � k � k` in k-space where kD = 2π/D
and k` = 2π/`), which is similar (but not equal) to the
classical inertial range; the second is a “Kelvin wave re-
gion” ξ � R � ` where energy is transferred further to
smaller scales [14] by interacting Kelvin waves (helix-like
deformations of the vortex lines). In the third, interme-
diate region R ≈ `, the energy flux is caused probably by
vortex reconnections.

Finally, the third difference is that mutual friction be-
tween normal and superfluid components leads to (dissi-
pative) energy exchange between them in either direction.

Studies of classical turbulence are solidly based on the
Navier-Stokes Eq. (1). Unfortunately, there are no well
established equations of motion for 4He in the presence
of superfluid vortices. We have only models at different
levels of description (for an overview see Sec. 4). All these
issues make the problem of superfluid turbulence very in-
teresting from a fundamental view point, simultaneously
creating serious problems in experimental, numerical and
analytical studies.

Experiments: flows, probes and spectra.. – In
this section we shall limit our discussion to experimental
techniques for 4He. The methods used in 3He, at temper-
atures which are one thousand times smaller, are rather
different [15], and we shall only cite the results in 3He
which are directly relevant to our aim.

Possibly the simplest method to generate turbulence in
4He is the application of a temperature gradient which cre-
ates a flow of the normal component carrying heat from
the hot to the cold plate; this flow is compensated by the
counterflow of the superfluid component in the opposite
direction which maintains a zero mass flux. This form
of heat conduction, called thermal counterflow, is unlike
what happens in ordinary fluids. Moreover, under thermal
drive, the energy pumping is dominated by the intervortex
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Fig. 1: Panel A: Examples of flows sustaining steady turbulence in superfluid 4He for which spectral measurements were
performed. From left to right : Von Karman flows ( [18–20]), wind-tunnels ( [21,22]) and pressurised circulator cooled through
a heat exchanger [23]. Panel B: Snapshot of a vortex tangle calculated using the Vortex Filament Method (VFM) in a periodic
box [85].

length scale ` and according to numerical simulations there
is no inertial interval in which the energy flux scales over
the wavenumbers as in the KO–41 scenario [16]. The re-
sulting “quantum” superfluid turbulence [17] is thus very
different from classical turbulence at large level of drive
and will not be discussed here.

From the experimental point of view, the generation of
turbulence by mechanical means (more similar to what
is done in the study of ordinary turbulence) is not as
straightforward. Nevertheless, the literature reports a
number of successful approaches, which can be classified
into three main categories: (i) flows driven by vibrating
objects, (ii) one-shot-flows driven by single-stroke-bellows,
towed grids or spin-up/down of the container, and (iii)
flows continuously driven by propellers. Most efforts in
characterising the turbulent fluctuations have focused on
the third category. The reason is simple: the resulting
turbulent flows do not suffer from the lack of homogene-
ity and isotropy which is typical of the flows generated
by vibrating objects, and allow better statistical conver-
gence (and improved stationarity) than measurements in
non-stationary flows.

To illustrate the different cryogenics experimental set-
ups, it is useful to distinguish between the two liquid
phases of 4He: liquid helium I (He-I) and helium II (He-
II), respectively above Tλ and below Tλ. The former is
an ordinary viscous fluid, the latter is the quantum fluid
of interest here. Since He-II is created by cooling He-I,
in most cases the same apparatus or experimental tech-
nique can be used to probe classical as well as quantum
turbulence, which helps making comparisons.

Panel A in Fig. 1 illustrates three different flow arrange-
ments which have enabled spectral measurements of veloc-
ity and vortex line density. The configuration on the left is
inspired by the historical experiment of Tabeling and col-
laborators [18] in which helium was driven by two counter-

rotating propellers attached to motors operating at cryo-
genic temperature (or at room temperature in more recent
experiments [19, 20]). The configuration in the middle is
the TOUPIE wind-tunnel [21] which upgrades a smaller
wind-tunnel [22]. A 1-m-high column of liquid 4He pres-
surises hydrostatically the bottom wind-tunnel section to
allow operation in He-I up to velocities of 4 m/s with-
out the occurrence of cavitation (prevented by the high
thermal conductivity of superfluid helium below the su-
perfluid transition). Without a dedicated pressurisation
system, the bubbles which would form in He I above Tλ
would prevent the comparison of turbulence above and be-
low the superfluid transition in the same apparatus. The
configuration at the right illustrates the TSF circulator,
which consists of a pressurised helium loop cooled by a
heat exchanger [23]. All these flows are driven by the cen-
trifugal force generated by propellers: such forcing does
not rely on viscous nor thermal effects and is therefore
well fitted to liquid helium irrespectively of its superfluid
density fraction.

Experience shows that probing cryogenic flows is of-
ten more challenging than producing the flow themselves,
partly because dedicated probes often have to be designed
and manufactured for each experiment. This is all the
more true if good space and time resolutions are required
to resolved the fluctuating scales of superfluid turbulence.

Below Tλ, the most commonly-used local velocity probe
is based on the principle of the “Pitot” or “Prandtl” tube
(sometimes called “total head pressure” tube), which is il-
lustrated in the top-left and right sketches of Fig. 2C. One
end of a tube is inserted parallel to the mean flow, while
the other end is blocked by a pressure gauge. The stag-
nation point which forms at the open end of the tube is
associated with an overpressure probed by the gauge. This
stagnation-point overpressure P is related to the incom-
ing flow velocity V using Bernoulli relation P ' ρV 2/2.
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Fig. 2: Color online. Measured spectra of superfluid turbulence in 4He. All cut-off at high k or f are caused by the resolution
of the probes. Panel A: Energy spectrum measured in the TOUPIE wind-tunnel below the superfluid transition (solid blue
line, 1.56 K< Tλ) and above Tλ (dashed red line) [21]. Above Tλ, the parameter `? on the x-axis is chosen such that the small
peak separating the inertial scales plateau and the cascade matches the one estimated below Tλ at kz`/2π = 10−3 (this peak is
associated with eddy shedding from the cylinder used upstream to generate turbulence). Panel B: Energy spectra for different
mean flow velocities for T = 1.55 K in a smaller He-II wind tunnel. An arbitrary vertical offset had been introduced for clarity
(see legend). Panel C: Local velocity probes used in superfluid 4He for measurements of fluctuations at sub-millimetre scales.
Stagnation pressure velocity probes without static pressure reference (top-left) ( [18, 23] ), stagnation pressure velocity probe
with a static pressure reference (right) ( [21, 23]), and cantilever-based velocity probe (bottom left) [26].

In the arrangement depicted in the right sketch of Fig. 2C,
the use of a differential pressure probe allows to remove
the “static” pressure variation of the flow associated with
turbulent pressure fluctuations and acoustical background
noise. The operation of such stagnation-pressure probes
below the critical temperature and their limitations are
discussed in Ref. [23]. In summary, the fluctuations δP of
P are proportional to the fluctuations δV of V up to the
second order term in (δV/V )2 and the mean flow direction
has to be well defined (excessive angles of attack lead to
measurement bias). Pitot tubes achieving nearly 0.5-mm
spatial resolution, and others with DC-4 kHz bandwidth
have been operated successfully. At such scales and in
the turbulent flows of interest, helium’s two components
are expected to be locked together -as discussed later- and
described by a single continuous fluid of total density ρ.
Therefore stagnation pressure probes determine the com-
mon velocity of both fluid components.

The first experimental turbulent energy spectra below
Tλ were reported in 1998 [18] using the set-up illustrated
in Fig. 1A-left. Energy spectra at 2.08 K and 1.4 K were
found very similar to the spectrum measured in He I above
the superfluid transition, at 2.3 K. In the range of frequen-
cies corresponding to the length scale of the forcing scale
and the smallest resolved length scale, the measured spec-
trum was compatible with KO–41. The next published
confirmation of Kolmogorov’s law came in 2010 [23] from
two independent wind-tunnels of the types depicted in the
centre and at the right-side of Fig. 1A. Measurements ob-
tained with the first type of wind-tunnel are reproduced in
Fig. 2B, which shows energy spectra at 1.6 K for various
mean velocities of the flow. We note that four decades sep-

arate the integral scale of the flow (D ' 10 mm) and the
intervortex scale ` ' 1µm, to be compared with the 1 mm
effective resolution of the anemometer. Measurements ob-
tained with the second type of wind-tunnel explored grid
turbulence. Although the signal-to-noise ratio was not as
good, the choice of a well-defined flow allowed to estimate
independently both prefactors of Eq. (3): the Kolmogorov
constant CK41 and the dissipation rate ε. Within accuracy
(30% for CK41), it was found that both prefactors were sim-
ilar above the superfluid transition and below it in He-II
at T = 2.0 K. The energy spectrum shown in Fig. 2A has
been recently obtained in the TOUPIE experiment both
above and below Tλ in the far wake of a disc. To normalise
the x-axis of this plot, the mean intervortex distance ` in

He-II was estimated using the relation 2`/D =Re
−3/4
κ [24]

where Reκ = DV/κ is a Reynolds number defined using
the root mean square velocity from the anemometer, and
the prefactor 2 was fitted to experimental and numerical
data in the range T ' 1.4− 1.6K.

The high signal-to-noise ratio of this dataset allowed to
check the validity of the −4/5 Karman-Howarth law [21].
This law, sometimes described as the only exact relation
known in turbulence, confirms that energy cascades from
large to small scales without dissipation within the inertial
range where the KO–41 scaling is observed.

Finally, it should be noticed that intermittency of ve-
locity fluctuations were partially explored in two experi-
mental studies [18,25], but no specific signature of super-
fluid turbulence was reported. Both studies only explored
the high and low temperature regimes (ρs/ρn ' 0.29 at
T = 2.08K and ρs/ρ > 0.85 at T ≤ 1.56K).

In all published energy spectra, the limited resolution
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of the anemometer is responsible for the cut-off at high
frequency/small scale. Thus, the observed spectra reveal
only “half” of the picture, namely the integral scales and
the upper half of the inertial scales. To circumvent this
limitation in resolution, a first approach is to scale up the
experiment (at given Reynolds number Reκ) so that all
characteristic flow scales are magnified and better resolved
with existing probes. This approach has been undertaken
with the construction of a 78-cm diameter He-II Von Kar-
man flow in Grenoble [20] that is one order of magnitude
larger than the 1998’s reference cell. Another approach
is to scale down the probes. For practical reasons it is
difficult to miniaturise much further stagnation pressure
probes without a significant decrease of their sensibility
or time response. New types of anemometers need to be
invented. One possibility arises from the recent develop-
ment of fully micro-machined anemometers based on the
deflection of a silicon cantilever (see the bottom left sketch
of Fig. 2C). Preliminary spectral measurements with a res-
olution of 100µm have been recently reported in a He-II
test facility [26].

Equations of motion: three levels of description..
– In the absence of superfluid vortices, Landau’s two-
fluid equations [6] for the superfluid and normal fluid ve-
locities us and un account for all phenomena observed in
He-II at low velocities, for example second sound and ther-
mal counterflow. In the incompressible limit (∇ · us = 0,
∇ · un = 0) Landau’s equations are:[

(∂ us/∂t) + (us · ∇)us

]
= −∇ps/ρs, (6a)[

(∂ un/∂t) + (un · ∇)un

]
= −∇pn/ρn + νn∇2un ,(6b)

where νn = µ/ρn is the kinematic viscosity, and the effi-
cient pressures ps and pn are defined by∇ps = (ρs/ρ)∇p−
ρsS∇T and ∇pn = (ρn/ρ)∇p + ρsS∇T . On physical
ground, Laudau argued that the superfluid is irrotational.

The main difficulty in developing a theory of superfluid
turbulence is the lack of an established set of equations
of motion for He-II in the presence of superfluid vortices.
We have only models at different levels of description.

First level. At the first, most microscopic level of de-
scription, we must account for phenomena at the length
scale of the superfluid vortex core, R ≈ ξ. Monte Carlo
models of the vortex core [27], although realistic, are not
suitable for the study of the dynamics and turbulent mo-
tion. A practical model of a pure superfluid is the Gross-
Pitaevskii Equation (GPE) for a weakly-interacting Bose
gas [2]:

i~
∂Ψ

∂t
= − ~2

2M
∇2Ψ + V0|Ψ|2Ψ− E0Ψ , (7)

where Ψ(r, t) is the complex condensate’s wave function,
V0 the strength of the interaction between bosons, E0

the chemical potential and M the boson mass. The
condensate’s density ρ̃s and velocity ṽs are related to

Ψ = |Ψ| exp(iΘ) via the Madelung transformation ρ̃s =
M |Ψ|2 , ũs = ~∇Θ/M , which confirms Landau’s intu-
ition that the superfluid is irrotational. It can be shown
that, at length scales R � ξ = ~/

√
2ME0, the GPE re-

duces to the classical continuity equation and the (com-
pressible) Euler equation. It must be stressed that, al-
though the GPE accounts for quantum vortices, finite vor-
tex core size (of the order of ξ), vortex nucleation, vor-
tex reconnections, sound emission by accelerating vortices
and Kelvin waves, it is only a qualitative model of the
superfluid component. He-II is a liquid, not a weakly-
interacting gas, and the condensate is only a fraction of
the superfluid density ρs. No adjustment of V0 and E0 can
fit both the sound speed and the vortex core radius, and
the dispersion relation of the uniform solution of Eq. (7)
lacks the roton’s minimum which is characteristic of He-II
[6]. This is why, strictly speaking, we cannot identify ρ̃s
with ρs and ũs with us. Nevertheless, when solved numer-
ically, the GPE is a useful model of superfluid turbulence
at low T where the normal fluid fraction vanishes, and
yields results which can be compared to experiments, as
we shall see.

Second level. Far away from the vortex core at length
scales larger than ξ and in the zero Mach number limit,
the GPE describes incompressible Euler dynamics. This
is the level of description of a second practical model, the
Vortex Filament Model (VFM) of Schwarz [28]. At this
level (length scales R � ξ) we ignore the nature of the
vortex core but distinguish individual vortex lines, which
we describe as oriented space curves s(ξ, t) of infinitesimal
thickness and circulation κ, parametrised by arc length ζ.
Their time evolution is determined by Schwarz’s equation

ds

dt
= usi + w , usi(s) =

κ

4π

∮
L

(s1 − s)× ds1
|s1 − s|3

, (8a)

where the self-induced velocity usi is given by the Biot-
Savart law [29], and the line integral extends over the vor-
tex configuration. At nonzero temperatures the term w
accounts for the friction between the vortex lines and the
normal fluid [7]:

w = αs′×uns−α′s′× [s′×uns] , uns = un−usi , (8b)

where s′ = ds/dζ is the unit tangent at s, and α, α′ are
known [8] temperature-dependent friction coefficients. In
the very low temperature limit (T → 0), α and α′ become
negligible [8], and we recover the classical result that each
point of the vortex line is swept by the velocity field pro-
duced by the entire vortex configuration.

In numerical simulations based on the VFM, vortex lines
are discretized in a Lagrangian fashion, Biot-Savart inte-
grals are desingularised using the vortex core radius ξ, and
reconnections are additional artificial ad-hoc procedures
that change the way pairs of discretization points are con-
nected. Reconnection criteria are described and discussed
in Ref. [30, 31]; Ref. [32] compares GPE and VFM recon-
nections with each other and with experiments. Simula-
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Fig. 3: Color online. Numerical superfluid energy spectra vs normalised wavenumber for three hierarchical levels of motion
Eqs. (9), (8) and (7): Panel A: Superfluid (solid line) and normal fluid (dashed line) energy spectra from simulation of the
HVBK equations (9) at T = 1.15 K (red) and '2.16 K (blue) with truncation of phase space beyond the intervortex scale
[21]. Panel B: Superfluid energy spectrum from VFM simulations (8) at T = 2.164 K (solid green line) [85] with synthetic
turbulence prescribed for the normal component. Superfluid (red/blue solid line) and normal fluid (red/blue dashed line) energy
spectra from shell model simulation of the HVBK equations at 1.44 K (red) and 2.157 K (blue) [60]. Panel C: Superfluid energy
spectrum from GPE simulations (7) complemented by dissipation at high k [41]. The numerical resolution is 20483 (red line),
10243 (dashed blue line) and 5123 (green dots). The intervortex distance ` results from a fit of the data (see original publication).
In all panels, the normalisation of the x-axis (wavevector k) highlights the mean intervortex distance `. Black dashed lines show
analytical predictions of the bottleneck [42] discussed in Sec. 8A with different Λ = ln(`/ξ). The black solid line with Λ = 2
corresponds to the simulation in Ref. [41]. The dashed cyan lines show (from the left) the KO–41 (-5/3) scaling, the energy
equipartition scaling (+2) and, at the right, the (-5/3) LN spectrum Eq. (13).

tions at large values of vortex line density are performed
using a tree algorithm [30] which speeds up the evaluations
of Biot-Savart integrals from N2 to N logN where N is
the number of discretization points. The major drawback
of the VFM is that the normal fluid un is imposed (either
laminar or turbulent), therefore the back-reaction of the
vortex lines on un is not taken into account. The reason is
the computational difficulty: a self-consistent simulation
would require the simultaneous integration in time of Eq.
(8) for the superfluid, and of a Navier-Stokes equation
for the normal fluid (implemented with suitable friction
forcing at vortex lines singularities). Such self-consistent
simulations were carried out only for a single vortex ring
[33] and for the initial growth of a vortex cloud [34]. This
limitation is likely to be particularly important at low and
intermediate temperatures (at high temperatures the nor-
mal fluid contains most of the kinetic energy, so it is less
likely to be affected by the vortices).

Third level. At a third level of description we do not
distinguish individual vortex lines any longer, but rather
consider fluid parcels which contain a continuum of vor-
tices. At these length scales R � ` we seek to generalise
Landau’s equations (6) to the presence of vortices. In
laminar flows the vortex lines (although curved) remain
locally parallel to each other, so it is possible to define the
components of a macroscopic vorticity field ωs by taking
a small volume larger than ` and considering the super-
fluid circulation in the planes parallel to the Cartesian
directions (alternatively, the sum of the oriented vortex
lengths in each Cartesian direction). We obtain the so-
called Hall-Vinen (or HVBK) “coarse-grained” equations

[35,36]:[∂ us

∂t
+ (us · ∇)us

]
= − 1

ρs
∇ps − fns, (9a)[∂ un

∂t
+ (un · ∇)un

]
= − 1

ρn
∇pn + νn∇2un +

ρs
ρ

fns,(9b)

fns = αω̂s × (ωs × uns) + α′ω̂s × uns, (9c)

where ωs = ∇ × us, ω̂s = ωs/|ωs| and fns is the mu-
tual friction force. These equations have been used with
success to predict the Taylor-Couette flow of He-II, its sta-
bility [37] and the weakly nonlinear regime [38]. In these
flows, the vortex lines are fully polarised and aligned in
the same direction, and their density and orientation may
change locally and vary as a function of position (on length
scales larger than `).

The difficulty with applying the HVBK equations to
turbulence is that in turbulent flows the vortex lines tend
to be randomly oriented with respect to each other, so the
components of s′ cancel out to zero (partially or totally),
resulting in local vortex length (hence energy dissipation)
without any effective superfluid vorticity. In this case, the
HVBK equations may become a poor approximation and
underestimate the mutual friction coupling. Nevertheless,
they are a useful model of large scale superfluid motion
with characteristic scale R� `, particularly because (un-
like the VFM) they are dynamically self-consistent (nor-
mal fluid and superfluid affect each other). We must also
keep in mind that Eq. (9) do not have physical meaning
at length scales smaller than `. In the next sections we
shall describe numerical simulations of equations (9) as
well as shell models and theoretical models based on these
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equations. In some models the mutual friction force is
simplified to fns = −ακLuns where L = 1/`2.

Numerical simulations in the framework of all three ap-
proaches (7), (8) and (9) are shown in Figs. 3. They clearly
show KO–41 scaling, in agreement with the experimental
results shown in Figs. 2. Details of this simulations will
be described below.

Numerical experiments.. – Since the pioneering
work of Schwarz [28], numerical experiments have played
an important role, allowing the exploration of the conse-
quences of limited sets of physical assumptions in a con-
trolled way, and providing some flow visualization.

The GPE. Numerical simulations of the GPE in a
three-dimensional periodic box have been performed for
decaying turbulence [39] following an imposed arbitrary
initial condition, and for forced turbulence [40,41]. Besides
vortex lines, the GPE describes compressible motions and
sound propagation; therefore, in order to analyse turbu-
lent vortex lines, it is necessary to extract from the total
energy of the system (which is conserved during the evo-
lution) its incompressible kinetic energy part whose spec-
trum is relevant to our discussion. To reach a steady state,
large-scale external forcing and small-scale damping was
added to the GPE [41]. The resulting turbulent energy
spectrum, shown in Fig. 3C, agrees with the KO–41 scal-
ing (shown by cyan dot-dashed line), and demonstrates
bottleneck energy accumulation near the intervortex scale
at zero temperature predicted earlier in [42] and discussed
in Sect. 8A. The KO–41 scaling observed in GPE simu-
lations was found to be consistent with the VFM at zero
temperature [13,43] and has also been observed when mod-
elling a trapped atomic Bose–Einstein condensate [44].

The GPE can be extended to take into account finite
temperature effects. Different models have been proposed
[45–48].

The VFM. Most VFM calculations have been per-
formed in a cubic box of size D with periodic boundary
conditions [49] In all relevant experiments we expect that
the normal fluid is turbulent because its Reynolds number
Re = DVn/νn is large (where Vn the root mean square
normal fluid velocity). Recent studies thus assumed the
form [5,16,50]

. un(s, t) =

M∑
m=1

(Am × km cosφm + Bm × km sinφm),

where φm = km · s + fmt, km and fm =
√
k3mE(km) are

wave vectors and angular frequencies. The random param-
eters Am, Bm and km are chosen so that the normal fluid’s

energy spectrum obeys KO–41 scaling E(km) ∝ k
−5/3
m in

the inertial range k1 < k < kM . This synthetic turbulent
flow [51] is solenoidal, time-dependent, and compares well
with Lagrangian statistics obtained in experiments and
direct numerical simulations of the Navier-Stokes equa-
tion. Other VFM models included normal-fluid turbu-
lence generated by the Navier–Stokes equation [52] and a
vortex-tube model [53], but, due to limited computational

resources, only a snapshot of the normal fluid, frozen in
time, was used to drive the superfluid vortices.

In all numerical experiments, after a transient from
some initial condition, a statistical steady state of super-
fluid turbulence is achieved, in the form of a vortex tangle
(see Fig. 1-B) in which the vortex line density L(t) fluctu-
ates about an average value independent of the initial con-
dition. It is found [5, 16, 50] that the resulting superfluid
energy spectrum Es(k) is consistent with KO–41 scaling in
the hydrodynamic range kD < k < k` (see the green line
of Fig. 3B). This result holds true at zero temperature,
where ρn = 0 [13,43].

Recent analytical [54] and numerical studies [5, 16] of
the geometry of the vortex tangle reveal that the vortices
are not randomly distributed, but there is a tendency to
locally form bundles of co-rotating vortices, which keep
forming, vanish and reform somewhere else. These bun-
dles associate with the Kolmogorov spectrum: if turbu-
lence is driven by a uniform normal fluid (as in the orig-
inal work of Schwarz [28] recently verified in Ref. [55]),
there are nor Kolmogorov scaling nor bundles. Laurie et
al. [5] decomposed the vortex tangle in a polarised part
(of density L‖) and a random part (of density L×), as ar-
gued by Roche & Barenghi [56], and discovered that L‖ is

responsible for the k−5/3 scaling of the energy spectrum,
and L× for the f−5/3 scaling of the vortex line density
fluctuations, as suggested in Ref. [22].

The HVBK equations. From a computational view-
point, the HVBK equations are similar to the Navier-
Stokes equation (1). Not surprisingly, standard methods
of classical turbulence have been adapted to the HVBK
equations, e.g. Large Eddy Simulations [57], Direct Nu-
merical Simulations [24,58] and Eddy Damped QuasiNor-
mal Markovian simulations [59].

The HVBK equations are ideal to study the coupled
dynamics of superfluid and normal fluid in the limit of
intense turbulence at finite temperature. Indeed, by ig-
noring the details of individual vortices and their fast dy-
namics, HVBK simulations do not suffer as much as VFM
and GPE simulations from the wide separation of space
and time scales which characterize superfluid turbulence.
Moreover, well optimized numerical solvers have been de-
veloped for Navier-Stokes turbulence and they can be eas-
ily adapted to the HVBK model. Thus, simulations over
a wide temperature range (1.44 < T < 2.157 K corre-
sponding to 0.1 ≤ ρn/ρs ≤ 10) evidence a strong locking
of superfluid and normal fluid (us ≈ un) at large scales,
over one decade of inertial range ( [58]). In particular, it
was found that even if one single single fluid is forced at
large scale (the dominant one), both fluids still get locked
very efficiently.

Fig. 3A illustrates velocity spectra generated by direct
numerical simulation of the HVBK equations, while the
red and blue solid lines of Fig. 3B show spectra obtained
using a shell model of the same equations (see paragraph
at the end of the section). In both case, a clear k−5/3
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spectrum is found for both fluid components, at all tem-
perature and large scale.

Information about the quantization of vortex lines is lost
in the coarse graining procedure which leads to Eqs. (9).
As discussed in Sect. 8B, a quantum constrain can be re-
introduced in this model by truncating superfluid phase
space for |k| ≤ `−1, causing an upward trend of the
low temperature velocity spectrum of Fig. 3A which can
be interpreted as partial thermalization of superfluid ex-
citations. This procedure also leads to the prediction
LD2 = 4Re3/2 [24] which is consistent with experiments
and allows to identify the spectrum of L(r)/κ with the
spectrum of the scalar field |ωs(r)|. It is found that this
spectrum is temperature–dependent in the inertial range
with a flat part at high temperature (reminiscent of the
corresponding spectrum of the magnitude of the vortic-
ity in classical turbulence) which contrasts the k−5/3 de-
creases at low temperature (consistent with experiments
[22]).

Essential simplification of the HVBK Eqs. (9) can be
achieved with the shell-model approximation [60–62]. The
complex shell velocities usm(km) and unm(km) mimic the
statistical behaviour of the Fourier components of the tur-
bulent superfluid and normal fluid velocities at wavenum-
ber k. The resulting ordinary differential Eqs. for un,sm cap-
ture important aspects of the HVBK Eqs. (9). Because of
the geometrical spacing of the shells (km = 2mk0), this ap-
proach allows more decades of k-space than Eqns. (9) (see
Fig. 4 with eight decades in k-space [61]). This extended
inertial range allows detailed comparison of intermittency
effects in superfluid turbulence and classical turbulence
(see Sec. 6C).

Models: the hydrodynamic range. . – In this
section we discuss theoretical models of large scale (eddy
dominated) motions at wavenumbers k � k` which are im-
portant at all temperatures from 0 to Tλ. These motions
can be tackled using the hydrodynamic HVBK Eqs. (9),
thus generalising what we know about classical turbu-
lence. We shall start by considering the simpler case of
3He (Sect. 6A), in which there is only one turbulent fluid,
then move to more difficult case of 4He (Sect. 6B)in which
there are two coupled turbulent fluids, and finally discuss
intermittency (Sect. 6C).

One turbulent fluid: 3He. The viscosity of 3He is
so large that, in all 3He turbulence experiments, we
expect the normal fluid to be at rest (un = 0) or in solid
body rotation in rotating cryostat (in which case our
argument requires a slight modification). Liquid 3He thus
provides us with a simpler turbulence problem (superfluid
turbulence in the presence of linear friction against a
stationary normal fluid) than 4He (superfluid turbulence
in the presence of normal fluid turbulence). At scales
R � `, we expect Eq. (9a) to be valid, provided we add
a suitable model for the friction. Following Ref. [63], we
approximate fns as

fns = −ακLuns = −Γuns , 〈|ωs|2〉 ≈ 2

∫ 1/`

k0

k2E(k)dk ,

(10)
with un = 0. Here Γ = ακøT, øT ≡

√
〈|ωs|2〉 is the

characteristic “turbulent” superfluid vorticity, estimated
via the spectrum E(k). k0 is the energy pumping scale.
Using the differential approximation (4) for the energy
spectrum, the continuity Eq. (2) in the stationary case
becomes

1

8

d

dk

[√
k11Es(k)

d

dk

Es(k)

k2

]
+ ΓEs(k) = 0. (11)

Analytical solutions of Eq. (11) are in good agreement
[63,64] with the results of numerical simulation of the shell
model to the hydrodynamic Eq. (9a), providing us with
quasi-qualitative description of turbulent energy spectra
in 3He over a wide region of temperatures.

Two coupled turbulent fluids: 4He. In 4He, we have to
account for motion of the normal component, which has
very low viscosity and is turbulent in the relevant experi-
ments. Eqs. (9a), (9b) and (10) (now with un 6= 0) result
in a system of energy balance equations for superfluid and
normal fluid energy spectra Es(k) and En(k) that gener-
alises Eq. (11) [65]:

dεs(k)

dk
+ Γ

[
Es(k)− Ens(k)] = 0 , (12a)

dεn(k)

dk
+
ρs
ρn

Γ
[
En(k)− Ens(k)] = −2νnk

2En(k) .(12b)

Here superfluid and normal fluid energy fluxes εs(k) and
εn(k) can be expressed via Es(k) and En(k) by differen-
tial closure (4). The cross-correlation function Ens(k) is
normalized such that

∫
Ens(k)dk = 〈us · un〉. If, at given

k, superfluid and normal fluid eddies are fully correlated
(locked), then Ens(k) = Es(k) = En(k). If they are sta-
tistically independent (unlocked), then Ens(k) = 0. The
closure equation for Ens(k) was proposed in Ref. [65]:

Esn(k) =
ρsEs(k) + ρnEn(k)

ρ [1 +K(k)]
, K(k) ≡ ρn[νnk

2 + γn(k) + γs(k)]

ραωT
.

(12c)
Here γn(k) ' k

√
kEn(k) and γs(k) ' k

√
kEs(k) are char-

acteristic interaction frequencies (or turnover frequencies)
of eddies in the normal and superfluid components. They
are related to the well known effective turbulent viscosity
νT by νTk

2 = γ(k).
For large mutual friction or/and small k, when K(k)�

1 and can be neglected, Eq. (12c) has a physically mo-
tivated solution Esn(k) = Es(k) = En(k) corresponding
to full locking un(r, t) = us(r, t). In this case the sum of
Eq. (9a) (multiplied by ρs) and Eq. (9b) (multiplied by ρn)
yields the Navier-Stokes equation with effective viscosity
ν̃ = νρn/ρ. Thus, in this region of k, one expects clas-
sical behaviour of hydrodynamic turbulence with KO–41
scaling (3) (up to intermittency corrections discussed in
Sec. 6C).
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For small mutual friction or/end large k, when K(k)�
1, Eqs. (12c) gives [65] Esn(k) �

√
En(k)Es(k), i.e. full

decorrelation of superfluid and normal fluid velocities. In
this case normal component will have KO–41scaling (3),

En(k) ' ε
2/3
n k−5/3, up to the Kolmogorov micro-scale kη

that can be found from the condition νnk
2
η ' γn(kη), giv-

ing the well known estimate kη ' ε
1/4
n /ν

3/4
n . Simultane-

ously, the superfluid spectrum also obeys the same KO–41

scaling, Es(k) ' ε2/3s k−5/3. Moreover, since at small k the
two fluid components are locked, we expect that εs ≈ εn.
Assuming that the 5/3 scaling is valid up to wavenumber

k` = 1/`, we estimate that k` ' ε
1/4
s /κ3/4, which is simi-

lar to the estimate for kη with the replacement of νn with
κ. In He-II, the numerical values of νn and κ are similar,
thus we conclude that the viscous cutoff kη for the normal
component and the quantum cutoff k` for the superfluid
component are close to each other.

At a given temperature, the decorrelation crossover
wave vector k∗ between the two regimes described above
can be found from the condition K(k∗) = 1 using the

estimate γn(k∗) ' γs(k∗) ' ε
1/3
s k

2/3
∗ & νk2∗ with ωT '

ε
1/3
s k

2/3
` . We obtain k∗` ' (ρn/αρ)3/2. The quantity

αρ/ρn varies between 1.2 and 0.5 [8] in the temperature
range 0.68 < (T/Tλ) < 0.99 where the motion of the nor-
mal fluid is important. We conclude that k∗ ' k`, which
means that normal fluid and superfluid eddies are practi-
cally locked over the entire inertial interval. Nevertheless,
dissipation due to mutual friction cannot be completely
ignored, leading to intermittency enhancement described
next.

Intermittency enhancement in 4He. The first numer-
ical study of intermittent exponents [25] did not find any
intermittent effect peculiar to superfluid turbulence nei-
ther at low temperature (T ' 0.5Tλ, ρs/ρn = 40) nor
at and high temperature (T ' 0.99Tλ, ρs/ρn = 0.1), in
agreement with experiments performed at the same tem-
peratures (see Sect. 3).

Recent shell model simulations [61] with eight decades
of k-space allowed detailed comparison of classical and su-
perfluid turbulent statistics in the intermediate temper-
ature range corresponding to ρs ≈ ρn. The results were
the following. For T slightly below Tλ, when ρs/ρn � 1,
the statistics of turbulent superfluid 4He appeared simi-
lar to that of classical fluids, because the superfluid com-
ponent can be neglected, see green lines in Fig. 4 with
ρs/ρ = 0.1. The same result applies to T � Tλ (ρn � ρs),
as expected due to the inconsequential role played by the
normal component, see blue lines with ρs/ρ = 0.9. In
agreement with the previous study the intermittent scal-
ing exponents appeared the same in classical and low-
temperature superfluid turbulence (indeed the nonlinear
structure of the equation for the superfluid component is
the same as of Euler equation, and dissipative mechanisms
are irrelevant.)

A difference between classical and superfluid intermit-
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k1.72E(k)
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Fig. 4: Superfluid (solid lines) and normal fluid (dash lines)
compensated energy spectra k1.72E(k); the compensation fac-
tor is the classical energy spectrum with intermittency correc-
tion. Inset: k5/3E(k) for T = 0.9Tλ. Shell model simulation
of the HVBK model at T/Tλ = 0.99 K (green), 0.9 (red) and
0.9 (blue), corresponding to ρs/ρ = 0.1 , 0.5 , and 0.9 respec-
tively [61]. The vertical dash lines indicate k` ≡ 1/`.

tent behaviour in a wide (up to three decades) interval
of scales was found in the range 0.8Tλ < T < 0.9Tλ
(ρs ≈ ρn), as shown by red lines in Fig. 4 with ρs/ρ = 0.5.
The exponents of higher order correlation functions also
deviate further from the KO–41 values. What is predicted
is thus an enhancement of intermittency in superfluid tur-
bulence compared to the classical turbulence.

Models: the Kelvin wave range.. – Now we come
to the more complicated and more intensively discussed
aspect of the superfluid energy spectrum: what happens
for k`� 1, where the quantisation of vortex lines becomes
important. This range acquires great importance at low
temperatures, typically below 1 K in 4He, and is relevant
to turbulence decay experiments. Here we shall describe
only the basic ideas, avoiding the most debated details.

For k`� 1 we neglect the interaction between separate
vortex lines (besides the small regions around vortex
reconnection events, which will be discussed later).
Under this reasonable assumption, at large k superfluid
turbulence can be considered as a system of Kelvin waves
(helix-like deformation of vortex lines) with different
wavevectors interacting with each other on the same
vortex. The prediction that this interaction results
in turbulent energy transfer toward large k [66] was
confirmed by numerical simulations in which energy
was pumped into Kelvin waves at intervortex scales by
vortex reconnections [67] or simply by exciting the vortex
lines [68]. The first analytical theory of Kelvin wave
turbulence (propagating along a straight vortex line and
in the limit of small amplitude compared to wavelength)
was proposed by Kozik and Svistunov [69] (KS), who
showed that the leading interaction is a six-wave scat-
tering process (three incoming waves and three outgoing
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waves). Under the additional assumption of locality of the
interaction (that only compatible wave-vectors contribute
to most of the energy transfer) KS found that (using the
same normalisation of other hydrodynamic spectra such
as Eqs. (3)) the energy spectrum of Kelvin waves is

E
KS

KW(k) ' Λ ε
1/5
KWκ

7/5 `−8/5k−7/5, (KS spectrum).

Here Λ ≡ ln(`/ξ) ' 12 or 15 in typical 4He and 3He ex-
periments, and εKW is the energy flux in three dimensional
k-space.

Later L’vov-Nazarenko (LN) [70] criticised the KS as-
sumption of locality and concluded that the leading con-
tribution to the energy transfer comes from a six waves
scattering in which two wave vectors (from the same side)
have wavenumbers of the order of 1/`. LN concluded that
the spectrum is

E
LN

LN (k) ' Λ ε
1/3
KWκ `

−4/3k−5/3, (LN spectrum). (13)

This KS vs LN controversy triggered an intensive debate
(see e.g. Refs [71–76]), which is outside the scope of
this article. We only mention that the three–dimensional
energy spectrum EKW (k) can be related to the one–
dimensional amplitude spectrum AKW (k) by EKW (k) ∼
~ωn where ω(k) ∼ k2 is the angular frequency of a Kelvin
wave of wavenumber k, ~ω the energy of one quantum, and
n ∼ AKW the number of quanta; therefore, in terms of the
Kelvin waves amplitude spectrum (which is often reported
in the literature and can be numerically computed), the
two predictions are respectively AKSKW ∼ k−17/5 = k−3.40

(KS) and ALNKW ∼ k−11/3 = k−3.67 (LN). The two pre-
dicted exponents (-3.40 and -3.67) are very close to each
other; indeed VFM simulations [77] could not distinguish
them (probably because the numerics were not in the suffi-
ciently weak regime of the theory in terms of ratio of am-
plitude to wavelength). Nevertheless, more recent GPE
simulations by Krstulovic [78] based on long time inte-
gration of Eq. (7) and averaged over initial conditions
(slightly deviating from a straight line) support the LN
spectrum (13).

At finite temperature, it was shown in Ref. [79] that
the Kelvin wave spectrum (13) is suppressed by mutual
friction for k > k∗, reaching core scale (k∗ξ ≈ 1) at T '
0.07 K and fully disappears at T ' 1 K, when k∗` ≈ 1.

Models: near the intervortex scale.. – The re-
gion of the spectrum near the intervortex scale k` ≈ 1
is difficult because both eddy-type motions and Kelvin
waves are important, and the discreteness of the super-
fluid vorticity prevents direct application of the tools of
classical hydrodynamic. Nevertheless, some progress can
be made: Sect. 8A presents a differential model for the
T → 0 limit [42], and Sect. 8B describes a complementary
truncated HVBK model [24] designed for the T > 1 K
temperature range.

Differential model of 4He at zero temperature. The
description of superfluid turbulence for k` ≈ 1 is more
complicated than k` � 1 because there are no well justi-
fied theoretical approaches (like in the problem of Kelvin
wave turbulence at k` � 1) or even commonly accepted
uncontrolled closure approximations. Nevertheless, there
some qualitative predictions can be tested numerically and
experimentally, at least in the zero temperature limit.

Comparison [54] of the hydrodynamic spectrum (3) with
the Kelvin wave spectrum at T = 0 suggests that the
one dimensional nonlinear transfer mechanisms among
weakly nonlinear Kelvin waves on individual vortex lines
is less efficient than the three–dimensional, strongly non-
linear eddy-eddy energy transfer. The consequence is
an energy cascade stagnation at the crossover between
the collective eddy-dominated scales and the single vor-
tex wave-dominated scales. Ref. [42] argued that the su-
perfluid energy spectrum E(k) at k` ≈ 1 should be a
mixture of three–dimensional hydrodynamics modes and
one–dimensional Kelvin waves motions; the correspond-
ing spectra should be E

HD

(k) ≡ g(k`)E(k) and E
KW

(k) ≡
[1− g(k`)]E(k). Here g(x) '

[
1 + x2 exp(x)/4π(1 + x)

]−1
is the“blending” function which was found [42] by calcu-
lating the energies of correlated and uncorrelated motions
produced by a system of `-spaced wavy vortex lines.

The total energy flux, ε(k) arising from hydrodynamic
and Kelvin-wave contributions, was modelled [42] by di-
mensional reasoning in the differential approximation,
similar to Eq. (4): for k → 0 the energy flux is purely hy-
drodynamic and E(k) is given by Eq. (5), while for k →∞
it is purely supported by Kelvin waves and E(k) is given by
Eq. (13). This approach leads to the ordinary differential
equation ε(k) = constant, which was solved numerically.
The predicted energy spectra E(k) for different values of
Λ are shown in Fig. 3C, exhibit a bottleneck energy accu-
mulation E(k) ∝ k2 in agreement with Eq. (5).

Truncated HVBK model of 4He at finite temperature.
Recently a model [24] has been proposed that accounts for
the fact that (according to numerical evidence [28, 34, 80]
and analytical estimates [79, 81, 82]) small scales excita-
tions (R < `), such as Kelvin waves and isolated rings, are
fully damped for T & 1 K. Thus, at these temperatures,
the energy flux εs(k) should be very small at scales k & k`.
The idea [24] was to use the HVBK Eqs. (9) but truncat-
ing the superfluid beyond a cutoff wavenumber k`? = βk`,
where β is a fitting parameter of order one. Obviously, a
limitation of this model is the abruptness of the trunca-
tion (a more refined model could incorporate a smoother
closure which accounts for the dissipation associated with
vortex reconnections and the difference between L and
|ωs|/κ).

Direct numerical simulations of this truncated HVBK
model for temperatures 1 K < T < Tλ with β = 0.5 con-
firmed the KO–41 scaling of the two locked fluids in the
range kD � k < kmeso (see Fig. 3A). At smaller scales, an
intermediate (meso) regime kmeso < k < k` was found that
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expands as the temperature is lowered [24]. Apparently,
superfluid energy, cascading from larger length scales, ac-
cumulates beyond kmeso. At the lowest temperatures, this
energy appears to thermalize, approaching equipartition
with Es(k) ∝ k2, as shown by the red curve of Fig. 3A.
The process saturates when the friction coupling with the
normal fluid becomes strong enough to balance the incom-
ing energy flux ε(kmeso). In physical space, this mesoscale
thermalization should manifest itself as a randomisation
of the vortex tangle. The effect is found to be strongly
temperature dependent [83]: kmeso ∝ k`

√
ρn/ρ.

The truncated hydrodynamic model reproduces the de-
creasing spectrum of the vortex line density fluctuations
at small k and reduces to the classical spectrum in the
T → Tλ limit. This accumulation of thermalized super-
fluid excitations at small scales and finite temperature was
predicted by an earlier model developed to interpret vor-
tex line density spectra [56].

Conclusions.. – We conclude that, at large hydro-
dynamic scales kD � k � k`, the evidence for the KO–
41 k−5/3 scaling of the superfluid energy spectrum which
arises from experiments, numerical simulations and the-
ory (across all models used) is strong and consistent, and
appears to be independent of temperature (including the
limit of zero temperature in the absence of the normal
fluid [13, 39, 40, 43]). This direct spectral evidence is also
fully consistent with an indirect body of evidence aris-
ing from measurements of the kinetic energy dissipation (
[23,86–89]) and vortex line density decay [90,91] in turbu-
lent helium flows. The main open issue is the existence of
vortex bundles [13, 16] predicted by the VFM, for which
there is no direct experimental observation yet. Intermit-
tency effects, predicted by shell models [61], also await for
experimental evidence.

What happens at mesoscales just above k ≈ k` is
less understood. The differential model (at T = 0,
Sect. 8A) and the truncated HVBK model (at finite T , Sec.
8B), predict an upturning of the spectrum (temperature-
dependent for the latter model) in this region of k-space.
If confirmed by the experiments and the VFM model, this
would signify the striking appearance of quantum effects
at scales larger than `. Further insight could arise from
better understanding of fluctuations of the vortex line den-
sity. It is worth noticing that similar macroscopic mani-
festation of the singular nature of the superfluid vorticity
was also predicted for the pressure spectrum [84].

At length scales of the order of ` and less than ` the
situation is even less clear. This regime is very important
at the lowest temperatures, where the Kelvin waves are
not damped, and energy is transferred from the eddy–
dominated, three–dimensional Kolmogorov-Richardson
cascade into a Kelvin wave cascade on individual vortex
lines, until the wavenumber is large enough that energy
is radiated as sound. The main open issues which call
for better understanding concern the cross–over and more
elaborated description of the bottleneck energy accumu-

lation around ` in the wide temperature range from 0 to
about Tλ and the role of vortex reconnections in the strong
regime (large Kelvin wave amplitudes compared to wave-
length) of the cascade. At the moment, there is much
debate on these problems but no direct experimental ev-
idence for these effects. It is however encouraging that
the most recent GPE simulations [78] in the weak regime
(small amplitude compared to wavelength) seem to agree
with theoretical predictions.
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