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Abstract We consider the power-aware problem of scheduling non-preemptively a set of jobs on
a single speed-scalable processor so as to minimize the maximum lateness, under a given budget of
energy. In the offline setting, our main contribution is a combinatorial polynomial time algorithm
for the case in which the jobs have common release dates. In the presence of arbitrary release
dates, we show that the problem becomes strongly NP-hard. Moreover, we show that there is no
O(1)-competitive deterministic algorithm for the online setting in which the jobs arrive over time.
Then, we turn our attention to an aggregated variant of the problem, where the objective is to find a
schedule minimizing a linear combination of maximum lateness and energy. As we show, our results
for the budget variant can be adapted to derive a similar polynomial time algorithm and an NP-
hardness proof for the aggregated variant in the offline setting, with common and arbitrary release
dates respectively. More interestingly, for the online case, we propose a 2-competitive algorithm.

Keywords Energy efficiency · Speed scaling · Scheduling · Maximum lateness

1 Introduction

In classical scheduling an important measure of the Quality of Service (QoS) of a schedule is the
maximum lateness [8]. Every job, among other characteristics, is associated with a due date and
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the lateness of a job, with respect to a particular schedule, is defined as the difference of the job’s
completion time minus its due date, while the maximum lateness is computed as the maximum
over all jobs. In this paper, we propose to optimize this QoS objective in the context of power
management, where the operating system may change the speed of the processor(s) in order to
save energy. In general, high processor speeds imply high performance with respect to the QoS
criterion (here the maximum lateness) at the price of high energy consumption.

Formally, an instance of our problem consists of a set of n jobs J = {1, 2, . . . , n}, where every
job i is associated with a release date ri, a work wi and a delivery time qi, that have to be executed
non-preemptively on a single speed-scalable processor. Note that in this setting, where jobs are
associated with delivery times instead of deadlines, different jobs may be delivered simultaneously.
For a given schedule the lateness of job i is defined as Li = Ci + qi, where Ci is the completion
time of job i and the maximum lateness is defined as Lmax = max1≤i≤n{Li}. Jobs that attain the
maximum lateness in a schedule are referred as critical jobs.

At a given time t, if a processor runs at speed s, then its power consumption is P (s) = sα,
where α > 2 is a constant. By integrating the power over time we can compute the processor’s
energy consumption. That is, if a processor operates at a constant speed s, it executes an amount
of work w in w/s time units and consumes an amount of energy E = wsα−1.

As maximum lateness minimization and energy savings are conflicting objectives, we consider
two variants: In the, so called, budget variant, we aim in minimizing Lmax = maxi∈J{Li} for a
given budget of energy. Using the classical three field notation [10], we denote such a problem by
S1 | ri | Lmax(E), where S1 denotes a single speed scalable processor. In the second approach,
that we call aggregated variant, our objective is to minimize a linear combination of maximum
lateness and energy, that is S1 | ri | Lmax+βE, where β ≥ 0 is a given parameter that specifies the
relative importance of energy versus maximum lateness (see [4] for a motivation of the aggregated
approach).

In this context, a schedule σ has to specify for every job the time interval during which it
is executed as well as its speed over time. It is well known, e.g. [16], that there is an optimal
schedule where each job i is executed at a constant speed; this is a consequence of the convexity
of speed-to-power function.

Related work and our results. Yao, Demers and Shenker, in their seminal paper [16] proposed an
optimal polynomial time algorithm for finding a feasible preemptive schedule on a single processor
for a set of jobs with release dates and deadlines minimizing the energy used. They also proposed
two online algorithms for the same problem (OA and AVR).

Bunde [6] studied the budget variant of the non-preemptivemakespan minimization problem for
the single-processor case and the multiple processor case with jobs of unit work. He also proved the
NP-hardness of the multiprocessor case whenever the jobs have arbitrary works. Pruhs et al. [14]
studied the budget variant of the non-preemptive multiprocessor makespan minimization problem
in the presence of precedence constraints, and proposed an approximation algorithm. They also
gave a PTAS for the case with no precedence constraints.

Albers et al. [3] were the first to consider an aggregated variant for a power-aware scheduling
problem by studying online and offline versions of the non-preemptive problem of minimizing the
sum of flow times of the jobs plus energy, with jobs of unit work. The flow time of a job is defined
as the difference between its completion time and its release date. It has to be noticed that Pruhs
et al. [13] have studied the budget variant of this problem. Bansal et al. [4] proved that there is
no O(1)-competitive algorithm, for the budget variant, even if all jobs have unit works.

The interested reader may find recent reviews on power-aware scheduling in [1,2].
In this paper we consider the maximum lateness criterion in the power-aware context. For the

budget variant we propose an optimal algorithm for the non-preemptive single processor case with
common release dates, while in Section 3 we prove that the problem, in the presence of release dates
becomes strongly NP-hard and it does not admit any O(1)-competitive deterministic algorithm.
In Section 4, we move to the aggregated variant, and we give an optimal algorithm for the single
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processor problem with common release dates and a strongly NP-hardness proof for arbitrary
release dates. Moreover, we propose a 2-competitive algorithm for the latter case.

2 Budget variant with common release dates

In this section we present a polynomial-time algorithm for the S1 | | Lmax(E) problem. Our algo-
rithm is based on a number of structural properties of an optimal schedule, deduced by formulating
our problem as a convex program and applying the KKT (Karush, Kuhn, Tucker) conditions.

2.1 General form of KKT conditions

Next, we describe the general form of the KKT conditions for convex programs (see e.g., [5]).
Assume that we are given the following convex program:

min f(x)

gi(x) ≤ 0, 1 ≤ i ≤ q

hj(x) = 0, 1 ≤ j ≤ r

x ∈ Rn

Suppose that the program is strictly feasible, i.e. there is a point x such that gi(x) < 0 and
hj(x) = 0 for all 1 ≤ i ≤ q and 1 ≤ j ≤ r, where all functions gi and hj are differentiable at x. Let
λi and µj be the dual variables associated to the constraints gi(x) ≤ 0 and hj(x) = 0, respectively.
The Karush-Kuhn-Tucker (KKT) conditions are:

gi(x) ≤ 0, 1 ≤ i ≤ q (1)

hj(x) = 0, 1 ≤ j ≤ r (2)

λi ≥ 0, 1 ≤ i ≤ q (3)

λigi(x) = 0, 1 ≤ i ≤ q (4)

∇f(x) +

q
∑

i=1

λi∇gi(x) +

r
∑

j=1

µj∇hj(x) = 0 (5)

KKT conditions are necessary and sufficient for solutions x ∈ Rn, λ ∈ Rq and µ ∈ Rr to
be primal and dual optimal, where λ = (λ1, λ2, . . . , λq) and µ = (µ1, µ2, . . . , µr). We refer to the
conditions (1) and (2) as primal feasible, to the (3) as dual feasible, to the (4) as complementary
slackness and to the (5) as stationarity conditions, respectively.

2.2 A convex programming formulation

A convex programming formulation of our problem stems from two basic properties of an optimal
schedule. First, because of the convexity of the speed-to-power function, each job i runs at a
constant speed si. Second, jobs are scheduled according to the EDD (Earliest Due Date First)
rule, or equivalently in non-increasing order of their delivery times; this can be easily shown by
a standard exchange argument. Hence, we propose the following formulation where all jobs are
considered to be released at time zero and numbered according to the EDD order:
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minL

Ci + qi ≤ L, 1 ≤ i ≤ n (6)
w1

s1
≤ C1, (7)

Ci−1 +
wi

si
≤ Ci, 2 ≤ i ≤ n (8)

n
∑

i=1

wis
α−1
i ≤ E (9)

L,Ci, si ≥ 0, 1 ≤ i ≤ n (10)

Our objective is to minimize the maximum lateness, L, among all feasible schedules. Constraints
(6) ensure that the lateness of each job is at most L, constraints (7) and (8) enforce the jobs to
be scheduled according to the EDD rule in non-overlapping time intervals, constraint (9) does
not allow to exceed the given energy budget E and constraints (10) ensure that the maximum
lateness, the completion times and the speeds of jobs are non-negative. Constraint (9), for α > 2,
and constraints (7) and (8) are convex, while constraints (6) and (10) and the objective function
are linear. Thus, our mathematical program is indeed convex.

This convex program already implies a polynomial algorithm for our problem, as convex pro-
grams can be solved to arbitrary precision by the Ellipsoid algorithm [12]. Since the Ellipsoid
algorithm is rather impractical, we will exploit this convex program to derive a fast combinatorial
algorithm.

2.3 Properties of an optimal schedule

In what follows we deduce a number of structural properties of an optimal schedule by applying
the KKT conditions to the above convex program.

Lemma 1 For the maximum lateness problem with an energy budget E, the following properties
are necessary and sufficient for optimality of a feasible schedule.
(i) Each job i runs at a constant speed si.
(ii) Jobs are scheduled according to the EDD rule.
(iii) There are no idle periods in the schedule.
(iv) The last job is critical, i.e., Ln = Lmax.
(v) Every non-critical job i has equal speed with the job i+ 1, i.e., si = si+1.
(vi) Jobs are executed in non-increasing speeds, i.e., si ≥ si+1.
(vii) All the energy budget is consumed.

Proof In order to apply the KKT conditions to the convex program, we associate to each set of
constraints from (6) up to (9), dual variables βi, γ1, γi, δ, respectively. W.l.o.g. the variables L,Ci

and si are positive and, by the complementary slackness conditions, the dual variables associated
to the constraints (10) are equal to zero.
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Stationarity conditions give that

∇L+

n
∑

i=1

βi∇(Ci + qi − L) + γ1∇(
w1

s1
− C1)

+

n
∑

i=2

γi∇(Ci−1 +
wi

si
− Ci) + δ∇(

n
∑

i=1

wis
a−1
i − E) = 0 ⇒

(1−
n
∑

i=1

βi)∇L+

n−1
∑

i=1

(βi − γi + γi+1)∇Ci

+(βn − γn)∇Cn +

n
∑

i=1

(−γiwis
−2
i + (a− 1)δwis

a−2
i )∇si = 0

Equivalently, we obtain the following equalities.

n
∑

i=1

βi = 1 (11)

βi = γi − γi+1 1 ≤ i ≤ n− 1 (12)

βn = γn (13)

(α− 1)δ =
γi
sαi

1 ≤ i ≤ n (14)

The complementary slackness conditions give that

βi(Ci + qi − L) = 0 1 ≤ i ≤ n (15)

γ1(
w1

s1
− C1) = 0 (16)

γi(Ci−1 +
wi

si
− Ci) = 0 2 ≤ i ≤ n (17)

δ

( n
∑

i=1

wis
α−1
i − E

)

= 0 (18)

First, we will show that the properties are necessary for optimality. That is, there is always an
optimal schedule satisfying them.

(i)-(ii) They have been already discussed above.
(iii) First, note that δ 6= 0. If δ = 0 then by (14), we get that γi = 0 for each 1 ≤ i ≤ n. This,

combined with (12) and (13) yields that
∑n

i=1 βi = 0, which is a contradiction because of (11).
Since δ 6= 0, we get by (14) that γi 6= 0 for each 1 ≤ i ≤ n. Then, equations (16) and (17) give that
there is no idle time in any optimal schedule since C1 = w1

s1
and Ci = Ci−1 +

wi

si
, for 2 ≤ i ≤ n,

respectively.
(iv) Since δ 6= 0, by (14), it follows that γn 6= 0 and finally, because of (13), βn 6= 0. So, the

last job to finish is always a critical job, by (15).
(v) Note that for every non-critical job i, it holds that Ci+qi < L and (15) implies that βi = 0

for every such job. Hence, if a job i is non-critical βi = 0 ⇒ γi = γi+1 ⇒ si = si+1, by (12) and
(14), respectively.

(vi) By the dual feasibility conditions and the equations (12) and (14) we get, respectively,
that βi ≥ 0 ⇒ γi ≥ γi+1 ⇒ si ≥ si+1. Thus, the jobs are executed with non-increasing speeds.

(vii) If the energy budget is not entirely consumed, then by (18), δ = 0, which is a contradiction,
since, as we have already proved, δ 6= 0.

Next, we will show that the properties are also sufficient for optimality. That is, any feasible
schedule satisfying them must be optimal. In order to show this, it suffices to prove that, given
any feasible schedule satisfying the properties, we can always give values to the dual variables such
that the KKT conditions are satisfied.
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Consider a feasible schedule and let si and Ci be the speed and the completion time of the
job i, 1 ≤ i ≤ n, respectively. Moreover, let L be the maximum lateness of the schedule. We give
values to the dual variables as follows.

δ =
1

(α− 1)sα1

γi =
sαi
sα1

, 1 ≤ i ≤ n

βi =
sαi − sαi+1

sα1
, 1 ≤ i ≤ n− 1

βn =
sαn
sα1

We, now, observe that these values of the dual variables together with the values of the primal
variables satisfy the KKT conditions.

Note that

n
∑

i=1

βi =

n
∑

i=1

sαi − sαi+1

sα1
=

sα1
sα1

= 1

βi =
sαi − sαi+1

sα1
=

sαi
sα1

−
sαi+1

sα1
= γi − γi+1 1 ≤ i ≤ n− 1

βn =
sαn
sα1

= γn

(α− 1)δ =
1

sα1
=

sαi
sα1

1

sαi
=

γi
sαi

1 ≤ i ≤ n

So the stationarity conditions are satisfied.
Consider now a job i, 1 ≤ i ≤ n. If i is critical, then Ci+ qi = L. Else, by property (v) we have

that, for 1 ≤ i ≤ n− 1,

si = si+1 ⇔
sαi
sα1

=
sαi+1

sα1
⇔ βi = 0

Thus, equation (15) is satisfied. By property (iii), we have that C1 = w1

s1
and Ci = Ci−1 +

wi

si
, for

2 ≤ i ≤ n. Therefore, equations (16) and (17) are also satisfied. Furthermore, by property (vii), all
the energy budget is consumed and the equation (18) holds. Hence, the complementary slackness
conditions are satisfied.

Finally, in order to complete our proof, it remains to show that the values of all the dual
variables are non-negative. The only case for which this is not straightforward, is for the values of
variables βi, for 1 ≤ i ≤ n− 1. But, it must be the case that βi ≥ 0 for all 1 ≤ i ≤ n− 1, because
of the property (vi) and the theorem follows.

We refer to any schedule satisfying the properties of Lemma 1 as a regular schedule. By
Lemma 1, every optimal schedule is regular and vice versa; however, there might be feasible, but
not optimal, non-regular schedules. By (i, j) we denote a sequence of consecutive jobs i, i+1, . . . , j.
Any regular schedule can be partitioned into groups of jobs, of the form (i, j), where the jobs i−1
and j are critical and the jobs i, i+ 1, . . . , j − 1 are not. By Lemma 1(v), all jobs of such a group
are executed at the same speed. We denote this common speed by sj and the total amount of work

of jobs in (i, j) by w(i, j) =
∑j

k=i wk. Then, the next proposition follows easily from Lemma 1.

Proposition 1 Let i, j, be two consecutive critical jobs of a regular schedule. The speed of each

job in the group (i+ 1, j) equals to sj =
w(i+1,j)
qi−qj

.

Proof Assume without loss of generality that i completes before j. Since i and j are both critical,
they attain equal maximum latnesses, i.e. Li = Lj . Moreover, in any regular schedule, by Lemma
1(iv), there is no idle period between jobs i, i+1, . . . , j. Furthermore, all jobs i+1, i+2, . . . , j− 1
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are non-critical and, by Lemma 1(vi), they are all executed with speed equal to that of job j.
Hence, we get, respectively, that

Li = Lj ⇒ Ci + qi = Cj + qj ⇒
i

∑

k=1

wk

sk
+ qi =

j
∑

k=1

wk

sk
+ qj ⇒ sj =

w(i+ 1, j)

qi − qj
.

Clearly, given that Li = Lj and Ci < Cj , it must be the case that qi 6= qj .

2.4 An optimal combinatorial algorithm

So far, by proving that the properties of a regular schedule are necessary and sufficient for optimal-
ity, we have derived a clear image of the structure of an optimal schedule for the S1 | | Lmax(E)
problem. Next, we propose Algorithm BUD which constructs such a schedule in polynomial time.
Note that a regular schedule is fully specified by the speeds of the jobs. The rough idea of our
algorithm is the following: First, it constructs a preliminary schedule by finding groups of jobs
running in non-increasing speeds without taking care of the energy consumption. Second, the al-
gorithm manages the energy consumption w.r.t. the energy budget E and determines the final
speeds of all jobs. Let E′ be the energy consumption of the current schedule at any point of the
execution of the algorithm.

Algorithm BUD needs the jobs to be ordered/numbered according to the EDD rule and an
initial sorting step is required. Once this step is performed, it starts from job n which is always
a critical job and considers all jobs but the first, in reverse order. When a job i, 2 ≤ i ≤ n, is
considered for the first time, its speed si is set according to Proposition 1, assuming that jobs i−1
and i are critical. If si ≥ sj , for i+ 1 ≤ j ≤ n, then si is called eligible speed and it is assigned to
job i; by definition, the speed sn = wn

qn−1−qn
is considered to be eligible. If speed si is not eligible,

i is a non-critical job and it is merged with the (i + 1)’s group. More specifically, if c is the last
job of this group, then the speeds of jobs i, i + 1, . . . , c are calculated by applying Proposition 1,
assuming that i−1 and c are critical while i, i+1, . . . , c−1 are not. Next, the algorithm examines
whether the new value of si is eligible. If this is the case, then it considers the job i−1. Otherwise,
a further merging of the i’s group with the (c + 1)’s group, is performed, as before. That is, if c′

is the last job of the (c+ 1)’s group, all jobs i, i+ 1, . . . , c′ are assigned the same speed assuming
that jobs i − 1 and c′ are critical, while i, i + 1, . . . , c′ − 1 are not. This speed, according to the

Proposition 1, is equal to sc′ =
w(i,c′)

qi−1−qc′
. Note that the job c is no longer critical in this case. This

merging procedure is repeated until job i is assigned an eligible speed. In a degenerate case, jobs
i, i+1, . . . , n are merged into one group. When the algorithm has assigned an eligible speed to all
jobs 2, 3, . . . , n, it sets s1 = s2 and its first part completes. Note that s1 becomes also eligible. An
example of the first part of our algorithm is given in Figure 1(i).

j1
j1 j2 j3

Set s1 = s2 Assign energy E − E ′

to the first group

j1 j2 j3

Reduce the speed of the
first group to s3

j3

j2

(i) Lmax = 10, E ′ > E, E ′ = 50 (ii) Lmax = 16, E ′ < E, E ′ = 14 (iii) Lmax = 13.79, E ′ = 20

5 6 8 10 12 14 8.16 9.79 11.79time

speed

2

1 1

√

3
2

speed speed

time time

Fig. 1 The execution of Algorithm BUD for an instance of 3 jobs, without release dates, works 10, 2, 2, delivery
times 5, 4, 2, α = 3 and E = 20.

Next, Algorithm BUD takes into account the available budget of energy E. If E − E′ ≥ 0,
the current schedule’s energy consumption does not exceed the budget of energy, and the surplus



8 Evripidis Bampis et al.

E − E′ is assigned to the first job. Otherwise, the current schedule is regular, except that it
consumes an amount of energy greater than E. Then, the algorithm reduces the consumed energy
until it becomes equal to E. In fact, it decreases the speed of the first group, by merging subsequent
groups with it, if necessary. This merging procedure is different from the one of the first part of the
algorithm and it is as follows: let i be the critical job of maximal index with si = s1 in the current
schedule. Observe that si > si+1. The algorithm sets the speed of jobs 1, 2, . . . , i equal to si+1.
This causes a reduction to E′ and there are two cases to distinguish: either E′ ≤ E or E′ > E. In
the first case, the algorithm adds an amount of energy E−E′ to jobs 1, 2, . . . , i by increasing their
speeds uniformly, i.e. so that they are all executed with the same speed. In the second case, at
least one further merging step has to be performed. When the algorithm terminates, it is obvious
that E′ = E. For an example of the second part of our algorithm see Figures 1(ii) and 1(iii).

Algorithm BUD
1: Sort the jobs according to the EDD order.
2: for i = n to 2 do

3: Set si assuming that i and i− 1 are critical.
4: while si is not eligible do

5: Merge the i’s group with the next group.
6: Set s1 = s2
7: Let E′ be the current energy consumption.
8: if E > E′ then

9: Assign energy E − E′ to job 1.
10: else

11: while E < E′ do

12: Set the speed of the first group equal to the speed of the following group.
13: Update E′.
14: if E < E′ then

15: Merge the first group with the next one.
16: Assign E − E′ energy uniformly to the first group.

Theorem 1 Algorithm BUD is optimal for the S1 | | Lmax(E) problem.

Proof We shall prove that the algorithm satisfies the properties of Lemma 1, i.e., it produces a
regular schedule. For convenience, we distinguish two parts in the algorithm: Part I, corresponding
to lines 1-6 and Part II, corresponding to lines 7-16, respectively.

Property (i)-(ii): The algorithm gives a single constant speed to each job and keeps their initial
EDD order.

Property (iii): In Part I, the speeds of jobs are assigned according to Proposition 1. Specifically,
the algorithm fixes two consecutive critical jobs i and j, i < j, with, potentially, some non-critical
jobs between them. Then the speed of the non-critical jobs and the one of the critical job j is
defined such that there is no idle period between the jobs. In Part II, no idle period is added
between any jobs.

Property (iv) - (v): When the speed of job n is initialized, this is done by assuming that it is
critical. Next, consider the current schedule just after the completion of Part I. This schedule can
be partitioned into sequences of jobs, a + 1, a + 2, . . . , b, with a ≥ 1, such that the jobs of each
sequence are executed with the same speed which has been assigned by applying Proposition 1,
assuming that the jobs a and b are critical. In fact, jobs a and b attain equal lateness. In order
for such a sequence to be a group, we should also prove that all but the last jobs are non-critical
while the last job is critical.

Let a + 1, a + 2, . . . , b be a sequence of jobs. We claim that Li < Lb, for a + 1 ≤ i ≤ b − 1.
Assume, by contradiction, that there exists a job j, where a+1 ≤ j ≤ b−1, such that Lj ≥ Lb, or

equivalently, qj − qb ≥
∑b

i=j+1
wi

sb
. Since the last job of a sequence attains equal lateness with the

last job of the sequence that follows, we have that La = Lb. This yields that qa− qb =
∑b

i=a+1
wi

sb
.

Therefore, qa − qj ≤
∑j

i=a+1
wi

sb
.
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Obviously, for any job i, a+1 ≤ i ≤ b− 1, we must have a speed si >
wi

qi−1−qi
, since otherwise,

it wouldn’t have been merged with another group. That is, qi−1 − qi > wi

si
. If we sum the last

inequalities for a+ 1 ≤ i ≤ j, we get that qa − qj >
∑j

i=a+1
wi

sb
, a contradiction.

At this point, we have showed that when Part I completes, if a job i, 2 ≤ i ≤ n, is critical,
then it must be the right extremity of a sequence. Moreover, among all jobs 2, 3, . . . , n, the last
jobs of all sequences, including job n, attain equal lateness and the remaining jobs attain smaller
lateness. In addition, job 1 attains equal lateness with the last job of the sequence that follows.
Recall that, at this point, we set s1 = s2. Job 1 would have equal lateness with the last job of
the sequence that follows for any s1 > 0 since the speed of the second group is set by applying
Proposition 1, assuming that 1 is critical. So, at the end of Part I, job 1, job n and every last job
of a sequence are critical. Therefore, after Part I finishes, Properties (iv) and (v) hold.

In Part II, if no merging step is performed, then the processing time of job 1 is decreased by
some t ≥ 0 and its lateness decreases by t, while the processing times and speeds of the other jobs
are not modified. So, the lateness of every other job also decreases by t. Hence, the Properties (iv)
and (v) hold.

If at least one merging step is performed, then the speed of the jobs in the first group decreases
and their processing time increases. Then, in the first group, every non-critical job i has equal
speed with the job i+1 that follows, while the speeds of the jobs in other groups remain unchanged.
Now, let ti be the total increase in the processing time of job i, 1 ≤ i ≤ n. Note that this quantity
is positive only for jobs belonging to the first group of the current schedule. Then, the lateness of
any job i, 1 ≤ i ≤ n, increases by

∑i

j=1 tj ; if c1 is the critical job of the first group, it remains
critical after the merging step since its lateness and the lateness of every other job that follows,
increase by the same quantity, equal to

∑c1
j=1 tj . Note, that if a further merging step is performed,

we consider the first two groups as one group. Moreover, the lateness of any job increases by no
more than the increase of the lateness of job n, and thus, in the final schedule, job n remains
critical and Property (iv) holds. Furthermore, each non-critical job has equal speed with the job
that follows and Property (v) holds as well.

Property (vi): At the end of Part I, the speeds of jobs are non-increasing since otherwise, a
merging step would be performed. Moreover, during Part II, no speed of a job becomes less than
the speed of a subsequent job.

Property (vii): Recall that E′ is the total energy consumed when Part I completes. If E′ is
less than the energy budget, then the energy of the first job increases until the schedule consumes
exactly E units of energy, while if E′ is greater than the energy budget E, then the energy
consumption of the schedule is gradually decreased until it becomes equal to E.

Let us now consider the complexity of the algorithm. Initially, jobs are sorted according to
the EDD rule in O(n log n) time. The first part of the algorithm may take O(n2) time since each
merging step takes O(n) time and there can be O(n) merging steps. Also, the algorithm’s second
part takes O(n2) time since the speed of each job may change at most O(n) times. Therefore, the
overall complexity of the algorithm is O(n2).

3 Budget variant with arbitrary release dates

We now consider the budget variant of the maximum lateness problem, where the jobs have
arbitrary release dates, i.e., S1 | rj | Lmax(E) and we show that it becomes strongly NP-hard.
Moreover, we show that there is no O(1)-competitive algorithm for its online version, even when
all jobs have unit works.

3.1 NP-hardness

We reduce 3-PARTITION to the S1 | rj | Lmax(E) problem. 3-PARTITION problem is a well
known NP-hard [7] problem where, we are given a positive integer B and a set of 3n positive
integers A = {a1, a2, . . . , a3n}, where B/4 < ai < B/2 and

∑

ai∈A ai = nB, and we ask if
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· · ·

B 3B 5B 7B (2n− 5)B (2n− 1)B(2n− 3)B

job
3n+ 1

job
3n+ 2

job
3n+ 3

job
4n− 2

job
4n− 1

0 2B 4B 6B (2n− 6)B (2n− 4)B (2n− 2)B

A1 A2 A3 A4 An−2 An−1 An

Fig. 2 A feasible schedule σ for S1 | rj | Lmax(E) that attains maximum lateness equal to Lmax = (2n− 1)B.

there exists a partition of A into n disjoint sets A1, A2 . . . , An such that, for each 1 ≤ k ≤ n,
∑

ai∈Ak
ai = B.

Our reduction is inspired by the NP-hardness proof for the classical 1 | rj | Lmax problem [11],
where we are given a set of jobs with each job i having a release date ri, a due date di and a
processing time pi and we seek a schedule minimizing the maximum lateness; note that, the
feasibility version of this later problem is also known as the SEQUENCING WITHIN INTERVALS
problem [7].

The 1 | rj | Lmax problem can be viewed as a variant of our problem where the speed of
each job is part of the instance. Specifically, we consider that each job i has an amount of work
wi = pi and it is executed at a constant speed si = 1. Based on this idea, we extend the existing
NP-hardness reduction by fixing an energy budget, so that all jobs have to be executed at the
same speed si = 1 in order to get a feasible schedule.

Theorem 2 S1 | rj | Lmax(E) problem is strongly NP-hard.

Proof We construct an instance of S1 | rj | Lmax(E) from an instance of 3-PARTITION as follows.
The instance is depicted in Table 1.

– For each integer ai, 1 ≤ i ≤ 3n, we create a job i with wi = ai, ri = 0 and qi = 0.
– We introduce n− 1 gadget jobs, where the gadget job i, 3n+1 ≤ i ≤ 4n− 1, has wi = B, ri =

(2i− 6n− 1)B and qi = (8n− 2i− 1)B.
– We set E = (2n− 1)B.

i wi ri qi
1 a1 0 0
2 a2 0 0
. . . . . . . . . . . .

3n a3n 0 0
3n+ 1 B B (2n− 3)B
3n+ 2 B 3B (2n− 5)B
3n+ 3 B 5B (2n− 7)B
. . . . . . . . . . . .

4n− 2 B (2n− 5)B 3B
4n− 1 B (2n− 3)B B

Table 1 An instance of S1 | rj | Lmax(E) reduced from an instance of 3-Partition.

We shall prove that there is a feasible schedule σ with Lmax = (2n − 1)B and total energy
consumption E = (2n− 1)B if and only if there exists a 3-PARTITION of A.

(⇐) For the first direction, assume that A1, A2 . . . , An is a partition of A, where
∑

ai∈Ak
ai = B

for 1 ≤ k ≤ n. Then, consider the schedule σ where: (i) each job i corresponding to an integer
ai ∈ Ak, 1 ≤ k ≤ n, is scheduled during the time interval [2(k − 1)B, (2k − 1)B], (ii) each gadget
job i, 3n + 1 ≤ i ≤ 4n − 1 is scheduled during the time interval [(2i − 6n − 1)B, (2i − 6n)B],
and (iii) all jobs are executed at constant speed si = 1. The schedule σ (see Figure 2) is feasible
and attains maximum lateness equal to Lmax = (2n − 1)B. The total energy consumed is E =
∑4n−1

i=1 wis
α−1
i =

∑4n−1
i=1 wi = (2n− 1)B.

(⇒) For the opposite direction, assume that σ is a feasible schedule with Lmax = (2n − 1)B
and total energy consumption E = (2n− 1)B. In σ, each job i, 1 ≤ i ≤ 3n, must have completion
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time Ci ≤ (2n − 1)B and each gadget job i, 3n + 1 ≤ i ≤ 4n − 1, must have completion time
Ci ≤ (2i−6n)B, since Li ≤ (2n−1)B for every job i. For notational convenience, letW = (2n−1)B
be the sum of works of all jobs. Let also pi be the execution time of job i, 1 ≤ i ≤ 4n− 1.

It holds also that the completion time of (the last job of) schedule σ is Cmax = (2n− 1)B. To
see this, assume for the sake of contradiction that Cmax < (2n − 1)B. Then, by the convexity of
speed-to-power function, it follows that the total energy consumption in σ will be

E(σ) =

4n−1
∑

i=1

wis
α−1
i =

4n−1
∑

i=1

wi

(

wi

pi

)α−1

≥ W

(

W

Cmax

)α−1

> (2n− 1)B

which is not possible because the energy budget is exceeded. With a similar argument, it can be
shown that there will be no idle time during the interval [0, (2n− 1)B] in σ. Moreover, due to the
convexity of the speed-to-power function, among the schedules with makespan Cmax = (2n− 1)B
which have no idle period during [0, (2n − 1)B], only the ones in which all the jobs are executed
with speed equal to sj = 1 have energy consumption not greater than E = (2n − 1). Clearly, σ
must be one of these schedules. Hence, every gadget job i, 3n+1 ≤ i ≤ 4n− 1, is executed within
the whole time interval [(2i− 6n− 1)B, (2i− 6n)B] in σ.

So far we have shown that every gadget job i, 3n + 1 ≤ i ≤ 4n − 1, spans in σ the time
interval [(2i − 6n − 1)B, (2i − 6n)B], while the other jobs i, 1 ≤ i ≤ 3n, span the time intervals
[2(k−1)B, (2k−1)B], 1 ≤ k ≤ n. Therefore, during any interval [2(k−1)B, (2k−1)B], 1 ≤ k ≤ n,
there will be executed a set of jobs with total amount of work B. This execution defines a 3-
PARTITION for A.

3.2 The on-line case

Let us now turn our attention to the online version of the S1 | rj | Lmax(E) problem. Bansal et
al. [4] gave an adversarial strategy for proving that there is no O(1)-competitive algorithm for the
problem of minimizing the total flow of a set of unit work jobs on a single speed-scalable processor.
This adversarial strategy consists of batches of jobs, B1, B2, . . . , Bk, with all the jobs in batch Bi

released after the online algorithm has finished all the jobs in Bi−1. Following a similar strategy
it can be proved that the makespan minimization problem, for a given budget of energy, i.e. the
problem S1 |rj , wj = 1| Cmax(E), does not admit an O(1)-competitive algorithm. Note that the
makespan minimization is a special case of our lateness problem (with qi = 0, 1 ≤ i ≤ n).

Theorem 3 There is no O(1)-competitive algorithm for the online version of the S1 | rj | Cmax(E)
problem, even when jobs have unit works.

Proof In order to prove the theorem, we assume the existence of a ρ-competitive algorithm A,
where ρ > 1 is a constant. Then, we reach a contradiction by showing that there is an instance of
the problem that cannot be feasibly solved by A.

We consider a set of jobs consisting of batches B1, B2, . . . , Bℓ, where the batch Bi, 1 ≤ i ≤ ℓ,
contains ni = 2i−1 unit work jobs which all arrive at the same time; the jobs of the batch B1 are
released at the time r1 = 0 while the jobs of the batch Bi, 1 ≤ i ≤ ℓ, are released at time ri.
We assume that ri is large enough so that the algorithm A has completed the jobs in the batches
B1, . . . , Bi−1 by ri.

We denote by C∗
max,k, 1 ≤ k ≤ ℓ, the value of the makespan that the optimal offline algorithm

achieves for the instance that consists exactly of the jobs in the batches B1, B2, . . . , Bk. The term
C∗

max,k is upper bounded by the makespan of the schedule in which all the jobs in B1, B2, . . . , Bk

are assigned equal speeds such that their energy consumption is equal to the energy budget E and
they are executed continuously starting at time rk. Therefore,

C∗
max,k ≤ rk +





(

∑k

i=1 ni

)α

E





1

α−1

(19)
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As A is a ρ-competitive algorithm, it must complete all jobs of the batches B1, B2, . . . , Bk not
later than ρ · C∗

max,k independently of the number of batches that our original instance contains.
Otherwise, it wouldn’t be ρ-competitive for the instance of the problem that consists only of the
batches B1, B2, . . . , Bk. Let Cmax,k be the completion time of the jobs in batches B1, B2, . . . , Bk

in A’s schedule. Then, it must be the case that

Cmax,k ≤ ρ · C∗
max,k (20)

Let Ek be the energy consumption of the jobs in batch Bk in A’s schedule. Due to the convexity
of the speed-to-power function, we have that

Ek ≥
nα
k

(Cmax,k − rk)α−1
(21)

By combining inequalities (19), (20), (21) and the fact that rk ≤ C∗
max,k, we obtain that

Ek ≥
nα
k

(

∑k

i=1 ni

)α

E

(2ρ− 1)α−1

Since ni = 2i−1 for 1 ≤ i ≤ k, we conclude that

Ek ≥
E

2α(2ρ− 1)α−1

Thus, if the number of batches ℓ is large enough, i.e. ℓ → ∞, the algorithm will run out of
energy after having completed ⌈2α(2ρ − 1)α−1⌉ batches, so it won’t be able to finish the batches
that follow.

4 Aggregated variant

In this section, we turn our attention to the aggregated variant of the maximum lateness problem,
where our objective is to minimize Lmax + βE, for some β > 0. For this variant, in the online
case, we are able to overcome the impossibility of obtaining constant-factor competitive algorithms
(Theorem 3). Initially, we consider instances in which the jobs have a common release date and
we describe how to obtain an optimal offline algorithm for the aggregated variant by slightly
modifying our algorithm and its analysis for the budget variant in Section 2. For instances with
arbitrary release dates, we explain why our NP-hardness proof for the budget variant implies
that the aggregated variant is also NP-hard. Last, we turn our attention to the online case of the
aggregated problem in which the jobs arrive over time and we propose a 2-competitive algorithm
which schedules the jobs into batches, by repeatedly applying our optimal offline algorithm for
jobs with a common release date.

Common release dates. When all jobs are released at the same time, S1 | | Lmax+βE, we are able
to derive a polynomial algorithm, by using Algorithm BUD in the following way: suppose that
we are given the energy consumption E∗ of an optimal schedule minimizing Lmax + βE. Then,
in order to construct such an optimal schedule, it suffices to apply the optimal algorithm for the
budget variant with an energy budget equal to E∗. This means that the optimal schedule for the
aggregated variant is a regular schedule, satisfying the properties of Lemma 1 (with budget E∗).
However, in order to construct the optimal schedule minimizing Lmax + βE, we need to compute
E∗. One approach, which has been already suggested in the literature for the total flow time
criterion (see [3,4]), would be to perform a binary search procedure in the interval of all possible
energy levels. Here, we describe an alternative approach which resembles to the one we followed
for the budget variant.

We first formulate the aggregated variant as a convex program similar to the one for the
budget variant. Now, we do not introduce a constraint on the total energy consumption, since it
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is added in the objective function. By applying the KKT conditions, we obtain almost the same
structure (properties) of an optimal solution with one single difference: the energy consumption is
not specified by a given budget of energy, but it results from the fact that the speed of the first job
should always be equal to a fixed value. Specifically, the Property (vii) of Lemma 1 is replaced by

the fact that “the job executed first runs at speed s1 =
(

1
(α−1)β

)α

”. Therefore, in order to obtain

an optimal schedule for the aggregated variant, it suffices to do the following: Run lines (1)-(6)
of Algorithm BUD. Let σ be the schedule produced. Find the highest-index critical job, i, i 6= 1,
in σ, such that its corresponding sequence, (k, i), has speed si < s1. Modify σ such that all jobs
1, 2, . . . , k − 1 are executed at speed s1.

Arbitrary release dates. It is not hard to see that if we are given an optimal algorithm for the
aggregated variant, then we can obtain an optimal polynomial algorithm for the budget variant
by using binary search on the possible values of β and stopping at a value β∗ such that the energy
consumption of the schedule minimizing Lmax + β∗E is equal to the energy budget. Since, by
Theorem 2, the budget variant is NP-hard to solve, we conclude that the aggregated variant is
also NP-hard.

Now, we turn our attention in the online version of the aggregated variant and we derive a 2-
competitive online algorithm for the S1 | rj | Lmax+βE problem. The algorithm schedules the jobs
in a number of phases by repeatedly applying the optimal offline algorithm for the S1 | | Lmax+βE
problem. This approach was introduced in [15]. We denote by σ∗(J, t) the optimal schedule of a
set of jobs J with a common release date t.

Algorithm ALE.

Let J0 be the set of jobs that arrive at time t0 = 0. In phase 0, jobs in J0 are scheduled according
to σ∗(J0, 0). Let t1 be the time at which the last job of J0 is finished, i.e., the end of phase 0, and
J1 be the set of jobs released during (t0, t1]. In phase 1, jobs in J1 are scheduled as in σ∗(J1, t1) and
so on. In general, if ti is the end of phase i− 1, we denote Ji to be the set of jobs released during
(ti−1, ti]. Jobs in Ji are scheduled by computing σ∗(Ji, ti). Next, we analyze the competitive ratio
of the algorithm.

Theorem 4 Algorithm ALE is 2-competitive for the online version of the S1 | rj | Lmax + βE
problem.

Proof Assume that Algorithm ALE produces a schedule in ℓ + 1 phases. Recall that the jobs of
the i-th phase, i.e., the jobs in Ji, are released during (ti−1, ti] and scheduled as in σ∗(Ji, ti). Let
Lmax,i+βEi be the cost of σ

∗(Ji, ti), where Lmax,i is the maximum lateness among the jobs in Ji
and Ei be the energy consumed by the jobs of Ji. The objective value of the algorithm’s schedule
is

SOL = max
0≤i≤ℓ

{Lmax,i}+ β
ℓ

∑

i=0

Ei (32)

Now, we consider the optimal schedule. To lower bound the objective value OPT of an optimal
schedule, we round down the release dates of the jobs; the release dates of the jobs in phase i, are
rounded down to ti−1. Let σ∗

d and OPTd be the optimal schedule for the rounded instance and
its cost, respectively. Clearly, any feasible schedule for the initial instance is also feasible for the
rounded one. Thus, OPT ≥ OPTd.

To lower bound OPTd we consider a restricted speed-scaling scheduling problem, i.e., a problem
where each job can only be executed by a subset of the available processors. The instance of this
problem consists of ℓ+1 available speed-scalable processors M0,M1, . . . ,Mℓ and the set of jobs J ,
with their release dates rounded down, as before. Jobs in J0 can only be assigned to the processor
M0 and every job in Ji can only be executed by one of the processors M0 or Mi, 1 ≤ i ≤ ℓ.
Moreover, it is required that all jobs in Ji, 0 ≤ i ≤ ℓ, are executed by the same processor. Let
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σ∗
m, OPTm be the optimal schedule and its cost, respectively, for this restricted problem. Obviously,

OPTd ≥ OPTm since σ∗
d is feasible for the restricted scheduling problem.

Let us now describe an optimal schedule σ∗
m. Through a simple exchange argument, it can

be shown that the jobs of Ji, 0 ≤ i ≤ ℓ, in an optimal schedule, are executed by the processor
Mi. Moreover, jobs in Ji, for 1 ≤ i ≤ ℓ, are scheduled according to σ∗(Ji, ti−1), while for i = 0,
according to σ∗(J0, t0). Assume that the maximum lateness of the above schedule, is attained by
a job of the set Jk, 0 ≤ k ≤ ℓ, in the processor Mk. So, let L

∗
max = L∗

max,k, where L∗
max, L

∗
max,k

is the maximum lateness of the schedules σ∗
m, σ∗(Ji, ti−1), respectively. Let E∗

i be the energy
consumption of schedule σ∗(Ji, ti−1). Then,

OPTm = L∗
max,k + β

ℓ
∑

i=0

E∗
i (33)

By considering the schedules σ∗(Ji, ti−1) and σ∗(Ji, ti), it can be easily shown that L∗
max,i =

Lmax,i−(ti−ti−1) and E∗
i = Ei. Then, by (32) and (33) it yields that OPTm = SOL−(tk−tk−1).

Note that tk − tk−1 is the total processing time of the jobs in Jk−1, in the schedule produced by
ALE, which is equal to the processing time of the jobs in Jk−1 in σ∗

m. Recall also that the last job
of each set Ji attains Lmax,i. Thus, tk − tk−1 ≤ L∗

max,k−1 ≤ OPT . Therefore, SOL ≤ 2OPT and
Algorithm ALE is 2-competitive for the S1 | rj | Lmax + βE problem.

5 Concluding Remarks

We presented positive and negative results for the offline and online power-aware versions of the
classical maximum lateness scheduling problem. These results, along with the existing literature on
power-aware versions of other problems, like makespan and total flow time, form a strong evidence
for the complexity of the power-aware scheduling problems: they are in the same complexity class
(polynomial orNP-hard) as their classical versions. For polynomial algorithms, the most promising
approach consists of deducing strong structural properties of optimal schedules by applying the
KKT conditions on a convex programming formulation of the problem. For NP-hardness results,
existing NP-completeness reductions of the corresponding classical problems can be adapted, by
forcing all jobs to be executed with speed equal to one and considering the processing times as
works. An interesting direction for future work concerns the use of resource (energy) augmentation
(see [9,14]) for the online case of the budget variant of the problem, in order to overcome the fact
that there is no O(1)-competitive deterministic algorithm (see Theorem 3). It is also interesting
to improve the competitive ratio of Algorithm ALE, in Section 4, for the aggregated variant.
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