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Abstract. We study coordination mechanisms for Scheduling Games
(with unrelated machines). In these games, each job represents a player,
who needs to choose a machine for its execution, and intends to complete
earliest possible. In the paper, we focus on a general class of ℓk-norm (for
parameter k) on job completion times as social cost, that permits to bal-
ance overall quality of service and fairness. Our goal is to design schedul-
ing policies that always admit a pure Nash equilibrium and guarantee a
small price of anarchy for the ℓk-norm social cost. We consider strongly-
local and local policies (the policies with different amount of knowledge
about jobs). First, we study the inefficiency in ℓk-norm social costs of
a strongly-local policy SPT that schedules the jobs non-preemptively in
order of increasing processing times. We show that the price of anarchy of

policy SPT is O(k
k+1

k ) and this bound is optimal (up to a constant) for
all deterministic, non-preemptive, strongly-local and non-waiting poli-
cies (non-waiting policies produce schedules without idle times). Second,
we consider the makespan (ℓ∞-norm) social cost by making connection
within the ℓk-norm functions. We present a local policy Balance. This
policy guarantees a price of anarchy of O(logm), which makes it the
currently best known policy among the anonymous local policies that
always admit a pure Nash equilibrium.

1 Introduction

With the development of the Internet, large-scale systems consisting of au-
tonomous decision-makers (players) become more and more important. The ra-
tional behavior of players who compete for the usage of shared resources generally
leads to an unstable and inefficient outcome. This creates a need for resource
usage policies that guarantee stable and near-optimal outcomes.

From a game theoretical point of view, stable outcomes are captured by the
concept of Nash equilibria. Formally, in a game with n players, each player j
chooses a strategy xj from a set Sj and this induces a cost cj(x) for player j
depending all chosen strategies x. A strategy profile x = (x1, . . . , xn) is a pure
Nash equilibrium if no player can decrease its cost by an unilateral deviation,
i.e., cj(x

′
j , x−j) ≥ cj(x) for every player j and x′

j ∈ Sj , where x−j denotes the
strategies selected by players different from j.



The better-response dynamic is the process of repeatedly choosing an arbi-
trary player that can improve its cost and let it take a better strategy while other
player strategies remain unchanged. It is desirable that in a game the better-
response dynamic converges to a Nash equilibrium as it is a natural way that
selfish behavior leads the game to a stable outcome. A potential game is a game
in which for any instance, the better-response dynamic always converges [10].

A standard measure of inefficiency is the price of anarchy (PoA). Given a
game with an objective function and a notion of equilibrium (e.g pure Nash
equilibrium), the PoA of the game is defined as the ratio between the largest
cost of an equilibrium and the cost of an optimal profile, which is not necessarily
an equilibrium. The PoA captures the worst-case paradigm and it guarantees
the efficiency of every equilibrium.

The social cost of a game is an objective function measuring the quality of
strategy profiles. In the literature there are two main extensively-studied objec-
tive functions: (i) the utilitarian social cost is the total individual costs; while
(ii) the egalitarian social cost is the maximum individual cost. The two objective
functions are included in a general class of social costs: the class of ℓk norms of
the individual costs, with utilitarian and the egalitarian social costs correspond-
ing to the cases k = 1 and k = ∞, respectively. There is a need to design policies
that guarantee the efficiency (e.g the PoA) of games under some specific objec-
tive function. Moreover, it would be interesting to come up with a policy, that
would be efficient for every social costs from this class.

1.1 Coordination Mechanisms in Scheduling Games

In a scheduling game, there are n jobs and m unrelated machines. Each job needs
to be scheduled on exactly one machine. We consider the unrelated parallel
machine model, where each machine could be specialized for a different type
of jobs. In this general setting, the processing time of job j on machine i is
some given arbitrary value pij > 0. A strategy profile x = (x1, . . . , xn) is an
assignment of jobs to machines, where xj denotes the machine (strategy) of job
j in the profile. The cost cj of a job j is its completion time and every job
strategically chooses a machine to minimize the cost. In the game, we consider
the social cost as the ℓk-norm of the individual costs. The social cost of profile

x is C(x) =
(

∑

j c
k
j

)1/k

.

The traditional ℓ1, ℓ∞-norms represent the total completion time and the
makespan, respectively. Both objectives are natural. Minimizing the total com-
pletion time guarantees a quality of service while minimizing the makespan en-
sures the fairness of schedule. Unfortunately, in practice schedules which optimize
the total completion time are not implemented due to a lack of fairness and vice
versa. Implementing a fair schedule is one of the highest priorities in most sys-
tems [16]. A popular and practical method to enforce the fairness of a schedule
is to optimize the ℓk-norm of completion times for some fixed k. By optimizing
the ℓk-norm of completion time, one balances overall quality of service and fair-
ness, which is generally desirable. So the system takes into account a trade-off
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between quality of service and fairness by optimizing the ℓk-norm of completion
time [14, 16].

A coordination mechanism is a set of scheduling policies, one for each ma-
chine, that determine how to schedule the jobs assigned to a machine. The idea
is to connect the individual cost to the social cost, in such a way that the
selfishness of the agents will lead to equilibria with small social cost. We dis-
tinguish between local and strongly-local policies. These policies are classified in
the decreasing order of the amount of information that ones could use for their
decisions. Formally, let x = (x1, . . . , xn) be a profile.

– A policy is local if the scheduling of jobs on machine i depends only on the
processing times of jobs assigned to the machine, i.e., {pi′j : xj = i, 1 ≤ i′ ≤
m}.

– A policy is strongly-local if the policy of machine i depends only on the
processing times for this machine i for all jobs assigned to i, i.e., {pij : xj =
i}.

In addition, a policy is anonymous if it does not use any global ordering of
jobs or any global job identities. Note that for any deterministic policy, local
job identities are necessary as a machine may need such information in order to
break ties (a job may have different identities on different machines). Moreover,
we call a policy non-waiting if the schedule contains no idle time between job
executions.

Instead of specifying the actual schedule, we rather describe a scheduling
policy as a function, mapping every job j to some completion time cj(x). Such
a policy is said feasible if for any profile x, there exists a schedule where job j
completes at time cj(x). Formally, for any job j, we must have cj(x) ≥

∑

j′ pij′

where the sum is take over all jobs j′ with xj = xj′ and cj′(x) ≤ cj(x). Certainly,
any designed deterministic policy needs to be feasible.

1.2 Overview & Contributions

Recently, Roughgarden [12] developed the smoothness argument, a unifying method
to show upper bounds of the PoA for utilitarian games. This canonical method
is elegant in its simplicity and its power. Here we give a brief description of this
argument.

A cost-minimization game with the total cost objective C(x) =
∑

j cj(x) is
(λ, µ)-smooth if for every profile x and x∗,

∑

j

cj(x
∗
j , x−j) ≤ µ

∑

j

cj(x) + λ
∑

j

cj(x
∗)

The smooth argument [12] states that the robust price of anarchy (including the
PoA of pure, mixed, correlated equilibria, etc) of a cost-minimization game is
bounded by

inf

{

λ

1− µ
: λ ≥ 0, µ < 1, the game is (λ, µ)-smooth

}

.
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We will make use of this argument to settle the equilibrium inefficiency in
scheduling games. We will prove the robust PoA by applying the smooth ar-
gument to the game with Ck(x) =

∑

j c
k
j (x) where C(x) is the ℓk-norm social

cost of Scheduling Games. The main difficulty in applying the smooth argument
to Scheduling Games has arisen from the fact that jobs on the same machine
have different costs, which is in contrast to Congestion Games [11] where players
incurs the same cost at the same resource. The key technique in this paper is
a system of inequalities, called smooth inequalities, that are useful to prove the
smoothness of the game.

Our contributions are the following:

1. We study the equilibrium inefficiency for the ℓk-norm objective function. We
consider a strongly-local policy SPT that schedules the jobs non-preemptively
in order of increasing processing times (with a deterministic tie-breaking rule
for each machine)4. We prove that the PoA of the game under the deter-

ministic strongly-local policy SPT is at most O(k
k+1

k ). Moreover, we show
that any deterministic non-preemptive, non-waiting and strongly-local pol-

icy has a PoA at least Ω(k
k+1

k ), which matches to the performance of SPT
policy. Hence, for any ℓk-norm social cost, SPT is optimal among determin-
istic non-preemptive, non-waiting, strongly-local policy. (The cases k = 1
and k = ∞ are confirmed in [6] and [2, 9], respectively.) If one considers the-
oretical evidence to classify algorithms for practical use then SPT is a good
candidate due to its simplicity and theoretically guaranteed performance on
any combination of the quality and the fairness of schedules.

2. We study the equilibrium inefficiency for the makespan objective function
(e.g., ℓ∞-norm) for local policies by making connection between ℓk-norm
functions. We present a policy Balance (definition is given is Section 4). The
game under that policy always admits Nash equilibrium and induces the
PoA of O(logm) — the currently best performance among anonymous local
policies that always possess pure Nash equilibria.

Our results naturally extend to the case when jobs have weights and the
objective is the ℓk-norm of weighted completion times, i.e., (

∑

j(wjcj(x))
k)1/k.

1.3 Related results

The smooth argument has been formalized in [12]. It has been used to establish
tight PoA of congestion games [11], a fundamental class of games. The argument
is also applied to prove bounds on the PoA of weighted congestion games [3].
Subsequently, Roughgarden and Schoppman [13] have extended the argument to
prove tight bounds on the PoA of atomic splittable congestion games for a large
class of latencies.

Coordination mechanisms for scheduling games was introduced in [5] where
the makespan (ℓ∞-norm) objective was considered. For strongly-local policies,

4 Formal definition of SPT is given in Section 3
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Immorlica et al. [9] gave a survey on the existence and inefficiency of different
policies such as SPT, LPT, RANDOM. Some tight bounds on the PoA under
different policies were given. Azar et al. [2] initiated the study on local poli-
cies. They designed a non-preemptive policy with PoA of O(logm). However,
the game under that policy does not necessarily guarantee a Nash equilibrium.
The authors modified the policy and gave a preemptive one that always ad-
mits an equilibrium with a larger PoA as O(log2 m). Subsequently, Caragiannis
[4] derived a non-anonymous local policy ACOORD and anonymous local poli-
cies BCOORD and CCOORD with PoA of O(logm), O(logm/ log logm) and
O(log2 m), respectively where the first and the last ones always admit a Nash
equilibrium. Fleischer and Svitkina [7] showed a lower bound of Ω(logm) for
all deterministic non-preemptive, non-waiting local policies. Recently, Abed and
Huang [1] proved that every deterministic (even preemptive) local policy, that
satisfies natural properties, has price of anarchy at least Ω(logm/ log logm).

Cole et al. [6] studied the game with total completion time (ℓ1-norm) objec-
tive. They considered strongly-local policies with weighted jobs, and derived a
non-preemptive policy inspired by the Smith’s rule which has PoA = 4. This
bound is tight for deterministic non-preemptive non-waiting strongly-local poli-
cies. Moreover, some preemptive policies are also designed with better perfor-
mance guarantee.

1.4 Organization

In Section 2, we state some smooth inequalities that will be used in settling the
PoA for different policies. In Section 3, we study the scheduling game with the ℓk-
norm social cost. We define and prove the inefficiency of the policiy SPT. We also
provide an lower bound on the PoA for any deterministic non-preemptive non-
waiting strongly-local policy. In Section 4, we consider the makespan (ℓ∞-norm)
social cost for local policies. We define and analyze the performance of policy
Balance. Due to the space constraint, some proofs are given in the appendix.

2 Smooth Inequalities

In the section we show various inequalities that are useful for the analysis.

Lemma 1. Let k be a positive integer. Let 0 < a(k) ≤ 1 be a function on k.
Then, for any x, y > 0, it holds that

y(x+ y)k ≤
k

k + 1
a(k)xk+1 + b(k)yk+1

where α is some constant and

b(k) =































Θ

(

αk ·

(

k

log ka(k)

)k−1
)

if limk→∞(k − 1)a(k) = ∞, (1a)

Θ
(

αk · kk−1
)

if (k − 1)a(k) are bounded ∀k, (1b)

Θ

(

αk ·
1

ka(k)k

)

if limk→∞(k − 1)a(k) = 0. (1c)
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Note that the case (1a) of Lemma 1 could be used to settle the tight bound
on the PoA of Congestion Games in which delay functions are polynomials with
positive coefficients. [15] proved this case for a(k) = 1 and b(k) = Θ( 1k (k/ log k)

k)
in order to upper bound of the PoA in Selfish Load Balancing Games.

Lemma 2. It holds that (k + 1)z ≥ 1− (1− z)k+1 for all 0 ≤ z ≤ 1 and for all
k ≥ 0.

Proof. Consider f(z) = (k + 1)z − 1 + (1 − z)k+1 for 0 ≤ z ≤ 1. We have
f ′(z) = (k+1)− (k+1)(1−z)k ≥ 0 ∀0 ≤ z ≤ 1. So f is non-decreasing function,
thus f(z) ≥ f(0) = 0. Therefore, (k+1)z ≥ 1− (1− z)k+1 for all 0 ≤ z ≤ 1. ⊓⊔

In the following, we prove inequalities to bound the PoA of the scheduling
game. Remark that until the end of the section, we use i, j as the indices. The
following is the main lemma to show the upper bound O(k(k+1)/k) of the PoA
under policy SPT in the next section.

Lemma 3. For any non-negative sequences (ni)
P
i=1, (mi)

P
i=1, and for any pos-

itive increasing sequence (qi)
P
i=1, define Ai,j := n1q1 + . . . + ni−1qi−1 + j · qi

for 1 ≤ i ≤ P, 1 ≤ j ≤ ni and Bi,j := m1q1 + . . . + mi−1qi−1 + j · qi for
1 ≤ i ≤ P, 1 ≤ j ≤ mi. Then, it holds that

P
∑

i=1

mi
∑

j=1

(Ai,ni
+ j · qi)

k ≤ µk

P
∑

i=1

ni
∑

j=1

Ak
i,j + λk

P
∑

i=1

mi
∑

j=1

Bk
i,j ,

where µk = k+1
k+2 and λk = Θ(αk(k + 1)k) for some constant α.

3 ℓk-norms of Completion Times under Strongly-Local

Policies

We consider the coordination mechanism under the strongly-local policy SPT

that schedules jobs in the order of non-decreasing processing times. The formal
definition of that policy is the following.

Policy SPT Let x be a strategy profile. Let ≺i be an order of jobs on machine
i, where j′ ≺i j iff pij′ < pij or pij′ = pij and j is priority over j′ (machine i
chooses a local preference over jobs based on their local identities to break ties).
The cost of job j under the SPT [9] policy is

cj(x) =
∑

j′: xj′=i

j′�j

pij′ .

Note that the policy SPT is feasible. Since all pij could be written as a
multiple of ǫ (a small precision) without loss of generality, assume that all jobs
processing times (scaling by ǫ−1) are integers and upper-bounded by P .
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Lemma 4. Let x be an assignment of jobs to machines. Then, among all feasible
schedules, SPT policy minimizes the ℓk-norm of job completion times with respect
to this assignment.

Theorem 1. The PoA of SPT with respect to the ℓk-norm of job completion

times is O(k
k+1

k ).

Proof. Let x and x∗ be two arbitrary profiles. We focus on a machine i. Let
n1, . . . , nP be the numbers of jobs in x which are assigned to machine i and
have processing times 1, . . . , P , respectively. Similarly, m1, . . . ,mP are defined
for profile x∗. Note that na and ma are non-negative for 1 ≤ a ≤ P . Applying
Lemma 3 for non-negative sequences (na)

P
a=1, (ma)

P
a=1 and the positive increas-

ing sequence (a)Pa=1, we have:

P
∑

a=1





(

a
∑

b=1

bnb + a

)k

+

(

a
∑

b=1

bnb + 2a

)k

+ . . .+

(

a
∑

b=1

bnb +ma · a

)k




≤
k + 1

k + 2
·

P
∑

a=1





(

a−1
∑

b=1

bnb + a

)k

+

(

a−1
∑

b=1

bnb + 2a

)k

+ . . .+

(

a−1
∑

b=1

bnb + na · a

)k




+Θ
(

αk(k + 1)k
)

·

[(

a−1
∑

b=1

bmb + a

)k

+

(

a−1
∑

b=1

bmb + 2a

)k

+ . . .+

+

(

a−1
∑

b=1

bmb +ma · a

)k ]

where α is a constant.
Observe that, by definition of the cost under the SPT policy, the left-hand side

(of the inequality above) is an upper bound for
∑

j:x∗

j
=i c

k
j (x−j , x

∗
j ), while the

right-hand side is exactly k+1
k+2 ·

∑

j:xj=i c
k
j (x) +Θ

(

αk(k + 1)k
)

·
∑

j:x∗

j
=i c

k
j (x

∗).

Thus,

∑

j:x∗

j
=i

ckj (x−j , x
∗
j ) ≤

k + 1

k + 2
·
∑

j:xj=i

ckj (x) +Θ
(

αk(k + 1)k
)

·
∑

j:x∗

j
=i

ckj (x
∗)

As the inequality above holds for every machine i, summing over all machines
we have:

∑

j

ckj (x−j , x
∗
j ) ≤

k + 1

k + 2
·
∑

j

ckj (x) +Θ
(

αk(k + 1)k
)

·
∑

j

ckj (x
∗)

By the smooth argument, Ck(x) ≤
(

αk(k + 1)k+1
)

Ck(x∗). Therefore, C(x) ≤

O(k
k+1

k )C(x∗).
Choosing x∗ as an optimal assignment. By Lemma 4, the optimal schedule

for this assignment could be done using the SPT policy, i.e., the optimal social

cost is C(x∗). Therefore, the PoA is O(k
k+1

k ). ⊓⊔
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The following theorem proved that the bound on the PoA is tight. The con-
struction is a generalization of the one in [6] where the authors showed a tight
bound for the ℓ1-norm.

Theorem 2. The PoA of any deterministic non-preemptive non-waiting strongly-

local policy is Ω(k
k+1

k ) with respect to the ℓk-norm of job completion times.

Proof. Using the technique described in [6], it is sufficient to prove that the PoA

of SPT is Ω(k
k+1

k ).
Let t and m be integers such that m =

∏t
u=1 u

k. (In fact, for the proof it is
enough to choose m such that m/uk is integer for every 1 ≤ u ≤ t.) Consider an
instance in which there are m machines and the jobs are {ju,v : 1 ≤ u ≤ t, 1 ≤
v ≤ m/uk}. A job ju,v has unit processing time on every machine 1 ≤ i ≤ v
and has processing time infinity on other machines. In other words, job ju,v is
allowed to be scheduled only on machine with index at most v. We say that a
job ju,v has more priority than job ju′,v′ if v > v′; or if v = v′ and u < u′. If
two jobs ju,v and ju′,v′ are both assigned to the same (allowed) machine then
the job with higher priority will be scheduled before the other (note that those
jobs have the same unit processing times in the machine).

We first give an assignment of jobs to machines with a small social cost.
Consider an assignment x∗ in which job ju,v for 1 ≤ u ≤ t, 1 ≤ v ≤ m/uk is
scheduled in machine v. An illustration is given in the left of Figure 1. By the
priority order, the completion time of job ju,v is u. By the construction, the
number of jobs with completion time u for 1 ≤ u ≤ t is m/uk. Hence, the social
cost of the assignment satisfies Ck(x∗) =

∑t
u=1 u

km/uk = mt.
Now we construct a Nash equilibrium with high social cost. Roughly speak-

ing, for each 1 ≤ s ≤ t, we will assign the set of jobs Js = {ju,v : 1 ≤ u ≤
s,m/(s + 1)k < v ≤ m/sk} to a subset of machines i for 1 ≤ i ≤ m/sk+1 in
such a way that their completion times are between k(s− 1) + 1 and ks. More-
over, in the assignment apart of those jobs, no other has completion time in
[k(s − 1) + 1, ks]. As there are t such sets Js and each set gives rise to k units
in the completion times, the desired lower bound follows.

Formally, fix 1 ≤ s ≤ t and consider the set Js = {ju,v : 1 ≤ u ≤ s,m/(s +
1)k < v ≤ m/sk}. Partition Js = Js,1 ∪ . . . ∪ Js,k where

Js,a :=

{

ju,v : 1 ≤ u ≤ s,
m

sk−a(s+ 1)a
< v ≤

m

sk+1−a(s+ 1)a−1

}

.

for 1 ≤ a ≤ k. The cardinal of Js,a is

|Js,a| = s

(

m

sk+1−a(s+ 1)a−1
−

m

sk−a(s+ 1)a

)

=
m

sk−a(s+ 1)a
.

Note that by definition, jobs in Js′,a′ have higher priority then the ones in Js,a

in case s > s′ or in case s = s′ and a > a′. In total, there are k · t sets Js,a since
1 ≤ s ≤ t and 1 ≤ a ≤ k.

Consider a profile x in which jobs in Js,a for 1 ≤ s ≤ t and 1 ≤ a ≤ k are
assigned arbitrarily one-to-one to machines 1, 2, . . . , |Js,a|. It is feasible since a
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m
2k

m
sk

m
m

(s+1)k

Js,1

Js,1

Js,2

Js,k

1

2

s

t

Js,k

(s− 1)k + 2

(s− 1)k + 1

m
(s+1)k

m
sk−2(s+1)2

m
sk−1(s+1)

Fig. 1. Illustration of profiles x∗ (in the left) and x (in the right). The horizontal and
vertical axes represent machines and completion times, respectively.

job ju,v ∈ Js,a has index v > m
sk−a(s+1)a

= |Js,a|, meaning that the job could

be scheduled on any machine in 1, 2, . . . , |Js,a|. In this assignment, jobs in the
same set Js,a have the same cost, which is (s− 1)k + a. An illustration is given
in the right of Figure 1. We show that profile x is indeed a Nash equilibrium.
Let ju,v be a job in Js,a. This job has cost (s− 1)k+ a and cannot be scheduled
on any machine with index larger then m

sk+1−a(s+1)a−1 . Recall that if a > 1,
m

sk+1−a(s+1)a−1 = |Js,a−1|; and if a = 1 and s > 1, m
sk+1−a(s+1)a−1 = |Js−1,k|. In

profile x, the jobs assigned to machines 1, 2, . . . , m
sk+1−a(s+1)a−1 with cost strictly

smaller then (s − 1)k + a are jobs in Js′,a′ where either s′ < s or s′ = s and
a′ < a. The jobs have higher priority then ju,v. Therefore, job ju,v ∈ Js,a for
(s, a) 6= (1, 1) cannot unilaterally change machine to improve its cost. Besides,
jobs in J1,1 have no incentive to change their machines as their cost are 1 and
they cannot strictly decrease by doing so. Thus, x is a Nash equilibrium.

In profile x, there are exactly |Js,a| jobs with cost (s − 1)k + a. Therefore,
the social cost C(x) satisfies:

Ck(x) =
t
∑

s=1

k
∑

a=1

m

sk−a(s+ 1)a
[(s− 1)k + a]k ≥ kkm

t
∑

s=1

k
∑

a=1

(s− 1)k

sk−a(s+ 1)a

≥ kk+1m

t
∑

s=1

(s− 1)k

(s+ 1)k
≥ kk+1m(t− 1)

1

3k

Hence, we deduce that C(x)/C(x∗) ≥ 1
4k

k+1

k . ⊓⊔

4 ℓ∞-norms of Completion Times under Local Policies

For any profile x, the social cost C(x) = maxj cj . Let x(i) = {j : xj = i}
be the set of jobs assigned to machine i. Define L(x(i)) :=

∑

j:xj=i pij as the
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load of of machine i for 1 ≤ i ≤ m in profile x. The makespan of the profile
is L(x) := maxi L(x(i)). Observe that in an optimal assignment x∗, C(x∗) =
L(x∗) since there is no idle-time in an optimal schedule. For each job j, denote
qj := min{pij : 1 ≤ i ≤ m} and define ρij := pij/qj for all i, j. Note that a local
policy can compute qj for every job j while a strongly-local one cannot.

A profile x is m-efficient if ρxj ,j ≤ m for every job j. The following lemma
guarantees that the restriction to the m-efficient profiles worsens the optimal
social cost only by a constant factor.

Lemma 5 ([4]). Let y∗ be an optimal assignment. Then, there exits a m-
efficient assignment x∗ such that L(x∗) ≤ 2L(y∗).

Policy Balance Let x be a strategy profile. Let ≺i be a total order on the jobs
assigned to machine i, which is a SPT-like order. Formally, j ≺i j

′ if pij < pij′ ,
or pij = pij′ and j is priority over j′ (machine i chooses a local preference over
jobs based on their local identities to break ties). Note that the policy does not
need a global job identities (there is no communication cost between machines
about job identities) and a job may have different priority on different machines.
The policy is clearly anonymous.

The cost cj of job j assigned to machine i is defined as follows where k is a
constant to be chosen later.

ckj (x) =















1
qj

[

(

pij +
∑

j′:j′≺ij
xj′=i

pij′
)k+1

−
(

∑

j′:j′≺ij
xj′=i

pij′
)k+1

]

if ρij ≤ m,

∞ otherwise.

Intuitively, the cost of a job scheduled on a machine is proportional to its
marginal contribution to the load of the machine (up to some power). More-
over, by the definition, jobs are allowed to be scheduled only on machines with
inefficiency smaller than m.

Observe that the cost cj(x) of job j satisfies

ckj (x) ≥
1

qj





(

pij +
∑

j′:j′≺ij, xj′=i

pij′
)k+1

−
(

∑

j′:j′≺ij, xj′=i

pij′
)k+1





≥
pij
qj

(

pij +
∑

j′:j′≺ij, xj′=i

pij′
)k

≥
(

pij +
∑

j′:j′≺ij, xj′=i

pij′
)k

since pij/qj ≥ 1. As that holds for every job j assigned to machine i, policy
Balance is feasible.

Lemma 6. The best-response dynamic under the Balance policy converges to a
Nash equilibrium.

Proof. By the definition of the policy, any job j will choose a machine i such
that ρij ≤ m. Moreover, since qj is fixed for each job j, the behavior of jobs is
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similar to that in the following game. In the latter, the set of strategy of a player
j is the same as in the former except the machines i with ρij > m. Moreover, in
the new game, player j in profile x has cost c′j(x) such that

(

c′j(x)
)k

=
(

pij +
∑

j′≺ij

pij′
)k+1

−
(

∑

j′≺ij

pij′
)k+1

Hence, it is sufficient to prove that the better-response dynamic in the new
game always converges. The argument is the same as the one to prove the exis-
tence of Nash equilibrium for policy SPT [9]. Here we present a proof based on
a geometrical approach [8].

t

u

Fig. 2. An geometrical illustration of |x|u,t, every dot is a (j, cj(x)) pair, colored black
if counted in |x|u,t.

First, define posi(j) := 1 + |{j′ : j′ ≺i j, 1 ≤ j′ 6= j ≤ n}| which represents
the priority of job j on machine i. For a value u ∈ R

+ and a job index 1 ≤ t ≤ n,
we associate to every profile x the quantity

|x|u,t := |{j : c′j(x) < u or c′j(x) = u, posxj
(j) ≤ t}|.

We use it to define a partial order ≺ on profiles. Formally x ≺ y if for the
lexicographically smallest pair (u, t) such that |x|u,t 6= |y|u,t we have |x|u,t <
|y|u,t.

We show that the profile strictly increases according to this order, whenever
a job changes to another machine while decreasing its cost. Let j be such a job
changing from machine a in profile x to machine b, resulting in a profile y. We
know that c′j(y) < c′j(x). Remark that only jobs j′ with xj′ = b might have the
cost in y larger than that in x (by definition of the cost c′). Moreover, such job
j′ with xj′ = b and j′ has a different costs in x and y, it must be j ≺b j

′, which
also implies c′j′(x) ≥ c′j(y). In the same spirit, some jobs j′ with xj′ = a might
decrease their cost, but not below c′j(x).

Consider u = c′j(y) and t = posb(j). We have that |x|u′,t′ = |y|u′,t′ for all
u′ < u and all t′. If job j is the only job with processing time pbj among the
ones {j′ : xj′ = b}, then |y|u,t = |x|u,t + 1. Otherwise, |y|u,t′ = |x|u,t′ for t

′ < t
and |y|u,t = |x|u,t + 1.

Therefore (u, t) is the first lexicographical pair where |x|u,t 6= |y|u,t and
|y|u,t > |x|u,t. Hence, since the set of strategy profiles is finite, the better-
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response dynamic must converge to a pure Nash equilibrium. This completes
the proof. ⊓⊔

Remark that the game under Balance convergences fast to Nash equilibria in
the best-response dynamic (the argument is the same as [9, Theorem 12]).

Lemma 7. Let x and x∗ be an equilibrium and an m-efficient arbitrary profile,
respectively. Then,

∑m
i=1 L

k+1(x(i)) ≤ O(αkkk+1)
∑m

i=1 L
k+1(x∗(i)) where α is

some constant.

Proof. We focus on an arbitrary job j. Denote i = xj and i∗ = x∗
j . As x is an

equilibrium, we have ckj (x) ≤ ckj (x−j , x
∗
j ), i.e,

(

pij+
∑

j′:j′≺ij
xj′=i

pij′
)k+1

−
(

∑

j′:j′≺ij
xj′=i

pij′
)k+1

≤
(

pi∗j +
∑

j′:j′≺i∗ j
xj′=i∗

pi∗j′
)k+1

−
(

∑

j′:j′≺i∗ j
xj′=i∗

pi∗j′
)k+1

≤
(

pi∗j + L(x(i∗))
)k+1

−
(

L(x(i∗))
)k+1

≤ (k + 1)pi∗j

(

pi∗j + L(x(i∗))
)k

(2)

where the second inequality is due to the fact that (z+a)k+1−zk+1 is increasing
in z (for a > 0) and

∑

j′:j′≺ij
xj′=i∗

pi∗j′ ≤ L(x(i∗)); the third inequality is due to

Lemma 2 (by dividing both sides by (pi∗j + L(x(i∗)))k+1 and applying z =
pi∗j

pi∗j+L(x(i∗)) in the statement of Lemma 2). Therefore,

m
∑

i=1

Lk+1(x(i)) =
m
∑

i=1

∑

j:xj=i

qjc
k
j (x) ≤

m
∑

i=1

∑

j:xj=i

qjc
k
j (x−j , x

∗
j )

≤

m
∑

i=1

∑

j:x∗

j
=i

(k + 1)pij

(

pij + L(x(i))
)k

≤ (k + 1)

m
∑

i=1

L(x∗(i))
(

L(x(i)) + L(x∗(i))
)k

≤ (k + 1)

m
∑

i=1

k

(k + 1)2
Lk+1(x(i)) +O

(

αkkk−1
)

Lk+1(x∗(i))

where the first inequality is because x is an equilibrium; the second inequality is
due to the sum of Inequality (2) taken over all jobs j; and the fourth inequality
follows by applying case (1b) of Lemma 1 for a(k) = 1/(k + 1). Arranging the
terms, the lemma follows. ⊓⊔
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Theorem 3. The PoA of the game under policy Balance is at most O(logm)
by choosing k = logm.

Proof. Let y∗ be an optimal assignment and x∗ be an m-efficient assignment
with property of Lemma 5. Let x be an equilibrium. Remark that x is a m-
efficient assignment since every job can always get a bounded cost. Consider a
job j assigned to machine i in profile x. As x is a m-efficient assignment, by the
definition of policy Balance

ckj (x) =
1

qj

[

(

pij +
∑

j′:j′≺ij
xj′=i

pij′
)k+1

−
(

∑

j′:j′≺ij
xj′=i

pij′
)k+1

]

≤
1

qj

[

(

L(x(i))
)k+1

−
(

L(x(i))− pij

)k+1
]

≤ (k + 1)ρijL
k(x(i))

where the first inequality is because function (a + x)k+1 − xk+1 is increasing;
and the last inequality is due to Lemma 2 (by dividing both sides by Lk+1(x(i))
and applying z =

pij

L(x(i)) in the statement of Lemma 2). Moreover, by Lemma 7,

we have

Lk+1(x) ≤
m
∑

i=1

Lk+1(x(i)) ≤ O(αkkk+1)
m
∑

i=1

Lk+1(x∗(i)) ≤ O(αkkk+1m)Lk+1(x∗)

for some constant α. Therefore,

C(x) = max
j

cj(x) ≤ max
i,j

(

(k + 1)ρij

)1/k

L(x(i)) ≤
(

(k + 1)m
)1/k

L(x)

≤ O

(

(

kk+2m2
)1/k

)

L(x∗) ≤ O

(

(

kk+2m2
)1/k

)

L(y∗)

where the last inequality is due to Lemma 5. Choosing k = logm, the theorem
follows. ⊓⊔
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Appendix

Lemma 1. Let k be a positive integer. Let 0 < a(k) ≤ 1 be a function on k.
Then, for any x, y > 0, it holds that

y(x+ y)k ≤
k

k + 1
a(k)xk+1 + b(k)yk+1

where α is some constant and

b(k) =































Θ

(

αk ·

(

k

log ka(k)

)k−1
)

if limk→∞(k − 1)a(k) = ∞, (1a)

Θ
(

αk · kk−1
)

if (k − 1)a(k) are bounded ∀k, (1b)

Θ

(

αk ·
1

ka(k)k

)

if limk→∞(k − 1)a(k) = 0. (1c)

Proof. Let f(z) := k
k+1a(k)z

k+1 − (1 + z)k + b(k). To show the claim, it is
equivalent to prove that f(z) ≥ 0 for all z > 0.

We have f ′(z) = ka(k)zk−k(1+z)k−1. We claim that the equation f ′(z) = 0
has an unique positive root z0. Consider the equation f ′(z) = 0 for z > 0. It is
equivalent to

(

1

z
+ 1

)k

·
1

z
= a(k)

The left-hand side is a strictly decreasing function and the limits when z tends
to 0 and ∞ are ∞ and 0, respectively. As a(k) is a positive constant, there exists
an unique root z0 > 0.

Observe that function f is decreasing in (0, z0) and increasing in (z0,+∞),
so f(z) ≥ f(z0) for all z > 0. Hence, by choosing

b(k) =
∣

∣

∣

k

k + 1
a(k)zk+1

0 − (1 + z0)
k
∣

∣

∣
= (1 + z0)

k−1
(

1 +
z0

k + 1

)

(3)

it follows that f(z) ≥ 0 ∀z > 0.
We study the positive root z0 of equation

a(k)zk − (1 + z)k−1 = 0 (4)

Note that f ′(1) = k(a(k) − 2k−1) < 0 since 0 < a(k) ≤ 1. Thus, z0 > 1. For
the sake of simplicity, we define the function g(k) such that z0 = k−1

g(k) where

0 < g(k) < k − 1. Equation (4) is equivalent to

(

1 +
g(k)

k − 1

)k−1

g(k) = (k − 1)a(k)

Note that ew/2 < 1 + w < ew for w ∈ (0, 1). For w := g(k)
k−1 , we obtain the

following upper and lower bounds for the term (k − 1)a(k):
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eg(k)/2g(k) < (k − 1)a(k) < eg(k)g(k) (5)

Recall the definition of Lambert W function. For each y ∈ R
+, W (y) is

defined to be solution of the equation xex = y. Note that, xex is increasing with
respect to x, hence W (·) is increasing.

By definition of the Lambert W function and Equation (5), we get that

W ((k − 1)a(k)) < g(k) < 2W

(

(k − 1)a(k)

2

)

(6)

First, consider the case where limk→∞(k − 1)a(k) = ∞. The asymptotic
sequence for W (x) as x → +∞ is the following: W (x) = lnx− ln lnx+ ln ln x

ln x +

O
(

(

ln ln x
ln x

)2
)

. So, for large enough k, W ((k − 1)a(k)) = Θ(log((k − 1)a(k))).

Since z0 = k−1
g(k) , from Equation (6), we get z0 = Θ

(

k
log(ka(k))

)

. Therefore, by

(3) we have b(k) = Θ

(

αk ·
(

k
log ka(k)

)k−1
)

for some constant α.

Second, consider the case where (k − 1)a(k) is bounded by some constants.
So by (6), we have g(k) = Θ(1). Therefore z0 = Θ(k) which again implies
b(k) = Θ

(

αk · kk−1
)

for some constant α.
Third, we consider the case where limk→∞(k − 1)a(k) = 0. We focus on the

Taylor series W0 of W around 0. It can be found using the Lagrange inversion
and is given by

W0(x) =

∞
∑

i=1

(−i)i−1

i!
xi = x− x2 +O(1)x3.

Thus, for k large enough g(k) = Θ((k − 1)a(k)). Hence, z0 = Θ(1/a(k)). Once

again that implies b(k) = Θ
(

αk · 1
ka(k)k

)

for some constant α. ⊓⊔

Lemma 3. For any non-negative sequences (ni)
P
i=1, (mi)

P
i=1, and for any pos-

itive increasing sequence (qi)
P
i=1, define Ai,j := n1q1 + . . . + ni−1qi−1 + j · qi

for 1 ≤ i ≤ P, 1 ≤ j ≤ ni and Bi,j := m1q1 + . . . + mi−1qi−1 + j · qi for
1 ≤ i ≤ P, 1 ≤ j ≤ mi. Then, it holds that

P
∑

i=1

mi
∑

j=1

(Ai,ni
+ j · qi)

k ≤ µk

P
∑

i=1

ni
∑

j=1

Ak
i,j + λk

P
∑

i=1

mi
∑

j=1

Bk
i,j ,

where µk = k+1
k+2 and λk = Θ(αk(k + 1)k) for some constant α.

Proof. Denote ri = 1/qi for 1 ≤ i ≤ P . The inequality is equivalent to

P
∑

i=1

ri

mi
∑

j=1

qi(Ai,ni
+ j · qi)

k ≤ µk

P
∑

i=1

ri

ni
∑

j=1

qiA
k
i,j + λk

P
∑

i=1

ri

mi
∑

j=1

qiB
k
i,j
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For convenience set rP+1 = 0. This inequality could be written as

P
∑

i=1

(ri − ri+1)





i
∑

t=1

mt
∑

j=1

qt(At,nt
+ j · qt)

k





≤

P
∑

i=1

(ri − ri+1)



µk

i
∑

t=1

nt
∑

j=1

qtA
k
t,j + λk

i
∑

t=1

mt
∑

j=1

qtA
k
t,j





As (ri)
P
i=1 is decreasing a sequence (so ri − ri+1 ≥ 0 ∀1 ≤ i ≤ P ), it is

sufficient to prove that for all 1 ≤ i ≤ P ,

i
∑

t=1

mt
∑

j=1

qt(At,nt
+ j · qt)

k ≤ µk

i
∑

t=1

nt
∑

j=1

qtA
k
t,j + λk

i
∑

t=1

mt
∑

j=1

qtA
k
t,j . (7)

Fix an index i. For convenience set A0,j = 0 for any j. By Lemma 2, we have

(k + 1)qtA
k
t,j ≥ Ak+1

t,j − (At,j − qt)
k+1 = Ak+1

t,j −Ak+1
t,j−1 ∀1 ≤ t ≤ P, 2 ≤ j ≤ nt

(k + 1)qtA
k
t,1 ≥ Ak+1

t,1 − (At,1 − qt)
k+1 = Ak+1

t,1 −Ak+1
t−1,nt−1

∀1 ≤ t ≤ P.

Therefore,

(k + 1)

i
∑

t=1

nt
∑

j=1

qtA
k
t,j ≥

i
∑

t=1





nt
∑

j=2

(

Ak+1
t,j −Ak+1

t,j−1

)

+Ak+1
t,1 −Ak+1

t−1,nt−1



 = Ak+1
i,ni

,

since the sums telescope. Similarly, (k + 1)
∑i

t=1

∑mt

j=1 qtB
k
t,j ≥ Bk+1

i,mi
. Thus, to

prove Inequality (7), it is sufficient to prove that for all 1 ≤ i ≤ P ,

i
∑

t=1

mt
∑

j=1

qt(At,nt
+ j · qt)

k ≤

(

µk

k + 1
Ak+1

i,ni
+

λk

k + 1
Bk+1

i,mi

)

Besides,

i
∑

t=1

mt
∑

j=1

qt(At,nt
+ j · qt)

k ≤

i
∑

t=1

mtqt(At,nt
+Bi,mi

)k ≤ Bi,mi
(Ai,ni

+Bi,mi
)k

where the inequalities follow Bi,mi
=
∑i

t=1 mtqt ≥ jmt for j ≤ mt and Ai,ni
≥

At,nt
for t ≤ i.

Hence, we only need to argue that

Bi,mi
(Ai,ni

+Bi,mi
)k ≤

(

µk

k + 1
Ak+1

i,ni
+

λk

k + 1
Bk+1

i,mi

)

(8)

Choose µk = k+1
k+2 and apply case (1b) of Lemma 1 (now a(k) = (k+1)

k(k+2) and

(k − 1)a(k) is bounded by a constant), we deduce that: for λk = Θ(αk(k + 1)k)
where α is a constant, Inequality (8) holds. ⊓⊔
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Lemma 4. Let x be an assignment of jobs to machines. Then, the SPT policy
minimizes the ℓk-norm of job completion times with respect to this assignment
among all feasible policies.

Proof. Consider a machine i and let N be the number of jobs assigned to i by
the profile x. These N jobs are renamed in order of non-decreasing processing
times, and since we fixed machine i, for convenience we drop index i in the
processing times. So we denote the N processing times as p1 ≤ p2 ≤ . . . ≤ pN .
In any schedule of those jobs, there exist distinct jobs with completion times at
least p1, p1 + p2, . . . , p1 + . . .+ ph. Hence, the ℓk-norm on the completion times

of such jobs is at least
(

∑h
j=1(p1 + . . .+ pj)

k
)1/k

, which is attained by the SPT

policy. ⊓⊔
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