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STOCHASTIC FLOWS ON METRIC GRAPHS

Hatem Hajri
(1)

and Olivier Raimond
(2)

Abstract

We study a simple stochastic differential equation (SDE) driven by
one Brownian motion on a general oriented metric graph whose solu-
tions are stochastic flows of kernels. Under some condition, we describe
the laws of all solutions. This work is a natural continuation of [16],
[8] and [9] where some particular metric graphs are considered.

1. Introduction

A metric graph is seen as a metric space with branching points. In
recent years, diffusion processes on metric graphs are more and more
studied [7],[11],[12],[13],[14]. They arise in many physical situations
such as electrical networks, nerve impulsion propagation [4], [17]. They
also occur in limiting theorems for processes evolving in narrow tubes
[6]. Diffusion processes on graphs are defined in terms of their infini-
tesimal operators in [5]. Such processes can be described as mixtures
of motions ”along an edge” and ”around a vertex”. A typical example
of such processes is Walsh Brownian motion defined on a finite number
of half lines which are glued together at a unique end point. This pro-
cess has acquired a particular interest since it was proved by Tsirelson
that it can not be a strong solution to any SDE driven by a standard
Brownian motion, although it satisfies the martingale representation
property with respect to some Brownian motion [1]. In view of this,
it is natural to investigate SDEs on graphs driven by one Brownian
motion to be as simple as possible. This study has been initiated by
Freidlin and Sheu in [5] where Walsh Brownian motion has been shown
to satisfy the equation

df(Xt) = f ′(Xt)dWt +
1

2
f ′′(Xt)dt

where Wt = |Xt| − Lt(|X|) is a Brownian motion, f runs over an
appropriate domain of functions with an appropriate definition of its
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derivative. Our subject in this paper is to investigate the following
extension on a general oriented metric graph:

Ks,tf(x) = f(x) +

∫ t

s

Ks,uf
′(x)dWu +

1

2

∫ t

s

Ks,uf
′′(x)du

where K is a stochastic flow of kernels as defined in [15], W is a real
white noise, f runs over an appropriate domain and f ′ is defined ac-
cording to an arbitrary choice of coordinates on each edge. When G
is a star graph, this equation has been studied in [8] and when G con-
sists of only two edges and two vertices the same equation has been
considered in [9]. In this paper, we extend these two studies (as well
as [16] where the associated graph is simply the real line) and classify
the solutions on any oriented metric graph.

The content of this paper is as follows.
In Section 2, we introduce notations for any metric graph G and

then define the SDE (E) driven by a white noise W , with solutions of
this SDE being stochastic flows of kernels on G. Thereafter, our main
result is stated. Along an edge the motion of any solution only depends
on W and the orientation of the edge. The set of vertices of G will be
denoted V . Around a vertex v ∈ V , the motion depends on a flow K̂v

on a star graph (associated to v) as constructed in [8].

In Section 3, starting from (K̂v)v∈V respectively solutions to an SDE
on a star graph associated to a vertex v, under the following additional

(but natural) assumption : the family
(

∨v∈V F K̂v

s,t ; s ≤ t
)

is inde-
pendent on disjoint time intervals, we construct a stochastic flow of

kernels K solution of (E) (where F K̂v

s,t is the sigma-field generated by

the increments of K̂v between s and t).

In Section 4, starting from K, we recover the flows (K̂v)v∈V . Actu-
ally, in sections 3 and 4, we prove more general results : the SDEs may
be driven by different white noises on different edges of G.

The main results about flows on star graphs obtained in [8] are re-

viewed in Section 5. Thus, as soon as the flows (K̂v)v∈V can be defined
jointly, we have a general construction of a solution K of (E).

In Section 6, we consider two vertices v1 and v2 and under some con-
dition only depending on the ”geometry” of the star graphs associated
to v1 and v2 we show that independence on disjoint time intervals of
(

F K̂v1

s,t ∨ F K̂v2

s,t , s ≤ t
)

is equivalent to : K̂v1 and K̂v2 are independent
given W .

Section 7 is an appendix devoted to the skew Brownian flow con-
structed by Burdzy and Kaspi in [2]. We will explain how this flow
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simplifies our construction on graphs such that any vertex has at most
two adjacent edges.

Section 8 is an appendix complement to Section 5, we will review the
construction of flows K̂v constructed in [8] with notations in accordance
with the content of our paper.

2. Definitions and main results

v

Figure 1. An example of oriented metric graph.

2.1. Oriented metric graphs. Let G be a metric graph in the sense
that (G, d) is a connected metric space for which there exists a finite
or countable set V , the set of vertices, and a partition {Ei; i ∈ I}
of G\V with I a finite or countable set (i.e. G\V = ∪i∈IEi and for
i 6= j, Ei∩Ej = ∅) such that for all i ∈ I, Ei is isometric to an interval
(0, Li), with Li ≤ +∞. We call Ei an edge, Li its length and denote
by {Ei, i ∈ I} the set of all edges on G.
To each edge Ei, we associate an isometry ei : Ji → Ēi, with Ji = [0, Li]
when Li < ∞ and Ji = [0,∞) or Ji = (−∞, 0] when Li = ∞. Note
that ei(t) ∈ Ei for all t in the interior of Ji, ei(0) ∈ V and when
Li < ∞, ei(Li) ∈ V . The mapping ei will be called the orientation of
the edge Ei and the family E = {ei; i ∈ I} defines the orientation of G.
When Li < ∞, denote {gi, di} = {ei(0), ei(Li)}. When Li = ∞, denote
{gi, di} = {ei(0),∞} when Ji = [0,∞) and {gi, di} = {∞, ei(0)} when
Ji = (−∞, 0]. For all v ∈ V , denote I+v = {i ∈ I; gi = v}, I−v = {i ∈
I; di = v} and Iv = I+v ∪ I−v . Let nv, n

+
v and n−

v denote respectively
the numbers of elements in Iv, I

+
v and I−v . Then nv = n+

v + n−
v .

We will always assume that

• nv < ∞ for all v ∈ V (i.e. Iv is a finite set).
• inf i Li = L > 0.
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A graph with only one vertex and such that Li = ∞ for all i ∈ I
will be called a star graph. It will also be convenient to imbed any star
graph in the complex plane C. Its unique vertex will be denoted 0.

For each v ∈ V , denote Gv = {v} ∪ ∪i∈IvEi and GL
v = {x ∈

G; d(x, v) < L}, which is then a subset of Gv. Note that Gv∩V = {v}.

For each v ∈ V , there exists a star graph Ĝv and a mapping iv : Gv →
Ĝv such that iv : Gv → iv(Gv) is an isometry. This implies in particular

that iv(v) = 0 and that ĜL
v = {x ∈ Ĝv; d(0, v) < L} = iv(G

L
v ). For

each i ∈ Iv, define êvi = iv ◦ei. Note that Ĝv can be written in the form

{0} ∪ ∪i∈IvÊ
v
i , with iv(Ei) ⊂ Êv

i and where (Êv
i )i∈Iv is the set of edges

of Ĝv. The mapping êvi can be extended to an isometry (−∞, 0] →
{0} ∪ Êv

i when i ∈ I−v and to an isometry [0,+∞) → {0} ∪ Êv
i when

i ∈ I+v .

0

Figure 2. The star graph Ĝv associated to v in Figure 1.

For x ∈ Gv and f : Gv → R, we will sometimes denote x̂v = iv(x) and

f̂v : Ĝv → R the mapping defined by f̂ = 0 on iv(Gv)
c and f̂v = f ◦ i−1

v

on iv(Gv), so that f̂v(x̂v) = f(x) for all x ∈ Gv.

We will also denote by B(G) the set of Borel sets of G and by P(G)
the set of Borel probability measures on G. Note that a kernel on G is a
measurable mapping k : G → P(G). For x ∈ G and A ∈ B(G), k(x,A)
denotes k(x)(A) and the probability measure k(x) will sometimes be
denoted k(x, dy). For f a bounded measurable mapping on G, kf(x)
denotes

∫

f(y)k(x, dy).

2.2. SDE on G. Let G be an oriented metric graph. To each v ∈
V and i ∈ Iv, we associate a transmission parameter αi

v such that
∑

i∈Iv
αi
v = 1. Denote α = (αi

v; v ∈ V, i ∈ Iv). Define DG
α the set of

all continuous functions f : G → R such that for all i ∈ I, f ◦ ei is
C2 on the interior of Ji with bounded first and second derivatives both
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extendable by continuity to Ji and such that for all v ∈ V
∑

i∈I+v

αi
v lim
r→0+

(f ◦ ei)
′(r) =

∑

i∈I−v

αi
v lim
r→0−

(f ◦ ei)
′(r).

Since α will be fixed, DG
α will simply be denoted D. When Ĝv is a star

graph as defined before, to the half line Êv
i , we associate the parameter

αi
v and denote αv = (αi

v; i ∈ Iv) and D̂v = DĜv
αv

. For f ∈ D and
x = ei(r) ∈ G\V , set f ′(x) = (f ◦ ei)

′(r), f ′′(x) = (f ◦ ei)
′′(r) and take

the convention f ′(v) = f ′′(v) = 0 for all v ∈ V .

Definition 2.1. A stochastic flow of kernels (SFK) K on G, defined
on a probability space (Ω,A,P), is a family (Ks,t)s≤t such that

(1) For all s ≤ t, Ks,t is a measurable mapping from (G×Ω,B(G)⊗
A) to (P(G),B(P(G)));

(2) For all h ∈ R, s ≤ t, Ks+h,t+h is distributed like Ks,t;
(3) For all s1 ≤ t1 ≤ · · · ≤ sn ≤ tn, the family {Ksi,ti, 1 ≤ i ≤ n}

is independent.
(4) For all s ≤ t ≤ u and all x ∈ G, a.s. Ks,u(x) = Ks,tKt,u(x),

and Ks,s equals the identity;
(5) For all f ∈ C0(G), and s ≤ t, we have

lim
(u,v)→(s,t)

sup
x∈G

E[(Ku,vf(x)−Ks,tf(x))
2] = 0;

(6) For all f ∈ C0(G), x ∈ G, s ≤ t, we have

lim
y→x

E[(Ks,tf(y)−Ks,tf(x))
2] = 0;

(7) For all s ≤ t, f ∈ C0(G), lim|x|→∞E[(Ks,tf(x))
2] = 0.

We say that ϕ is a stochastic flow of mappings (SFM) on G if
Ks,t(x) = δϕs,t(x) is a SFK on G.

Given two SFK’s K1 and K2 on G, we say that K1 is a modification
of K2 if for all s ≤ t, x ∈ G, a.s. K1

s,t(x) = K2
s,t(x).

For a family of random variables Z = (Zs,t)s≤t, denote FZ
s,t = σ(Zu,v, s ≤

u ≤ v ≤ t).

Definition 2.2. (Real white noise) A family (Ws,t)s≤t is called a real
white noise if there exists a Brownian motion on the real line (Wt)t∈R,
that is (Wt)t≥0 and (W−t)t≥0 are two independent standard Brownian
motions such that for all s ≤ t, Ws,t = Wt −Ws (in particular, when
t ≥ 0, Wt = W0,t and W−t = −W−t,0).

Our main interest in this paper is the following SDE, that extends
Tanaka’s SDE to metric graphs.
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Definition 2.3. (Equation (EG
α )) On a probability space (Ω,A,P), let

W be a real white noise and K be a stochastic flow of kernels on G.
We say that (K,W ) solves (EG

α ) if for all s ≤ t, f ∈ D and x ∈ G, a.s.

Ks,tf(x) = f(x) +

∫ t

s

Ks,uf
′(x)W (du) +

1

2

∫ t

s

Ks,uf
′′(x)du.

When ϕ is a SFM and K = δϕ is a solution of (E), we simply say that
(ϕ,W ) solves (EG

α ).

Since G and α will be fixed from now on, we will denote equation

(EG
α ) simply by (E), and we will also denote (EĜv

αv
) simply be (Êv). A

complete classification of solutions to (Êv) has been given in [8].

A family of σ-fields (Fs,t; s ≤ t) will be said independent on disjoint
time intervals (abbreviated : i.d.i) as soon as for all (si, ti)1≤i≤n with
si ≤ ti ≤ si+1, the σ-fields (Fsi,ti)1≤i≤n are independent. Note that for
K a SFK, since the increments of K are independent, then (FK

s,t; s ≤ t)
is i.d.i.

Our main result is the following

Theorem 2.4. (i) Let W be a real white noise and let (K̂v)v∈V be

a family of SFK’s respectively on Ĝv. Assume that for each v ∈ V ,

(K̂v,W ) is a solution of (Êv) and that
(

F̂s,t := ∨v∈V F
K̂v

s,t ; s ≤ t
)

is
independent on disjoint time intervals. Then there exists a unique (up
to modification) SFK K on G such that

• FK
s,t ⊂ F̂s,t for all s ≤ t,

• (K,W ) is a solution to (E) and
• For all s ∈ R and x ∈ Gv, setting

(1) ρx,vs = inf{u ≥ s : Ks,u(x,Gv) < 1},

then for all t > s, a.s. on the event {t < ρx,vs },

(2) iv ∗Ks,t(x) = K̂v
s,t(x̂

v).

(ii) Let (K,W ) be a solution of (E). Then for each v ∈ V , there

exists a unique (up to modification) SFK K̂v on Ĝv such that

• for all s ≤ t, F̂s,t := ∨v∈V F
K̂v

s,t ⊂ FK
s,t,

• (K̂v,W ) is a solution of (Êv) for each v ∈ V

and such that if ρx,vs is defined by (1) then for all s < t in R and x ∈ Gv,
a.s. on the event {t < ρx,vs }, (2) holds.
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Note that (2) can be rewritten: for all bounded measurable function
f on G, and all x ∈ Gv

Ks,tf(x) = K̂s,tf̂
v(x̂v).

Theorem 2.4 reduces the construction of solutions to (E) to the con-

struction of solutions to (Êv). Since for all v all solutions to (Êv) are
described in [8], to complete the construction of all solutions to (E),
one has to be able to construct them jointly.

This Theorem implies that there is a unique σ(W )-measurable flow

solving (E). We also notice that under the assumption
(

F̂s,t; s ≤ t
)

is i.d.i it is possible to construct different (in law) flows of mappings

solving (E). However, assuming that solutions to (Êv) are independent
given W the associated flow of mappings solution to (E) is law-unique.
This applies also to all other solutions.
For each v ∈ V , let α+

v =
∑

i∈I+v
αi
v and βv = 2α+

v − 1. Under some
condition linking βv1 and βv2 , the next proposition offers a better un-

derstanding of : (F K̂v1

s,t ∨ F K̂v2

s,t )s≤t is i.d.i.

Proposition 2.5. Let v1 and v2 be two vertices in V such that βv2 6= βv1

and

|βv2 − βv1 | ≥ 2βv1βv2 .

Let W be a real white noise. Let K̂v1 and K̂v2 be SFKs respectively
on Ĝv1 and on Ĝv2 such that (K̂v1 ,W ) and (K̂v2 ,W ) are solutions

respectively to (Êv1) and to (Êv2). Then (F K̂v1

s,t ∨ F K̂v2

s,t )s≤t is i.d.i if

and only if K̂v1 and K̂v2 are independent given W .

When V = {v1, v2} with Ĝv1 and Ĝv2 being given by the following
star graphs

1/21/21/21/2 V2 V1

Figure 3. Ĝv1 and Ĝv2 .

this proposition has been proved in [9].

3. Construction of a solution of (E) out of solutions of

(Êv)

For all i ∈ I, let W i be a real white noise. Assume that W :=
(W i

s,t; i ∈ I, s ≤ t) is Gaussian. Let

(3) As,t := {sup
i∈I

sup
s<u<v<t

|W i
u,v| < L}.
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Assume that lim|t−s|→0 P(A
c
s,t) = 0. Note that this assumption is satis-

fied if W i = W for all i, or if I is finite.
Let K̂ = (K̂v)v∈V be a family of SFK’s respectively on Ĝv and let

Wv := (W i; i ∈ Iv). Assume that (K̂v,Wv) is a solution to the

following SDE: For all s ≤ t, f̂ ∈ D̂v, x̂ ∈ Ĝv, a.s.
(4)

K̂v
s,tf̂(x̂) = f̂(x̂) +

∑

i∈Iv

∫ t

s

K̂v
s,u(1Êv

i
f̂ ′)(x̂)W i(du) +

1

2

∫ t

s

K̂v
s,uf̂

′′(x̂)du.

Then we have the following

Lemma 3.1. For all v ∈ V , i ∈ Iv and all s ≤ t, we have FW i

s,t ⊂ F K̂v

s,t .

Proof : Let y = êvi (r) ∈ Êv
i . Following Lemma 6 [8], we prove that

K̂v
s,t(y) = δêvi (r+W i

s,t)
for all s ≤ t ≤ σy

s where

σy
s = inf{u ≥ s; êvi (r +W i

s,u) = 0}.

Since this holds for arbitrarily large r, the lemma holds. �

In all this section, we assume that

(5)
(

F̂s,t := ∨v∈V F
K̂v

s,t ; s ≤ t
)

is i.d.i.

We will prove the following

Theorem 3.2. There exists K a unique (up to modification) SFK on
G, such that

• FK
s,t ⊂ F̂s,t for all s ≤ t,

• (K,W ) is a solution to the SDE: For all s ≤ t, f ∈ D, x ∈ G,
a.s.

Ks,tf(x) = f(x) +
∑

i∈I

∫ t

s

Ks,u(1Ei
f ′)(x)W i(du) +

1

2

∫ t

s

Ks,uf
′′(x)du.

and such that defining for s ∈ R, v ∈ V and x ∈ Gv,

(6) ρx,vs = inf{u ≥ s : Ks,u(x,Gv) < 1}

we have that for all s < t in R and x ∈ Gv, a.s. on the event {t < ρx,vs },

(7) iv ∗Ks,t(x) = K̂v
s,t(x̂

v).

Note that this Theorem implies (i) of Theorem 2.4.
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3.1. Construction of K. For all s ∈ R, x ∈ G, define

τxs = inf{t ≥ s; ei(r +W i
s,t) ∈ V }

where i ∈ I and r ∈ R are such that x = ei(r). For s < t, define the
kernel K0

s,t on G by: On the event Ac
s,t, set K0

s,t(x) = δx, and on the

event As,t, if x = ei(r) ∈ G and v = ei(r +W i
s,τxs

), then

K0
s,t(x) =

{

δei(r+W i
s,t)

if t ≤ τxs
i−1
v ∗ K̂v

s,t(x̂
v) if t > τxs

(i.e. for A ∈ B(G),
(

i−1
v ∗ K̂v

s,t(x̂
v)
)

(A) = K̂v
s,t(x̂

v, iv(A ∩ Gv))). Note

that on As,t∩{t > τxs }∩{v = ei(r+W i
s,τxs

)}, we have that the support

of K̂v
s,t(x̂

v) is included in iv(Gv) so that K0
s,t(x) ∈ P(G). Remark also

that on As,t ∩ {v = ei(r +W i
s,τxs

)}, a.s.

K0
s,t(x) = i−1

v ∗ K̂v
s,t(x̂

v).

Lemma 3.3. For all s < t < u and all µ ∈ P(G), a.s. on As,u,

(8) µK0
s,u = µK0

s,tK
0
t,u.

Proof : Fix s < t < u and note that As,u ⊂ As,t ∩ At,u a.s. We prove
the lemma for µ = δx which is enough since by Fubini’s Theorem :
∀A ∈ B(G)

E[|µK0
s,u(A)−µK0

s,tK
0
t,u(A)|] ≤

∫

G

E[|K0
s,u(x,A)−K0

s,tK
0
t,u(x,A)|]µ(dx).

There exist i and r such that x = ei(r). Denote by Y = ei(r +W i
s,t),

when t ≤ τxs .
If u ≤ τxs , then it is easy to see that (8) holds after having remarked
that τYt = τxs .

If t ≤ τxs < u, then K0
s,t(x) = δY and K0

s,u(x) = i−1
v ∗ K̂v

s,u(x̂
v) with

v = ei(r+W i
s,τxs

). We still have τYt = τxs which is now less than u. Write

K0
s,tK

0
t,u(x) = K0

t,u(Y ) = i−1
v′ ∗ K̂v′

t,u(Ŷ
v) where v′ = ei(e

−1
i (Y ) +W i

t,τYt
).

Note that v′ = v since (we have e−1
i (Y ) = r +W i

s,t)

v′ = ei(r +W i
s,t +W i

t,τYt
) = ei(r +W i

s,τxs
) = v.

Since K̂v is a flow, we get

K0
s,tK

0
t,u(x) = i−1

v ∗K̂v
t,u(Ŷ

v) = i−1
v ∗K̂v

s,tK̂
v
t,u(x̂

v) = i−1
v ∗K̂v

s,u(x̂
v) = K0

s,u(x).

If τxs < t, then K0
s,t(x) = i−1

v ∗ K̂v
s,t(x̂

v) and K0
s,u(x) = i−1

v ∗ K̂v
s,u(x̂

v)
with v defined as above. Let f be a bounded measurable function on
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G. Then K0
s,uf(x) = K̂v

s,uf̂
v(x̂v). And since K̂v is a flow,

K0
s,uf(x) = K̂v

s,tK̂
v
t,uf̂

v(x̂v).

Note that on the event As,t∩{τ
x
s < t}, the support of K0

s,t(x) is included

in GL
v , and for all y in the support of K0

s,t(x), the support of K̂v
t,u(ŷ

v) is

included in ĜL
v . In other words, it holds that on the event As,t ∩ {τxs <

t}, for all y in the support of K0
s,t(x), K̂

v
t,uf̂

v(ŷv) = K0
t,uf(y) and thus

that K̂v
s,tK̂

v
t,uf̂

v(ŷv) = K0
s,tK

0
t,uf(y). This implies the Lemma. �

We will say that a random kernel K is Fellerian when for all n ≥ 1
and all h ∈ C0(G

n), we have E[K⊗nh] ∈ C0(G
n).

Lemma 3.4. For all s < t , K0
s,t is Fellerian.

Proof : By an approximation argument (see the proof of Proposition
2.1 [15]), it is enough to prove the following L2-continuity for K0 : for
all f ∈ C0(G) and all x ∈ G, limy→x E[(K

0
0,tf(y) − K0

0,tf(x))
2] = 0.

Write

(K0
0,tf(y)−K0

0,tf(x))
2 = (K0

0,tf(y)−K0
0,tf(x))

21A0,t
+(f(y)−f(x))21Ac

0,t
.

Suppose that x belongs to an edge Ei. Using the convergence in prob-
ability W i

τ
y
0

→ W i
τx
0

as y → x, we see that P(K0
0,τy

0

(y) 6= K0
0,τx

0
(x))

converges to 0 as y → x. To conclude, it remains to prove that for v ∈
{gi, di} (i.e. v is an end point of Ei), denoting Cv

t = A0,t ∩ {K0
0,τy

0

(y) =

K0
0,τx

0
(x) = δv}, we have

lim
y→x

E[(K0
0,tf(y)−K0

0,tf(x))
21Cv

t
] = 0.

Since on Cv
t , K

0
0,t(z) = i−1

v ∗K̂v
0,t(ẑ

v) for z ∈ {x, y}, our result holds. �

Lemma 3.5. Let K1 and K2 be two independent Fellerian kernels.
Then K1K2 is a Fellerian kernel.

Proof : Set P
(n)
1 = E[K⊗n

1 ] and P
(n)
2 = E[K⊗n

2 ]. Then P
(n)
1 P

(n)
2 =

E[(K1K2)
⊗n]. This implies the lemma. �

Define for n ∈ N, Dn := {k2−n; k ∈ Z}. For s ∈ R, let sn = sup{u ∈
Dn; u ≤ s} and s+n = sn + 2−n. For every n ≥ 1 and s ≤ t define

Kn
s,t = K0

s,s+n
K0

s+n ,s+n+2−n . . .K
0
tn−2−n,tn

K0
tn,t

.

if s+n ≤ t and Kn
s,t = K0

s,t if s+n > t. Note that Lemma 3.4 and Lemma

3.5 imply that Kn
s,t is Fellerian (since the kernels K0

s,s+n
, K0

s+n ,s+n+2−n,

. . . , K0
tn−2−n,tn

, K0
tn,t

are independent by (5)).
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Define Ωn
s,t = {supi sup{s<u<v<t; |v−u|≤2−n} |W

i
u,v| < L}. Note that for

all s ≤ u < v ≤ t such that |u− v| ≤ 2−n, we have Ωn
s,t ⊂ Au,v.

Let Ωs,t = ∪nΩ
n
s,t, then P(Ωs,t) = 1. Define now, for ω ∈ Ωs,t, Ks,t(ω) =

Kn
s,t(ω) where n = ns,t = inf{k; ω ∈ Ωk

s,t} and set Ks,t(x) = δx on Ωc
s,t.

Lemma 3.6. For all s < t and all µ ∈ P(G), a.s. we have

µKm
s,t = µKs,t for all m ≥ ns,t.

Proof : For m ≥ ns,t, we have (denoting n = ns,t)

µKs,t = µK0
s,s+n

K0
s+n ,s+n+2−n . . .K

0
tn−2−n,tn

K0
tn,t

.

where s+n , s
+
n + 2−n, · · · , tn are also in Dm. Moreover for all (u, v) ∈

{(s, s+n ), (s
+
n , s

+
n +2−n), · · · , (tn, t)}, we have Ωn

s,t ⊂ Au,v. Now applying
Lemma 3.3 and an independence argument, we see that µKs,t = µKm

s,t.
�

Proposition 3.7. K is a SFK.

Proof : Obviously the increments of K are independent. Fix s < t <
u, then by the previous lemma and Lemma 3.3 a.s. for m large enough
(i.e. m ≥ max{ns,u, ns,t, nt,u}), we have

µKs,u = µKm
s,u = µKm

s,tm
Km

tm,t+m
Km

t+m,t+m+2−m · · ·Km
um,u

= µKm
s,tm

Km
tm,tK

m
t,t+m

Km
t+m,t+m+2−m · · ·Km

um,u

= µKm
s,tK

m
t,u

= µKs,tKt,u.

This proves that K satisfies the flow property.
Fix k ≥ 1, h ∈ C0(Gk). Let α > 0 and n1 ∈ N such that P(ns,t >

n1) < α. Then for all x, y ∈ Gk, since P(Ωs,t) = 1, we have

|E[K⊗k
s,t h(y)]− E[K⊗k

s,t h(x)]| ≤
∑

n≤n1

E
[(

(Kn
s,t)

⊗kh(y)− (Kn
s,t)

⊗kh(x)
)2] 1

2

+ 2α||h||∞.

Now since Kn is Feller for all n, we deduce that

lim sup
y→x

|E[K⊗k
s,t h(y)]− E[K⊗k

s,t h(x)]| ≤ 2α||h||∞.

Since α is arbitrary, it holds that for all s < t, Ks,t is Fellerian.

Lemma 3.8. For all x ∈ G and f ∈ C0(G), lim|t−s|→0E[(Ks,tf(x) −
f(x))2] = 0.
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Proof : Take x = ei(r) and let ǫ > 0. Then there exists α > 0
such that |t − s| < α implies P(As,t) > 1 − ǫ. Note that a.s. on
As,t, Ks,t(x) = K0

s,t(x). If x 6∈ V , then E[(Ks,tf(x) − f(x))21As,t
] ≤

2‖f‖2∞P(τxs < t) + E[(f(ei(r +W i
s,t)) − f(e(r)))21t≤τxs

]. The two right
hand terms clearly converge to 0 as |t− s| goes to 0. This implies the
lemma when x 6∈ V . When x = v ∈ V , then a.s. on As,t, Ks,tf(x) =

K̂v
s,tf̂

v(0). And we can conclude since K̂v is a SFK. �

This lemma with the flow property imply that for all f ∈ C0(G)
and all x ∈ G, (s, t) 7→ Ks,tf(x) is continuous as a mapping from
{s < t} → L2(P ). Now since for all s < t in D, the law of Ks,t only
depends on |t−s|, the continuity of this mapping implies that this also
holds for all s < t. Thus, we have proved that K is a SFK. �

3.2. The SDE satisfied by K. Recall that each flow K̂v solves equa-
tion (Êv) defined on Ĝv. Then we have

Lemma 3.9. For all x ∈ G, f ∈ D and all s < t, a.s. on As,t

K0
s,tf(x) = f(x) +

∑

i∈I

∫ t

s

K0
s,u(1Ei

f ′)(x)W i(du) +
1

2

∫ t

s

K0
s,uf

′′(x)du.

Proof : Let x = ei(r) with i ∈ Iv. Recall the notation x̂v = iv(x) ∈ Ĝv.
Then denoting Bv

s,t = As,t ∩ {τxs ≤ t} ∩ {ei(r + W i
s,τxs

) = v}, we have
that a.s. on As,t,

K0
s,tf(x) = (f ◦ ei)(r +W i

s,t)1{τxs >t} +
∑

v∈V

K̂v
s,tf̂

v(x̂v)1Bv
s,t
.

Thus a.s. on As,t,

K0
s,tf(x) = f(x)

+ 1{τxs >t}

(
∫ t

s

(f ◦ ei)
′(r +W i

s,u)W
i(du) +

1

2

∫ t

s

(f ◦ ei)
′′(r +W i

s,u)du

)

+
∑

v∈V

1Bv
s,t

(

∑

j∈Iv

∫ t

s

K̂v
s,u

(

1Êv
j
(f̂ v)′

)

(x̂v)W
j(du) +

∫ t

s

K̂v
s,u(f̂

v)′′(x̂v)du

)

= f(x) + 1{τxs >t}

(
∫ t

s

K0
s,u(1Ei

f ′)(x)W i(du) +
1

2

∫ t

s

K0
s,uf

′′(x)du

)

+
∑

v∈V

1Bv
s,t

(

∑

j∈Iv

∫ t

s

K0
s,u(1Ej

f ′)(x)W j(du) +

∫ t

s

K0
s,uf

′′(x)du

)

This implies the lemma. �
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Lemma 3.10. For all n ∈ N, x ∈ G, s < t and all f ∈ D a.s. on Ωn
s,t,

we have

Kn
s,tf(x) = f(x) +

∑

i∈I

∫ t

s

Kn
s,u(1Ei

f ′)(x)W i(du)

+
1

2

∫ t

s

Kn
s,uf

′′(x)du.

Proof : The proof will be by induction on q = Card {s, s+n , s
+
n +

2−n, · · · , tn, t}. For q = 2, this is immediate from Lemma 3.9 since
Ωn

s,t ⊂ As,t. Assume this is true for q − 1 and let s < t such that
Card {s, s+n , s

+
n + 2−n, · · · , tn, t} = q. Then a.s.

Kn
s,tf(x) = Kn

s,tn
Kn

tn,t
f(x)

= Kn
s,tn

(

f +
∑

i∈I

∫ t

tn

Kn
tn,u

(1Ei
f ′)W i(du) +

1

2

∫ t

tn

Kn
tn,u

f ′′du

)

(x)

= Kn
s,tn

f(x)

+
∑

i∈I

∫ t

tn

Kn
s,tn

Kn
tn,u

(1Ei
f ′)(x)W i(du) +

1

2

∫ t

tn

Kn
s,tn

Kn
tn,u

f ′′(x)du

= f(x) +
∑

i

∫ t

s

Kn
s,u(1Ei

f ′)(x)W i(du) +
1

2

∫ t

s

Kn
s,uf

′′(x)du.

by independence of increments and using the fact that Kn
s,tn

(x) is sup-
ported by a finite number of points. �

Thus we have

Lemma 3.11. For all x ∈ G, f ∈ D and all s < t, a.s.
(9)

Ks,tf(x) = f(x) +
∑

i∈I

∫ t

s

Ks,u(1Ei
f ′)(x)W i(du) +

1

2

∫ t

s

Ks,uf
′′(x)du.

Proof : Note that for all n, on Ωn
s,t, for all u ∈ [s, t], a.s. Ks,u(x) =

Kn
s,u(x). Thus a.s. on Ωn

s,t, (9) holds in L2(P) and finally a.s. (9)
holds. �

Remark: When W i = W for all i, then (K,W ) solves the SDE (E).

This Lemma with the fact that K is a SFK permits to prove that
K satisfies the first two conditions of Theorem 3.2. Note that for all
s ≤ t and all x ∈ G, we have that a.s. on As,t, Ks,t(x) = K0

s,t(x). Thus
a.s. on As,t, (7) holds. Now, we want to prove that a.s. (7) holds on
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the event {t < ρx,vs } (note that a.s. As,t ∩ {t > τxs } ⊂ {τxs < t < ρx,vs }).
By Lemma 3.6, a.s. for all m ≥ ns,t such that s+m ≤ t,

Ks,t(x) = K0
s,s+m

K0
s+m,s+m+2−m . . .K0

tm−2−m,tm
K0

tm,t(x).

Clearly on {t < ρs,vs }, a.s. K0
s,s+m

(x) = i−1
v ∗ K̂v

s,s+m
(x̂v) and for all y in

the support of K0
s,s+m

(x), K0
s+m,s+m+2−m(y) = i−1

v ∗ K̂v

s+m,s+m+2−m(ŷ
v). Thus,

on {t < ρs,vs }, a.s. K0
s,s+m

K0
s+m,s+m+2−m(x) = i−1

v ∗ K̂v

s,s+m
K̂v

s+m,s+m+2−m(x̂
v).

The same argument shows that on {t < ρs,vs }, a.s.

Ks,t(x) = i−1
v ∗K̂v

s,s+m
K̂v

s+m,s+m+2−m . . . K̂v
tm−2−m,tm

K̂v
tm,t(x̂

v) = i−1
v ∗K̂v

s,t(x̂
v).

To conclude the proof of Theorem 3.2, it remains to prove that if K ′

is a SFK satisfying also the conditions of Theorem 3.2, then K ′ is a
modification of K. Since (7) holds for K and K ′, for all s ≤ t and all
µ ∈ P(G) a.s. on As,t, µK

′
s,t = µKs,t(= µK0

s,t). Thus for all s ≤ t and
x ∈ G, denoting n = ns,t, a.s.

K ′
s,t(x) = K ′

s,s+n
· · ·K ′

tn,t
(x)

= Ks,s+n
· · ·Ktn,t(x)

= Ks,t(x).

4. Construction of solutions of (Êv) out of a solution of

(E).

Let W = (W i; i ∈ I) be as in the previous section. Let K be a SFK
on G. Assume that (K,W ) satisfies the SDE: For all s ≤ t, f ∈ D,
x ∈ G, a.s.

Ks,tf(x) = f(x) +
∑

i∈I

∫ t

s

Ks,u(1Ei
f ′)(x)W i(du) +

1

2

∫ t

s

Ks,uf
′′(x)du.

Following Lemma 3 [9], we prove that FW i

s,t ⊂ FK
s,t for all i ∈ I and

s ≤ t. In this section, we will prove the following

Theorem 4.1. For each v ∈ V , there exists a unique (up to modifica-

tion) SFK K̂v on Ĝv such that

• for all s ≤ t, F̂s,t := ∨v∈V F
K̂v

s,t ⊂ FK
s,t,

• for all v ∈ V , (K̂v,Wv) is a solution to the SDE: For all s ≤ t,

f̂ ∈ D̂v, x̂ ∈ Ĝv, a.s.
(10)

K̂v
s,tf̂(x̂) = f̂(x̂) +

∑

i∈Iv

∫ t

s

K̂v
s,u(1Êv

i
f̂ ′)(x̂)W i(du) +

1

2

∫ t

s

K̂v
s,uf̂

′′(x̂)du.
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and such that defining for s ∈ R and x ∈ Gv, ρ
x,v
s by (6), we have that

for all t > s, a.s. on the event {t < ρx,vs }, (7) holds.

Proof : Fix v ∈ V . For s ∈ R and x̂ = êvi (r) ∈ Ĝv, if x̂ ∈ iv(Gv), then
denote x = ei(r) (and we have x̂ = iv(x)). Recall the definition of τxs .

Recall also the definition of As,t from (3). Define the kernel K̂0,v
s,t by

• On Ac
s,t : K̂0,v

s,t (x̂) = δx̂.
• On As,t : Let x̂ = êvi (r). If x̂ = êvi (r) ∈ iv(Gv), τ

x
s < t and ei(r+

W i
s,τxs

) = v, define K̂0,v
s,t (x̂) = iv ∗ Ks,t(ei(r)). And otherwise,

define K̂0,v
s,t (x̂) = δêvi (r+W i

s,t)
.

Now for n ≥ 1, set

K̂n,v
s,t = K̂0,v

s,s+n
K̂0,v

s+n ,s+n+2−n
. . . K̂0,v

tn−2−n,tn
K̂0,v

tn,t.

if s+n ≤ t and K̂n,v
s,t = K̂0,v

s,t if s+n > t.

Define Ωn
s,t, Ωs,t and ns,t as in Section 3.1 and finally set K̂v

s,t = K̂n,v
s,t ,

where n = ns,t and K̂v
s,t(x̂) = δx̂ on Ωc

s,t. Following Sections 3.1 and

3.2, we prove that K̂v is a SFK satisfying (10). Note that for all s ≤ t,

x ∈ Gv, Ks,t(x) = i−1
v ∗K̂0,v

s,t (x̂
v). Since for all s ≤ t and x̂ ∈ Ĝv, a.s. on

As,t, K̂
v
s,t = K̂0,v

s,t , the last statement of the Theorem holds. It remains
to remark the uniqueness up to modification, which can be proved in
the same manner as for Theorem 3.2. �

This Theorem implies (ii) of Theorem 2.4.

5. Stochastic flows on star graphs [8].

In this section, we overview the content of [8] where equation (E) on a
single star graph has been studied. Let G = {0}∪∪i∈IEi be a star graph
where I = {1, · · · , n}. Assume that I+ = {i : gi = 0} = {1, · · · , n+}
and I− = {i : di = 0} = {n+ + 1, · · · , n} and set n− = n − n+. To
each edge Ei, we associate αi ∈ [0, 1] such that

∑

i∈I α
i = 1. Denote

by ei the orientation of Ei and let α+ =
∑

i∈I+
αi, α− = 1 − α+. Let

α = (αi)i∈I . In this section, we denote (EG
α ) simply by (E).

The construction of flows associated to (E) is based on the skew
Brownian motion (SBM) flow studied by Burdzy and Kaspi in [2]. Let
W be a real white noise, then the Burdzy-Kaspi (BK) flow Y associated
to W and β ∈ [−1, 1] is a SFM (see Section 7 for the definition) solution
to

(11) Ys,t(x) = x+Ws,t + βLs,t(x)
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where Ls,t(x) is the local time of Ys,·(x) at time t. For x ∈ G, i ∈ I
and r ∈ R such that x = ei(r), define

τxs = inf{t ≥ s : ei(r +Ws,t) = 0}.

5.1. The case α+ 6= 1
2
. For k ≥ 1, let ∆k =

{

u ∈ [0, 1]k :
∑k

i=1ui =

1
}

, be the set of probability measures on {1, . . . , k}. From [8], we recall
the following

Theorem 5.1. Let m+ and m− be two probability measures respectively
on ∆n+ and ∆n− satisfying : ∀i ∈ [1, n+] and j ∈ [1, n−],

(+)

∫

∆
n+

uim
+(du) =

αi

α+
, (−)

∫

∆
n−

ujm
−(du) =

αj+n+

α−
.

(a) There exists a solution (K,W ) on G unique in law such that if Y
is the BK flow associated to W and β = 2α+ − 1, then for all s ≤ t in
R, x ∈ G a.s.

(i) If x = ei(r), then Ks,t(x) = δei(r+Ws,t) on {t ≤ τxs }.
(ii) On {t > τxs }, Ks,t(x) is supported on {ei(Ys,t(r)), i ∈ I+} if

Ys,t(r) > 0 and on {ei(Ys,t(r)), i ∈ I−} if Ys,t(r) ≤ 0.
(iii) On {t > τxs , ±Ys,t(r) > 0}, U±

s,t(x) = (Ks,t(x, Ei), i ∈ I±) is
independent of W and has for law m±.

(b) For all SFK K such that (K,W ) solves (E), there exists a unique
pair of measures (m+, m−) satisfying conditions (+) and (−) and such
that (i), (ii), (iii) above are satisfied.

Let U+ = (U+(i), i ∈ I+) and U− = (U−(j), j ∈ I−) be two random
variables with values in ∆n+ and ∆n− such that for each (i, j) ∈ I+×I−

P(U+(i) = 1) =
αi

α+
, P(U−(j) = 1) =

αj

α−
.

Note that all coordinates of U± are equal to 0 expect one coordinate
which is equal therefore to 1.With m+ and m− being respectively the
laws of U+ and U−, Ks,t(x) = δϕs,t(x) where ϕ is a SFM. The flow ϕ is
also the unique SFM solving (E).

To U+ = ( αi

α+ , i ∈ I+) and U− = ( αj

α−
, j ∈ I−), is associated in the same

way a Wiener i.e. σ(W )-measurable solution KW of (E) which is also
the unique (up to modification) Wiener solution to (E).

5.2. The case α+ = 1
2
. In this case (E) admits only one solution

KW which is Wiener, no other solutions can be constructed by adding
randomness to W . The expression of KW is the same as the general
case with Ys,t(x) replaced by x+Ws,t.
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6. Conditional independence : Proof of Proposition 2.5.

In this section, we assume that for all i ∈ I, W i = W for some real
white noise W . Our purpose is to establish Proposition 2.5 already
proved in [9] in a very particular case. The main idea was the follow-
ing : let (ϕ+,W ) and (ϕ−,−W ) be two SFM’s solutions to Tanaka’s
equation:

ϕ±
s,t(x) = x±

∫ t

s

sgn(ϕ±
s,u(x))dWu.

We know that the laws of (ϕ+,W ) and (ϕ−,W ) are unique [16]. Let
ϕ = (ϕ+, ϕ−), then if (Fϕ

s,t)s≤t is i.d.i, the law of ϕ is unique. An

intuitive explanation for this is that t 7→ |ϕ+
0,t(0)| = Wt − inf0≤u≤tWu

and t 7→ |ϕ−
0,t(0)| = sup0≤u≤tWu − Wt do not have common zeros

after 0 so that sgn(ϕ+
0,t(0)) should be independent of sgn(ϕ−

0,t(0)). In
the general situation, the previous reflecting Brownian motions are
replaced by two SBM’s associated to W and distinct skew parameters.

The proof of Proposition 2.5 will strongly rely on the following
lemma.

Lemma 6.1. Let (β1, β2) ∈ [−1, 1]2 with β1 6= β2 and |β2−β1| ≥ 2β1β2.
Let x, y ∈ R and let X, Y be solutions of

Xt = x+Wt + β1Lt(X) and Yt = y +Wt + β2Lt(Y )

where Lt(X) and Lt(Y ) denote the symmetric local times at 0 of X and
Y . If x 6= y or if x = y = 0, then a.s. for all t > 0, Xt 6= Yt.

Proof : Assume first that x = y = 0. It is straightforward to see
that the Lemma holds when β1 ≤ 0 ≤ β2. The other cases follow from
Theorem 1.4 (i)-(ii) [3].

Assume now that x 6= y : Let T = inf{t > 0; Xt = Yt = 0}. Then
necessarily, if T < ∞, we have XT = YT = 0. So we can conclude using
the strong Markov property at time T . �

Proof of Proposition 2.5. To simplify the notation, for i ∈ {1, 2},
Gi, βi, I

i, I i,± and Ki will denote respectively Ĝvi , βvi , Ivi , I
±
vi

and K̂vi .

We will also denote the edges of Gi by (eij)j∈Ii and set Fs,t = FK1

s,t ∨F
K2

s,t

for all s ≤ t.
It is easy to see that if K1 and K2 are independent given W , then
(Fs,t)s≤t is i.d.i.

Assume now that (Fs,t)s≤t is i.d.i. For i ∈ {1, 2}, let Y i be the BK
flow associated to W and βi. Using the flow property, the stationarity
of the flows and the fact that (Fs,t)s≤t is i.d.i., we only need to prove
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that for all t > 0,

(12) K1
0,t and K2

0,t are independent given W.

For n ≥ 1 and i ∈ {1, 2}, let (xi
j = ei

kij
(rij), 1 ≤ j ≤ n) be n points in

Gi, where ki
j ∈ I i and rij ∈ R. Define

τ ij = inf{u ≥ 0 : rij +W0,u = 0}.

Proving (12) reduces to prove that

(13) (K1
0,t(x

1
j ))1≤j≤n and (K2

0,t(x
2
j ))1≤j≤n are independent given W

for arbitrary n and (xi
j).

Note that when t ≤ τ ij , then Ki
0,t(x

i
j) is a measurable function of W .

For J1 and J2 two subsets of {1, . . . , n}, denote

AJ1,J2 =

{

t > τ ij if and only if j ∈ J i for all i = 1, 2

}

which belongs to σ(W ). Then proving (13) reduces to check that (for
all J1 and J2), given W , on AJ1,J2,

(14) (K1
0,t(x

1
j ))j∈J1 and (K2

0,t(x
2
j ))j∈J2 are independent.

For j ∈ J i, define

gij = sup{u ≤ t : Y i
0,u(r

i
j) = 0}.

Note that a.s. on AJ1,J2, by Lemma 6.1,
{

g1j : j ∈ J1} ∩
{

g2j : j ∈ J2} = ∅.

Let J = {Jk; 1 ≤ k ≤ m} be a partition of
(

{1} × J1
)

∪
(

{2} × J2
)

such that for all k, we have Jk ⊂ {i}×J i for some i ∈ {1, 2} and define
the event

BJ =
{

gij = gi
′

j′ if and only if ∃k such that
(

(i, j), (i′, j′)
)

∈ Jk × Jk

}

⋂

{

∀k < k′; if
(

(i, j), (i′, j′)
)

∈ Jk × Jk′ then gij < gi
′

j′

}

⋂

AJ1,J2 .

Then a.s. {BJ }J is a partition of AJ1,J2.

For all k, choose (ik, jk) ∈ Jk and denote gk = gikjk. Let u1 < · · · < um−1

be fixed dyadic numbers and

C := Cu1,...,um−1
= BJ ∩ {gk < uk < gk+1; 1 ≤ k ≤ m− 1}.
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Let u = um−1. On C, for all (i, j) ∈ Jm, Ki
0,t(x

i
j) is Fu,t ∨ FW

0,u-

measurable. Indeed : Fix (j+, j−) ∈ I i,+ × I i,− and define

X i,j
u =

{

eij+(Y
i
0,u(r

i
j)) if Y i

0,u(r
i
j) ≥ 0,

eij−(Y
v
0,u(r

i
j)) if Y i

0,u(r
i
j) < 0,

Then X i,j
u is FW

0,u-measurable,

inf{r ≥ u : Ki
u,r(X

i,j
u ) = δ0} = inf{r ≥ u : Y i

0,r(r
i
j) = 0} ≤ gm

and Ki
0,t(x

i
j) = Ki

u,t(X
i,j
u ).

Moreover, on C, for all (i, j) ∈ ∪m−1
k=1 Jk, Ki

0,t(x
i
j) is F0,u ∨ FW

u,t-

measurable (since Y i
0,·(r

i
j) do not touch 0 in the interval [u, t]). Since

C ∈ σ(W ), F0,u∨FW
u,t and Fu,t∨FW

0,u are independent given W , we de-

duce that on C,
(

Ki
0,t(x

v
j ), (i, j) ∈ Jm

)

and
(

Ki
0,t(x

i
j), (i, j) ∈ ∪m−1

k=1 Jk

)

are independent given W . Now an immediate induction permits to
show that given W , on C, (14) is satisfied. Since the dyadic numbers
u1, · · · , um are arbitrary, we deduce that conditionally on W , on BJ ,
(14) is satisfied and finally given W , on AJ1,J2, (14) holds. �

7. Appendix 1: The Burdzy-Kaspi flow

In this section, we show how our construction can be simplified on
some particular graphs using the BK flow [3]. Let (Ws,t)s≤t be a real
white noise. For β = ±1, the flow associated to (11) has a simple
expression which will be referred as the BK flow. For a fixed β ∈]−1, 1[,
Burdzy and Kaspi constructed a SFM (see 1.7 in [3]) satisfying

(i) x 7−→ Ys,t(x) is increasing and càdlàg for all s ≤ t a.s.
(ii) With probability equal to 1: ∀s, x ∈ R, (Ys,t(x), Ls,t(x)) satis-

fies (11) and

Ls,t(x) = lim
ε→0+

1

2ε

∫ t

s

1{|Ys,u(x)|≤ε}du.

The statement (i) is a consequence of the definition of Y (see also
Section 3.1 [8]) and (ii) can be found in Proposition 1 [3]. The BK flow
satisfies also a strong flow property:

Proposition 7.1. (1) Fix x ∈ R and let S be an (FW
−∞,r)r∈R-finite

stopping time. Then YS,S+·(x) is the unique strong solution of
the SBM equation with parameter β driven by WS,S+·. In par-
ticular YS,S+· is independent of FW

−∞,S.

(2) Let S ≤ T be two (FW
−∞,r)r∈R-finite stopping times. Then a.s.

for all u ≥ 0, x ∈ R,

YS,T+u(x) = YT,T+u ◦ YS,T (x).
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Proof. (1) Let Gt = FW
−∞,S+t, t ≥ 0. Then YS,S+·(x) is G-adapted,

WS+· −WS is a G-Brownian motion and by (ii) above, a.s. ∀t ≥ 0,

YS,S+t(x) = x+WS,S+t + βLS,S+t(x)

with LS,S+t(x) = lim
ε→0+

1

2ε

∫ t

0

1{|YS,S+u(x)|≤ε}du. Now (1) follows from the

main result of [10].
(2) Fix x ∈ R. Then by the previous lines for all y ∈ R, a.s. ∀u ≥ 0,

YT,T+u(y) = y +WT,T+u + βLT,T+u(y).

Since YT,T+· is independent of FW
−∞,T and YS,T is FW

−∞,T measurable (by
the definition of Y ), it holds that a.s. ∀u ≥ 0,

YT,T+u(YS,T (x)) = YS,T (x) +WT,T+u + βLT,T+u(YS,T (x)).

Now, set
Zr = YS,r(x)1{S≤r≤T} + YT,r ◦ YS,T (x)1{r>T}.

Then, we easily check that a.s. ∀r ≥ S,

Zr = x+WS,r + β lim
ε→0+

1

2ε

∫ r

S

1{|Zu|≤ε}du.

By unicity of the solution, a.s. ∀r ≥ T, YS,r(x) = YT,r ◦ YS,T (x). Now
using (i) above, (2) holds a.s. for all x ∈ R.

�

Given a graph G as in Figure 4 we can construct the unique solution
ϕ to (E) as follows: To each vertex v, let us attach the BK flow Y v

associated to W and βv := 2α+
v − 1. If x = ei(r), define ϕs,t(x) =

ei(r + Ws,t) until hitting a vertex point v1 at time s1, then ”define”
ϕs,t(x) by Y v1

s1,t
(0) until hitting another vertex v2. After s2, ϕs,t(x) will

be ”given by” Y v2
s2,t

(0) etc. Using Proposition 7.1, we show that ϕ is a
SFM. This is the SBM with Barriers flow unique strong solution to the
equation

Xt = X0 +Wt +
∑

v∈V

(2α+
v − 1)Lv

t (X)

v

Figure 4. SBM with Barriers.

In [9], it is proved that flows solutions of (E) defined on graphs like
in Figure 3 can be modified to satisfy strong flow properties similar
to Proposition 7.1 (2) (see Corollary 2 [9]). Actually on graphs with
arbitrary orientation and transmission parameters and such that each
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vertex has at most two adjacent edges, we can proceed to a direct
construction of ”global” flows using strong flow properties of ”local”
flows.

8. Appendix 2: Complement to Section 5

8.1. A key Lemma on BK flow. In this section, we work with the
same notations as the beginning of Section 5 and let Y be the BK flow
as in the previous section associated to W and β := 2α+ − 1. For
each u < v, let n be first integer such that ]u, v[ contains a dyadic
number of order n and f(u, v) be the smallest dyadic number of order
n contained in ]u, v[ (f is a deterministic machinery which associates
to each (u, v), u < v a dyadic number in ]u, v[).
For all s ≤ t, x, y ∈ R, with the convention inf ∅ = +∞, set

T s
x,y = inf{r ≥ s, Ys,r(x) = Ys,r(y)},

τs(x) = inf{r ≥ s, x+Ws,r = 0},

ns,t(x) = inf

{

n ≥ 1, Ys,t(x−
1

n
) = Ys,t(x+

1

n
)

}

.

For all s ≤ t, x ∈ R, let n = ns,t(x) and define

vs,t(x) = f(s, T s
x− 1

n
,x+ 1

n

) if t ≥ T s
x− 1

n
,x+ 1

n

and vs,t(x) = 0 otherwise. Now let (n, v) =
(

ns,t(x), vs,t(x)
)

and define

ys,t(x) = f
(

Ys,v(x−
1

n
), Ys,v(x+

1

n
)
)

if t ≥ T s
x− 1

n
,x+ 1

n

and ys,t(x) = 0 otherwise. Note that (s, t, x, ω) 7−→ (vs,t(x, ω), ys,t(x, ω))
is measurable and that for all s < t, (vs,t, ys,t) is FW

s,t -measurable.

Lemma 8.1. Let s and x in R. Then a.s. for all t > τs(x), we have

(i) n = ns,t(x) < ∞,
(ii) vs,t(x) = f(s, T s

x− 1

n
,x+ 1

n

) and ys,t(x) = f(Ys,v(x−
1
n
), Ys,v(x+

1
n
)),

(iii) Ys,t(x) = Yv,t(y), with (v, y) = (vs,t(x), ys,t(x)).

Proof. See Lemma 3 in [8]. �

8.2. Construction of a flow of mappings. In this section, we will
use the same notations as in the last paragraph and in Section 5 with
the assumption α+ 6= 1

2
if n ≥ 3. Moreover, we set

G+ = {0} ∪ ∪i∈I+Ei, G− = {0} ∪ ∪i∈I−Ei.

We will review the construction of the unique flow of mappings solv-
ing (E) defined on G. Let W be a real white noise. First we will con-
struct ϕs,·(x) for all (s, x) ∈ Q × GQ where GQ = {z ∈ G, |z| ∈ Q+}.
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Denote this set of points by (si, xi)i≥0 and write xi = eji(ri) where
ri ∈ R and ji ∈ {1, · · · , n}. Let γ+, γ− be two independent random
variables respectively taking their values in I+ and in I− and such that
for i ∈ I+ and j ∈ I−,

P(γ+ = i) =
αi

α+
and P(γ− = j) =

αj

α−
.

We will construct ϕs0,·(x0), then ϕs1,·(x1) and so on. Let D be the
set of all dyadic numbers on R and {(γ+

r , γ
−
r ), r ∈ D} be a family

of independent copies of (γ+, γ−) which is also independent of W . If
x = ei(r), recall the definition τxs = τs(r) where τs(r) is as in the
previous paragraph. For x0 = ej0(r0), define ϕs0,·(x0) by

ϕs0,t(x0) =



















ej0(r0 +Ws0,t) if s0 ≤ t ≤ τx0

s0

0 if t > τx0

s0
, Ys0,t(r0) = 0

eh(Ys0,t(r0)), if γ+
r = h, t > τx0

s0
, Ys0,t(r0) > 0

eh(Ys0,t(r0)), if γ−
r = h, t > τx0

s0
, Ys0,t(r0) < 0

where r = f(u, v) and u, v are respectively the last zero before t and the
first zero after t of Ys0,·(r) (well defined when Ys0,t(r0) 6= 0). Now, sup-
pose that ϕs0,·(x0), · · · , ϕsq−1,·(xq−1) are defined and let {(γ+

r , γ
−
r ), r ∈

D} be a new family of independent copies of (γ+, γ−) (that is indepen-
dent of all vectors (γ+, γ−) used until q − 1 and independent also of
W ). Let

t0 = inf
{

u ≥ sq : Ysq,u(rq) ∈ {Ysi,u(ri), i ∈ [0, q − 1]}
}

.

Since t0 < ∞, let i ∈ [0, q−1] and (si, ri) such that Ysq,t0(rq) = Ysi,t0(ri).
Now define ϕsq,·(xq) by

ϕsq,t(xq) =



























ejq(rq +Wsq,t) if sq ≤ t ≤ τ
xq
sq

0 if τ
xq
sq < t < t0, Ysq,t(rq) = 0

eh(Ys0,t(r0)), if γ+
r = h, τ

xq
sq < t < t0, Ysq,t(rq) > 0

eh(Ysq,t(rq)), if γ−
r = h, τ

xq
sq < t < t0, Ysq,t(rq) < 0

ϕsi,t(xi) if t ≥ t0

where r is defined as in ϕs0,·(x0) (from the skew Brownian motion
Ysq,·(rq)). In this way, we construct (ϕsi,·(xi))i≥0.
Extension. Now we will define entirely ϕ. Let s ≤ t, x ∈ G such that
(s, x) /∈ Q×GQ. If x = ei(r), s ≤ t ≤ τxs , define ϕs,t(x) = ei(r +Ws,t).
If t > τxs , let m be the first nonzero integer such that Ys,t(r −

1
m
) =

Ys,t(r +
1
m
) (when m does not exist we give an arbitrary definition to
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ϕs,t(x)). Then consider the dyadic numbers

(15) v = f
(

s, T s
r− 1

m
,r+ 1

m

)

, r′ = f

(

Ys,v(r −
1

m
), Ys,v(r +

1

m
)

)

and finally set ϕs,t(x) = ϕv,t(z) where

(16) z = e1(r
′) if r′ ≥ 0 and z = en++1(r

′) if r′ < 0.

Note that ϕs,t(x, ω) is measurable with respect to (s, t, x, ω).
By Lemma 3 [8], for a ”typical” (s, x) a.s. for all t > τxs , m is finite.
Note also that : for all s ≤ t, x = ei(r) ∈ G a.s.

(17) |ϕs,t(x)| = |Ys,t(r)| and ϕs,t(x) ∈ G± ⇔ ±Ys,t(r) ≥ 0.

This is clear when (s, x) ∈ Q×GQ and remains true for all s, t and x by
Lemma 8.1 (iii). The independence of increments of ϕ is clear and the
stationarity comes from the fact that for all s ≤ t and x = ei(r) ∈ G
(even when (s, x) ∈ Q × GQ), if v and r′ are defined by (15), then on
the event {t > τxs }, a.s. ϕs,t(x) = ϕv,t(z) with z given by (16).
Writing Freidlin-Sheu formula (see Theorem 3 in [8]) for the Walsh
Brownian motion t 7→ ϕs,s+t(x) and using (17), we see that ϕ solves
(E).
The flow ϕ is the unique SFM solving (E) in our case. When α+ = 1

2
,

the BK flow is the trivial flow x + Ws,t which is non coalescing. The
above construction cannot be applied if n ≥ 3, no flow of mappings
solving (E) can be constructed in this case.

Remark 8.2. Recall the text after Theorem 5.1 (the SFM case). Then
(U+, U−) can be identified with a couple (γ+, γ−) with law as described
above. We have seen that working directly with (γ+, γ−) makes the
construction more clear.

8.3. The other solutions. Suppose α+ 6= 1
2

and let m+ and m− be
two probability measures as in Theorem 5.1. Then, to (m+, m−) is
associated a SFK K solution of (E) constructed similarly to ϕ. Let
U+ = (U+(i))i∈I+ and U− = (U−(j))j∈I− be two independent random

variables with values in [0, 1]n
+

and [0, 1]n
−

such that

U+ law
= m+, U− law

= m−.

In particular a.s.
∑

i∈I+
U+(i) =

∑

i∈I−
U−(j) = 1. Let {(U+

r , U
−
r ), r ∈

D} be a family of independent copies of (U+, U−) which is independent
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of W . Then define

Ks0,t(x0) =



































δej0 (r0+Ws0,t
) if s0 ≤ t ≤ τx0

s0

δ0 if t > τx0

s0
, Ys0,t(r0) = 0

∑

i∈I+

U+
r (i)δei(Ys0,t

(r0)), if t > τx0

s0
, Ys0,t(r0) > 0

∑

j∈I−

U−
r (j)δej(Ys0,t

(r0)), if t > τx0

s0
, Ys0,t(r0) < 0

where U+
r = (U+

r (i))i∈I+, U
−
r = (U−

r (j))j∈I− and r is the same as in the
definition of ϕs0,·(x0). Now K is constructed following the same steps
as ϕ.
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