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Abstract

Modelling the interindividual variability in plant populations is a key issue to

enhance the predictive capacity of plant growth models at the �eld scale. In the

case of sugar beet, this variability is well illustrated by rate of leaf appearance,

or by its inverse the phyllochron. Indeed, if the mean phyllochron remains stable

among seasons, there is a strong variability between individuals, which is not

taken into account when using models based only on mean population values.

In this paper, we proposed a nonlinear mixed model to assess the variability

of the dynamics of leaf appearance in sugar beet crops. As two linear phases

can be observed in the development of new leaves, we used a piecewise-linear

mixed model. Four parameters were considered: thermal time of initiation, rate

of leaf appearance in the �rst phase, rupture thermal time, and di�erence in leaf

appearance rates between the two phases. The mean population values as well

as the interindividual variabilities (IIV) of the parameters were estimated by the

model for a standard population of sugar beet, and we showed that the IIV of
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the four parameters were signi�cant. Also, the rupture thermal time was found

to be non signi�cantly correlated to the other three parameters. We compared

our piecewise-linear formulation with other formulations such as sigmoïd or

Gompertz models, but they provided higher AIC and BIC.

A method to assess the e�ects of environmental factors on model parameters

was also studied and applied to the comparison of three levels of Nitrogen (con-

trol, standard and high dose). Taking into account the IIV, our model showed

that plants receiving Nitrogen tended to have a later time of initiation, a higher

rate of leaf appearance, and an earlier rupture time, but these di�erences were

not dose-dependent (no di�erences between standard and high dose of Nitro-

gen). No di�erences were found on the leaf appearance rate of the second phase

between the three treatments.

Keywords: Nonlinear mixed model, hierarchical model, segmented regression,

sugar beet, interindividual variability, plant growth modelling

1. Introduction

The need for a better description of plant architectural development has

been long acknowledged as a key step towards the understanding of plant func-

tional growth (Fourcaud et al., 2008). For this purpose, a new trend in plant

growth modelling is the development of individual-based models combining the

description of plant architecture and physiological functioning (Vos et al., 2007).

However, the extrapolation to population models is yet at its early stages. The

main approach consists in simulating all individuals in the population (Fournier

and Andrieu, 1999; Wernecke et al., 2007; Sievänen et al., 2008; Cournède et al.,

2009).

However, if there is no doubt on the theoretical interest of these approaches

to help understand population functioning, they remain quite limited for con-

crete applications in agriculture or forestry since it is generally not possible to
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describe all plants in a �eld or in a forest. Stochastic population models that

describe the distributions of individuals' characteristics in the population pro-

vide a good way to overcome this di�culty. This approach is well-developed in

forestry science at least from a descriptive point of view (Dietze et al., 2008;

Vieilledent et al., 2010; Courbaud et al., 2012) to study the variability of allo-

metric relationships.

Such interindividual variability has rarely been taken into account in dy-

namic plant growth models, even though its impact at the agrosystem level is

well acknowledged. For example, Brouwer et al. (1993) showed how soil and crop

micro-variability can have an impact on yield, as some parts of the �eld could be

more adapted to dryness and could thus compensate poor or less good perfor-

mances of other parts of the �eld. Renno and Winkel (1996) also showed how

interindividual variability of �owering could prevent from short-term stresses

risks.

In sugar beet populations, this variability is well illustrated by the number

of leaves, which can be very di�erent from one plant to another, even in the

same environmental conditions. In the competition for light occurring between

plants, the capacity for some plants to achieve a better and faster ground cover

by the leaves will allow them to produce more biomass than their neighbors.

Liu et al. (2004) showed how the di�erences between leaf appearance rates and

emergence rates from one individual plant to another can lead to important

variations in the �nal yield. Indeed, as light interception is directly related

to biomass production, any factor a�ecting the speed of leaf area expansion

will a�ect the total leaf surface area and have an impact on the �nal yield.

The leaf appearance rate is thus a crucial parameter of plant development. It

is often described through its inverse, the phyllochron, which is then de�ned

as the thermal time (the cumulative sum of daily temperatures above a base
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Figure 1: Sugar beet growth simulated with the DigiPant software (Cournède et al., 2006), at
growth cycles 15, 17, 20, 26, 30, 34, 39 and 43.

temperature) elapsing between two successive appearances of leaves (Wilhelm

and McMaster, 1995).

The variability of the phyllochron has been studied for various crops, and

several environmental factors have proven to have an in�uence on this cru-

cial parameter of plant development. In their study of sorghum, Clerget et al.

(2008) showed that the phyllochron was positively correlated with soil tempera-

ture, and negatively correlated with photoperiod and day length. Similar results

were shown by Cao and Moss (1989) for wheat and barley, and a short review of

factors having an in�uence on phyllochron was proposed by Wilhelm and Mc-

Master (1995). In the case of sugar beet, Milford et al. (1985a,b) showed that

during a �rst phase of development, the phyllochron was very stable among

seasons and experimental treatments (irrigation, fertilizer, plant density and

sowing date). They also showed that the duration of this �rst phase of devel-

opment, as well as the phyllochron of the second phase of development, were

more subject to change. Lemaire et al. (2008) also observed these two linear

phases in the development of new phytomers by the sugar beet plant. A �rst

phase stretched from emergence to approximately the 20th leaf, and then a sec-

ond phase started quite abruptly with a larger phyllochron (corresponding to a

slower rate of leaf appearance rate). Di�erent hypotheses were put forward by

Milford et al. (1985a) to explain this slowing down, including changes in base

temperature and an increasing competition for assimilates between leaves and
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root compartments. Lemaire et al. (2008) showed that this change in leaf ap-

pearance rate corresponded to the beginning of the linear phase of root growth,

and to canopy closing, when competition for light increases (Lemaire et al.,

2009).

However, even though the mean phyllochron is very stable, there is a strong

variability between plants within a cultivar (Frank and Bauer, 1995), leading

to a high variability of the total number of leaves of each plant in a given �eld

(Figure 2). Likewise, variations in seedling emergence can also have an in�uence

on the �nal number of leaves, as shown by Durr and Boi�n (1995).
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Figure 2: Number of leaves according to thermal time for 20 plants grown in normal density
(10.89 pl/m2) and with a normal level of Nitrogen (136 kg/ha)

However, the e�ects of the di�erent factors (Nitrogen, density, . . . ) are

usually assessed through the only use of mean population values, without taking

into account the interindividual variability, despite its impact at the �eld scale.

Indeed, previous studies of the phyllochron were mainly based on simple linear

(or non-linear) models with no random e�ects. The linear models used were

either based on the whole plant population (Xue et al., 2004; Frank and Bauer,

1995; Bauer et al., 1984; Streck et al., 2005; Juskiw et al., 2005), therefore
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making the very strong assumption that measurements from the same individual

are independent, or based on mean values (Lemaire et al., 2009), circumventing

the problem of data correlation, but involving a loss of information. Moreover,

with these approaches, it is not possible to estimate the phyllochron variability

in the population.

One way of analyzing this variability is through the use of mixed models,

in which all individuals' pro�les follow the same functional form, but with pa-

rameters that vary among individuals. In this paper, we propose to study the

dynamics of leaf appearance in sugar beet and develop a model accounting for

interindividual variability. The number of leaves as a function of thermal time

is described by a piecewise-linear mixed model with four parameters: the ther-

mal time of initiation (corresponding to the seedling emergence), the rupture

thermal time (corresponding to the setting up of the second phase) and the two

rates of leaf appearance in the two phases underlined by Milford et al. (1985a)

and Lemaire et al. (2008). Other models can be tested, with a nonlinear re-

lationship between leaf appearance rate and temperature in each phase (Xue

et al., 2004).

Taking the example of Nitrogen, even if the literature is abundant about its

in�uence on sugar beet growth and development, its e�ect on the four parame-

ters de�ned above has rarely been evaluated. We can cite for example Lee and

Schmehl (1988) who reported no signi�cant e�ect of Nitrogen alone on the leaf

appearance rate, but a signi�cant e�ect of the interactions between harvest date

and Nitrogen, and between harvest date, planting date and Nitrogen on the leaf

appearance rate. Stout (1961) on the other hand, reported that a high rate of

Nitrogen in sugar beets stimulates the growth of new leaves. However, as stated

previously, these studies either assume that all the measurements are indepen-

dent, or are based on mean population values. Therefore, they are not able to
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distinguish variance attributable to interindividual variability from residual er-

ror variance, putting all these sources of variability together in a single variance

term. This can lead either to over- or under-estimated statistical signi�cance

when testing di�erences between two or more populations.

First, we developed and validated the model on a standard population of

sugar beet plants, to estimate the interindividual variability of each parameter.

Then, we adapted the model to assess the e�ects of environmental factors and

applied it to the comparison of three levels of Nitrogen: control (no Nitrogen

supply), normal dose (136 kg/ha) and high dose (196 kg/ha), to test whether

the fertilizer dose had an e�ect on each parameter, taking into account the

interindividual variability.

2. Material and methods

2.1. A nonlinear mixed model

Nonlinear mixed models are of particular interest for the analysis of repeated

measures data, in many research �elds (Ke and Wang, 2001) such as pharma-

cokinetics (Comets et al., 2007; Beal and Sheiner, 1982), agriculture (Hall and

Bailey, 2001; Li, 2007; Makowski and Lavielle, 2006; Mutz et al., 2004; Noth-

durft et al., 2006), ecology (Bolker et al., 2009), epidemiology (Lavielle et al.,

2010; Morrell et al., 1995), ... Repeated-measures data can be generated by

observing a number of individuals repeatedly under various conditions, assum-

ing that the subjects constitute a random sample of the population of interest.

Observations can be made on the same subject at di�erent times (longitudinal

data, for example the study of a subject growth), or under two or more di�erent

situations (for the comparisons of di�erent treatments, for example). The anal-

ysis of repeated measures data requires particular care, to take into account the

di�erent sources of variability that could exist in the data, and the correlation
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between measurements from the same individual. Classical methods relying on

the assumption of independence are no longer valid in this case.

In such models, the functional form of the model linking the response variable

to time (in the case of longitudinal data) is the same for all individuals, but

some parameters are allowed to vary among individuals (see Lindstrom and

Bates (1990), Davidian and Giltinan (1995), Pinheiro and Bates (2000) and the

references therein).

2.2. A two-stage formulation

Mixed models can be written as two-stage hierarchical models. In the �rst

stage, the number of leaves of a given plant is modelled according to the thermal

time. We obtain a set of parameters for each plant, which are considered as

random variables. Their variability is then assessed in the second stage (see

Figure 3).

Data

Number of leaves yij Thermal time tj

Measurement error

yij | φi ∼ N (f(tj , φi), g(tj , φi)
2)

Parameters
(random e�ects)

φi ∼ N (Aiβ,D)

Figure 3: Hierarchical framework of our model. The number of leaves yij is modelled as a
function of the thermal time tj . The model includes the random e�ects φi, with associated
mean values Aiβ and variance D.

First-stage: intra-individual variation

The number of leaves yij of plant i (i = 1, . . . , N) at thermal time tj (j =
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1, . . . , ni), is given by the following relationship:

yij = f(tj , φi) + g(tj , φi)eij (1)

with φi a vector of parameters speci�c to individual i, and eij a random

error term following a normal distribution N (0, 1). Function g represents the

residual error model. In a �rst approach, we assume that g is constant equal

to σ, but this hypothesis can be relaxed to include proportional error term, by

letting g = σf , or g = a+ bf .

In our case, f is a two-linear phases function de�ned as follows:

f(tj , φi) = φi,1(tj − φi,0) 1tj≥φi,0
+ φi,3(tj − φi,2) 1tj≥φi,2

(2)

with φi,0 the thermal time of initiation, φi,1 the leaf appearance rate during

the �rst phase of development (the inverse of the �rst phyllochron), φi,2 the

rupture thermal time and φi,3 the di�erence in leaf appearance rates between

the two phases for plant i. We obtain a vector of parameters for each individual,

φi = (φi,0, φi,1, φi,2, φi,3).

With this formulation, we model the change in slopes between the two

phases, rather than the two distinct slopes, and we force the two lines to join

at the rupture thermal time.

f characterizes the systematic variation and eij the random variation of

measurements from individual i.

Second-stage: interindividual variation

In stage two, the N vectors of parameters obtained in the �rst stage are con-

sidered as random variables and their variability among individuals is modelled
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through the following relationship:

φi = Aiβ + bi, bi ∼ N (0, D) (3)

with Ai a design matrix supposed to be known, β a vector of �xed e�ects, bi

a vector of random e�ects associated with individual i, and D a 4×4 covariance

matrix. In a �rst approach, D was assumed to be a general positive-de�nite

matrix.

The interindividual variability (IIV) of each parameter φi,k (k = 0, . . . , 3) is

represented by the corresponding kth diagonal element of D, noted ω2
k and, as

the φi are normally distributed, the mean population value are equal to Aiβ.

However, in more general settings, when the relationship between φi and bi is

not linear, this will generally not be the case.

We consider two formulations of matrix Ai:

� for the analysis of one plant population, no covariates are included in the

model, so that Ai = I4 and β = (β1, β2, β3, β4)
t, leading to the same mean

population value E(φi,k) = βk for all individuals.

� for the comparison of Nitrogen doses, the mean population value is allowed

to vary according to the level of Nitrogen. Therefore, two covariates are

introduced in the model: ni, equal to 1 if plant i received a normal dose of

Nitrogen, and 0 otherwise, and hi, equal to 1 if plant i received a high level

of Nitrogen and 0 otherwise. Plants that did not receive any Nitrogen are

those for which ni = 0 and hi = 0. We thus have:

Ai =



1 ni hi 0 0 0 0 0 0 0 0 0

0 0 0 1 ni hi 0 0 0 0 0 0

0 0 0 0 0 0 1 ni hi 0 0 0

0 0 0 0 0 0 0 0 0 1 ni hi


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and β = (β0, δn,0, δh,0, β1, δn,1, δh,1, β2, δn,2, δh,2, β3, δn,3, δh,3)
t.

With this formulation, the mean population value of parameter φi,k could

vary according to the level of Nitrogen through the following relationship:

E(φi,k) = βk+niδn,k+hiδh,k. This value is equal to βk for plants without

Nitrogen supply, to βk + δn,k for plants that received a normal dose, and

to βk + δh,k for plants that received a high dose of Nitrogen.

Means and variances of the two phyllochrons can be approximated using

Tailor Series approximation (Casella and Berger, 2002).

2.3. Inference method

A lot of inference methods have been proposed for the estimation of θ =

(β,D, σ), most of them based on maximum likelihood estimation, with a like-

lihood function based on the joint density of the observations given the covari-

ates. However, because of the nonlinearity of f , this density has an integral

form which is in general analytically intractable.

A list of the di�erent methods can be found in Davidian and Giltinan (2003):

(i) methods based on individual estimates, (ii) methods based on an approx-

imation of the likelihood function, mostly based on �rst-order and �rst-order

conditional methods (Beal and Sheiner (1982) Wol�nger et al. (1997) Lindstrom

and Bates (1990)), (iii) methods based on the �exact� likelihood, which have ex-

panded with the increase of computational power, and (iv) methods based on a

Bayesian formulation.

First-order methods are frequently used for nonlinear models, however, the

likelihood approximation on which they are based may be poor. This is partic-

ularly true when the number of observations per subject is too small, or when

the Gaussian assumption no longer holds (Makowski and Lavielle, 2006). An

alternative to approximation methods is to use �exact� methods, in which the
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likelihood function is maximized directly, using an Expectation-Maximization

(EM) algorithm for example (Walker, 1996).

Delyon et al. (1999) proposed a stochastic approximation of the EM algo-

rithm (SAEM), which converges under very general conditions to a local max-

imum of the function. Kuhn and Lavielle (2004) showed that the convergence

to maximum likelihood estimates holds when the algorithm is coupled to an

MCMC (Markov-Chain Monte-Carlo) procedure. This method has the advan-

tages of being quicker than a usual EM-algorithm (Kuhn and Lavielle, 2005),

and inference on a small number of measurements is feasible. The method is

implemented in the free software MONOLIX (The Monolix Team, 2013).

2.4. Model building

A set of initial values is required by the algorithm for the estimation of

the vector of parameters θ = (β,D, σ). Therefore, we �rst performed a �xed-

e�ects segmented regression on each plant separately, and used the means and

standard deviations of the obtained parameters as initial values. Other sets

were also tested to check for the consistence of the results. Due to the high

number of parameters in the model when the covariance matrix D is a general

positive-de�nite matrix, we also tested more parsimonious covariance structures:

� a full covariance structure

� no correlation between φi,k and φi,l for l 6= k. For example, for k = 0, we

have the following covariance structure :



1 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1


,
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where 1 means that the corresponding coe�cient will be estimated, and 0

that it is �xed to 0.

� no correlation between φi,k, φi,l and the two other parameters, for k 6=

l. For φi,0 and φi,1 for example, this lead to the following covariance

structure: 

1 0 0 0

0 1 0 0

0 0 1 1

0 0 1 1


� a diagonal covariance (i.e. no correlation between the parameters)

Using the best model, we tested whether each parameter should be entered

in the model as random or could be treated as a �xed e�ect, by testing if the

interindividual variability ω2
k was signi�cantly di�erent from 0. We used likeli-

hood ratio tests (LRT) and model comparisons (using AIC, Akaike's Information

Criterion and BIC, Bayesian Information Criterion). Similarly, the three di�er-

ent residual error models (additive, proportional and combined, as described in

Section 2.2) were also compared using the same criteria.

For the comparison of the three Nitrogen doses, Wald tests were used to test

for the covariates e�ects (The Monolix Team, 2013).

2.5. Model evaluation

The normalized prediction distribution errors (npde) were analyzed to test

for the validity of the model (Comets et al., 2008). They are computed in

Monolix from the empirical cumulative distribution function of yij . Under the

null hypothesis that the model suits the data satisfyingly, these npde follow a

Gaussian distribution with mean 0 and variance 1. Adequacy to the normal law

was assessed by a Kolmogorov-Smirnov test. The prediction distribution was
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also plotted to illustrate the model's predictions, and to check for possible over-

or under-estimation of the overall variability.

2.6. Field experiments

Field experiment took place in 2011 at La Selve, France, N49°34'22�, E3°59'24�,

on a sandy loam soil. A commercial variety, Python, was sown on March 21st

with 45 cm between rows and 18 cm between seed-plots. Three di�erent doses

of Nitrogen were applied to the �eld: control (no Nitrogen supply, although soil

was not tested for residual Nitrogen), normal level (136 kg/ha) and high level

(196 kg/ha). In each of these three conditions, the �nal density reached 11.08

pl/m2, 10.89 pl/m2 and 9.14 pl/m2 respectively.

Daily mean values of air temperature (°C) were obtained from French me-

teorological advisory services (Météo France) located 7 km away from the ex-

perimental site. Thermal time was computed using a base temperature of 0°C

(Lemaire et al., 2008).

Leaf appearance was measured weekly and non-destructively on a group of

60 randomly selected plants (20 plants for each level of Nitrogen). Colored

plastic rings were put around the petioles of the 1st, 6th, 16th, 21st, and 26th

phytomers for an easier di�erentiation. We considered that a leaf has appeared

when its length reached 10mm.

3. Results

The model was �rst applied to the population of 20 plants that received a

normal dose of Nitrogen (136 kg/ha). Among the di�erent covariance structures

tested, the best corresponded to the case where φi,2, i.e. the rupture thermal

time, was uncorrelated to the other parameters. Regarding the residual error

models comparison, the additive and combined models gave almost identical

AIC and BIC values, that were smaller than with the proportional model. The

14



Description Parameter Estimate Standard error LRT for IIV
Thermal time of initiation β0 241 11 -
Leaf appearance rate (�rst phase) β1 0.0257 0.001 -
Rupture thermal time β2 1580 41 -
Di�erence in leaf appearance rates β3 -0.0136 0.0009 -
IIV of φi,0 ω0 45.5 9.1 p < 0.0001
IIV of φi,1 ω1 0.0043 0.0007 p < 0.0001
IIV of φi,2 ω2 172 31 p < 0.0001
IIV of φi,3 ω3 0.0038 0.0006 p < 0.0001
Correlation between φi,0 and φi,1 corr(φi,0, φi,1) 0.55 0.18 -
Correlation between φi,0 and φi,3 corr(φi,0, φi,3) -0.52 0.19 -
Correlation between φi,1 and φi,3 corr(φi,1, φi,3) -0.84 0.07 -
Residual error a 0.811 0.07 -
Residual error b 0.0032 0.0023

Table 1: Parameter estimation for a standard sugar beet population (2011 data, normal dose
of Nitrogen). For a given parameter, its mean population value is given by βk and its standard
deviation in the population is given by ωk

combined model was chosen since the Gaussian hypothesis for the residuals was

veri�ed with this model. It is worth noting however that the two models gave

very similar results in terms of parameter estimation. Results from this model

are provided in Table 1.

The interindividual variability (IIV) of the four parameters was signi�cantly

di�erent from 0 (results from likelihood ratio tests), indicating that these pa-

rameters should be treated as random. The IIV of the rupture thermal time

was higher than that of the thermal time of initiation (172°Cd for the rupture

thermal time vs. 45°Cd for the thermal time of initiation). In the same way,

the IIV of the second phyllochron was higher than the IIV of the �rst phyl-

lochron. Using Taylor Series Expansion, the mean and standard deviation of

the two phyllochrons were estimated at 39°Cd (IIV = 6.5°Cd) and 83°Cd (IIV

= 16.0°Cd) for phases 1 and 2 respectively. Taking the mean population val-

ues, the predicted number of leaves at the rupture thermal time was estimated

around 35.

The prediction distribution is represented on Figure 4, and shows a good

15



handling of the population variability by the model. Results of the normality

test for npde con�rmed the adequacy of our model to observations (p=0.06, see

Figure
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Figure 4: Prediction distribution on the population of 20 plants receiving a normal dose of
Nitrogen. The solid line represents the median of predicted leaves.

Convergence of the algorithm was assessed using di�erent sets of initial val-

ues. Other nonlinear functional forms were also tested, as suggested by Xue

et al. (2004), leading to higher AIC and BIC (see Table 3 in Appendix).

Results of the comparison of the e�ects of the Nitrogen doses are presented

in Table 2. Prediction distribution is given in Figure 6.

The thermal time of initiation was signi�cantly earlier for plants that did

not receive Nitrogen (p<0.001 for both doses), but there were no di�erences

between the two doses of Nitrogen (p=0.51). However, the addition of Nitrogen

had a bene�cial e�ect on the leaf appearance rate of the �rst phase (p=0.002

for normal dose vs. no Nitrogen and p<0.001 for high dose vs. no Nitrogen),

although the administered dose did not seem to have an in�uence on this �rst
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Figure 5: qqplot for the residuals of the combined residual error model.
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Figure 6: Prediction distribution according to the dose of Nitrogen received. The solid line
represents the median of predicted leaves, and the dashed lines represent the 95% prediction
interval.
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Description Parameter Estimate Standard error p-value*
Thermal time of initiation
No Nitrogen β0 147 11 -
Normal dose β0 + δn,0 242 11 < 0.001
High dose β0 + δh,0 252 11 < 0.001
Leaf appearance rate of the �rst phase
No Nitrogen β1 0.0219 0.0008 -
Normal dose β1 + δn,1 0.0257 0.0008 0.002
High dose β1 + δh,1 0.0263 0.0008 < 0.001
Rupture thermal time
No Nitrogen β2 1860 43 -
Normal dose β2 + δn,2 1580 41 < 0.001
High dose β2 + δh,2 1640 41 < 0.001
Di�erence in leaf appearance rates
No Nitrogen β3 -0.012 0.0008 -
Normal dose β3 + δn,3 -0.0137 0.0008 0.15
High dose β3 + δh,3 -0.0136 0.0008 0.18
Interindividual variability
IIV of φi,0 ω0 41.6 5.2 < 0.001
IIV of φi,1 ω1 0.00373 0.00035 < 0.001
IIV of φi,2 ω2 170 18 < 0.001
IIV of φi,3 ω3 0.00357 0.00036 < 0.001
Correlations

corr(φi,0, φi,1) 0.54 0.11 -
corr(φi,0, φi,3) -0.46 0.12 -
corr(φi,1, φi,3) -0.77 0.06 -

Residual error σ 0.98 0.022 -

Table 2: Parameter estimation for the comparison of Nitrogen doses. * in the last column,
the p-value corresponds to Wald Tests for the covariates, and to Likelihood ratio tests for the
IIV
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rate (p=0.62). The rupture thermal time occurred earlier for plants that re-

ceived Nitrogen (p<0.001 for both doses). But, again, this di�erence was not

signi�cant between the two doses (p=0.31). Using the mean population values,

the predicted numbers of leaves at the rupture time for the three levels of Ni-

trogen were estimated around 37 for control, 34 for the normal dose, and 36

for the high dose. Interestingly, no signi�cant di�erences were found between

the three plant populations regarding the di�erence in leaf appearance rates.

However, given that the rate of appearance during the �rst phase was higher

for fertilized plants, it meant that this rate remained higher during the second

phase of development.

To summarize, the addition of Nitrogen delayed plant emergence, but this

negative e�ect was counterbalanced by a higher rate of leaf appearance for

fertilized plants. The rupture time also tended to be earlier for fertilized plants.

However, no di�erences were found between the two doses of Nitrogen.

4. Discussion

The hierarchical segmented model presented here allowed for the modelling

of interindividual variability, and thus a better statistical description of plant

populations. Unlike classical linear models with no random e�ects, we were able

to use the whole plant population, taking into account the correlated structure

of the data. We showed that the four parameters, thermal time of initiation,

rupture thermal time and leaf appearance rates had a signi�cant interindividual

variability and should therefore be treated as random parameters. Moreover,

we were able to estimate this variability in a plant population, and to compare

di�erent plant populations taking into account the inherent variability.

For the study of phyllochron in the reference population (normal dose of Ni-

trogen, 20 plants), we found that the IIV of rupture time was higher than those
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of initial time. This could be explained by the fact that di�erences between

plants that were observed during the early stages of development became more

pronounced as thermal time increased. Plants that emerged earlier and had a

higher rate of leaf appearance in the �rst phase would tend to produce more

leaves and to grow higher, and would cast shade on slower plants, which, in re-

turn, would produce less leaves as they received less light. More generally, this

change of phase seems strongly in�uenced by plant ecophysiology and varying

environmental conditions as illustrated for example by Lemaire et al. (2009),

showing the strong in�uence of density conditions on this rupture thermal time

while the phyllochrons in the two di�erent phases were not a�ected. Another

interesting result of our model is the non correlation between the rupture ther-

mal time and the other parameters. This could mean that this rupture time is

associated with a rather �xed number of leaves emitted by the plant, and that,

whatever happens during the �rst growth phase does not in�uence the thermal

time at which the second phase begins.

As for the Nitrogen doses comparison, the fact that initiation occurred later

for fertilized plants can be explain by the potential damaging e�ects of Nitrogen

on seed germination, especially when concentrated in a too large quantity near

the seeds (Draycott and Christensen, 2003). Later, as the fertilized plants had

a higher rate of leaf appearance, they tended to produce more leaves, and the

rupture thermal time occurred also earlier than for non-fertilized plants. The

standard dose of Nitrogen for sugar beet was probably su�cient to ensure that

the crop did not su�er from any Nitrogen stress, as the di�erences were not

signi�cant between the two Nitrogen doses, and increasing the standard dose

had a very low impact on crop performance. It is also interesting to note that,

in addition to the fact that the rupture time was not signi�cantly correlated

with the other parameters, it could be associated with a rather �xed number of
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leaves emitted by the sugar beet (around 36 leaves).

The di�erence of leaf appearance rate, observed during the second phase

of development, was similar for the three treatments, which could mean that

all plants reduced their rate of leaf production in the same way, whatever the

treatment they received. Similar results were found by Lemaire et al. (2009), on

the comparison of three plant densities. They found that the rhythm ratio (the

ratio between leaf appearance rates of the two phases) was the same among the

densities, but that the rupture point varied. Indeed, plants are in competition

for light before canopy closing, but once this point has been reached, they adopt

the same behavior. The same thing has also been observed in other plants like

turnips, rape, kale or swede (Fletcher et al.). Sibma (1977) also showed that

an increase in yield is possible by bringing forward the time of canopy closing,

in a period where the potential production is higher (longer days, and more

sunshine, for example). It is indeed very important to reach full leaf cover at

the more appropriate time, when solar radiation is optimal (Durr and Boi�n,

1995).

The �rst interest of our approach is to better understand the key process

of organogenesis, its variations among individuals and di�erent environmental

conditions. Moreover, a good description of organogenesis is also crucial for

individual-based crop models. Being able to take into account interindividual

variability is an important improvement compared to the classical strategy of

simply using the mean population value as underlined by de Re�ye et al. (2009):

for nonlinear systems, the mean yield is not a direct function of the mean pop-

ulation parameters (Brouwer et al., 1993; Liu et al., 2004), and an estimation

of yield variability is also a variable of interest (for example if we are interested

in the sizes of organs, as for sugar beet root for example).

Once the variability of model inputs are well quanti�ed, the main issue is
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then to compute the propagation of these sources of probabilistic uncertainty

in dynamic systems of plant growth. This issue has already been studied in

the context of crop models by Monod et al. (2006), with the use of uncertainty

propagation methods. Given a probability distribution for the input factors of a

model, uncertainty analysis can be used to evaluate the uncertainty distribution

of the output variables, through the use of Monte Carlo methods. This approach

produces probability distributions for the outputs instead of a single value that

could be misleading or di�cult to interpret.

The method presented here can also be extended to other plants. Current

studies are performed on winter oilseed rape, which also exhibits two linear

phases of leaf development with an abrupt change in the rhythm of leaf ap-

pearance at some stage, but, contrary to the sugar beet, it corresponds to an

acceleration (Jullien et al., 2011). Likewise, a simple hierarchical linear model

could be used for crops with a constant phyllochron all along the growth, like

maize or sun�ower.
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Model LRT (p-value) AIC BIC
Piecewise linear with full covariance matrix - 1380 1396
Piecewise linear with no correlations between φi,2 and φi,k, k 6= 2 0.32 1377 1390
Piecewise linear with diagonal covariance matrix < 0.0001 1399 1409
Gompertz model - 1604 1610
Sigmoid - 2140 2155

Table 3: Comparison of di�erent versions of the model: the initial piecewise-linear with full
covariance matrix, the same formulation but with a diagonal covariance matrix, and Gompertz
or sigmoid formulation with diagonal covariance matrix.

Appendix - Model comparison

In this appendix we give the results of the comparison between four versions

of the model: the original piecewise-linear version with a full covariance matrix,

a piecewise-linear model with a diagonal covariance matrix, a quadratic formu-

lation with a diagonal covariance matrix and an exponential formulation with

a diagonal formulation.
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