
HAL Id: hal-00819858
https://hal.science/hal-00819858

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CIAO: A Component Model and its OSGi Framework
for Dynamically Adaptable Telephony Applications

Gilles Vanwormhoudt, Areski Flissi

To cite this version:
Gilles Vanwormhoudt, Areski Flissi. CIAO: A Component Model and its OSGi Framework for Dy-
namically Adaptable Telephony Applications. The 16th International ACM Sigsoft Symposium on
Component-Based Software Engineering (CBSE’2013), Jun 2013, Vancouver, Canada. pp.10. �hal-
00819858�

https://hal.science/hal-00819858
https://hal.archives-ouvertes.fr

CIAO: A Component Model and its OSGi Framework for
Dynamically Adaptable Telephony Applications

Gilles Vanwormhoudt
Mines-Telecom Institute
LIFL, UMR CNRS 8022

France - 59655 Villeneuve d’Ascq cedex
vanwormhoudt@telecom-lille1.eu

Areski Flissi
LIFL, UMR CNRS 8022

Lille University
France - 59655 Villeneuve d’Ascq cedex

Areski.Flissi@lifl.fr

ABSTRACT
In recent years, thanks to new IP protocols like SIP, tele-
phony applications and services have evolved to offer and
combine a variety of communication forms including pres-
ence status, instant messaging and videoconference. As a
result, advanced telephony applications now consist of dis-
tributed entities that are involved into multiple heteroge-
neous, stateful and long-running interactions (sessions). This
evolution complicated significantly applications development
and calls for more effective solutions. In this paper, we ex-
plore the adoption of components for addressing this issue,
focusing specifically on the management and coordination
of the numerous and various sessions occurring in such ap-
plications. The paper presents CIAO, a domain-specific and
hierarchical component model for SIP applications. CIAO
combines three kinds of component that are Actor, Session-
Part and Role and manage them dynamically in accordance
with real SIP sessions. By using these features, we are able
to break the complexity of SIP entities and provide flexibil-
ity for their development. CIAO is implemented above OSGi
to experiment the building of concrete SIP applications and
enable their dynamic adaptation.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Software Architecture—
domain-specific architectures, adaptable architectures

Keywords
Component model, telephony, sessions, dynamism, SIP, OSGi

1. INTRODUCTION
Stimulated by the ubiquity of IP networks and the exis-

tence of new protocols like SIP (Session Initiation Protocol),
telephony services have endorsed significant changes in re-
cent years. They are now able to offer and combine a variety
of communication forms including presence status, instant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

messaging and videoconference while managing other con-
cerns like mobility, localization, security, etc. This situa-
tion changes and complicates significantly the development
of telephony applications that mainly consist of distributed
entities involved into multiple heterogeneous, stateful and
long-running interactions (sessions). Designing such appli-
cations not only requires programming expertise but it also
requires familiarity with the handling of complex sessions
and interactions. Owning to the specific skills required for
these applications, the development process becomes expen-
sive in terms of time and resources, calling for more effec-
tive solutions. Regarding this problem, a component-based
approach to develop telephony applications becomes an at-
tractive feature as it promises several advantages in terms
of design flexibility and evolution [4]. For the flexibility in
design, components can help to decompose the complex be-
haviour required for sessions management into prepackaged
and reusable units that can be further assembled for spe-
cific applications. For evolution, recent component models
designed to deal with dynamic changes like OSGi [10], can
help to accommodate new features or change behaviours af-
ter the deployment stage.

Main existing works on component-based development for
SIP applications are [7, 5, 11] and mainly target server-side
entities. In all these works, the multiplicity and dynamicity
of sessions occurring in advanced telephony applications are
not or poorly addressed by means of components. Not only
this causes difficulties when the base of sessions to manage
and coordinate is various and complex, it also hampers the
modularity and adaptability of SIP applications relatively
to sessions.

In this paper, we propose CIAO (Component for sIp Ap-
plicatiOns), a domain-specific component model for devel-
oping any kind of SIP entities, either client, server or both.
This component model is hierarchical and relies on three
specific component types that are Actor, SessionPart and
Role. Actor components are top level components that rep-
resent distributed SIP entities. They contain SessionPart
components that provide actor behaviour related to partic-
ular kinds of session. SessionParts are themselves container
for Role components which encapsulate one of the behaviour
played by an actor when it participates to a particular ses-
sion. Besides these specific components, the model is char-
acterized by powerful mechanisms for components interac-
tion and coordination and by a management of components
which is dynamic and maps real SIP sessions. According
to this management, SessionParts and Roles created for an
Actor depend automatically on the session it participates

in at runtime. Advantages provided by this model are to
achieve a better modularization between session-dependent
parts of entities, to simplify the reasoning regarding sessions
dynamicity and to improve the capacities for constructing
SIP entities from reusable components.

In addition to this model, we also describe an implemen-
tation of the CIAO model as component framework over the
OSGi platform. This implementation leverages the capacity
of OSGi components for software adaptation. The result-
ing framework allows to adapt components of SIP entities
at runtime with minimal interruptions. This feature are il-
lustrated and discussed through characteristic examples of
adaptation.

The rest of the paper is organized as follows. Section 2
gives background on SIP and the issues underlying the devel-
opment of advanced SIP applications. It is followed by the
description of CIAO component model in section 3. The im-
plementation of CIAO components over OSGi is presented
in section 4. Section 5 reports experiments, notably on dy-
namic adaptations. Section 6 comments on related works
prior to conclude in section 7.

2. BACKGROUND ON SIP AND ISSUES
SIP is an application-layered signaling protocol standard-

ized by the IETF that supports applications ranging from
simple VoIP routing or instant messaging to sophisticated
multimedia sessions involving multiple parties with pres-
ence management. For these applications, SIP provides a
rich range of communication forms. Communications can
be stateless for simple messages exchange, session-based to
exchange messages over a period of time or event-based to
propagate information like state-change of an entity. One
main benefit of SIP is that it enables mixing all its commu-
nication forms in order to design advanced telephony appli-
cations.

Figure 1 shows the architecture of an advanced telephony
application based on SIP to provide presence-based redirec-
tion1 of invitation to a dialog combining voice and text. The
architecture is composed of three SIP entities having distinct
capacities and interacting in multiple ways. In the scenario
depicted by this figure, Alice updates its status because she
leaves its office for a meeting (1,2). Then, Bob calls Alice
during her meeting and he receives a BUSY response (3,4).
When Alice becomes available (5,6), a new invitation from
Bob results in a redirect response including Alice’s address
to initiate a dialog (7,8). Thanks to the returned address,
Bob can directly contact Alice to establish a successful dia-
log (9 to 18).

As illustrated by the previous example, lots of message ex-
changes between the involved SIP entities may be required
to achieve the intended functionality. This profusion of mes-
sages complicates significantly the development of SIP enti-
ties. In [12], we identified three typical sources of complex-
ity:

1) Complex messages flow within a session : Within a
session, SIP entities exchange and handle SIP messages at
each end. Several difficulties must be faced when handling
these messages:

– Messages can be received at any time from the network.
As a result, SIP entities must be prepared to react to any

1In SIP, redirection consists in directing the client to contact
an alternate address.

Presence-based
Redirect Server

1) Publish [meeting]

7) Invite alice

3)Invite alice Alice User Agent

4).486 Busy Here 2) 200 OK
5) Publish [available]

6) 200 OK

Bob User Agent

8) 302 Moved @alice

Session
Setup

User Message
exchange

Session
Ending

9) Invite alice

10) 180 Ringing

11) 200 OK

12) Ack

15) Message

16) 200 OK

13) Message
14) 200 OK

17) Bye
18) 200 OK

Successful Session establishment between UserAgent

Accept or Decline ?

Accept

Figure 1: Example of Presence-based Redirection

received messages, including while others are processed;
– Interpretation of messages in the flow is generally state-

dependent (see OK messages in the example). This requires
the entities maintain a session state according to the ex-
changed messages for distinguishing between these interpre-
tations;

– Messages flow of a session may contain and interleave
messages that are related to distinct concerns as illustrated
by colored groups of messages in the lower part of Figure 1.

– Message flow can be inverted during the session (see BYE

for example). This implies that entities must be able to pro-
vide behaviours for handling session flow in both directions
and to act both as requestor and responder.

Because of these difficulties, the behaviour of entities han-
dling some parts of the session flow like the previous one is
usually not easy to design.

2) Multi-branches session : A SIP session is not always
restricted to a peer-to-peer conversation. There are some
classical calling or presence scenarios which involve more
than two peers in the same session. In these scenarios, one
or several SIP entities generally act as facilitator between
several participants to the session. For such entities, this
entails to handle more that one conversation within the same
session and to coordinate all the conversations in order to
serve the communication partners properly. In our example,
we initially assume a redirect behaviour for the server but
we can easily imagine changing this behaviour to a proxy-
like one in order to extend the status of a user according
to its participation in an existing dialog2. Compared to the
previous behaviour, adopting this change requires that the
server manages and coordinates two communication paths
within a session : one to the callee and one to the caller,
switching back and forth being a client and a server at the
same time. When a SIP entity is involved in more than one
conversation within a session, the complexity for describing
its behaviour is inherently increased.

3) Multi-sessions management : The need to handle mul-
tiple sessions is another situation that makes the develop-
ment of SIP applications and their entities complicated. Two

2Proxy behaviour in SIP consists in relaying each request
and response between user agents of a session.

cases may be distinguished for multi-sessions management.
The first case is the one where the sessions managed by a
SIP entity have the same type and typically occur concur-
rently. We generally encounter this case when designing SIP
servers. In our example, the redirect server is an illustration
of this case as it must be able to manage calling session
coming from multiple requestors. Here, the difficulty is that
multiple session states must be maintained separately and
concurrently. The second case is the one where each session
has a different type. This case can be found particularly in
the development of rich user agents and rich servers. In our
example, Alice’s user agent illustrates this case as it must
be able to manage several sessions related to registration,
incoming invitation and status modification. For this case,
an additional difficulty besides maintaining multiple states
is that each session may require the handling of distinct set
of messages resulting in a significant amount of messages
to handle. Note that a combination of the two cases may
sometimes be required for the design of a SIP entity as it is
illustrated by the redirect server. For SIP entities, support-
ing multiple sessions makes their design more complicated
because they must include characteristics for many states
and behaviours.

As we can see, SIP applications have specific issues related
to sessions management that make their development com-
plex and lead to intricate structure of behaviour for involved
SIP entities. Therefore, an adequate component model tar-
geting these applications and their entities should provide
abstractions to solve all these issues. In the next section, we
present CIAO, a component model that includes appropriate
abstractions for that purpose.

3. CIAO COMPONENT MODEL
CIAO only deals with the part of applications that is re-

lated to SIP but it is sufficiently general to address the needs
of any SIP entity, that is client, server or both. For other
parts of applications like UI or database, we assume that
they are addressed by more classical components. CIAO
components can be assembled and interact with these com-
ponents to form a complete application.

3.1 Kinds of component
CIAO has three kinds of component which are Actor, Ses-

sionPart and Role. The first two are composite components
while the last one is atomic. In our model, a composite
encapsulates subcomponents as well as the logic for control-
ling them. An atomic component encapsulates computation
logic. Each kind of component has a specific purpose in the
model :

– Actors are composite components at the top-level. These
components are so called because they represent SIP enti-
ties from the network view. They directly exchange SIP
messages with other entities in the network. Actors are typ-
ically involved into one or several SIP sessions that may
have the same nature or being different and exist concur-
rently. To handle these sessions, Actors encapsulate sub-
components which are SessionParts. Actors are also respon-
sible of routing SIP messages from and to its SessionParts
and coordinating them.

– SessionParts are composite components encapsulated
by actors. These components aim to provide the behaviour
of actors related to a specific session type. A SessionPart en-

Proxy <<Actor>>

Registering <<SessionPart>>

Timer
<<Functional>> SipAddressStore

<<Functional>>

Calling <<SessionPart>>

Registrar
<<ServerRole>>

CallForwarder
<<ClientRole>>

CallHandler
<<ServerRole>>

SIP Server
 Port

Required
Functional Port

Provided
Functional Port

SIP Client
Port

Figure 2: Example of CIAO Components corre-
sponding to Proxy

capsulates Role components to provide this behaviour. Like
Actors, SessionParts are also in charge of routing SIP mes-
sages from and to its Roles and coordinating them.

– Role are components at the lower level. These compo-
nents are atomic and provides one of the actor behaviour
involved in a session. This behaviour consists in handling
incoming and outgoing SIP messages while realizing the rel-
evant logic.

In CIAO, the Role kind introduced above is further re-
fined in three sub-kinds to specify their capacities in terms
of received and sent messages and help the analysis and cor-
relation of communicating roles inside and between actors :
– Client role represents an asymmetric role type that sends
requests and receives related responses.
– Server role represents an asymmetric role that receives re-
quest and sends related responses.
– ClientServer role represents a symmetric role that sends
and receives both requests and responses.

Figure 2 shows a concrete Actor corresponding to Proxy
entities and illustrates the hierarchical structure of such com-
ponents. This Actor is composed of two SessionParts, one
dedicated to sessions for user address registering, the other
to sessions for user calling. These two SessionParts include
themselves Roles for providing the respective behaviour. In
the Registering SessionPart, the Registrar role provides the
behaviour for registering/unregistered user agent address.
In the Calling SessionPart, the CallHandler role handles
the communication with the calling user agent and the Call-
Forwarder role handles the communication with registered
called user agents. Timer and SipAddressStore are not CIAO
components but are functional ones. They are included in
the Proxy architecture to provide both timing and usage
address storage functionalities. The first one is needed to
record the time period of each user address registration, so
is contained in Registering SessionPart. The second one al-
lows to store user address during registration and retrieve
them during calling, so is contained in the Proxy Actor to
be shared by its two SessionParts.

Using CIAO, SIP architectures that generally involve sev-
eral SIP entities, can be built from a set of related actors3

3To preserve the interoperability with existing SIP systems,
CIAO does not enforce that all entities in such architecture
be necessarily based on CIAO. Indeed, Actors can interop-

actor A3

role R3

role R3'

Session S1

Session S2

actor A4

role R4'

actor A2

Session S3

actor A1

role R1

role R1'

role R2

role R2'

role R2 role R4

SessionPart

Figure 3: Illustration of Actors, SessionParts and
Roles

where each actor communicates with other actors within ses-
sions, playing dual and consistent roles. Figure 3 illustrates
such an architecture and show capacities of the model. In
this architecture, related actors A1 and A2 participate to a
SIP session S1. Within this session, actor A1 plays a single
role R1 and communicates with A2 that plays dual roles R2
and R2’. Figure 3 also shows a second SIP session S2 in-
dependent from S1 that involves actors A3 and A4 but also
A1, already engaged in S1. For this session, we may observe
that actor A1 plays a role R1’ distinct from R1 played in
S1. Actor A3 plays two distinct roles to communicate with
A1 and A4 actors.

The combined use of Actor, SessionPart and Role compo-
nents proposed by our model allows to deal with the issues
identified above. The first issue can be managed by defining
multiple roles for a particular session (e.g. A2), each role
dealing with one session concern. The capacity for an actor
to play multiple roles for distinct communication path (e.g.
A3) of a session may be exploited to solve the second issue.
Concerning the last issue, the solution is provided by the
ability of an actor to participate in multiple sessions with
separate roles (e.g. A2 and A4).

3.2 Component instanciation and life-cycle
Whereas some models treat component as configured in-

stances, CIAO differentiates between component types and
instances. The principle is that all CIAO components are
type-level component and these components are instantiated
at runtime to form the architecture of concrete Actors. For
an actor, its architecture is always a tree of component in-
stances where they can be multiple instances from a given
inner component type. Figure 4 gives an example showing
the instance tree of a Proxy actor currently engaged in two
calling SIP sessions (represented by SessionParts with Call-
Id @345 and Call-Id @127) and one registering SIP session
(represented by SessionPart with Call-Id @56).

One key feature of CIAO is that the inner architecture
of an actor is not fixed at instantiation-time but changes
dynamically during its lifetime. Changes performed to an
actor architecture aim to reflect its participation to real SIP
sessions and provide all the states and behaviours required
for these sessions. These changes are as follows: each time
an actor is involved in a new SIP session, a corresponding
SessionPart is created and added to the actor architecture.
Conversely, each time a SIP session is terminated, the cor-
responding SessionPart and its roles are removed from the
actor architecture.

The instantiation of SessionPart can be done explicitly on

erate transparently with existing SIP entities.

demand by means of a new-like construct or occurs implic-
itly on the basis of received request. For a receiving request,
the decision to create a SessionPart instance depends if there
already exists a session part matching the session identifier
(Call-Id header) included in the request. If none exists, some
rules attached to the Actor for SessionParts are evaluated to
create a matching instance. A SessionPart may be instan-
tiated more than once per actor. This corresponds to the
situation where an actor participates to several sessions of
the same type during its lifetime.

At the level of SessionPart, similar changes are performed
for the inner roles. These changes consist in adding and re-
moving roles to advance the actor state and behaviour inside
the SIP session. Like session part instantiation, the creation
of roles attached to a session can be done in two ways: ei-
ther explicitly by means of a new-like construct or implicitly
on the basis of a received request. In the latter case, rules
attached to the SessionPart are evaluated to determine if a
corresponding role must be created.

SessionPart and Role components have explicit states that
are automatically setup during their lifecycle. SessionPart
can be in one of the following session-related states: Idle
(initial state), Bound (after binding with real session), Started,
Ended, Unbound (terminal state). For a Role, there are three
states, namely: Idle, Active, Invalid. All these states are
accessible through a common interface provided by compo-
nents so that they can be used to realize the actor behaviour.

3.3 Component interaction
CIAO components have features to interact with other

components both at functional and SIP levels.

Functional Ports
For functional interactions, components may have functional
ports which are access points to component functionality
with a set of operations. In CIAO, functional ports can
be of two kinds: provided and required. A provided func-
tional port corresponds to a functionality provided by the
component whereas a required functional port corresponds
to a functionality required by the component. Interaction
between components is only possible if required functional
ports are bound to provided ports. Connection between
ports can be dynamically set and unset at runtime.

By means of functional ports, a component can interact
with other components to use or provide its functionality.
For example, a Role (resp. SessionPart) component can use
the functionality of its owning SessionPart (resp. Actor)
to access a shared state or activate a common behaviour.
Conversely, a composite like an Actor (resp. SessionPart)
may consume functionality provided by its inner Session-
Parts (resp. Roles).

SIP Ports
For SIP interactions, CIAO introduces SIP ports and SIP
messages routing among the hierarchy of components. SIP
ports are bidirectional access points to the SIP network for
components. They are used for sending and receiving SIP
messages. Actor and SessionPart may have several SIP ports
but roles only have a single one (see Figure 2). A SIP port
is created dynamically each time a communication path is
established for a role, that is an initial SIP request is sent to
or received from the network. There are three kinds of SIP
port in relation to the kinds of role defined in section 3.1 :

– Client SIP Port enables sending of SIP requests and
receipt of SIP responses

– Server SIP Port enables receipt of SIP requests and
sending of SIP responses

– Client/Server SIP Port enables both sending and receipt
of SIP requests and responses.

In CIAO, the source and destination of SIP messages ex-
changed with the network are always Roles. More precisely,
SIP messages are routed from and to the network follow-
ing a unique path in the Actor’s component hierarchy. This
path starts from the root Actor to the appropriate role if the
message is a received message. Conversely, the path starts
from the emitting role to the root Actor if the message is
sent. Along the path, the message is delivered to compo-
nents through their SIP ports. This enables components to
adapt the routing and eventually to perform computations
in relation with the delivered messages.

When a component receives a message via one of its SIP
ports, it is responsible of selecting the next component along
the path and passing the message to this component. A
routing component may use various strategies to make this
selection. Currently, we use default strategies for sent and
received messages. For sent messages, the strategy consists
simply in selecting the outer component. According to this
strategy, a message sent from a Role is submitted to its
containing SessionPart then to the containing Actor and fi-
nally to the network. For received messages, the strategy
for selecting the right component depends on the type of
the message and the session it belongs. With this strategy,
a message received from the network is first delivered to the
root Actor. Then, the message is forwarded by the Actor
to the SessionPart matching the message session identifier
and type, eventually a new one if none matches. After that,
the process continues with the selection of a matching role.
This selection is done by the SessionPart on the basis of the
message type and optionally some current state using its
rules. At last, the message is forwarded to the selected Role
so that it can realize the relevant logic. This is achieved by
triggering one of its message handlers. Message handlers are
special operations provided by Role to handle an incoming
SIP request or response. These operations have a specific
signature that matches the type of particular SIP message.

Figure 4 illustrates the receipt of an INVITE initial request
by a Proxy Actor and its routing through the correspond-
ing SessionPart up to the CallHandler role. This routing
terminates by executing the onInvite() request handler pro-
vided by the role. The response emitted by the role is 301

Moved Permanently indicating that the user is not available
through the given SIP address but via another address pro-
vided in the response. As we can observe, its routing follows
the converse way, through the same SIP Ports.

3.4 Component coordination
In some scenarios, the roles that an actor plays during a

session or the multiple sessions it is involved in require co-
ordination within the actor itself. Generally, this is due to
the fact that some actions provided by some entities depend
on actions provided by other ones. To fulfill these coordi-
nation needs, our component model offers two coordination
mechanisms, one dedicated to SessionParts and one target-
ing Roles. These two mechanisms are grounded on the same
principle : a composite instance provides the coordinating
behaviour for its inner component instances. These princi-

s1: SipAddressStore
<<Functional>>

INVITE
CallId:@345

301 MovedPermantly

csp1: Calling
<<SessionPart>>

Call-Id: @345

csr1: CallHandler
<<ServerRole>>

rsp1 : Registering
<<SessionPart>>

Call-Id: @56

rsr1 : Registrar
<<ServerRole>>

csr2: CallHandler
<<ServerRole>>

Proxy1 <<Actor>>

csp2: Calling
<<SessionPart>>

Call-Id: @127

ccr2: CallForwarder
<<ClientRole>>

INVITE
Call-Id:@345

INVITE
CallId:@345

301 MovedPermantly

301 MovedPermantly

onInvite(req)
handler Server

SIP Port
Client

SIP Port

t1 : Timer
<<Functional>>

SIP flow

Figure 4: SIP Message routing among components

ua2: UserAgent <<actor>>

r: Callee
<<Role>>

tps: ThirdPartyCallServer
<<actor>>

rs1: Caller
<<Role>>

rs2: Caller
<<Role>>

ua1: UserAgent <<actor>>

r: Callee
<<Role>> 1INVITE

2.OK

ACK

5.ACK

3.INVITE
4.OK

CallingSession1

CallingSession2

Coordination

SessionPart

Figure 5: Third-party call as example of sessions
coordination

ple aims to provide two benefits. Firstly, it permits to avoid
explicit coupling between subcomponents for coordination
purposes, improving therefore their reuse. Secondly, it per-
mits to locate the coordinating behaviour in one place, facil-
itating its understanding and maintenance. In the following,
we detail these two mechanisms which are both event-based.

SessionPart Coordination
The need to coordinate the behaviour of an actor across sev-
eral sessions can be illustrated using the case of third-party
call entities which are controllers setting up and managing
a phone call between two or more other parties 4.

Figure 5 illustrates the basic idea behind third-party call
entities using an example which only connects two users in
a call. We can see that the server is represented by an actor
which is involved into two calling sessions with user-agent
actors. For these sessions, coordinating behaviour are re-
quired from the previous actor. The second calling session
must be started only when the initial one has been acknowl-
edged. It consists for the third-party entity in sending a
second INVITE after the first INVITE was confirmed by a
200 OK. Furthermore, when the second session is confirmed,
the two sessions must be acknowledged by sending a ACK
message to each user agent.

Within an Actor, the behaviour for coordinating its Ses-
sionPart is defined by means of callback operations related
to specific SessionPart events. These coordinating callback
operations are attached to the Actor component and they
are automatically triggered at runtime each time the corre-
sponding event related to a SessionPart occurs. The struc-

4Third party call entities are often used for operator services,
click-to-dial and conferencing services.

Session event Coordinating op-
eration

Provided Parameters

Session creation onCreatedSession New session reference

Session deletion onDeletedSession Deleted session reference

Session start onStartedSession Started session reference

Session end onEndedSession Ended session reference

Session custom
event

onCustom-
EventSession

Session reference, Objet ref-
erence for payload

Table 1: Kind of session events and their corre-
sponding operations

ture of coordinating operations is similar to normal opera-
tions. Like an operation, it owns a body containing the set
of coordinating actions and has provided parameters.

Table 1 gives the set of events dedicated to sessions coor-
dination within an actor. They are related to the life-cycle
of a session as well as its state from the actor point of view.
For each event, this table also indicates the corresponding
operations and provided parameters.

For this set of events, it is important to precise that only
events related to session life-cycle are triggered automat-
ically (creation, deletion). Those related to session state
(started, ended) must be triggered explicitly by the devel-
oper. The reason why such event needs to be handled ex-
plicitly comes from the fact that determining the start or the
end of a session is generally application-specific. Using the
previous facilities, the behaviour for coordinating the two
sessions as described can be done by defining an onStartSes-
sion operation for the Third-Party call Actor and by using
provided session parameters to distinguish between second
INVITE sending case and acknowledgments case.

Role Coordination
To illustrate the need of roles coordination, let us consider
the case of a forking operation handled by SIP proxies. In
a proxy, this operation occurs when it receives an invitation
for a user which has registered more than one user agent.
In that case, the proxy relays the invitation to all registered
user agents by creating separate branches. When one reg-
istered user agent accepts the invitation, other invitations
must be cancelled. Using CIAO, the behaviour for a fork-
ing operation may be achieved by coordinating CallHandler
and CallForward roles attached to the running CallingSes-
sion SessionPart as illustrated in Figure 6. To achieve the
forking operation, coordinating actions are required to cre-
ate new CallHandler on the receipt of a request by the Call-
Handler and to activate or deactivate them depending on
which user agent is the first to respond.

To deal with situations like the previous one, our com-
ponent model includes a mechanism dedicated to the coor-
dination of roles within a session. This mechanism follows
the same design principles than the one designed for coor-
dinating SessionParts of an Actor : the SessionPart acts as
the coordinator of its role and relies on special operations to
define the coordinating behaviour in term of actions.

Table 2 presents the set of role events that may captured
in a SessionPart through the definition of coordinating oper-
ations. These events can be subdivided in two groups: one
concerns the life-cycle of a role during a session while the
other deals with message handling performed by a particu-
lar role.

All these operations allow to have a fine and complete
control over the role events related to a session. Thanks to

ua4: UserAgent
<<actor>>

ua3: UserAgent
<<actor>>

ua2: UserAgent
<<actor>>

pxy1: Proxy
<<actor>>

ua1: UserAgent
<<actor>>

r: Caller
<<Role>>

r: Callee
<<Role>>

r: Callee
<<Role>>

r: Callee
<<Role>>

r: CallHandler
<<Role>>

f1: CallForwarder
<<Role>>

f2: CallForwarder
<<Role>>

f3: CallForwarder
<<Role>>

1.INVITE

2.INVITE

3.INVITE

4.INVITE

5.OK

6.CANCEL

7.CANCEL

8.OK

CallingSessionSessionPart

Figure 6: Forking as example of roles coordination

Role event Coordinating op-
eration

Provided Parameters

Role creation onCreatedRole New role reference

Role deletion onDeletedRole Deleted role reference

Role binding onBoundRole Bound role

Request reception
by a role

onRequest-
Received

Role reference, Request ref-
erence

Response reception
by a role

onResponse-
Received

Role reference, Response ref-
erence

Request sending by
a role

onRequestSent Role reference, Request ref-
erence

Response sending
by a role

onResponse-
Received

Role reference, Response ref-
erence

Table 2: Kind of role events and coordinating oper-
ations

such control, many scenario for coordinating roles, including
the one discussed previously for proxy servers may be man-
aged seamlessly. For this scenario, the expected behaviour
can be achieved by defining two coordinating operations in
the CallingSession SessionPart: an onRequestReceived oper-
ation to detect INVITE request handled by the CallHandler
role and relay such request using appropriate CallForwarder
roles ; an onResponseReceived operation to cancel uncon-
firmed branch of CallForwarder roles.

4. CIAO ABOVE OSGI
To experiment our component model for the development

of real applications and validate its benefits, the proposed
components and mechanisms must be implemented concretely.
To this end, we have developed an implementation of CIAO
on top of the OSGi component framework. The choice of
OSGi were driven by the need to exploit its capacities for
dynamic adaptation of applications.

4.1 Mapping CIAO components to Declara-
tive Services

We use Declarative Services as a basis for implementing all
the kinds of component included in CIAO. Declarative Ser-
vices (DS) is a part of the R4 OSGi[10] specification that ex-
tends the service component model provided by OSGi Bun-
dles. This extension offers a declarative model (based on
XML descriptor) for managing multiple components within
each OSGi bundle and for automatically managing the com-
ponent lifecycle in response to bound services coming and
going. In our implementation, each CIAO component of an
application is implemented as a DS component and func-
tional ports provided by CIAO components are specified as

: CallingSP
<<SessionPart>>

:Proxy
<<Actor>>

: CallingSP
<<SessionPart>>

: CallingSPCreator
<<Service>>

:RegisteringCF
<<Component

Factory>>

: CallHandler
<<ServerRole>>

:CallHandlerCreator
<<Service>>

:CallHandlerCF
<<Component

Factory>>

create

create

ISessionPart

IRole

ISessionPartCreator

IRoleCreator

Figure 7: Architecture of the Proxy implemented
with DS Components

separate provided services of the corresponding DS compo-
nents. SIP ports are handled by the CIAO runtime.

By default, Declarative Services automatically creates in-
stance of component when their service dependencies de-
clared statically inside its descriptor are satisfied. This de-
fault behaviour is not well-suited to the dynamic nature of
the CIAO component model. In CIAO, components, mainly
internal ones, need to be created dynamically depending on
SIP messages flow. Furthermore, multiple instances of a
CIAO component may also be needed when handling multi-
ple sessions at the same time. Owing to these specific needs,
it was necessary to elaborate a specific management of com-
ponent instances over DS.

To solve the previous problem, we rely on the Factory
Component facility provided by DS and specific helper com-
ponents added to the set of DS components derived from
CIAO ones. A factory component is a DS component that
can be used by other DS components to create and dispose
instances of particular DS components. Such factory com-
ponent are implicitly created if required. They are also au-
tomatically registered and can be referenced by other DS
component to manufacture component instances. In our
case, we declare a distinct factory component for each CIAO
component included in an application.

In addition to factory components, we also introduce a
correlated helper service component (called Creator) for each
SessionPart and Role. The role of Creator components is to
provide the logic for determining if a component instance
have to be created for the handling of a particular SIP mes-
sage. These helper components make directly use of the
corresponding factory. They are also declared to provide a
service that is referenced by the outer component and some
properties for determining the appropriate component to in-
stantiate on specific messages.

Figure 7 shows the architecture of DS components corre-
sponding to a Proxy actor currently engaged in one regis-
tering session and two calling sessions. In this figure, com-
ponents that are declared statically in descriptor files have
underlined names. Others are instantiated dynamically for
matching the sessions and supporting the intended behaviour.
Dependencies that are automatically managed by the DS
runtime are represented with dotted line. As we can observe,
Actor and SessionPart components maintain a set of refer-
ences to Creator components so that they can collaborate
with them for instance creation during messages routing.

The code in Figure 8 gives several descriptors used in the
example. They correspond to the declarations of a Proxy
Actor, the CallingSessionPart component with its factory

and the corresponding Creator component.

Figure 8: Example of descriptors for a Proxy Actor

The previous architectural principles enables to benefit
from the capacities of Declarative Services for all CIAO com-
ponents. First, the modularity provided by DS allows to
decompose an actor into multiple ways for their deployment
in a running OSGi platform. For instance, it is possible to
have a bundle containing an actor and all its inner compo-
nents or having separate bundles for each SessionPart used
by an actor. Secondly, thanks to the DS capacities for dy-
namic updates of components, all CIAO components can
be installed, updated and started with minimal disruption
to the running SIP entity. See section 5.2 for example of
SessionPart and Role added dynamically.

4.2 Runtime and annotation frameworks
To enable the development and execution of SIP applica-

tions in accordance with our component model, we have im-
plemented a runtime framework which is build above OSGi
and JAIN-SIP frameworks. This framework defines a set of
classes that provides certain core data structures and func-
tionalities for managing the execution of CIAO components.
Figure 9 shows the main classes of this framework.

Some CIAO runtime classes extend themselves the stan-
dardized JAIN-SIP API. To build an application, developers
have to write Actor, SessionPart, Role, and Creator com-
ponents by specializing respective classes and write XML
descriptors as described previously.

Using CIAO implementation constitutes an improvement
for the development of SIP applications but specializing the
framework still requires deep knowledge of underlying pro-
gramming rules. To simplify and speed up the coding task,
we provide a Java annotations framework too. In our case,

SipProvider

SipStack

SipFactory

SipListener
<<interface>>

CiaoActor

CiaoSessionPart

1

*

1 *

CiaoRole

CiaoClientRole

CiaoServerRole

CiaoServerRole

CiaoSipPort

* *

1

CiaoRoleEvent

CiaoEvent

CiaoSessionEvent

*

CiaoSession
PartCreator

CiaoRoleCreator

*
*

Figure 9: Main classes of CIAO Runtime Framework

we use annotations as a way of conveniently mapping the
concepts of CIAO component model to user-defined classes
or methods and automatically generate both the classes spe-
cializing the runtime framework and the descriptors.

A class with the @actor annotation will inherit from the
CiaoActor class of the framework, whereas a class anno-
tated with @sessionPart will inherit from CiaoSessionPart
class. The three subkinds of role provided by the model are
declined in corresponding annotations for classes: @client-

Role, @serverRole, @clientserverRole.
An actor declares its sessions part with @useSession-

Part(type, method, condition) annotation on its class. The
mandatory type attribute determines the SessionPart class
that has to be imported and activated. The mandatory
method attribute provides the type of SIP request method
(e.g. INVITE message) that triggers the activation of the Ses-
sionPart. The optional condition attribute is a string that
refers to the name of a boolean method that describes some
particular conditions for the activation of the SessionPart.
The principle is similar for declaring roles of a SessionPart,
thanks to @useRole annotations, except that it is used with
a SessionPart class. Figure 10 gives an example of annotated
code corresponding to some CIAO components used in the
definition of PresenceEnableUserAgent actor.

5. EXPERIMENTATION
In this section, we report some experiments about the

building of SIP entities using CIAO, their adaptation rela-
tively to sessions and a capitalization of these experiments
for providing a first set of reusable components.

5.1 Developed SIP entities
In order to validate the generality of our CIAO compo-

nent model and the relevance of its structuring, we have
developed four SIP entities5 that target distinct SIP areas
(telephony, presence) and map to classical categories of SIP
agents (end-point, intermediary entity, client and/or server).
In the following, we list these entities and indicate the is-
sue(s) it was necessary to solve for each:

– SipPhone : The development of this entity required to
manage two independent session types, one dedicated to call
management and one dedicated to user address registration.
Other addressed issues were mainly related to the complex-
ity of flow during a call as it relies on state-dependent, asyn-
chronous and inverted exchange of messages.

– Proxy : Through the development of this entity, we ad-
dressed the issue of handling multiple sessions of two distinct

5Three of these entities are detailled in the first coauthor
book on SIP Telephony in Java [2]

15

@clientserverRole // Declaration of role class

public class Callee {
public void onInvite (Request req, ServerTransaction tx) { ... }
public void onACK (Request req, ServerTransaction tx) { ... }
public void sendBye () {...}
...

}

@sessionPart // Declaration of session part

@useRole(type=Callee.class,method="INVITE")

@useRole(type=Caller.class)

public class CallingSessionPartUA {
public void onRequestReceive(Role r, Request req) {

if (r.hasType(Callee.class) && isINVITE(req)) {
from = req.fromHeader().getAddress();

actor.getCallerHistory().put(from);

} ...

}

@actor // Declaration of actor class

@useSessionPart(type=RegisteringSessionPartPUA.class)

@useSessionPart(type=PublishingSessionPartPUA.class)

@useSessionPart(type=CallingSessionPartPUA.class,method="INVITE",

condition="isUserAvailable))

public class PresenceEnabledUA implements ICallControl,

IPresenceControl, ICallHistoryMngt {
String contactName;

List<SipAddress> callerHistory;

public void clearHistory() {...}
public void addHistory(SipAddress adr) {...}
public void initiateCall(String sipAddress) {...}
public void endCall() {...}
public boolean isUserAvailable() { ... }
public void onStartedSession(SessionPart session){

getRole(PublishSession,PresencePublisher).

setNewState(State.unavailable); }
...

}

Code 3. Example of annotations use to code the presence server example

Figure 10: Example of annotated code for compo-
nents of presence-enabled UserAgent

types (recording, calling) at the same time with the particu-
lar issue that the calling session is multi-branches and have
a quite complex flow. For managing this issue, we used the
mechanism for coordinating roles of a session as described
in section 3.4.

– Third-party Call Server : In terms of issues, the design
of this entity required the ability to initiate and manage
as many calling sessions as parties as well as the ability to
orchestrate all these sessions.

– Presence Server : Like a proxy, a presence server is
an intermediary entity that accepts, stores and distributes
SIP presence information from a source entity to subscribing
entities. This kind of entity needs to manage several sets of
sessions at the same time with the difficulty that the sessions
in a set have distinct types (publish and subscribe-notify),
map to distinct participants and need to be coordinated.

The following table presents the structuring of developed
entities, so Actor components. For each Actor, we give its
SessionPart components and its Role components6. For in-
stance, the row for Proxy Server actor can be interpreted
as follow: this actor has two CallingSessionSvr and Regis-
terSessionSvr SessionParts and play one CallHandler server
role and one CallForwarder client role for the former and one
RegisterAcceptor server role for the latter.

These experiments confirmed the generality of our pro-
posal and the relevance of its structuring. They also high-
lighted that the model offer several advantages. First, it
raises the level of abstraction as the developer can think
about the behaviour of its actor at a higher level thanks

6The table also indicates if the actors participate to one or
several sessions at the same time (written respectively [1] or
[*] after the session type name).

Table 3: CIAO Components of developed entities
Actors SessionParts [1|*] Roles [owner Session-

Part,c|s|cs]
SipPhone CallingSessionClt[1],

ProxyCalling-
SessionClt[1], Regis-
terSessionClt[1]

Caller[(1,2),cs],
Callee[(1,2),cs], RegRe-
questor[3,c]

Proxy ProxyCalling-
SessionSvr[*], Regis-
terSessionSvr[*]

CallHandler[1,s], CallFor-
warder[1,c], RegAcceptor[2,s]

3rd Party Call
Server

CallingSessionClt[*] Caller[1,cs]

Presence
Server

PresencePublish-
SessionSrv[*],
PresenceSubscribe-
SessionSrv[*]

PresencePublis-
Requestor[1,cs], Pres-
enceNotifier[2,c],
PresenceSubscription-
Recorder[2,s]

to SessionPart and Role. Second, the encapsulation of be-
haviour and state into multiple SessionPart and Role compo-
nents with delimited scope contributes to increase the mod-
ularity of actors, making the maintenance and evolution of
SIP entities easier. Third, automatic selection of Session-
Parts and Roles as well as automatic messages routing to
roles allow to reduce the coding effort since number of con-
trols and extra-state to ensure execution of the appropri-
ate behaviour is minimized. Finally, our approach gives the
ability to capture some recurrent behaviours into reusable
components (see section 5.3).

5.2 Adaptation case studies
In addition to experiment CIAO for the development of

SIP entities, we also tested the capacities offered by our im-
plementation over OSGI for adapting SIP applications after
their deployment, including at runtime. In our case, we
tested the following adaptations using scenarios applied to
the developed SIP entities:

– Role addition to SessionPart : This was tested by ex-
tending SipPhone Actor with a new functionality to ex-
change instant text message during a call. To get this ex-
tension, we added a MessageHandler client/server role to
its CallingSessionPartClt so that MESSAGE requests and their
responses can be exchanged during the session.

– Role replacement in SessionPart : This was tested by
modifying the SipPhone so that it can handle redirected calls
in addition to direct calls. For that purpose, we replaced
the initial Caller role of CallingSessionPartClt with a richer
Caller role.

– Addition of SessionPart to Actor : This was tested by
adding the functionality of presence publishing and subscrib-
ing to ProxyServer Actor in order to get enhanced proxy.
For this adaptation, we simply added the two SessionParts
defined for the presence server (PresencePublishSessionSrv
and PresenceSubscribeSessionSrv) to the deployed proxy.
This required to change the target Actor in the descriptor
of these components.

– Replacement of SessionPart to Actor : This was tested
by changing the basic registration functionality of SipPhone
and Proxy actors to secured registration with authentica-
tion. To apply these changes, we replaced each registering
SessionPart contained in these entities with new ones encap-
sulating roles capable of handling flow with authentication
SIP messages.

All the previous adaptations have been achieved by pack-
aging required components (CIAO components and the re-
lated Creator components) in OSGI bundles with the ap-
propriate descriptors and by deploying the bundles in an
OSGI platform hosting the application to adapt. Thanks to

the use of Declarative Services, CIAO components currently
instantiated in the application are automatically notified of
the installation of Creator components and can link to them.
However, in case of replacement, such components must not
be used immediately to create instance as they may be run-
ning sessions relying on replaced components. In this work,
the replacement takes place when all related sessions are
terminated. This strategy is intended to ensure a proper
state and behaviour for these sessions until they finish. In
particular, we exploit the states from the life-cycle of com-
ponent (see section 3.2) to determine the correct moment
of replacement. After replacement, bundles containing re-
placed components can be removed from the platform.

During these adaptation experiments, we meet some lim-
itations related to the coordination of components. Indeed,
when adding or replacing a subcomponent, it may be neces-
sary to replace the composite if the adaptation also impacts
its coordination behaviour. Currently, there is no way to
adapt or extend the coordination behaviour of a composite
without changing the composite itself. This limitation will
be addressed in future works.

5.3 Towards a set of reusable components
During the development of targeted applications, we were

able to identify and define a first set of reusable Role and
SessionPart in the area of calling, location and presence
management. We can cite Caller, Callee, RegAcceptor as
examples of roles that we were able to reuse in more than
one application. PresencePublishRequest, PresenceNotifier
and PresenceSubscriptionRecorder roles are not specifically
tied to the Presence server application and therefore have
the potential to be reused in other presence-enabled applica-
tions. SessionParts are also reusable. For example, redirect
servers can easily reuse the SessionPart for registering in
Proxy (RegisterSessionSrv) since they need the same func-
tionality. This set of components is a first step and as the
number and types of applications developed with our ap-
proach will grow, we expect that more reusable Roles and
SessionParts will be discovered and that finally a rich base
of telephony-related components will be available. The ex-
istence of such base should improve significantly the quality
of telephony applications but also accelerate their develop-
ment. It is one of our perspective to construct such a base.

6. RELATED WORKS
Over the years, several approaches for simplifying the de-

velopment of SIP applications have been proposed. Most of
these approaches are not component-based and can be sub-
divided in two main categories which are : 1) domain-specific
language (DSL) like LESS[13] or SPL[8] to program specific
kind of SIP entities by means of high-level concepts hiding
the intricacies of SIP; 2) generic APIs or frameworks like
JAIN-SIP [6] or PJSIP [9] which enables the programming
of unrestricted SIP applications but have limited support for
breaking the complexity of involved behaviours. Compared
to these approaches, CIAO raises the level of abstraction in
a direction similar to DSL but without sacrificing the gener-
ality. In addition, CIAO allows to increase the modularity
of SIP entities making their maintenance and their evolution
easier than with API or frameworks

Besides the previous approaches, we also found a few
component-based approaches for developing SIP-based ap-
plications. Compared to our work, all these approaches only

focus on server-side component while CIAO offers a com-
ponent model for developing both client and server enti-
ties. Another important difference with CIAO is that these
approaches do not correlate components with the multiple
sessions to manage but with features included in the ap-
plication instead. This difference has some consequences
on how components are organized and managed at runtime
by respective approaches. Lastly, none of these approaches
supports adaptation at the level of components like in our
implementation of CIAO above OSGI. Hereafter, we present
these approaches and discuss more specific differences with
CIAO.

SIP Servlet [7] is a JAIN7 specification of component and
container for building SIP convergent applications similar to
HTTP Servlet. SIP Applications are essentially composed of
SIP Servlets which are Java components performing answer-
ing incoming request but also proxying them or creating new
ones. Applications are hosted by a container which handles
low-level functionalities and provides a set of high-level ser-
vices to managed servlets. Compared to CIAO, SIP Servlet
is not a hierarchical and dynamic component model. Its
components are monolithic and are only instantiated once
during the application life-cycle. Interaction between com-
ponents for routing and handling messages from one or sev-
eral sessions is possible but it must be done explicitly and is
more restricted than in CIAO.

SLEE [5] is another JAIN specification for developing com-
munication services based on SIP and others protocols oc-
curring in the area of telephony. This specification defines
both a model of high-level component for designing these
services and a standardized environment for hosting and
executing them. The atomic element defined by SLEE is
the Service Building Block, a software component written
in Java that send and receive events and perform compu-
tation on the receipts of subscribed event and its current
state. A service is typically composed of a tree of SBBs.
The SLEE environment instantiates such SBB tree when rel-
evant events from the network are triggered and delegates
the events to interested SBB instances. As we can observe,
SLEE is also a hierarchical and dynamic component model
like CIAO. However, the hierarchy of instantiated compo-
nents is dedicated to a single session while several sessions
are dynamically reflected in a CIAO hierarchy. As a result,
interactions between sessions are more difficult to manage
with the SLEE approach.

ECharts for SIP Servlet [11] is a state-based language that
provides component-like entities (called Machines) trans-
lated into SIP Servlets. Such entities encapsulate state and
logic for handling SIP signaling and have connectable ports
to interact with SIP and non-SIP environments. Applica-
tions are specified by a top-level Machine that can contain
nested machines. Machines are instantiated in response to
initial request and the instances interact for handling sub-
sequent messages. Compared to other models, ECharts is
very close to SLEE in the sense that it instantiates a com-
plete hierarchy of components for one session and therefore
can be compared similarly with CIAO.

More generally, outside the previous works, the use of
components for developing telecommunications applications
have not been explored a lot. In this area, we may cite
the work on DFC [3] which has inspired the previous SIP-

7JAIN is an industrial initiative to standardize the develop-
ment of telecommunication systems in Java.

based component approaches. The work described in [1] also
adopts components but specifically targets the development
of voice-based applications accessible to web browsers.

7. CONCLUSION
To tackle some issues arising from the design of advanced

telephony applications based on SIP, we have proposed an
component-based approach that enables involved entities to
be constructed as actors playing roles in multiple sessions.
Proposed approach have been experimented to develop var-
ious SIP entities with an increase in modularity and adapt-
ability relatively to sessions.

In future works, we plan to optimize the instantiation pro-
cess by recycling component instances instead of deleting
them when a session is terminated. We also plan to identify
recurrent coordination patterns between components (such
as pipe-and-filter, delegation, forking patterns) and provide
these patterns as reusable behaviour for components. Fa-
cilitating adaptation of components regarding coordination
is also a perspective of this work. A last perspective is to
study the typing rules underlying our components, particu-
larly those relative to SIP Ports, in order to enable rigorous
checking of components assembly.

8. REFERENCES
[1] R. Akolkar and al. Reusable dialog component

framework for rapid voice application development. In
Proceedings of CBSE’05, volume 3489 of LNCS, pages
306–321. Springer, 2005.

[2] A.Meddahi and G. Vanwormhoudt. Telephonie SIP :
Concepts, usages et programmation en Java.
Hermès-Lavoisier, 2012.

[3] G. Bond and al. An open architecture for
next-generation telecommunication services. ACM
Transactions on Internet Technologies, 4(1):83–123,
2004.

[4] G. Bond and al. Experience with component-based
development of a telecommunication service. In
Proceedings of CBSE’05, volume 3489 of LNCS, pages
298–305. Springer, 2005.

[5] JCP. JSR 22: JAIN SLEE API Specification. 2004.

[6] JCP. JSR 32: JAIN SIP API Specification. 2006.

[7] JCP. JSR 289: SIP Servlet 1.1 Specification. 2008.

[8] N. Palix, C. Consel, L. Reveillere, and J. Lawall. A
stepwise approach to developing languages for SIP
telephony service creation. In Proceedings of
IPTComm’07, 2007.

[9] B. Prijono. PJSIP - Open Source SIP Stack,
http://www.pjsip.org/. 2011.

[10] The OSGi Alliance. Osgi service platform core
specification, release 4.3. 2011.

[11] T.Smith and G. W. Bond. ECharts for SIP Servlets: a
state-machine programming environment for VoIP
applications. In Proceedings of IPTComm’07, 2007.

[12] G. Vanwormhoudt and A. Flissi. Session-based role
programming for the design of advanced telephony
applications. In Proceedings of DAIS’11, volume 6723
of LNCS, pages 77–91. Springer, 2011.

[13] X. Wu and H. Schulzrinne. Handling feature
interactions in the Language for End System Services.
In Feature Interactions in Telecommunications and
Software Systems VIII, 2005.

