Aymen Boudguiga
email: aymen.boudguiga@it-sudparis.eu

Maryline Laurent
email: maryline.laurent@it-sudparis.eu

An Authentication Scheme for IEEE 802.11s Mesh Networks Relying on Sakai-Kasahara ID-Based Cryptographic Algorithms

Nowadays authentication in Wireless Mesh Networks (WMN) refers to the 802.1X authentication methods or a Preshared key authentication, and makes use of certificates or shared secrets. In wireless environments, the management of certificates is a cumbersome task as certificates require deploying a Public Key Infrastructure (PKI) and Certification Authorities (CA). They also require defining a certificate management policy to control the generation, transmission and revocation of certificates. During the last decade, ID-Based Cryptography (IBC) appeared as a good alternative to PKI. IBC proposes to derive the public key from the node's identity directly thanks to the use of a Private Key Generator (PKG). In this article, we present an authentication method relying on an ID-Based signature and encryption schemes that use the Sakai-Kasahara key construction. The resulted authentication scheme is suitable to IEEE 802.11s mesh networks and resistant to the key escrow attack.

I. Introduction

Nowadays authentication in Wireless Mesh Networks (WMN) refers to the 802.1X authentication methods or a Preshared key authentication, and makes use of certificates or shared secrets. For certificate management, there is a need to deploy a PKI for defining CAs responsible for the certificate creation, revocation and transmission. Revocation can be done through Certificate Revocation Lists (CRL) periodically issued by the CA and updated with newly revoked certificates. CRLs have to remain available on demand to the network stations (STAs) for checking validity of the certificates before use. The management of certificates and CRL is a cumbersome task, especially for wireless networks, as it is bandwidth and memory consuming. During the last decade, researcher interest in ID-Based Cryptography (IBC) increased because they represent a good alternative to PKI. IBC was introduced by A. Shamir [START_REF] Shamir | Identity-based cryptosystems and signature schemes[END_REF] to provide entities with public/private key pairs with no need for certificates, Certification Authorities (CA) and PKI. Shamir assumes that each entity uses its identifier as its public key. In addition, he assigned the private key generation function to a special entity which is called Private Key Generator (PKG). That is, before accessing the network, every entity has to contact the PKG to get back a smart card containing its private key. This private key is computed so it is bound to the public key of the entity. Then, IBC usage evolved thanks to the use of the Elliptic Curve Cryptography (ECC) [START_REF] Blake | Advances in Elliptic Curve Cryptography[END_REF]. As a consequence, new ID-Based signature schemes emerged and they differ from Shamir's method in that PKG does not rely on smart cards to store the private key and the ciphering information. Note that ID-Based cryptography requires lightweight implementations on clients. Compared to PKI certificate management, there is no need for storing certificates, and the key revocation operation is much simpler. Key revocation in ID-Based cryptography is bound to a validity period which is defined by the PKG. Interested readers might refer to the article [START_REF] Paterson | A comparison between traditional public key infrastructures and identity-based cryptography[END_REF] for a good comparison between PKI and ID-Based cryptography. The main problem of ID-Based cryptography lies on PKG which fully generates the private key of every entity, and as such, is given the knowledge to perform a key escrow attack. With the usual strong assumption that PKG is a trustworthy entity like in IEEE 802.11s mesh network standards [START_REF]Part 11: Wireless LAN MAC and Physical layer specifications. Amendment 10: Mesh networking, IEEE Working Draft Proposed Standard[END_REF], this attack has never been considered seriously. Nonetheless the PKG can easily impersonate as the legitimate station (STA) or decrypt its ciphered traffic, and as such, it is worth proposing key escrow resistant solutions. In this article, we propose to use ID-Based Signature (IBS) and Encryption (IBE) schemes with the Sakai-Kasahara method for ID-Based key construction [START_REF] Chen | Efficient idkem based on the sakai-kasahara key construction[END_REF], as it permits to get very fast IBS and IBE processing. In addition, we propose to use the Mesh Key Distributors (MKDs) defined in [START_REF]Part 11: Wireless LAN MAC and Physical layer specifications. Amendment 10: Mesh networking, IEEE Working Draft Proposed Standard[END_REF] as PKGs. The main idea of our authentication scheme is to make every station authenticate to an Authentication Server (AS) which delegates the station key generation to MKDs. That is, AS is only used for STA authentication while MKDs control the STA key derivation. Consequently, the risks of a Denial of Service (DoS) attack against AS are reduced because AS memory consumption during key generation is removed. We also propose to make MKD generate a partial private key for each authenticating station, so it is able to compute its own private key. In the following, we show how this partial private key generation avoids the key escrow threat on the PKG (i.e. MKD).

The article is organised as follows. After introducing the ID-Based cryptography and the IEEE 802.11s mesh architecture, in section III, we present our authentication scheme and an informal security analysis of it where the resistance to key escrow attack is explained. In addition, we explain the motivation that made us choose an IBS and IBE relying on Sakai-Kasahara key construction for our authentication scheme.

II. ID-Based Cryptography

When a station needs a private key, it provides PKG with the identity intended to be used for its private key computation. The PKG then derives the node's private key using some parameters which must be defined with respect to the Bilinear Diffie-Hellman problem [START_REF] Baek | A survey of identity-based cryptography[END_REF]. For generating these parameters, PKG runs a Probabilistic Polynomial Time (PPT) algorithm which takes as input a security parameter and outputs the groups G 1 , G 2 and G T and the pairing function from G 1 × G 2 in G T . G 1 and G 2 are additive groups of prime order and G T is a multiplicative group of the same order . Note that the order is defined with respect to such that > 2 k . Generally, G 1 and G 2 are subgroups of the group of points of an Elliptic Curve (EC) over a finite field and G T is a subgroup of a multiplicative group of a related finite field. The pairing function has to be bilinear, non degenerate and efficiently computable. The non degeneracy property means that for all points ∈ G 1 , (, 1 G2) = 1 G T . In addition, for all points ∈ G 2 , (1 G1 ,) = 1 G T . If we consider a generator of G 1 and a generator of G 2 , the value (,) = is equal to the generator of G T . The generator point is used to compute another point pub . Practically this kind of bilinear mapping is derived from the Weil or Tate pairing (or any efficient pairing) [START_REF] Boneh | Identity-based encryption from the weil pairing[END_REF]. In the following sections, we consider only symmetric pairings i.e.

G 1 = G 2 .
In addition to the definition of groups, some hash functions need to be defined in accordance to the IBE or IBS schemes that are going to be used. For example, a hash function that verifies : ¶0, 1♢ * ⊃ G 1 is defined in order to transform the node's identity into an EC point. Generally, the public key of a station is computed as a hash of one of its identities and it is either a point of an elliptic curve or a positive integer. The list containing the groups G 1 and G 2 , the bilinear mapping , the points and pub and the hash functions form the public elements. These public elements are distributed by PKG to the network users because they are needed during the public key derivation and the cryptographic operations.

The key derivation operation starts when PKG receives the of the node that is requesting a private key (Figure 1). First, PKG computes the user's public key as ID = (). Then, PKG generates the corresponding private key using a local secret value ∈ Z * q . Note that the private key is computed as: ID = (, ID). In the most common cases, ID = ≤ ID where ID ∈ G 1 . The secret value is also used for pub derivation from : pub = ≤ . As such, the public elements are ¶G 1 , G 2 , , , , , pub , 1 , . . . , k ♢. However, Sakai and Kasahara defined a new construction method that permits to define very efficient IBS and IBE in terms of computation time. The Sakai-Kasahara key construction scheme proposes to compute the private key as ID = 1 P ub ID +s where is PKG's secret. In the following, we present Barreto et al. signature [START_REF] Barreto | Efficient and provably-secure identity-based signatures and signcryption from bilinear maps[END_REF] and Chen et al. encryption [START_REF] Chen | Efficient idkem based on the sakai-kasahara key construction[END_REF] which uses this key construction scheme. It is clear from the aforementioned key derivation schemes that PKG knows every private key it generates itself, and as such it is able to impersonate as a private key owner by illegally generating signature or deciphering encrypted traffic. Generally to mitigate the key escrow attack, a strong assumption is made necessary that PKG is a trustworthy entity. However, in this article we propose a new method that is resistant to the key escrow attack with no need for the previous assumption. Our idea is to make PKG generate a partial private key for STA which is then able to generate its own private key. As such PKG is not able to recover the STA private key. Our solution does not only remove the key escrow attack, but also it does not introduce many changes in the used signature or encryption scheme. For more details about our authentication scheme, please refer to section III.

A. Barreto et al. Signature Scheme

Barreto et al. presented their ID-Based signature scheme (BLMQ) in 2005 [START_REF] Barreto | Efficient and provably-secure identity-based signatures and signcryption from bilinear maps[END_REF]. BLMQ basically uses an asymmetric pairing function. However, we present it considering a symmetric pairing function. BLMQ signature scheme defines two hash functions 1 and 2 such that:

1 : ¶0, 1♢ * ⊃ Z * q and 2 : ¶0, 1♢ * × G T ⊃ Z * q . So BLMQ public elements are ¶ 1 , G T , , , , , pub , 1 , 2 ♢.
A user public key is computed as ID = 1 () and its corresponding private key is generated by PKG as ID = 1 P ub ID +s . In order to sign a message , the signer chooses a random number ∈ Z * q and executes the following steps:

1) = k 2) ℎ = 2 (,) 3) = (+ ℎ) ID
The signature is formed by the pair (, ℎ) ∈ 1 × Z * q . Then, the signature verifier has only to check the equality between ℎ and 2 (, (, 1 () + pub) ⊗h).

B. Chen et al. Encryption Scheme

Chen et al. presented their ID-Based encryption scheme in [START_REF] Chen | Efficient idkem based on the sakai-kasahara key construction[END_REF]. They define two hash functions 1 and 2 such that:

1 : ¶0, 1♢ * ⊃ Z * q and 2 : G T ⊃ ¶0, 1♢ l where is the size in bits of the message which is going to be ciphered. A user public key is computed as ID = 1 () and its corresponding private key is generated by PKG as ID =

1 P ub ID +s . In order to encrypt , the ciphering station chooses a random number ∈ Z * q and executes the following steps:

1

) = ≤ (pub + ID ≤) 2) = 2 (k) 3) = ⊕ The ciphered message is the pair (,) ∈ 1 × ¶0, 1♢
l . The recipient of the previous message (,) computes first = 2 ((, ID)). Then, it recovers the message as: = ⊕ .

III. IEEE 802.11s Mesh Network Architecture

The IEEE 802.11s mesh network architecture is based on the IEEE 802.11 architecture which is formed by Stations (STAs), Access Points (APs) and a Distribution System (DS) [START_REF]Part 11: Wireless LAN MAC and Physical layer specifications, IEEE Standard, Rev. Revision of IEEE Std[END_REF]. In 802.11, every AP offers connectivity to a number of STAs and forms a Basic Service Set (BSS). The DS serves to interconnect different BSSs through a wired network. The IEEE 802.11s standard introduces modifications to the 802.11 architecture. First, the wired DS is replaced by a backbone composed of a set of wireless Mesh Points (MPs) (called also Mesh Routers or Mesh STA -MSTA). These wireless MPs provide multi-hop paths and peer to peer communications between the Mesh APs (MAPs). A MAP has the same capability as a traditional AP combined with a mesh router function. Mesh points which offer connectivity to external networks (either 802 LANs or layer 3 networks) are called Mesh Portals (MPP) or Gateways. All these components (MPs, MAPs and MPPs) form the Mesh BSS (MBSS). The 802.11s architecture defines new functions for some mesh STAs in order to provide security services such as station authentication and key derivation. The first function is the Mesh Authenticator (MA) which acts as a passthrough server for the supplicant mesh STA by forwarding its authentication frames to the network Authentication Server (AS) [START_REF] Aboba | Extensible Authentication Protocol (EAP)[END_REF]. In addition, the standard defines the Mesh Key Distributor (MKD) as the entity that derives the keys needed for the 4-Way Handshake that occurs between MA and the supplicant mesh STA. MKDs serve to distribute the key derivation function that was used to be performed by AS (in IEEE 802.11 networks). Each MA must be connected to an MKD because the latter is going to provide the former with the key needed to secure the communication with the supplicant. When a mesh STA joins the network, it chooses a MA which acts as a pass-through server for its EAP message sent to AS. The supplicant STA authenticates itself to AS using a 802.1X authentication [START_REF]Port Based Network Access Control[END_REF]. It sends EAP frames to MA encapsulated using the EAPOL protocol defined in [START_REF]Port Based Network Access Control[END_REF]. The first EAP frame is the EAPOL-start frame and the upcoming frames represent responses to AS requests. MA uses the Mesh EAP Message Transport Protocol to transport the EAP frames to MKD which transfers them to AS [START_REF]Part 11: Wireless LAN MAC and Physical layer specifications. Amendment 10: Mesh networking, IEEE Working Draft Proposed Standard[END_REF]. The Mesh EAP Message Transport Protocol was defined to provide multi-hop EAP frame transport because EAP is a one-hop protocol. In fact, EAP frames are traditionally exchanged between the supplicant (e.g. STA) and the authenticator (e.g. an AP). Then, they are encapsulated over RADIUS or Diameter in order to be transferred to AS. The Mesh EAP Message Transport Protocol uses the mesh EAP encapsulation frame which is a multi-hop action frame. AS uses the reverse path to send EAP Requests to the supplicant. When the mesh STA authentication ends successfully, AS delegates the key derivation to MKD. MKD and the supplicant mesh STA create then the key hierarchy corresponding to the supplicant. The standard assumes that there is a security association between the different authentication entities: AS-MKD, MKD-MA. In addition, another security association is established between MA and the supplicant mesh STA once the supplicant successfully authenticates to AS. Figure 2 illustrates the different entities that are used during the 802.11s station authentication and key derivation operations. Moreover, these entities do serve our authentication scheme presented in section IV-A.

IV. ID-Based Authentication Scheme

In this section, we propose a new ID-Based authentication scheme which permits STA to authenticate itself to an AS. The authentication is based on the assumption that AS and the supplicant STA are initialized with a shared secret (i.e. a password). That is, AS and STA are using the ID-Based cryptography concepts in order to exchange this password and to derive the keys needed to secure the exchanged messages. When STA joins the network for the first time, it starts an authentication with AS. During this authentication, STA and AS verify alternatively their passwords. If the authentication is successful, AS orders MKD to generate STA private key as described in section IV-A. For subsequent authentications, STA uses a signature mechanism to authenticate itself to any peers. While adapting the ID-Based cryptography concepts to the 802.11s mesh architecture, we faced the problem of the key escrow attack that could be performed by MKD. In fact, MKD is able to deduce either AS private key or any STA private key because we use it as a PKG, and by definition PKG generates every STA private key. As such, MKD is able to impersonate as AS or STA. To counteract these possible impersonation attacks, we proposed a mechanism that uses a token. That is, MKD only generates a partial private key for STA while STA generates the other part of its private key using a secret that is bound to the information included in the token. In addition, we enhanced the public elements with a new EC point that is only used for AS signature verification. AS secretly computes this point AS and its corresponding private key. In fact, AS does not rely on MKD for its private key computation. Furthermore, AS is in charge of defining the public elemen ts and distributing them over the different MKDs. First, AS runs a Probabilistic Polynomial Time (PPT) algorithm as cited in section II. This algorithm generates the groups G 1 and G 2 and the bilinear mapping . AS then extends these elements with the hash functions and the two public EC points and pub in order to get the public elements which are necessary for the ID-Based cryptography usage. The point AS is computed such that AS = AS ≤ where AS ∈ Z * q is a secret only known by AS and it verifies AS ̸ = . As such, every STA is able to verify an AS signature which is computed using its AS . To do so, STA has only to replace P ub by AS in BLMQ signature. The interest of introducing AS is to avoid that MKD impersonates as AS. Of course, AS entrusts MKDs for STAs partial private key derivation. That is why, AS provides MKDs with the public elements and the secret used for pub computation. However, it does not provide the secret AS , nor it does not use the same secret to compute AS private key such that AS = ≤ AS . Otherwise, every MKD would be able to impersonate as AS and to recover STAs passwords during their authentications. Note that the public elements are defined according to the selected IBE and IBS schemes that are going to be used between the different STAs. In our case, we consider that we are using Chen et al. encryption and BLMQ signature during the protocol execution. Consequently, the public elements that AS has to generate are: ¶G 1 , G 2 , , , , , pub , AS , 1 , 2 , 3 ♢ where:

1 : ¶0, 1♢ * ⊃ G * 1 , 2 : ¶0, 1♢ * × G T ⊃ Z * q and 3 : G T ⊃ ¶0, 1♢ n .
MKD generates a partial private key using STA public key and the secret received from AS as key = 1 P ub ST A +s . When receiving this partial private key, STA has to combine it with a secret random to generate its full private key ST A = 1 r≤(P ub ST A +s) . This random value was previously sent with privacy to AS. In fact, STA sends (1 = ≤) and (2 = ≤ pub) to AS. STA then requires from AS to generate a token that contains 1 and 2 , the lifetime of the private key being computed and its identity.

A. Station Initial Authentication

The initial authentication occurs when STA joins the network for the first time or after being disconnected for a while. To perform an ID-Based authentication, STA must first get the public elements that are published by AS. Then STA authenticates itself to AS using a preshared secret. This secret may be a password, and is noted as pwd in our authentication scheme. When STA initially joins the network, it receives the Beacon frames from its one-hop neighbors. The Beacon frame contains the Mesh Security Capability information element [START_REF]Part 11: Wireless LAN MAC and Physical layer specifications. Amendment 10: Mesh networking, IEEE Working Draft Proposed Standard[END_REF]. This information element indicates whether the sender of the Beacon is an MA. In addition, it indicates the MKD domain to which this MA is connected. Based on the configuration information carried in the received Beacon, the newly arrived STA selects MA which is going to relay its authentication frames. After choosing its MA, STA starts the authentication scheme presented in Figure 3.

• Message 1: this message is sent to AS. It is referenced as the Start-authentication message. This first message like all the subsequent authentication messages transits through MA. The supplicant STA includes a nonce 1 and its identity (ST A) in this message. The nonce 1 is chosen randomly to prove the freshness of the message. It is used to prevent from replay attacks. The identity ST A represents the identity which is going to be used for STA public key derivation. In order to avoid a DoS attack on AS, we suppose that MA is only accepting a certain number of requests 0 coming from the same STA during a certain period of time. In addition, AS does not accept more than 1 authentication requests coming from the same MA. When AS receives this message 1, it looks for STA in its password database using the received identity ST A . AS uses this for generating message 2.

• Message 2: it is generated by AS as a response to message 1. It contains a new nonce 2 , the received nonce 1 , the current public elements and an AS signature. AS signature is computed over the string formed by the concatenation of 1 , 2 , the identities of AS, STA and MKD (AS , ST A and M KD), the public elements () and STA pwd. AS includes in purpose the identity of MKD, that transmitted the message 1 from STA, to make STA identify its future partial private key generator (namely this MKD). Meanwhile, the pwd is included only in the hash which is signed by AS . In our case BLMQ signature is used. So AS computes the pair (,

ℎ) = ((+ ℎ) AS , 2 (1 ♣♣ 2 ♣♣ AS ♣♣ ST A ♣♣ M KD ♣♣ ♣♣, k))
where ∈ Z * q . When the supplicant STA receives message 2, it verifies its freshness by checking the values of 1 and 2 . Then it uses the public elements to derive AS's public key. The public key derivation consists in hashing the identity of AS using 1 : AS = 1 (AS). STA concatenates its to 1 , 2 , AS , ST A , M KD and the public elements () before checking the validity of AS signature. In practice STA checks the equality between ℎ and

2 (1 ♣♣ 2 ♣♣ AS ♣♣ ST A ♣♣ M KD ♣♣ ♣♣,(, AS + AS) ⊗h).
If the verification is successful, STA authenticates AS and the public elements. Else, STA stops the authentication processing.

• Message 3: the supplicant STA chooses two random numbers 3 and . The random value 3 is sent to AS. It will be used during the key encoding by MKD. However, the random value is kept secret by STA because it will be used for STA private key computation with the partial key received from MKD. The supplicant STA then computes (1 = ≤) and (2 = ≤ pub) before generating message 3. Message 3 contains the nonces 3 and 2 , the points 1 and 2 , the and a validity period which represents STA proposed lifetime () for its upcoming private key. All these fields are ciphered using AS public key AS . As we use Chen et al. encryption, the message 3 contains the pair: (,) = (≤

(AS + AS ≤), (3 ♣♣ 2 ♣♣ AS ♣♣ ST A ♣♣ 1 ♣♣ 2 ♣♣♣♣)⊕ 3 (k))
where ∈ Z * q . When receiving this message, AS authenticates STA using the . In addition, it verifies that the points 1 and 2 are computed using the same random by verifying the equality: (, 2) = (1 , pub). This verification checks also that STA computed 1 and 2 with respect to the public elements received in message 2.

• Message 4: after successfully authenticating STA, AS sends a new nonce 4 , the points 1 and 2 , and STA identity ST A to MKD for partial private key generation. AS adds to the previous list of element to the received nonce 3 . These elements are sent encrypted using M KD . That is, AS sends the pair (,) = (≤

(pub + M KD ≤), (3 ♣♣ 4 ♣♣ ST A ♣♣ 1 ♣♣ 2) ⊕ 3 (k))
where ∈ Z * q . Upon receiving message 4 from AS, MKD stores 4 for the upcoming message (message 5). Note that the same sequence number is going to be used in message 5 to easily identify request and response messages between the supplicant STA and AS. In addition, MKD generates STA partial private key as key = 1 P ub ST A +s .

• Message 5: after generating STA partial private key, MKD encodes it as P riv = key + (3 ≤ pub).

Recovering key from the encoded private key is equivalent to solving the Elliptic Curve Discrete Logarithm Problem (ECDLP) [START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF]. The encoded partial key is then signed by MKD before being sent in message 5 to STA. Message 5 contains also a challenge and the same nonce as in message 4: 4. The challenge will be used to prove that STA recovery of its private key is successful. When receiving message 5, STA which knows 3 and pub recovers its partial private key, as follows:

key = key + (3 ≤ pub) ⊗ (3 ≤ pub).
Consequently, the supplicant STA becomes able to compute its full private key as ST A = ⊗1 ≤ key = 1 r≤(P ub ST A +s) .

• Message 6: at this point, STA signs of the challenge with its ST A using the modified BLMQ signature which is presented in section IV-B. This message contains in addition to the received random 4 a new random 5 . Upon receiving message 6, MKD verifies STA signature of the challenge . If the signature is valid, MKD deduces that the supplicant STA has successfully derived its private key. As a consequence, MKD requests from AS to generate STA's token in message 7.

• Message 8: it is sent by AS to complete the authentication and to deliver the token to STA. It is called the Authentication-success message. The token includes STA identity, AS identity, MKD identity, the points 1 and 2 , the lifetime of STA private key (L) and a timestamp :

(token= P riv AS ¶ AS ♣♣ M KD ♣♣ ST A ♣♣♣♣♢).
After getting its token, STA can start communications with its peers. It can use the modified BLMQ signature with its token to authenticate itself with any peer. The modified BLMQ signature and the modified Chen et al. encryption algorithm that have been adapted to the presence of the token as detailed in the section IV-B.

B. Signature Adaptation to STA Private Key Generation

After its authentication to AS, STA uses a signature mechanism along with a token to authenticate itself to its peer STAs. That is, we modified BLMQ signature so that it becomes tightly related to the token and especially to the value of 1 , 2 and the secret . As such, the signature sent by STA makes it possible for the peer STAs to verify that STA owns the private key bound to the points 1 and 2 given within the token. When STA wants to authenticate STA , sends a challenge to encrypted with B which is deduced from the identity of . Then, must respond with a message containing its signature of the challenge and a copy of its token. The signature validity depends on the values of 1B and 2B included in the token. In fact, the signature modification concerns the use of the secret value by the signer and the use of 1 and 2 by the verifier. So if the signature is valid, the verifier deduces that the signer knows the true value of the secret and it was successfully authenticated by AS. In the following we present the modifications that we introduced to BLMQ signature in order to include the use of STA secret element . First, STA generates its private key as ST A = 1 r≤(P ub ST A +s) . Then, it chooses a random ∈ Z * q and computes the signature as:

1) = k 2) ℎ = 2 (,) 3) = (+ ℎ) ST A
The signature is the pair (, ℎ) ∈ 1 × Z * q . Then, the signature verifier has only to check the equality between ℎ and 2 (, (, 1 () 1 + 2) ⊗h) where 1 and 2 are taken from signer's token. This signature verification holds because:

ℎ ′ = 2 (, (, 1 () 1 + 2) ⊗h) =⇒ ℎ ′ = 2 (, ((+ ℎ) ST A , 1 () ≤ ≤ + ≤ pub) ⊗h) =⇒ ℎ ′ = 2 (, (k+h
r≤(P ub ST A +s) , 1 ()≤≤ +≤≤) ⊗h) =⇒ ℎ ′ = 2 (, ((+ ℎ) ≤ ,) ⊗h) =⇒ ℎ ′ = 2 (, h+k ≤ ⊗h) =⇒ ℎ ′ = ℎ
We adapted also Chen et al. encryption to include the points In order to encrypt a message , the ciphering station chooses a random number ∈ Z * q and executes the following steps:

1

) = ≤ (2 + ID ≤ 1) = ≤ ≤ (+ ID) ≤ 2) = 2 (k) 3) = ⊕ The ciphered message is the pair (,) ∈ 1 × ¶0, 1♢
l . The recipient of the previous message (,) computes first = 2 ((, ID)). Then, it recovers the message as: = ⊕ . The decryption holds because:

k ′ = (, ID) =⇒ k ′ = (≤ ≤ (+ ID) ≤ , 1 r≤(P ub ST A +s)) =⇒ k ′ = (≤ ,) =⇒ k ′ = (,) k =⇒ k ′ = k
In reality, any ID-Based signature or encryption algorithm can be changed to take into consideration the presence of the token. In fact, these modification can be applied to any scheme that relies on a pairing function . We only have to add the secret during the signature generation or message decryption. In addition, we have to modify the signature verification algorithm in order to take into consideration the point ≤ (and if necessary the point ≤ pub). The point is that and ⊗1 disappear when multiplication is used in G T .

C. Reasons for Selecting Sakai-Kasahara Key Construction Scheme

To compare the performances of IBS or IBE schemes, a first analysis of the number of mathematical operations can be done. Likely to Barreto et al. [START_REF] Barreto | Efficient and provably-secure identity-based signatures and signcryption from bilinear maps[END_REF], the signature scheme performances can be compared according to the number of G T exponentiations, scalar point multiplications and pairing computation operations. Table I establishes such a comparison between Paterson signature [START_REF] Paterson | Id-based signatures from pairings on elliptic curves[END_REF], BLMQ signature and Hess signature [START_REF] Hess | Efficient identity based signature schemes based on pairings[END_REF]. In addition, it presents a comparison of the following encryption schemes: Boneh and Franklin (BF) [START_REF] Boneh | Identity-based encryption from the weil pairing[END_REF], Boneh and Boyen (BB) [START_REF] Boneh | Efficient selective-id secure identitybased encryption without random oracles[END_REF] and Chen et al [START_REF] Chen | Efficient idkem based on the sakai-kasahara key construction[END_REF]. According to Table I pairing computation. This gain in computation time results from using the Sakai-Kasahara key construction scheme in BLMQ signature and Chen et al. encryption. Meanwhile, the other aforementioned signature and encryption algorithms rely on a more classical key construction where the public key is computed as: ID = () while the private key is calculated as: ID = ≤ ID . That is, the public and private keys are two points of an elliptic curve. However, when Sakai-Kasahara key construction is used, the public key is a scalar. So, with BLMQ and Chen et al. encryption, we do not only avoid the hashing into a point to compute the public key, but also we reduce the number of pairing computations during the signature generation and verification (respectively encryption and decryption).

In cryptography, the security level of a symmetric encryption algorithm is defined as the number of operations needed to break the algorithm when a -bit key is used. For example, the number of elementary operations needed to break a block cipher encryption scheme is equal to 2 k [START_REF] Galbraith | Pairings for cryptographers[END_REF]. In asymmetric cryptography, the security level of an algorithm is defined with respect to the hardness of solving the Discrete Logarithm Problem (DLP) either in a multiplicative group (the case of RSA) or an additive group (the case of ECDSA). This concept of security level sets the length in bits of RSA keys and EC keys. For example, Table II presents the equivalence between the lengths of RSA and EC keys respectively to the security level , where corresponds to the security level of a -bit length symmetric key.

The security level of an ID-Based cryptographic scheme depends on the security level of the pairing function in use :

G 1 × G 2 ⊗⊃ G T .
However, the security level of is related to the hardness of solving the DLP in the groups G 1 , G 2 and G T , and as such is closely related to the groups being selected as some of them make the DLP easier. To understand how to define this security level in practice, investigation of the structures of G 1 , G 2 and G T is necessary [START_REF] Blake | Advances in Elliptic Curve Cryptography[END_REF]. Table III confirms the aforementioned theoretical results through testing. We used the PBC library to implement the previous signature and encryption schemes [START_REF] Lynn | On the implementation of pairing-based cryptosystems[END_REF] and compare them at the same security level. 1000 samples serve to evaluate the signature generation and verification times. All the tests were performed on an Intel(R) Core 2 Duo machine running at 800 MHz each.

D. Security Discussion

In this section, we present informally how the aforementioned authentication protocol removes some attacks and how it can be enhanced to limit other threats. We use an 'active saboteur' attacker model as defined by Dolev and Yao in [START_REF] Dolev | On the security of public key protocols[END_REF]. That is, an attacker might be a user of the network and can have access to all the traffic.

• Denial of service attack (DoS): To avoid that an attacker makes a DoS attack against AS by sending a big amount of Start-authentication messages, we decided to limit the number of accepted authentication requests to a threshold 0 by the MA and to a threshold 1 by the AS. As such, MA is only accepting 0 authentication requests coming from the same supplicant STA during a certain period of time, and AS is only accepting 1 authentication requests from the same MA. When the number of authentication requests exceeds 0 or 1 , MA or AS drops all the upcoming packets received from the supplicant STA or MA respectively. The use of 0 at MA removes DoS attacks but does not help against Distributed DoS attack (DDoS). An attacker controling many STAs can launch a DDoS attack against AS by flooding AS with many Start-authentication messages originating from different (zombie) STAs under control. AS flooding is precluded thanks to the second threshold 1 .

• Replay attack: For avoiding replay attacks, we make use of nonces (1 ,. . . and 6), and we assume that these random numbers are at least 128 bit length. As a consequence of which, the probability for getting the same random number for two consecutive authentication sessions is equal to 1/2 128 . Nonces enable introducing a strong ordering and association between messages as all the messages include their own nonce and the nonce of the previous message. As such, an attacker is able to impersonate STA or AS, however he will not be able to replay old messages unless nonces of an older authentication session match the ones of the current session. For example, an attacker impersonating STA, has to replay an old message 3. However, for the replay to be successful, the value 2 in message 3 must match the same value 2 included in message 2. The probability for getting the same value 2 is equal to 1/2 128 in case only one message 3 is known for replay by the attacker, but it increases in case the attacker knows more than one valid message 3. Using random numbers to counteract replay attacks assume that STA and AS store the list of nonces already used and check the nonce of each received message against this list. To get rid of the storage issue, nonces can be replaced with timestamps, but other issues like STAs synchronization during timestamps verification then arise.

• Private key recovery by an attacker: Concerning the private key recovery, an attacker needs first to recover the partial private key of STA. He may get the encoded private key of a supplicant but he has to find the secret nonce 3 in order to recover the partial private key of the supplicant. The problem of finding 3 is equivalent to the discrete logarithm problem over an elliptic curve group (ECDLP) [START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF]. In addition, the full private recovery requires from an attacker to guess from 1 or 2 which comes also to solve the ECDLP.

• Key escrow attack: For counteracting the key escrow problem, every STA participates to its private key generation with a secret value . This secret is included in the public token but after being multiplied by the points and pub , so neither AS nor MKD are able to compute the private key corresponding to (1 and 2). Note that AS can technically generate a fake token with a fake (′ 1 = ′ ≤) and (′ 2 = ′ ≤ pub) in order to impersonate as STA, however, this is in contradiction with the assumption that AS must be trustworthy.

V. Conclusion

In this paper, we present an ID-Based authentication scheme for a mesh network station STA to authenticate and initialize its key pair while being protected against the key escrow attack. To closely match the IEEE 802.11s mesh network needs, we adapted our authentication scheme to the IEEE 802.11s mesh architecture by assigning a specific role to the Mesh Key Distributor (MKD). In addition, we make use of the Sakai-Kasahara cryptographic schemes to achieve high performance as they are known as the fastest ID-Based cryptographic schemes at the moment.

Fig. 1 .

 1 Fig. 1. ID-Based key generation.

Fig. 2 .

 2 Fig. 2. IEEE 802.11s security components.

Fig. 3 .

 3 Fig. 3. STA initial authentication scheme.

TABLE I

 I IBS and IBE elementary operations.

	IBS or IBE scheme	G T Exp Point/scalar mul	Pairings
	Paterson signature	0	4	0
	Paterson verification	2	0	3
	Hess signature	1	2	1
	Hess verification	1	0	2
	BLMQ signature	1	1	0
	BLMQ verification	1	1	1
	BF encryption	1	1	1
	BF decryption	0	0	1
	BB encryption	1	3	0
	BB decryption	0	0	2
	Chen et al. encryption	1	1	0
	Chen et al. decryption	0	0	1

1 and 2 .

 , BLMQ signature and Chen et al. encryption are expected to be more efficient than the other signature and encryption schemes as they rely on only one

TABLE II

 II Equivalent key sizes for the same security level (in bits).

	k	RSA key length	ECC key length
	80	1024	160
	112	2048	224
	128	3072	256
	192	7680	384
	256	15360	512

TABLE III

 III Signature generation and verification times (in s).

	Security level	80	112	128
	Paterson	0.017316	0.059288	0.123116
	Hess	0.024889	0.091835	0.204757
	BLMQ	0.007050	0.023145	0.047907
	Signature verification time	
	Paterson	0.024135	0.106804	0.264832
	Hess	0.013232	0.060985	0.155714
	BLMQ	0.012653	0.051669	0.121929
		Encryption time	
	BF	0.013157	0.051919	0.122760
	BB	0.018031	0.062644	0.129770
	Chen et al.	0.007044	0.023128	0.047845
		Decryption time	
	BF	0.006937	0.029730	0.075844
	BB	0.013020	0.058707	0.149972
	Chen et al.	0.006959	0.030095	0.075357