
HAL Id: hal-00819740
https://hal.science/hal-00819740

Submitted on 2 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast recursive ensemble convolution of haar-like features
Daniel Wesierski, Maher Mkhinini, Patrick Horain, Anna Jezierska

To cite this version:
Daniel Wesierski, Maher Mkhinini, Patrick Horain, Anna Jezierska. Fast recursive ensemble convolu-
tion of haar-like features. CVPR ”12 : IEEE Conference on Computer Vision and Pattern Recognition,
Jun 2012, Providence, Rhode Island, United States. pp.3689-3696, �10.1109/CVPR.2012.6248115�.
�hal-00819740�

https://hal.science/hal-00819740
https://hal.archives-ouvertes.fr


Fast Recursive Ensemble Convolution of Haar-like Features

Daniel Wesierski, Maher Mkhinini, Patrick Horain

Département EPH, Telecom SudParis

{first.last}@it-sudparis.eu

Anna Jezierska

Lab. IGM, Université Paris-Est

anna.jezierska@univ-paris-est.fr

Abstract

Haar-like features are ubiquitous in computer vision, e.g.

for Viola and Jones face detection or local descriptors such

as Speeded-Up-Robust-Features. They are classically com-

puted in one pass over integral image by reading the val-

ues at the feature corners. Here we present a new, general,

parsing formalism for convolving them more efficiently. Our

method is fully automatic and applicable to an arbitrary set

of Haar-like features. The parser reduces the number of

memory accesses which are the main computational bottle-

neck during convolution on modern computer architectures.

It first splits the features into simpler kernels. Then it aligns

and reuses them where applicable forming an ensemble of

recursive convolution trees, which can be computed faster.

This is illustrated with experiments, which show a signifi-

cant speed-up over the classic approach.

1. Introduction

This paper addresses the problem of efficiently convolv-

ing an image with Haar-like features. The features have

become very popular in computer vision during the last

decade. They are reminiscent of Haar wavelets and can be

thought of as simple, coarse image templates, e.g. edges or

bars. When combined, they are able to capture efficiently

sparse local image structure, e.g. for face detection [15].

They can serve as smoothing filters and first- and second-

order image derivatives which can approximate other ker-

nels accurately [7, 3, 1]. Haar-like features play a very im-

portant role in high-level vision, e.g. for pedestrian detec-

tion [16] in spatio-temporal domain, for constructing local

image descriptors [1, 5], for human limb tracking [11], for

side face detection [8] capturing spatial relations between

patches, or in pattern matching [10, 13] for image represen-

tation in Haar wavelet basis.

The paper is organized as follows. First, previous work

is presented in Section 2. Then we formulate our problem

in Section 3. In Section 4 we describe an algorithm for

parsing Haar-like features into recursive trees of kernels to

reduce the number of memory accesses. We achieve this

by decomposing the features into smaller kernels and align-

ing them. An efficient implementation for computing the

trees is also proposed. Section 5 experimentally compares

the baseline classical approach of Viola and Jones [15] with

our approach showing time results on CPU. We conclude in

Section 6.

2. Background

In this paper, we adopt the following general definition

of Haar-like features. The kernels of Haar-like features are

matrices of coefficients obtained after double differentiating

piecewise flat patterns.

In 1984, Crow [4] introduced summed-area table (SAT)

to the computer graphics community as a generalized

method for mip-mapping. In [7], Heckbert used SAT for ef-

ficient convolution by repeatedly integrating differentiated

box filters in 1D and 2D domains. This was formulated in

mathematical terms as f ∗ k = f [n] ∗ k[−n], where f [n] and

k[−n] mean n-fold integration and n-fold differentiation of

image f and kernel k, respectively.

Unlike [7], where the kernels k were quantized,

Simard et al. [12] quantized images f forming boxlets.

They were then also differentiated to produce trains of im-

pulses along image axes. The coinciding impulses of neigh-

bouring boxlets often cancelled out leading to a reduced

representation of the image. Hence, it could be convolved

with an arbitrary kernel more rapidly. The algorithm was

formulated as f ∗ k = (f [−n] ∗ k[−m])[n+m].

We note this is a general, efficient scheme, which boosts

speed performance of convolution primarily by introduc-

ing a reduced representation f [−2] of the image f . In

their paper, the authors actually do not differentiate the ker-

nel k. This would require recursively integrating the re-

sponse four times, instead of two, as implied by f ∗ k =
(f [−2] ∗ k[−2])[2+2]. However, should this be of no concern

for any reason, the boxlets scheme could also be applied to

the kernel. If the kernel consisted of e.g. an ensemble of

Haar-like features, the scheme would create their second-

order derivatives k[−2], which we deal with in this paper.

Hence, our scheme takes boxlets one step further. Namely,

it transforms the boxletization k[−2] of the kernel k to an

1



ensemble of recursive convolution trees of simpler kernels

which eventually require less data to produce exactly the

same result as the original kernel k[−2]. Therefore, our trees

can be well applied together with the boxletization f [−2] of

the image f , keeping in mind that the final result would then

require recursive integration of the response four times.

Later, Viola and Jones [15] rephrased SAT to integral im-

age and showed how to compute several Haar-like features

from it by summing weighted boxes. The attractivity of the

integral image comes from the fact that the sum of pixels

under e.g. a rectangular area can be computed in constant

time at any scale and location by reading the values at four

corners of the rectangle. This approach is very simple and

thus has become very popular. For example, it has been

implemented in the OpenCV library in the framework for

rapid object detection [9].

Due to the overall simplicity of this approach, little work

has been done on efficient computation of Haar-like fea-

tures. Since all features are composed of boxes, some ap-

proaches consist in first computing boxes and combining

them to obtain more complex features [10, 14, 9]. In [10],

the authors concentrated on reducing the number of arith-

metic operations by introducing a strip sum data structure.

However, it needs to be emphasized that nowadays the com-

putation time is bounded primarily by memory accesses [6].

In view of this, we focus on reducing input/output data

transfer without regard to the number of required arith-

metic operations and we show that this strategy leads to a

faster algorithm. Previously, in [14] the authors also consid-

ered reducing the number of memory accesses for Haar-like

features, though with regard to GPU architecture. While

both these methods improve on the naive classic computa-

tion [15], they refer only to specific features and are embed-

ded into other algorithms, whereas we give theoretical ex-

planations behind practice and generalize to any Haar-like

features.

In this paper we propose a novel algorithm for convolv-

ing an image with any set and type of Haar-like features by

reducing memory accesses jointly for all features. This is

challenging when multiple arbitrary features are considered

and no assumption is made on their mutual positions. In

order to reduce memory accesses during convolution, our

idea is to decompose the set of features into smaller ker-

nels, thus forming multi-pass convolutions, and align the

kernels within and between passes. This scheme results

in an ensemble of recursive convolution trees which reuse

previously computed responses of smaller kernels, possibly

shared by some subset of features.

3. Problem formulation

In this Section we present our model for reducing inputs

and outputs of multiple features during pixel-wise convo-

lution. An input I is a memory read operation, whereas

an output O is a memory write operation. We first intro-

duce the parameters and degrees of freedom of the problem.

Then, we describe the actions which can be performed on

kernels in order to reduce the total sum of inputs and outputs

of the convolution.

3.1. Model

Let K = {ki}
N
i=1 be a set of N convolution kernels of

Haar-like features andW be a 2D scanning window with its

own coordinate system and origin in the upper left corner, as

we employ left-to-right topology on the memory layout. We

require all kernels ki ∈ K to be computed explicitly within

W . For brevity, we restrict ourselves to case rank(ki) = 1,

but extending it to kernels of higher rank is straightforward.

Kernel ki is a one- or two-dimensional vector or matrix,

respectively, parameterized by:

• input positions, indicated by non-zero coefficients;

• size, determined uniquely by the layout of non-zero co-

efficients;

• offset position xi ∈ N
2 from the origin of W , which

we write as ki(xi).

In the following, apart from rank(ki) = 1, we have no

assumptions concerning the cardinality of K, the number of

inputs of ki, its size nor position in W . We thus say that

K has arbitrary configuration. Consequently, we assign two

relation properties to K. A pair of kernels ki and kj , where

i, j ≤ N , is:

• equivalent if ki = αkj , where α ∈ R;

• n-coinciding if their n non-zero coefficients are at the

same positions in W ,

where n = 0, . . . ,min(η(ki), η(kj)) and η(ki) is an oper-

ator returning the number of non-zero coefficients of ker-

nel ki. For instance, window W can contain two equivalent

kernels ki(xi) and ki(xj), which are located at different po-

sitions in W , such that xi < xj . Also, none of their non-

zero coefficients may coincide. We then call such kernels

0-coinciding.

Let us now briefly review how to implement a multi-pass

convolution scheme, obtained after decomposing a single

kernel into P smaller kernels. A small kernel, which is as-

signed to the first pass, is convolved with the whole im-

age. Then, the second small kernel is convolved with the

response obtained after the convolution with the previous

kernel. The process is repeated recursively with the remain-

ing P − 2 smaller kernels to produce the final response,

which is equivalent to the convolution with the original ker-

nel. One can observe this P -pass convolution has in total P
outputs, whereas the single-pass convolution has 1 output.



The last output, which writes the final result into memory,

is unavoidable for both convolutions. Since we aim at com-

paring the efficiency of convolution schemes based on the

total number of memory accesses required to compute the

final result, the count of the final output is ignored in our

I/O analysis.

Within the context of memory accesses, which have the

cost of several orders of magnitude higher than arithmetic

operations on modern CPU architectures, a good strategy

for realizing the above multi-pass convolution is to turn it

into a buffered recursive single pass. That is, it becomes

the single pass convolution over the image, but a multi-pass

convolution over the buffer. Namely, in each iteration of

the convolution (i.e. at each pixel), a result obtained by one

kernel is stored in a temporary variable (ALU register) in

order to be used twice in the same iteration between two

consecutive passes: 1) it is taken as the last input of the next

kernel, and 2) it is output to the buffer so that it can be input

to the next kernel in subsequent iteration(s). Therefore, this

multi-pass convolution over the buffer reduces the number

of inputs of the multi-pass convolution over the image by

P − 1 because it combines the output of the kernel in one

pass with the input of the kernel in the next pass in the buffer

P −1 times. We note that accessing registers has negligible

cost.

We formalize the above discussion by introducing three

actions which can be performed on a kernel ki in order to

reduce total I/O count of K while keeping the final re-

sults unchanged, namely decomposition, permutation, and

alignment. Each action implies cost of cI inputs and cost

of cO outputs, where cI , cO ∈ Z. The total I/O cost is

cI/O = cI + cO. If cI/O < 0, then the actions reduce

the total number of inputs and/or outputs w.r.t. the initial

configuration of K.

Decomposition of kernel ki into Pi smaller kernels ki =
k1i ∗ . . . ∗ k

p
i . . . ∗ k

Pi

i generates a recursive, multi-pass con-

volution over the buffer, where p indicates the p-th pass (i.e.

k1i is convolved with the image as first). The input cost of

this action is cI =
∑Pi

p=1 η(k
p
i )− (Pi−1)−η(ki), whereas

the output cost is cO = Pi − 1. When Pi > 1, this action

creates 1-coinciding kernels for p = 1, Pi and 2-coinciding

kernels for the remaining passes.

Permutation of smaller kernels, e.g. k1i ∗ . . . ∗ k
Pi

i =

kPi

i ∗ . . .∗k
1
i , is performed to assign them to specific passes

thus changing their positions in W . It has costs cI = 0
and cO = 0. It can lead to reduction of inputs only when

combined with alignment with other kernels in the case of

multiple features. Yet, if i equivalent kernels (1 < i ≤ N ),

unfolded across multiple features after their particular de-

compositions, are permuted to the same pass and preceded

by equivalent kernels in previous passes, then a joint recur-

sion is continued leading to the output cost cO = 1 − i for

this pass.

Alignment of two kernels ki and kj is an action which

shifts ki rightwards (due to the left-to-right topology) until

it coincides with kj in at least one position. It is analyzed in

two possible cases.

1◦ Single feature. In this case, one can only align last

input of kernel kpi with the first input of kernel kp−1
i to al-

low recursion. Aligning a kernel kpi with kp−1
i reduces the

number of kpi inputs by 1. However, this implies that kpi is

detached from kp+1
i , what increases the number of inputs of

kp+1
i by 1. Therefore, this action does not introduce either

loss or gain in the number of inputs, and hence it has cost

cI = 0. The output cost is cO = 0 as it is not possible to re-

duce the number of outputs by aligning kpi with kp−1
i . There

are two special cases. Firstly, shifting k1i has cost cI = 1,

as it is not preceded by other kernel. Secondly, since we

need to know the value of the feature at specific, predefined

location in W , aligning kPi

i with already shifted kPi−1
i re-

quires to assign an output to kPi

i which will be read with

single input by additional delta impulse δ(xi), placed at the

original location of ki. Hence, if the last kernel is moved,

the I/O count increases as cI = 1 and cO = 1. Clearly,

shifting a kernel from any pass may reduce total I/O count

only in the case of multiple features.

2◦ Multiple features. This case is more involved for sev-

eral reasons. Again, we note that it is possible to align ker-

nels of different features only if they are in the same pass

and are preceded by equivalent kernels in previous passes

to yield recursion. Now, a kernel in a given pass can be ini-

tially n-coinciding, i.e. before being aligned with another

kernel located elsewhere in W . Therefore, if it is aligned

with another kernel becoming m-coinciding, the input cost

is cI = n−m. This implies that it is possible that aligning

kernels may not lead to an improvement, even for equiv-

alent kernels. The output cost for aligning kernels of dif-

ferent features is cO = 0. Moreover, even in the simple

case, where all kernels have 2 inputs, aligning them is an

NP-complete problem. We motivate our argument by con-

structing a simple example. Let 4 kernels with 2 inputs have

the following sizes: 1, 2, 4, 7. Clearly, there is only one

best alignment as 1 + 2 + 4 = 7, which would result in

total of 4 inputs. However, this generally requires to com-

pute all possible sums of integers to decide which subset

sum equals to another subset sum. Subset sum problem is

NP-complete. So, we try all possible alignments to decide

which one yields minimum number of inputs and outputs.

3.2. Example

As a simple example supporting our discussion, con-

sider two kernels of Haar-like features defined as k1(1, 0) =[+1 0 0 0 0 −1
−3 0 0 0 0 +3
+3 0 0 0 0 −3
−1 0 0 0 0 +1

]

and k2(0, 5) =
[
−1 0 0 +1 0 +1 0 0 −1
+2 0 0 −2 0 −2 0 0 +2
−1 0 0 +1 0 +1 0 0 −1

]

,

which are initially 0-coinciding in W 8×8, as depicted in

Fig. 1(a). In classical computation, the number of in-



puts corresponds to the number of non-zero coefficients

in the matrices, what here amounts to 20 inputs. After

decomposing the features into simpler kernels, we have

k1 = kx1 (1, 3) ∗ k
y
1(1, 1) ∗ k

y
2(1, 0) = [+1 0 0 0 0 −1 ] ∗

[+1 −2 +1 ]
T ∗ [+1 −1 ]

T
and k2 = kx1 (3, 7) ∗ k

x
2 (0, 7) ∗

ky1(0, 5) = [+1 0 0 0 0 −1 ] ∗ [−1 0 0 +1 ] ∗ [+1 −2 +1 ]
T
,

which amounts to 10 inputs and 4 outputs (Fig. 1(c)). Now,

we observe that the features share two equivalent, i.e. one

vertical ky1 , which is explicit (directly indicates side size of

two boxes in both features) and one horizontal kx1 , which is

implicit (does not directly indicate side size of any box(es)

in feature k2). By permutation, we assign kx1 to the first

pass, ky1 to the second pass, and the remaining kernels kx2
and ky2 to the third, last pass. Finally, we align the kernels

within passes. The kernel kx1 (1, 3) is shifted rightwards to

coincide fully with its equivalent kernel kx1 (3, 7) in the first

pass. The same is repeated for the next equivalent kernel

ky1(1, 1) in the second pass. Since the remaining kernels are

in the last pass and are not equivalent, it is not efficient to

align them as it would increase the current total I/O count.

Hence, the kernel ky2 remains at its original position. Con-

cluding, these three passes require 7 inputs and 2 outputs

to compute both features exactly (Fig. 1(d)). Theoretically

predicted improvement translates into 2.1-fold speed-up.

(a) (b)

(c) (d)

Figure 1. (a,b,c,d) illustrate the steps of decomposition, permu-

tation, and alignment. Each black square indicates non-zero co-

efficient. The blue arrows incoming to the squares denote inputs

from memory, whereas the red outcoming arrows denote outputs

to memory. (a) is an example configuration of two features (top

- k1, bottom - k2), (b) their decomposition from 2D into 1D us-

ing SVD, (c) their further 1D decomposition which discovers two

equivalent kernels, and (d) a recursive convolution tree of kernels

after their assignment to and alignment between and within con-

volution passes.

4. Proposed algorithm

In this Section, we first describe our algorithm. The input

of the algorithm is an arbitrary set of Haar-like features as-

signed to arbitrary positions within a scanning window W .

The output is another signal representation of the features

in the form of recursive collection of smaller kernels. The

algorithm acts like a parser. It splits a particular set of fea-

tures into smaller kernels, assigns them into passes, aligns

them within passes, and creates joint recursions for features

if they share equivalent kernels while counting at each step

the number of inputs and outputs. We call such a parsed

kernel representation an ensemble of recursive trees.

In the last part of this Section, we propose a simple yet

efficient buffering strategy for implementing the ensemble

by increasing the locality of memory reference during con-

volution.

4.1. Parsing ensembles of recursive trees

We propose an automatic, off-line formalism which cre-

ates recursive convolution trees of decomposed Haar-like

features. They require in total less inputs and outputs to

produce the same result as original configuration of the fea-

tures. First, we procedurally describe our method. The idea

is to create recursive multi-pass trees of kernels and align

them within each pass in such a way that the total sum of in-

puts and outputs is minimal. This problem is NP-complete.

However, since the number of features is typically not large,

it is practical to solve it with a brute-force search. This sug-

gests the following approach:

1. Decompose features into smaller kernels in all possible

ways such that the number of inputs is reduced.

2. Assign kernels of each feature to passes by permuting

them.

3. Align kernels of all features within and between subse-

quent passes.

4. Choose ensemble of recursive trees with minimal sum

of inputs and outputs.

We now describe each step of the procedure in detail.

4.1.1 Decomposing features into smaller kernels

Feature decomposition transforms feature kernel

ki ∈ Z
X×Y into a convolution product of vectors

aj,t, whose first element is equal to 1, last to j ∈ {−1, 1},
and the other (t − 2) elements are equal to 0, for

instance a−1,3 = [+1 0 −1 ]. We call vectors aj,t
as primitive kernels of size t (t ≥ 2, t ∈ Z). P -

decomposition of ki exists if there exist ajp,tp s.t. ki =
α
(
aj1,t1 ∗ . . . ∗ ajp,tp ∗ (ajp+1,tp+1

)T ∗ . . . ∗ (ajP ,tP )
T
)
,



where α ∈ {−1, 1}. The problem is then to find all existing

P -decompositions of ki s.t. P ≤ η(ki).
In the following it is assumed that ki is separable. Thus

the SVD ki = kxi ∗ k
y
i exists, where kxi ∈ Z

1×X and

kyi ∈ Z
Y×1. For simplicity, further presentation concerns

decomposition of a vector. We refer to kx,yi simply as k.

Let φ(k, l) be an operator returning set S , containing all

aj,t such that t ≤ l and ϕ(k, aj,t) = 1, where

ϕ(k1, k2) =

{

1 if ∃ k′ s.t. ψ(k1, k2) = k′

0 otherwise
(1)

and ψ denotes deconvolution operator i.e. ψ(k1, k2) =
k′ ⇔ k1 = k2 ∗ k

′. We denote the cardinality of S
with L. Note that the P -decomposition of vector k ex-

ists if max
p

(tp) + min
p

(tp) > 2η(k)
P , where {tp}

P
p=1 is a

size of p-th primitive kernel forming P -decomposition of

k. P -decomposition can yield multiple primitive kernels,

e.g. aj1,t1 = aj2,t2 . Thus we need function θ(k, aj,t) re-

turning max (m) s.t ϕ(k, (aj,t)
m) = 1, where (aj,t)

m =
aj,t ∗ . . . ∗ aj,t
︸ ︷︷ ︸

m

. Finally we introduce function:

ξ(S,M) = (aj1,t1)
m1 ∗ . . . ∗ (ajL,tL)

mL , (2)

where ajl,tl ∈ S andM = {ml}
L
l=1 s.t. ml = θ(k, ajl,tl).

We then propose to apply to k the procedure summarized

in Algorithm 1, returning RP s.t. the convolution product

of all P primitive kernels in RP gives αk. Using the in-

troduced notation we explain how to create signal sfull in

each iteration i of Algorithm 1. Firstly, we update S(i) with

φ(k(i−1), η(k(i−1))− p+ 1). Then we set t = max(t′) s.t.

aj′,t′ ∈ S
(i), and we remove the elements of set S(i) whose

size does not satisfy the condition t > 2η(k(i−1))
p − t. Then

the setM(i) is updated using m
(i)
l = θ(ajl,k(i−1) , k(i−1)).

Finally, we calculate sfull as ξ(S(i),M(i)). One can ob-

serve that if ϕ(sfull, k
(i−1)) = 0, then P -decomposition

of k does not exist. This simple test limits our search

space and allows us to terminate before testing numerous

combinations of convolution products of primitive kernels

∈ S . If the test is successful, we find primitive kernels re-

quired to satisfy the condition ϕ(s′full, k
(i−1)). Since P -

decomposition does not exist without these primitive ker-

nels, we know that the resulting set RP includes them. If

there exists at least one primitive kernel without which the

condition is not satisfied, the k(i−1) is simplified and the

procedure is repeated iteratively. If not, we are forced to test

equality of k(i−1) with all possible combinations of convo-

lution product of p primitive kernels belonging to a set of el-

ements ajl,kl
∈ S(i) occurring exactly m

(i)
l ∈ M

(i) times.

In practice, usually the combinations are tested when L is

already small.

Algorithm 1 P -decomposition of k

Set k(0) to k, p to P ,RP ←− ∅
For i = 1 . . .





































Create signal sfull knowing k(i−1) and p
If

(
ϕ(sfull, k

(i−1)) = 0
)

⌊
P -decomposition of k does not exist; break

else






























m = θ(sfull, k
(i−1))

stemp ←− ψ(sfull, (k
(i−1))m−1),

L←−
∣
∣S(i)

∣
∣ and Q←− 1

For l = 1 . . . L,where ajl,tl ∈ S
(i)













s′full ←− ψ(stemp, ajl,tl)

If
(

ϕ(s′full, k
(i−1)) = 0

)








Add ajl,tl into resulting setRP

Decrease the number of searched

primitive kernels p←− p− 1
Q = Q ∗ ajl,tl

If (Q is equal 1 or p is equal 0 )
⌊

Combinatorial update of resulting setRP

P -decomposition finished successfully; break

else
⌊
k(i) = ψ(k(i−1), Q)

The procedure given in Algorithm 1 is repeated for P =
1, . . . , η(k) resulting with the set D of all possible RP , i.e.

all possible P -decompositions of k, which is used as input

to the procedure described in the next Subsection.

4.1.2 Ensembles of trees

This Subsection covers two steps of our parsing procedure,

namely assignment of kernels to passes combined with their

alignment within and between passes for N Haar-like fea-

tures. Let Dki
be the set of all possible P -decompositions

of ki. We augmentDki
by decompositions into kernels (not

necessarily primitive kernels) resulting from all unique con-

volutions of primitive kernels for each element in Dki
, s.t.

their number of inputs ≤ η(ki).

The problem now is to choose a single element from

each Dki
, where 1 ≤ i ≤ N , such that after their partic-

ular alignment the number of memory accesses is minimal,

thus creating the best ensemble of recursive trees of kernels.

We note it is not necessary to permute kernels in each ele-

ment of Dki
in all possible ways to enumerate all possible

combinations of alignments. This would be straightforward

but inefficient. It is possible to align kernels of some sub-

set of N features within given pass only if all their kernels

in the preceding passes are equivalent, so allowing a recur-

sion. We call this a proper assignment. Otherwise, their

alignment is not possible and the problem reduces to mul-

tiple cases of single features. Of course, all unique kernels



from all features can be aligned within the first pass of the

convolution, but the alignments in the next passes depend

on the above condition. The pseudo-code is given in Algo-

rithm 2.

Algorithm 2 N -features assignment and alignment

Define ensemble E1 ←− ∅ and label it open

Define set of ensembles SE ←− E1
Set merged trees

(
T 0
ki
←− Dki

)

1≤i≤N

Label each first kernel ∈ T 0
ki

with E1
For p = 1 . . .





































































For i = 1 . . . N

















For each tree T p−1
ki















For each branch of tree T p
ki

from leaf

up to kernel with any E-label in pass p







Set n to number of unique kernels in branch

Replicate branch (n− 1) times

Add new branches to T p−1
ki

Permute unique kernels of all branches to p
Merge all branches into single kernel in pass p

which have equivalent kernels in pass p
For each Ej ∈ SE labeled as open

















For each combination t of Ej-labeled kernels

of different features in pass p













Create all possible alignments of kernels

Set n to number of alignments

Replicate Ej (n− 1) times. Create set A with Ej
Add to each Ej ∈ A kernels in t

with particular alignment

Update current cost I/O for each Ej ∈ A
SE ←− SE ∪ A

If (Exist Ej ∈ SE not having proper assignment)

















For each Ej not having proper assignment















For kernels of Ej in pass p create all

combinations of branches from leaf to pass p
Set n to number of combinations

Label Ej as closed

Replicate Ej (n− 1) times. Create set A with Ej
Add a combination of branches to each Ej ∈ A
Compute total cost I/O for each Ej ∈ A
SE ←− SE ∪ A

If (Exist Ej ∈ SE having proper assignment)
⌊

For each Ej having proper assignment
⌊

Label children nodes of Ej kernels in pass p as Ej
else
⌊

break

4.1.3 Choosing the best ensemble

After creating all possible unique ensembles of recursive

trees Ej , the one is chosen from SE which yields minimal

sum of inputs and outputs. However, it is possible that there

will be multiple such ensembles. In this special case, we

first choose a configuration which has minimal total number

of inputs as they are more sparsely referenced than outputs

(see Section 4.2 for details). If there are still multiple equal

ensembles, we prefer ones with minimal number of inputs

in the first pass, then which are more local in this pass, and

finally which form buffer of smallest height. If there are any

ensembles left after these heuristics, we propose to choose

an arbitrary one. We emphasize that these detailed rules are

seldom necessary though.

4.2. Implementation: B­channel buffer

The parsed, best ensemble of recursive trees requires

multiple outputs, say B, at each iteration of the pixel-wise

convolution with the image. Its straightforward implemen-

tation would consist of individual circular buffers storing

individual outputs, which would be then reused as inputs in

subsequent iterations. Buffer sizes would differ from ker-

nel to kernel. For example, a buffer for a vertical kernel

would have the height of this kernel and width equal to the

image width. On the other hand, a buffer for a horizontal

kernel would only have a height of one row and width equal

to the width of the kernel. This buffer clearly would oc-

cupy less memory than the former. However, since each one

would reserve different memory block, such a buffering so-

lution would result in non-local memory reference and thus

be cache-unfriendly.

In view of this, we propose to reserve a single contigu-

ous memory block for a buffer which, at each iteration,

stores all B outputs of the ensemble of recursive trees in

one B-element contiguous data array, similarly to RGB im-

age data structure - hence the appellation B-channel buffer.

The inputs defined by kernels parsed into the first pass are

read from the image, while the inputs of kernels from the

remaining passes are read from the buffer. The input loca-

tions are specified by the kernels’ positions computed after

alignment. Additional predefined offset to particular chan-

nel is required for inputs in the buffer. Hence, the width of

the buffer equals the image width, while its height depends

on a particular alignment of kernels within passes. Indeed,

such a buffer occupies more memory than actually required

but, in the context of convolution, this is not prohibitive on

modern CPU architectures, which suffer from limited mem-

ory bandwidth (memory wall) and not from limited memory

space. Consequently, such a buffering approach increases

locality of memory reference, thus making it a cache-more-

friendly-strategy.

5. Results

In this Section, we present the performance of ensembles

of recursive trees of kernels parsed by our algorithm. We

illustrate their behavior on two examples having practical

importance in computer vision. The results are evaluated



in terms of time efficiency by comparing the proposed con-

volution method with the classical approach of Viola and

Jones [15]. We use an integral image of size 4096 × 4096
in all experiments, though all the results are repeatable for

other image sizes. The improvement between both methods

is predicted theoretically as:

Predicted Improvement =
Iclass + 1

Iprop +Oprop + 1
(3)

where Iclass refers to the total number of inputs of the clas-

sical method, and Iprop and Oprop refer to the total number

of inputs and outputs of the proposed method, counted per

pixel. Classical method requires only inputs to compute all

Haar-like features, whereas both methods require an addi-

tional output to store the final result. The performence tests

were run on 2 Ghz Pentium 4 processor which was con-

nected to 3.5 GB RAM unit through 32-bit data bus with

the support of 4 MB cache. The code was compiled with

VC++ compiler under Windows environment.

Example SURF. First example illustrates behavior of

our algorithm on Haar-like features approximating Hessian

of Gaussians in SURF [1]. They are specified by an offset

from the origin of the scanning window defined in image

coordinate system. Their kernels have the following non-

zero coefficients uing standard matrix notation:

1. k1(2, 0) ∈ Z
10×6, where: k1,1 = +1, k1,6 = −1,

k4,1 = −3, k4,6 = +3, k7,1 = +3, k7,6 = −3,

k10,1 = −1, k10,6 = +1;

2. k2(1, 1) ∈ Z
8×8, where: k1,1 = +1, k1,4 = −1,

k1,5 = −1, k1,8 = +1, k4,1 = −1, k4,4 = +1,

k4,5 = +1, k4,8 = −1, k5,1 = −1, k5,4 = +1,

k5,5 = +1, k5,8 = −1, k8,1 = +1, k8,4 = −1,

k8,5 = −1, k8,8 = +1;

3. k3(0, 2) ∈ Z
6×10, where: k1,1 = +1, k1,4 = −3,

k1,7 = +3, k1,10 = −1, k6,1 = −1, k6,4 = +3,

k6,7 = −3, k6,10 = +1.

The proposed approach parses the SURF features jointly,

producing recursive trees illustrated in Fig. 2. Their kernels

are listed in Table 1, where 0[n] denotes a zero vector of size

n. One can observe that the number of memory accesses is

reduced from 32 to 19, which results in the theoretical time

improvement of 1.65. The measured improvement is 1.63,

hence confirming the theory.

Example FACE. Similarly, the Haar-like features in the

1st stage of the face detection cascade [9] are defined as:

1. k1(1, 2) ∈ Z
5×19, where: k1,1 = −1, k1,7 = +3,

k1,13 = −3, k1,19 = +1, k5,1 = +1, k5,7 = −3,

k5,13 = +3, k5,19 = −1;

2. k2(1, 7) ∈ Z
10×16, where: k1,1 = −1, k1,16 = +1,

k4,1 = +3, k4,16 = −3, k7,1 = −3, k7,16 = +3,

k10,1 = +1, k10,16 = −1;

kx
1
(2, 9) [+1 0[4] −1 ]

ky
1
(2, 0) [+1 0[2] −3 0[2] +3 0[2] −1 ]T

kx
2
(2, 9) [+1 0[2] −1 ]

ky
2
(5, 5) [+1 0[2] −1 ]T

kx
3
(1, 5) [+1 0[3] −1 ]

ky
4
(1, 1) [+1 0[3] −1 ]T

ky
3
(6, 2) [+1 0[4] −1 ]T

kx
4
(0, 2) [+1 0[2] −2 0[2] +1 ]

Table 1. Kernels in recursive trees for SURF example.

Figure 2. SURF features parsed into ensemble E of recursive trees.

Tree T1 represents feature k1, while T2 represents features k2 and

k3. The nodes illustrate the decomposed kernels. The directed

edges indicate the order of kernels in multi-pass convolution. Each

branch of the trees (from root to leaf) corresponds to one feature.

For instance, feature k2 is parsed as: k2 = kx

2 ∗ ky

2 ∗ kx

3 ∗ ky

4 .

3. k3(3, 7) ∈ Z
5×15, where: k1,1 = −1, k1,15 = +1,

k3,1 = +2, k3,15 = −2, k5,1 = −1, k5,15 = +1,

which are parsed into recursive trees shown in Fig. 3, with

kernels given in Table 2. The resulting representation re-

ky
1
(1, 12) [+1 0[3] −1 ]T

kx
2
(1, 2) [−1 0[5] +3 0[5] −3 0[5] +1 ]

kx
1
(1, 16) [+1 0[14] −1 ]

ky
3
(1, 7) [−1 0[2] +3 0[2] −3 0[2] +1 ]T

ky
2
(1, 12) [−1 0[1] +2 0[1] −1 ]T

kx
3
(3, 7) [+1 0[13] −1 ]

Table 2. Kernels in recursive trees for FACE example.

duces the number of inputs and outputs from 22 to 16,

which translates into 1.35-fold speed-up. The measured

time improvement is 1.36.

The presented experiments are summarized in Table 3.

As expected, the measured time improvement is propor-

tional to the ratio between the sum of inputs of the classical

approach and the reduced sum of inputs and outputs of our

approach. The results clearly indicate that the ensembles

of recursive trees, parsed for the above examples using our

method, are computed more rapidly than with the classical



Figure 3. FACE features parsed into trees. Trees T1, T2, T3 repre-

sent features k1, k2, k3, respectively.

Example Approach I/O t[ms]
Improvement

Predicted Measured

SURF
Classical 32/0 663.70

1.65 1.63
Proposed 14/5 407.54

FACE
Classical 22/0 408.60

1.35 1.36
Proposed 13/3 300.47

Table 3. Comparison of classical and our approach in terms of

time efficiency for SURF and FACE examples.

approach. The time improvements differ between both ex-

amples as each one contains different configuration of Haar-

like features. In general, a particular speed-up depends on a

particular configuration of the features to be parsed.

6. Conclusions

In this paper, we have presented a strategy for speeding-

up convolution with an arbitrary configuration of Haar-like

features by parsing them jointly into an ensemble of recur-

sive trees of simpler kernels. No approximation of the final

result is made. Since the main computational bottleneck of

any convolution is memory access, we reduce the number

of inputs and outputs jointly for all features. Namely, apart

from decomposing the 2D kernels into a horizontal and ver-

tical vector, which is a standard SVD procedure, the parser

decomposes them further to unfold hidden simpler kernels.

This process is controlled under reducing/increasing I/O
count criterion in order not to decompose blindly, being nei-

ther efficient nor necessary. If the parser discovers cases in

which these kernels are shared across the features, it forms

a joint recursion tree for them and adds it to the set of other

trees as next potential solution. After all potential solutions

are formed, the one is chosen which yields minimum total

I/O count.

Since we reduce the number of memory accesses jointly

for all features inside the scanning window, features of sev-

eral multiple scales can be parsed jointly as well and con-

volved with an image in one single pass. This may prove ef-

ficient especially for such configurations which share equiv-

alent kernels across features and across scales.

Finally, we emphasize that the recursive trees are not

limited to convolutions with integral image representation.

This is well justified by integration-differentiation property

of convolution published by Heckbert in [7]. They can be

convolved also with a differentiated image representation,

which could be obtained using e.g. boxlets method devel-

oped by Simard et al. in [12]. The boxlets scheme would

create second-order derivative kernels of Haar-like features,

which we take as input to our parsing algorithm. Therefore,

our method takes boxlets one step further with respect to

multiple Haar-like kernels. Consequently, boxlets method

cannot replace our scheme, as it stops at the point where

our scheme starts. Whether our method can be applied effi-

ciently also to the boxletized image remains an open prob-

lem. We leave it as an interesting future work.

It is possible that future object detectors will require

thousands of templates to cope with high variability of

object categories [2, 17]. It is therefore desirable to provide

tools for computing a set of templates jointly in efficient

and rapid manner. We presented a parsing scheme which

achieves this goal.

Acknowledgments. This work was partly supported

by European FP7 project 216487 CompanionAble and by

ERDF project Juliette under CRIF convention 10012367/R.

References

[1] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. In

ECCV, pages 404–417, May 2006. 1, 7

[2] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human

pose annotations. In ICCV, 2009. 8

[3] P. Burt. Fast filter transform for image processing. Computer Graphics and

Image Processing, 16(1):20 – 51, 1981. 1

[4] F. C. Crow. Summed-area tables for texture mapping. SIGGRAPH Comput.

Graph., 18:207–212, Jan. 1984. 1

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.

In CVPR, pages 886–893, 2005. 1

[6] U. Drepper. What Every Programmer Should Know About Memory. 2007. 2

[7] P. S. Heckbert. Filtering by repeated integration. In SIGGRAPH, pages 315–

321, New York, NY, USA, 1986. ACM. 1, 8

[8] S. Li, L. Zhu, Z. Zhang, A. Blake, H. Zhang, and H. Shum. Statistical learning

of multi-view face detection. In ECCV, pages 67–81, 2002. 1

[9] R. Lienhart and J. Maydt. An extended set of Haar-like features for rapid object

detection. In ICIP, pages 900–903, 2002. 2, 7

[10] W. Ouyang, R. Zhang, and W. Cham. Fast pattern matching using orthogonal

haar transform. In CVPR, pages 3050–3057, Jun. 2010. 1, 2

[11] D. Ramanan, D. A. Forsyth, and A. Zisserman. Tracking people by learning

their appearance. IEEE Trans. Pattern Anal. Mach. Intell., 29:65–81, Jan. 2007.

1

[12] P. Simard, L. Bottou, P. Haffner, and Y. LeCun. Boxlets: A fast convolution

algorithm for signal processing and neural networks. In NIPS, pages 571–577,

1998. 1, 8

[13] F. Tang, R. Crabb, and H. Tao. Representing images using nonorthogonal Haar-

like bases. IEEE Trans. Pattern Anal. Mach. Intell., 29:2120–2134, Dec. 2007.

1

[14] T. Terriberry, L. French, and J. Helmsen. GPU accelerating speeded-up robust

features. In 3DPVT, pages 355–362, Atlanta, GA, USA, Jun. 2008. 2

[15] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple

features. In CVPR, pages 511–518, 2001. 1, 2, 7

[16] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion

and appearance. In ICCV, pages 734–741, Oct. 2003. 1

[17] Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures

of parts. In CVPR, pages 1385–1392, Jun. 2011. 8


