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We consider the strong stabilizability problem for delayed systems of neutral type. For simplicity the case of one delay in state is studied. We distinguish a special class of such systems for which we give a constructive solution, without using the derivative of the localized delayed state. Our results are based on an abstract theorem on the strong stabilizability of contractive systems in an Hilbert space. An illustrative example is also given.

Introduction

The problems of stability and stabilizability are of great importance in the theory of delayed systems [START_REF] Bellman | Differential-difference equations[END_REF][START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF][START_REF] Hale | Theory of functional differential equations[END_REF]. In this context note that the majority of works deals with the so-called exponential stability or stabilizability. In this case the conditions of stability (stabilizability) are well explored for both [START_REF] Bellman | Differential-difference equations[END_REF] The model and the statement of stabilizability problem

For simplicity we consider a control neutral type system with one delay in the state

ẋ(t) = A 0 x(t) + A 1 x(t -1) + A -1 ẋ(t -1) + Bu(t), (2) 
where x ∈ R n , u ∈ R r , A j , j = 0, 1, -1 are n×n-matrices, B is a n×r-matrix.

The stabilizability problem amounts on finding a linear feedback control law u = p(x(•)) such that the closed-loop system ẋ(t) = A 0 x(t) + A 1 x(t -1) + A -1 ẋ(t -1) + Bp(x(•))

becomes an asymptotic stable one. In order to formulate the problem more precisely let us consider an abstract functional model of the system [START_REF] Bellman | Differential-difference equations[END_REF]. Following Yamamoto and Ueshima [START_REF] Yamamoto | A new model for neutral delaydifferential systems[END_REF] (see also [START_REF] Gorecki | Analysis and synthesis of time delay systems[END_REF] and a more general system in [START_REF] Rabah | Generalized Riesz basis property in the analysis of neutral type systems[END_REF]) we put

x t (•) : θ → x(t + θ), θ ∈ [-1, 0] and y(t) = x(t) -A -1 x(t -1). Let Z = C n × L 2 [(-1, 0), C n ]. For z i = q i ϕ i (.)
∈ Z, i = 1, 2, the scalar product in Z is given by

z 1 , z 2 Z = q 1 , q 2 C n + 0 -1 ϕ 1 (θ), ϕ 2 (θ) C n dθ.
The corresponding norm is denoted by . Z . The indices will be omitted if it is not necessary. Introduce an operator A : D(A) → Z defined by

A q ϕ(•) = A 0 q + (A 1 + A 0 A -1 )ϕ(-1) ∂ ∂θ ϕ(•)
, where

D(A) = q ϕ(•) : q = ϕ(0) -A -1 ϕ(-1), ϕ(•) ∈ W (1) 2 [(-1, 0), C n ] .
With these notations the system (2) can be rewritten as d dt

y(t) x t (•) = A y(t) x t (•) + Bu(t), (3) 
where B = B 0 is a linear operator B : C n → Z. It is known [START_REF] Yamamoto | A new model for neutral delaydifferential systems[END_REF][START_REF] Yamamoto | Reachability of a class of infinite-dimensional linear systems: an external approach with applications to general neutral systems[END_REF] that A generates a C 0 -semigroup in Z and that its spectrum σ(A) is the set

σ(A) = σ = {λ : det(λI -A -1 λe -λ -A 0 -A 1 e -λ ) = 0}.
and consists of eigenvalues only. Denote further by the set of all nonzero eigenvalues of matrix A -1 . Then [START_REF] Bellman | Differential-difference equations[END_REF] for any µ ∈ the set σ includes a family of eigenvalues

µ = {λ µ k = log |µ| + i(arg µ + 2πk) + ō(1), k ∈ Z}, (4) 
where ō is meant as k → ±∞.

The substitution of a feedback control u = p(x(•)) into (2) amounts to transforming system (3) to the form d dt

y(t) x t (•) = A y(t) x t (•) , ( 5 
)
where A is a perturbation of the infinitesimal operator A by an operator of the form BP, where P : Z → C n . There are three different kinds of such a perturbation.

1. Perturbation with a bounded operator (Class 1). This corresponds to the case where we admit feedback controls

u = P(x(•)) = P (x(t) -A -1 x(t -1)) + 0 -1 P (θ)x(t + θ)dθ,
where P is a real (r × n)-matrix, P (θ), θ ∈ [-1, 0] is a real square-integrable (r × n)-matrix-function.

In this case BP is a bounded operator and so [START_REF] Kato | Perturbation theory for linear operators[END_REF] the perturbation operator A is infinitesimal and D( A) = D(A). Note, however, that possibilities of stabilization in this class of controls are rather restricted. 2. Perturbation with an operator bounded with respect to A (Class 2).

This corresponds to the choice

u = P(x(•)) = 0 -1 P (θ) ẋ(t + θ)dθ + 0 -1 P (θ)x(t + θ)dθ,
where P (θ), P (θ), θ ∈ [-1, 0] are real square-integrable (r×n)-matrix-function.

In this case one can easily check that the operator BP is a bounded with respect to A [START_REF] Kato | Perturbation theory for linear operators[END_REF] i.e., for some a, b > 0

BP q ϕ(•) ≤ a A q ϕ(•) + b q ϕ(•) .
This implies D( A) = D(A). At the same time, the infinitesimality of A must be proved separately (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]). One can observe, however, an important particular case for our further purpose, for which this infinitesimality is obvious. Let u = P(x(•)) = P 0 x(t) + P 1 x(t -1) + 0 -1 P (θ)x(t + θ)dθ, P 0 , P 1 are (r × n)-matrices and P (θ) is a square-integrable (r × n)-matrixfunction. Then the operator A can be represented as a perturbation of the infinitesimal operator A 1 :

A 1 q ϕ(•) = (A 0 + BP 0 )q + ((A 1 + BP 1 ) + (A 0 + BP 0 )A -1 )ϕ(-1) ∂ ∂θ ϕ(•) , (6) 
by a bounded operator. So it is also infinitesimal. Consider the possibilities of stabilization by feedback controls of class 2. It can be proved that the spectrum σ( A) = σ of the perturbed operator A is given by

σ = λ : det λI -A -1 λe -λ -A 0 -A 1 e -λ + Bλ Π + Bλ Π = 0, where Π = 0 -1 e -λθ P (θ) ẋ(t + θ)dθ, Π = 0 -1
e -λθ P (θ)x(t + θ)dθ and then it also includes the families µ of the form (4) for any µ ∈ . This means that the exponential stability of the closed-loop system (5) is possible only in the case when |µ| < 1 for all µ ∈ . On the other hand, it is clear that the system (5) is unstable if there exists at least one µ ∈ such that |µ| > 1. It remains one more case to be considered. Let us make the following assumption: (a1)

⊂ {w : |w| ≤ 1} and there exists µ ∈ : |µ| = 1. In this case system (5) cannot be exponentially stable but probably be strongly stable. That leads us to the following statement:

Problem of Strong Stabilizability (PSS) Let the matrix A -1 satisfy (a1). Find conditions on system (2) (or (3)) under which there exists a feedback control of class 2 such that the perturbed operator A in ( 5) is infinitesimal and all the solutions of this equation tend to 0 as t → +∞ in the norm of Z.

We consider PSS in the further sections. Now we mention one more way to formulate the stabilizability problem.

Perturbation with an operator unbounded with respect to A (Class 3).

It is shown [START_REF] Pandolfi | Stabilization of neutral functional differential equations[END_REF] that the possibilities of stabilization of system (2) are essentially wider if we admit feedback controls of the form

u = P(x(•)) = P -1 ẋ(t -1)) + 0 -1 P (θ) ẋ(t + θ)dθ + 0 -1 P (θ)x(t + θ)dθ. (7)
This kind of stabilization is out of our consideration. We only notice that the use of a control such as in [START_REF] Kato | Perturbation theory for linear operators[END_REF] means, from the operator point of view, a perturbation of A by an operator BP which is not bounded with respect to A. In particular, that implies D( A) = D(A). So even if we prove infinitesimality of A, the domains of solutions of the initial and closed-loop systems are different.

Operator analysis of the model

We consider PSS and complete (a1) with the following assumptions characterizing the class of systems (2) we deal with:

(a2) All the eigenvalues µ ∈ such that |µ| = 1 are simple in the sense that there are no Jordan chains corresponding to such eigenvalues.

(a3) The finite-dimensional system

ẋ(t) = A 0 x(t) + Bu(t), x ∈ R n , u ∈ R r (8) 
is controlable, i.e. rank (

B A 0 B • • • A n-1 0 B ) = n.
In particular, this implies that (8) is stabilizable, i.e. there exists a linear feedback control u = P 0 0 x such that Re(σ

(A + BP 0 0 )) < 0. (a4) rank ( A 1 + A 0 A -1 B ) = rankB.
Let us put into (2) a control u(t) = P 0 x(t) + P 1 x(t -1) + v(t). That leads to replace (3) by the system

d dt y(t) x t (•) = A 1 y(t) x t (•) + Bv(t),
where A 1 is given by [START_REF] Hale | Theory of functional differential equations[END_REF]. Due to (a4) for any P 0 ∈ R (r×n) there exists a matrix P 1 = P 1 (P 0 ) ∈ R (r×n) such that

A 1 + BP 1 + (A 0 + BP 0 )A -1 = (A 1 + A 0 A -1 ) + BP 0 A -1 + BP 1 = 0.
For this choice of P 1 operator A 1 takes the form

A 1 q ϕ(•) = A 0 + BP 0 0 0 ∂ ∂θ q ϕ(•) . ( 9 
)
Proposition 3.1 Let A 1 be given by [START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF]. Then i) σ( A 1 ) = σ(A 0 + BP 0 ) ∪ log .

ii) Under the assumption σ(A 0 +BP 0 )∩log = ∅ the set of eigenvectors of A 1 is as follows: a) to each eigenvector d ∈ C n of A 0 + BP 0 with eigenvalue λ there corresponds an eigenvector

d = d (I -e -λ A -1 ) -1 e λθ
of A 1 with the same eigenvalue; b) to each eigenvector g ∈ C n of A -1 with eigenvalue µ there corresponds a family { g k } k∈Z of eigenvectors of A :

g k = (I -e -λ µ k A -1 )g e λ µ k θ g = 0 e λ µ k θ g , where λ µ k = log |µ| + i(arg µ + 2πk), k ∈ Z is the eigenvalue corresponding to g k .
Proof: Let q ϕ(•) be an arbitrary eigenvector of A 1 and λ be the corresponding eigenvalue. Taking into account [START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF] we have d dθ ϕ(θ) = λϕ(θ) and (A 0 + BP 0 )q = λq. From the first equality we obtain ϕ(θ) = e λθ c, c ∈ C n , c = 0. Since q = ϕ(0) -A -1 ϕ(1), then the second equality yields (A 0 +BP 0 )(c-A -1 e -λ c)-λ(c-A -1 e -λ c) = (A 0 +BP 0 -λI)(I -A -1 e -λ )c = 0. Therefore, either (I -A -1 e -λ )c is an eigenvector for A 0 +BP 0 corresponding to λ or c is an eigenvector of A -1 corresponding to e λ . This alternative completes the proof.

Using (a3) one can choose P 0 ∈ R (r×n) in such a way that the spectrum σ(A 0 + BP 0 ) consists of n distinct negative eigenvalues which do not belong to the set log . Let further P 0 0 be such a matrix and P 0 1 = P 1 (P 0 0 ) and A 0 1 be the operator (6) corresponding to the choice P 0 = P 0 0 , P 1 = P 0 1 . Then, by Proposition 3.1, the spectrum σ( A 0 1 ) belongs to the semi-plane {λ : Re(λ) ≤ 0}. Our next goal is to prove that the system

d dt y(t) x t (•) = A 0 1 y(t) x t (•) + Bv(t), (10) 
is strongly stabilizable by linear bounded controls. To show that, we first prove dissipativity of the operator A 0 1 in some equivalent norm in Z.

Let d j , j = 1, ..., n be the eigenvectors of A 0 + BP 0 0 corresponding to λ j < 0,. Denote by D the nonsingular matrix

D = ( d 1 d 2 • • • d n ).
Now observe that, due to (a1) -(a2), the matrix A -1 can be represented in the form

A -1 = GJG -1 , (11) 
where G is a nonsingular matrix and J is a contraction, J ≤ 1. As the matrix J one can take, for example, a block diagonal form of A -1 which blocks are

J k =     µ k ν k 0 . . . 0 0 µ k ν k . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . µ k     ,
where

|ν k | ≤ 1-|µ k |, k = 1, .
., ℓ (note that all the eigenvalues µ k of A -1 such that |µ k | = 1 are simple (a2)). Finally let us introduce a linear bounded operator F :

C n → L 2 [(-1, 0), C n ] defined by F q = F   n j=1 q j d j   = -G -1 n j=1 q j I -A -1 e -λ j -1 e λ j θ d j . (12) 
If we denote by ∆(θ) the matrix with column I -A -1 e -λ j -1 e λ j θ d j , then F can be be written as

F q = -G -1 ∆(θ)D -1 q. ( 13 
)
Consider now a linear bounded operator T : Z → Z given by

T z = T q ϕ(•) = D -1 0 F G -1 q ϕ(•) = D -1 q (F q)(θ) + G -1 ϕ(θ) , (14) 
the corresponding inner product < ., . > T =< T., . > and the equivalent Hilbert norm • T in Z defined by

q ϕ(•) T = T q ϕ(•) = D -1 q 2 + 0 -1 (F q)(θ) + G -1 ϕ(θ) 2 dθ 1 2
.

This new norm allows to get the dissipativity of the operator A 0 1 .

Proposition 3.2 Operator

A 0 1 is dissipative in the norm • T , i.e. for all z = q ϕ(•) ∈ D( A 0 1 ) = D(A) we have Re A 0 1 z, z T ≤ 0.
Proof: Let z = q ϕ(•) ∈ D( A 0 1 ), then we have

A 0 1 z, z T = D -1 (A 0 + BP 0 0 )q, D -1 q + R (15) 
where

R = 0 -1 (F (A 0 + BP 0 0 )q)(θ) + G -1 d dθ ϕ(θ), (F q)(θ) + G -1 ϕ(θ) dθ. ( 16 
)
The vector q may be decomposed as q = n j=1 q j d j . Then

D -1 (A 0 + BP 0 0 )q, D -1 q = n j=1 λ j d j 2
and, therefore,

Re D -1 (A 0 + BP 0 0 )q, D -1 q = n j=1 Re(λ j ) d j 2 ≤ 0. ( 17 
)
Taking into account [START_REF] Levan | Strong stabilizability of linear contractive control systems on Banach space[END_REF] we have

(F (A 0 + BP 0 0 )q)(θ) = -G -1 n j=1 q j I -A -1 e -λ j -1 λ j e λ j θ d j = d dθ (F q)(θ).
Therefore the term R given in ( 16) may be written as

R = 0 -1 d dθ [(F q)(θ) + G -1 ϕ(θ)], (F q)(θ) + G -1 ϕ(θ) dθ = (F q)(θ) + G -1 ϕ(θ) 2 0 -1 - 0 -1 (F q)(θ) + G -1 ϕ(θ), d dθ [(F q)(θ) + G -1 ϕ(θ)] dθ and this gives Re(R) = 1 2 (F q)(0) + G -1 ϕ(0) 2 -(F q)(-1) + G -1 ϕ(-1) 2 . ( 18 
)
Note that, as z ∈ D(A), we have

ϕ(0) -A -1 ϕ(-1) = q = n j=1 q j d j . ( 19 
)
Let us put ψ(θ) = ϕ(θ) -n j=1 q j I -A -1 e -λ j -1 e λ j θ d j . Then one can easily check that [START_REF] Sklyar | A theorem on the strong asymptotic stability and determination of stabilizing controls[END_REF] implies

ψ(0) = A -1 ψ(-1). ( 20 
)
From ( 12) we obtain

(F q)(θ) + G -1 ϕ(θ) = -G -1   n j=1 q j I -A -1 e -λ j -1 e λ j θ d j -ϕ(θ)   = G -1 ψ(θ).
Hence, taking into account [START_REF] Sklyar | On asymptotic stability of a linear differential equation in Banach space[END_REF], relation ( 18) can be rewritten as

Re(R) = 1 2 ( G -1 ψ(0) 2 -G -1 ψ(-1) 2 ) = 1 2 ( G -1 A -1 ψ(-1) 2 -G -1 ψ(-1) 2 ).
Let us substitute G -1 ψ(-1) = w and make use of [START_REF] Korobov | Strong stabilizability of contractive systems in Hilbert spaces[END_REF]. That yields

Re(R) = 1 2 Jw 2 -w 2 ≤ 0. ( 21 
)
Comparison of ( 15), ( 17) and ( 21) completes the proof.

Corollary 3.3 It follows from Proposition 3.2 that the semigroup {e A 0 1 t } t≥0 is contractive in the norm • T . In fact,

d dt e A 0 1 t z 2 T = 2Re A 0 1 e A 0 1 t z, e A 0 1 t z ≤ 0.
This means that ( 10) is a contractive system in the space Z with norm • T (see [START_REF] Korobov | Strong stabilizability of contractive systems in Hilbert spaces[END_REF]).

The strong stabilizability

In order to analyze strong stabilizability of [START_REF] Gorecki | Analysis and synthesis of time delay systems[END_REF] we make use of the following theorem on the strong stabilizability of contractive systems [11, Theorem 5]: Consider a system of the form

d dt x = Ax + Bu, x ∈ H, u ∈ U,
where H and U are Hilbert spaces, the operator A generates a strongly continuous contractive semigroup {e At } t≥0 and B a linear bounded operator from H to U . If there exists t 0 > 0 such that the set

σ(e At 0 ) ∩ {w ∈ C : |w| = 1}
is at most countable, then the system is strongly stabilizable (with the aid of linear bounded control law) if and only if there does not exist an eigenvector x 0 of the operator A corresponding to an eigenvalue λ 0 , Re(λ 0 ) = 0, such that x 0 ∈ Ker B * . If this condition holds then the strong stabilizing control can be chosen as u = -B * x.

It has been shown that the semigroup {e

A 0 1 t } t≥0 is contractive in the space Z with norm • T . It is known [5] that σ(e A 0 1 t 0 ) ⊂ exp(t 0 σ( A 0 1 
)) (S means the closure of S). From Proposition 3.1 we have for t 0 = 1 :

exp(σ( A 0 1 )) = exp(σ(A 0 + BP 0 0 )) ∪
and, therefore, this set is finite. Hence the set

σ(e A 0 1 ) ∩ {w ∈ C : |w| = 1} ⊂ σ(e A 0 1 ) ⊂ exp(σ( A 0 1
)) is also finite. Thus, on the basis of [START_REF] Korobov | Strong stabilizability of contractive systems in Hilbert spaces[END_REF]Theorem 5] we conclude that the system [START_REF] Gorecki | Analysis and synthesis of time delay systems[END_REF] is strongly stabilizable (notice that stabilizabilities in norms • and • T are equivalent) iff there exists no eigenvector z 0 of the operator A 0 1 corresponding to a pure imaginary eigenvalue such that

z 0 ∈ Ker B * T , (22) 
where B * T : (Z, • T ) → C r is the adjoint operator to B in the norm • T . In this case the strong stabilizing control can choosen in the form

v = -B * T y(t) x t (•) . (23) 
In order to compute the feedback law, we need the expression of the operator B * T . Let u ∈ C r and z = q ϕ(.) ∈ Z. Then, taking in account the form of the operator T in ( 14), we have

u, B * T z = Bu, z T = T Bu, T z = D -1 Bu F Bu , D -1 q F q + G -1 ϕ
And a simple computation gives

B * T z = (B * D -1 * D -1 + B * F * F )q + B * F * G -1 ϕ. ( 24 
)
Using the expressions ( 12) and ( 13) of F , we get

F * ψ = - 0 -1 D -1 * ∆ * (θ)G -1 * ψ(θ)dθ = -D -1 * 0 -1 Q(θ)ψ(θ)dθ,
where Q(θ) = ∆ * (θ)G -1 * , and then, putting

Q = 0 -1 Q(θ) Q * (θ)dθ, we obtain 
F * F = 0 -1 D -1 * ∆ * (θ)G -1 * G -1 ∆(θ)D -1 dθ = D -1 * QD -1 .
Finally, with Q(θ) = Q(θ)G -1 , the feedback may be written as

v(t) = -B * T z(t) = -B * D -1 * (I + Q)D -1 y(t) - 0 -1 Q(θ)x t (θ)dθ . ( 25 
)
Now let us analyze the condition [START_REF] Yamamoto | Reachability of a class of infinite-dimensional linear systems: an external approach with applications to general neutral systems[END_REF]. Among all the eigenvalues of A 0 1 the pure imaginary ones are (see Proposition 3.1)

λ µ k = log |µ| + i(argµ + 2πk), k ∈ Z, (26) 
for µ ∈ such that |µ| = 1. For the corresponding eigenvectors

g k = 0 e λ µ k θ g , k ∈ Z we have B * T g k = B * D -1 * 0 -1 Q(θ)e λ µ k θ gdθ = B * D -1 *    d * 1 I -A * -1 e -λ 1 -1 1-e -λ 1 -λ µ k λ 1 +λ µ k . . . d * n I -A * -1 e -λn -1 1-e -λn-λ µ k λn+λ µ k    G -1 * G -1 g. (27) 
In (27) g is an eigenvector of A -1 corresponding to eigenvalue µ. This implies that G -1 * G -1 g is an eigenvector of A * -1 corresponding to complex conjugate eigenvalue μ. Indeed, taking into account [START_REF] Korobov | Strong stabilizability of contractive systems in Hilbert spaces[END_REF] we get

J * G -1 g, G -1 g = G * A * -1 G -1 * G -1 g, G -1 g = G -1 * G -1 g, A -1 g = μ G -1 g, G -1 g . ( 28 
)
which holds for all α ∈ R. From this follows that

( A 0 1 -λ µ k I)f, g k T = 0, for all f ∈ D( A 0 1 ).
The later relation means that g k ∈ D(( A 0 1 ) * T ) and

( A 0 1 ) * T g k = λ µ k g k = -λ µ k g k . Since in addition g k ∈ Ker B * T ⊂ Ker (BP 1 ) * T then g k ∈ D( A * T ) and A * T g k = ( A 0 1 ) * T g k + (BP 1 ) * T g k = -λ µ k g k . Hence e At * T g k = e -λ µ k t g k and, as a consequence, e At g k , g k T = g k , e At * T g k T = e λ µ k t g k 2 T , t ≥ 0. Thus e At g k T ≥ g k T → 0 as t → +∞.
This contradiction completes the proof.

Remark 4.4 Assume that rank B = n. In this case one can easily observe that assumptions (a3)-(a4) are satisfied automatically. Besides, the condition (30) from Theorem 4.3 is also always satisfied. So any system (2) with rank B = n and (a1)-(a2) is strongly stabilizable.

Example

Consider the following one-dimensional system ẋ(t) = -x(t) + x(t -1) + ẋ(t -1) + u(t).

It is shown in [START_REF] O'connor | On stabilization by state feedback for neutral differential equations[END_REF] that this system is not exponentially stabilizable by a feedback of class 2, because only a finite part of the spectrum of the closedloop system can be moved to a semi-plane {λ : Re(λ) ≤ α < 0} Now observe that (31) is strongly stabilizable due to Theorem 4.3. In fact, for this system we have: n = 1, A 0 = -1, A 1 = A -1 = 1, B = 1, = {1} which is a simple eigenvalue. Since rank B = 1 = n and (a1)-(a2) are satisfied the (31) is strongly stabilizable. Let us find a stabilizing control. Since A 1 + A 0 A -1 = 0 and σ(A 0 ) = {-1} is real negative we can put P 0 0 = P 0 1 = 0. Some simple calculations give G = 1, D = 1, (F q)(θ) = -(1e) -1 e -θ q and, therefore,

Q = 1 2
e + 1 e -1 , Q(θ) = e -θ e -1 .

Thus, a stabilizing control from Theorem 4.3 for system (31)takes the form

u(t) = -1 + 1 2
e + 1 e -1 (x(t)x(t -1)) -1 e -1 0 -1 e -θ x(t + θ)dθ.

Conclusion

For linear systems of neutral type we gave a characterization of a class of strongly stabilizable systems by relatively bounded feedback laws. No derivative of the state is needed in the feedback. The counterpart is that the stabilizability is not exponential. As a perspective, one can expect that this technique may be used for more general systems with delay of neutral type, using the same infinite dimensional abstract framework.
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Since the adjoint operator J * is also a contraction then (28), with Cauchy-Buniakovski inequality, yields J * G -1 g = μG -1 g. From this and [START_REF] Korobov | Strong stabilizability of contractive systems in Hilbert spaces[END_REF] we get A * -1 G -1 * G -1 g = μG -1 * G -1 g. This fact and the observation that e -λ µ k = μ, λ µ k = -λ µ k , k ∈ Z allow to rewrite (27) as

where

is the resolvent of the matrix A 0 +BP 0 0 . With respect to formulas (25) and (29) the necessary and sufficient conditions of the strong stabilizability for the system (10) take the following form: Theorem 4.1 System (10) is strongly stabilizable (with the aid of the of bounded controls) iff there exists no eigenvector g of matrix A -1 corresponding to an eigenvalue µ ∈ , |µ| = 1 and k ∈ Z such that

where λ µ k is given by (26). Under this condition a stabilizing control is given by (25). Remark 4.2 Let P 0 be a (r × n)-matrix and let λ ∈ C be such that λ / ∈ σ(A 0 + BP 0 0 ) ∪ σ(A 0 + BP 0 ). Let us precise that

From this identity one can easily conclude that for given µ, g, λ µ k the relation

The following theorem is the main result of the paper.

Theorem 4.3 Let a of the form system (2) satisfy the assumptions (a1) -(a4). Then this system is strongly stabilizable by a feedback control of class 2 if and only if for an arbitrarily chosen matrix P 0 such that

there does not exists an eigenvector g of A -1 corresponding to an eigenvalue µ ∈ , |µ| = 1 and k ∈ Z such that

where λ µ k is given by (26). Under this condition the strong stabilization can by achieved by the choice of control:

where P 0 0 and P 0 1 are defined in Section 3 and v is given by ( 25):